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Abstract 
State-of-the-art, large-scale language models or multimodal foundation models incorporating a 
text modality are trained on large collections of pretraining data, largely focusing on general-
purpose language and/or vision data sources. However, performance often degrades when 
applying foundation models trained on general-purpose datasets to science and security 
domains, such as handling the vocabulary shift between general language versus domain 
knowledge in areas like molecular chemistry and climate. By leveraging a large collection of 
scientific literature, the Mega AI project focused on developing next-generation foundation 
models addressing science and security missions. The project explored the tradeoffs of 
development choices (pretraining from scratch, fine-tuning off-the-shelf base models, and 
targeted fine-tuning and/or task-prompts) and model performance to support: on premise model 
use, mission informed training/tuning of usable LLMs, & traceable model development and 
evaluation. 
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1.0 Introduction 
Foundation models pre-trained on large corpora demonstrate significant gains across many 
natural language processing tasks and domains e.g., law, healthcare, education, etc. Unlike 
discriminant (or “narrow”) AI models, a massive-scale foundation model is a single model that 
learns from huge amounts of raw unlabeled data and is multi-purpose. Therefore, it can be 
rapidly adapted to a wide range of useful tasks, such as knowledge summarization, information 
extraction, hypothesis generation and validation, question answering, classification, 
recommendation etc. Limited efforts had explored the opportunities and limitations of applying 
these models to science and security applications when the Mega AI project began, motivating 
the design of experiments exploring the development of foundation models for these missions 
and the cost-performance tradeoffs of pre-training from scratch, tuning, and usability across a 
range of downstream tasks.  

Over the course of the project, there were three use cases: Molecular Chemistry, Climate 
Security, and Cybersecurity. The focus by fiscal year is shown in Table 1. The project's 
objectives were to develop foundation models tailored to each use case, evaluate these models 
alongside open-source baseline models, and evaluate their performance on both in-domain and 
out-of-domain benchmarks and downstream tasks. Evaluations focus not only on performance 
assessments but contextualization of strengths (performance improvements, robustness) and 
weaknesses (challenges or limitations of downstream use) and the development choices (pre-
training from scratch vs. tuning of open-source base models, parameter choices, or length of 
training used, etc.). 

 
 

Table 1. Project focus by fiscal year on each of the three use cases. 
Use Case FY22 FY23 FY24 
Molecular Chemistry    
Climate Security    
Cybersecurity    

 

Overall, the project aimed to develop large-scale, multi-purpose foundation AI models to enable 
generative solutions for tasks within science and security mission domains. For Climate in FY22 
and Chemistry in FY22 and FY23, objectives included pretraining AI models with over 1 billion 
parameters using large-scale scientific text datasets curated by the project and molecular 
database information. In FY24, the focus shifted to Cybersecurity and Code, where the goal was 
focused around targeted fine-tuning and adaptation of these models to enhance performance in 
multi-purpose tasks, from zero-shot to instruction-tuned applications. These tasks were focused 
on enabling efficient on-premises, mission-informed tasks like vulnerability assessment at scale. 
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2.0 Scaling AI for Science Missions 
In the first two years, the project developed foundation models of scientific knowledge for 
chemistry (FY22 and FY23) and climate (FY22) to augment scientists. Specifically, we built 
large-scale (1.47B parameter) general-purpose models that could be effectively used to perform 
a wide range of in-domain and out-of-domain tasks. Evaluating these models in a zero-shot 
setting, we analyzed the effect of model and data scaling, knowledge depth, and temporality on 
model performance in context of model training efficiency. 

2.1 Pretraining Datasets 

State-of-the-art large-scale language models or foundation models are trained on large corpora 
of data. The project team constructed several large pre-training datasets (ranging from 21.4M to 
294.8M documents) constructed from scientific literature to support science and security 
targeted development of foundation models. These datasets were collected to support domain-
specific pretraining at scale, enabling domain-focused models via pretraining from scratch or 
continual pretraining of other SOTA models trained on general text. 

We leveraged scientific literature from a variety of data sources when constructing each of our 
datasets. When constructing our five datasets, we sampled domain-focused scientific literature 
from nine data sources. This included sampling from six existing academic literature datasets: 
the Semantic Scholar Open Research Corpus (S2ORC), ArnetMiner’s “AMiner” dataset, the 
Microsoft Academic Graph (MAG), PubMed publications from the Pile, the COnnecting 
REpositories (CORE) dataset, and the CORD-19 dataset. We also used API-based sampling 
from three publication databases or scholarly search systems: the dblp computer science 
bibliography (DBLP), Clarivate’s Web of Science (WoS), and the Office of Scientific and 
Technical Information’s OSTI.gov engine (OSTI). Data sources also included two pre-print 
archive and distribution services: arXiv and bioRxiv.  

We used a combination of source-based, venue-based, and keyword-based collection 
strategies to construct our two domain-focused samples for Chemistry and Climate, and a third 
General Science sample. The General Science sample was created by aggregating documents 
from across the data sources. Table 2  illustrates the use of each strategy across datasets. 

 
Table 2. Summary of Collection Strategies Used by Sample. 

Dataset Data Source Venue-Based Keyword-Based 
Chemistry  ✓ ✓ 
Climate   ✓ 
General Science ✓   

Our chemistry dataset was collected through a keyword-based collection strategy using a 
collection of keywords extracted by using a Correlation Explanation topic model followed by 
manual filtering by subject matter experts. This resulted in a list of more than 1300 chemistry-
related entities, ranging from compound names like ethyl acetate, methyl methacrylate, 
sulfoxide, etc., to experiments and procedures like tunneling microscopy, neutralization, 
enzymatic hydrolysis, etc., which is included in the supplementary materials. 
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Similarly to the chemistry collection process, our climate dataset was collected using a keyword-
collection strategy with a collection of 56 subject matter expert-informed keywords including (but 
not limited to) aerosol effect, anthropogenic, atmospheric model, biogeochemistry, carbon 
assimilation, climate change, climate security, climate sensitivity, cloud albedo, earth system 
model, fossil fuels, greenhouse gases, and mesoscale convective system.   

2.1.1 Deduplication 

Prior research (Katherine Lee 2022) has demonstrated that duplicates in training data can 
significantly impact the performance of models. To address this, we performed deduplication on 
each of our three datasets. To detect and remove duplicates, we compared the titles of scientific 
articles across all data sources. We standardized the titles by converting them to lowercase (i.e. 
case folding) and removing punctuation, creating simplified versions. Two articles were 
considered duplicates if they had the same processed title. Deduplication resulted in 107.9M 
Chemistry documents, 21.4M Climate documents, and 294.8M for General Science. 
 
When removing duplicates from each dataset, we followed a prioritization strategy:  

1. We included sources that contained only or primarily peer-reviewed publications. 
2. Sources that contained both peer-reviewed and non-peer-reviewed publications.  
3. Sources that did not have peer-review requirements (e.g., arXiv, bioRxiv). 

It is important to note that sources like arXiv and bioRxiv, which do not require peer review, may 
still include peer-reviewed research. This was evident during the deduplication process for the 
Climate dataset, where arXiv and bioRxiv exhibited high overlap with literature from sources 
such as WoS, OSTI, and DBLP. The relative scale of each source is illustrated in Figure 1 for 
Chemistry, Figure 2 for Climate, and Figure 3 for General Science. Color encodes whether the 
source contains Peer Reviewed (Blue), Mixed (Purple), or Not Reviewed (Red) publications and 
shades distinguish sources, used consistently across all figures. 

 
Figure 1. Overview of the Chemistry dataset where size encodes the relative scale of each 
source within the dataset. 
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Figure 2. Climate dataset sources, size encodes the relative scale of each source. 
 

 
Figure 3. General Science dataset sources, size encodes the relative scale of each source. 
 

2.1.2 Tokenization 

We use the Byte Pair Encoding (BPE) algorithm (Shibata 1999) to train a tokenizer with a 
vocabulary size of 64K for each source, using the BPE implementation available in the 
Megatron (Shoeybi 2019) Python repository. Due to the massive scale of the general science 
corpus, we only sampled the first 1M characters in each text as the input to this training 
process, observing that the mean character count for abstracts (1,206) and full text (43,560) fall 
well below this threshold. Using a DGX A100 machine with 512Gb memory to train this 
tokenizer took ˜4.25 hours. We used the resulting vocabularies to tokenize each sample 
(General Science, Chemistry, Climate). This resulted in 200.6B tokens for Chemistry, 65.7B 
tokens for Climate, and 451.9B tokens for General Science.  

These in-domain vocabularies provide meaningful tokens that are useful in the training (i.e., pre-
training from scratch or continual pre-training) of large-scale foundation models. For example, 
dimethylnitroxide was tokenized into #dimethyl, #nitr, #oxide using our BPE-tokenized in-domain 
vocabulary and into #dim, #ethyl, #nit, #rox, #ide using the standard GPT-2 vocabulary. 
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2.2 Evaluation Datasets 
 

We evaluate out-of-domain performance across science use cases using 9 commonly used 
LLM benchmarks: BoolQ, Commitment Bank, MathQA, PIQA, PubMedQA, WIC, WSC, 
Lambada, and WikiText. 
 
BoolQ (Christopher Clark 2019) is a reading comprehension dataset comprised of 16k real, 
naturally formed queries to the Google search engine with a yes or no answer. Each question-
answer pair is accompanied by a Wikipedia article providing evidence to support the correct 
answer 
 
Commitment Bank (CB) (Marie-Catherine De Marneffe 2019) is a 3-way classification of 
textual entailment (true, false, unknown) from 1,200 short text segments where at least one 
sentence contains an embedded clause. The dataset contains passages from three sources: 
the Wall Street Journal, the British National Corpus, and Switchboard. 
 
MathQA (Aida Amini 2019) is a dataset containing 37k multiple choice math word problems built 
from the existing dataset, AQuA (Wang Ling 2017). 
 
Physical Interactions: Question Answering (PIQA) (Yonatan Bisk 2020) benchmark dataset 
provides 21k questions about the physical world and plausible interactions encountered by 
humans. Annotators provided correct and incorrect answers to questions extracted from 
instructables.com, a website of instructions for completing many everyday tasks. 
 
PubMedQA dataset (Qiao Jin 2019) is a collection of 273.5k biomedical research questions and 
related PubMed articles with yes/no/maybe answers. 
 
Word-in-Context dataset (WIC) (Camacho-Collados. 2018) is a benchmark for evaluating 
context-sensitive word embeddings. The task is to classify if a target word has the same 
meaning in two context sentence. 
 
Winograd Schema Challenge (WSC) (Hector J. Levesque 2012) dataset is a 
collection of 804 sentences in which the task is to resolve coreferences. 
 
Lambada (Denis Paperno 2016) contains passages and target sentences from 5,325 nov- 
els collected from Book Corpus (Yukun Zhu 2015), and the goal is to predict the last word of the 
target sentence given the context passage. This task was designed to test genuine language 
understanding since accurate prediction of the final word would be improbable without the 
context passage. 
 
WikiText (Wikitext-2) The Wikitext benchmark (Stephen Merity 2016) is a language modeling 
dataset of 29k articles from Wikipedia. Only articles classified as Good or Featured by Wikipedia 
editors are included since they are considered to be well written and neutral in language. All 
results are reported on Wikitext-2. 

2.2.1 Chemistry-Specific Evaluation Datasets 
 
There are five in-domain chemistry benchmarks that were used throughout the efforts of 
Chemistry-focused modelling: 
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• HendrycksTest-Chemistry The Hendrycks Test (Dan Hendrycks 2020) is a large scale 
collection of multiple-choice questions covering 57 subjects. In our experiments, we 
subsampled college chemistry (HT-CC) and high school chemistry (HT-HC). HT-CC 
contains 100 questions related to analytical, organic, inorganic, physical, etc. and HT-HC 
contains 203 questions related chemical reactions, ions, acids and bases, etc. 

 
• ARC (Peter Clark 2018) contains 7,787 genuine grade-school level, science multiple-

choice questions and is partitioned into a Challenge Set (ARC-C) and an Easy Set 
(ARC-E). Additionally, 14M science-related sentences are provided with relevant 
knowledge to answer the ARC questions. 

 
• SciQ The SciQ dataset (Johannes Welbl 2017) contains 13,679 crowdsourced multiple-

choice science exam questions about Physics, Chemistry and Biology, among others. 
 

• OpenBookQA The OpenBookQA (Todor Mihaylov 2018) dataset consists of 5,957 
multiple-choice questions and 1,326 elementary-level science facts. The facts alone do 
not contain enough information to correctly answer the multiple-choice questions, 
therefore the task is designed to evaluate systems beyond paraphrase matching. 

 
• Pile PubMed Abstracts The Pile dataset (Leo Gao 2020) contains 800GB of diverse 

text sources for benchmarking language models. We limit this task to only include 
abstracts from the Pile’s PubMed collection. As this is framed as a language modeling 
task, we reported word level perplexity. 

   
In addition, we introduced five new tasks for evaluation in the second year (described in Section 
3.3) that included evaluations based on CHEMDNER (Krallinger 2015) and PubChem (Kim 
2019) datasets. 
 

• CHEMDNER tasks include Chemical Entity Extraction (CEE) and Chemical Entity 
Recognition (CER). Each text in the CHEMDNER datasets contained one or more 
chemical named entities from one of seven classes of chemical entities (Trivial, Family, 
Systematic, Formula, Abbreviation, Multiple, Identifier). For the CEE task, a model has to 
identify all entities present in the text for a specific entity class. For the CER task, a 
model has to identify all entity classes for the entities present in the provided text. We 
developed custom metrics for the CEE and CER tasks based on the methodology 
described in (Chinchor 1993) which allowed us to consider partial matches.  

 
• PubChem Molecular Property Tasks We derived three new tasks using the molecular 

properties reflected in the PubChem (Kim 2019) database: Molecular Formula 
Generation (MFG), Isomeric SELFIE String Generation (ISG), and Molecular Weight 
Estimation (MWE). Each task is structured such that given an IUPAC name, a model is 
asked to generate the respective property (molecular formula (MFG), SELFIE 
representation of the molecule (ISG), and an estimated value for the molecular weight 
(MWE).   

2.2.2 Climate-Specific Evaluation Datasets 

The out of domain evaluation for climate used the same set as the project used for chemistry 
(BoolQ, CB, MathQA, PiQA, SciQ, WIC, WSC, LaMBADA, and WikiText). There were three 
climate-focused in domain evaluation datasets. Two of which were collected from prior research 
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or open-sourced work within the community (Climate-FEVER and SciDCC) and a third 
constructed by the project team (cleanetQA). 

• Climate-FEVER (Diggelmann et al., 2020) was a claim verification benchmark 
comprising 1,535 climate-focused claims with five annotated evidence sentences per 
claim, individually annotated as supports, refutes, or not enough information. Claims 
themselves were labeled similarly, with the addition of "disputed" for claims with both 
supporting and refuting evidence. 

• SciDCC (Mishra and Mittal) was a 20-class text classification dataset comprising 11,539 
climate change-related news articles that were collected from the Earth Climate 
(http://www.sciencedaily.com/news/earth_climate/) and Plant Animals 
(http://www.sciencedaily.com/news/plants_animals/) topics in the environmental science 
section of the Science Daily website.  
 
SciDCC classes comprised: Earthquakes, Pollution, Genetically Modified, 
Hurricanes/Cyclones, Agriculture Food, Animals, Weather, Endangered Animals, 
Climate, Ozone Holes, Biology, New Species, Environment, Biotechnology, Geography, 
Microbes, Extinction, Zoology, Geology, Global Warming. 

• cleanetQA was a climate/energy literacy question-answering dataset that the Mega AI 
project team constructed from the climate literacy and energy literacy quizzes from 
cleanet.org: https://cleanet.org/clean/literacy/climate/quiz.html and 
https://cleanet.org/clean/literacy/energyquiz.html.  

 

2.3 GPT-NeoX-based Chemistry Models 

Previous work has shown that pretraining models from scratch on domain-specific data has a 
significant benefit over continual pretraining of general-domain language models (Gu, et al. 
2021). This is mainly due to the availability of in-domain data for both generating the vocabulary 
and pretraining. SciBERT (Beltagy, Lo and Cohan 2019) was pretrained using the vocabulary 
generated from computer science and biomedical domains. PubMedBERT (Gu, et al. 2021) is 
another example of pretraining the base BERT model from scratch using PubMed. In our FY22 
experiments, we used both continual and from scratch pretraining to build the largest foundation 
model for Chemistry (1.47B) on the largest (0.67TB) and the most diverse corpus (10+ sources) 
collected to date at the time.  

We adapted Open-AI's GPT-2 transformer decoder architecture (Radford, et al. 2019) to train 
our autoregressive language models for Chemistry. To understand the impact of model size, we 
experiment with four different Transformer sizes: small (S), medium (M), large (L), and extra-
large (XL). These models differ in the number of decoder layers, hidden size of the model, and 
the number of attention heads in transformer blocks as shown in Table 4. Our experiments 
leveraged the GPT-NeoX Python library (Andonian, et al. 2021) developed with Megatron 
(Shoeybi, et al. 2019) and DeepSpeed (Rasley, et al. 2020). We optimized the autoregressive 
log-likelihood (i.e., cross-entropy loss) averaged over a 2048-token context; set the micro batch 
size per GPU as 4, the learning rate to 2 x 10−4; relied on the cosine decay; used an Adam 
optimizer with 𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.99, and  𝜎𝜎 = 10−8; and clip the gradient norm at 1.0. In addition, 
ZeRO optimizer (Rajbhandari, et al. 2019) was used to reduce memory footprint by distributing 
optimizer states across several processes. 

http://www.sciencedaily.com/news/earth_climate/
http://www.sciencedaily.com/news/plants_animals/
https://cleanet.org/clean/literacy/climate/quiz.html
https://cleanet.org/clean/literacy/energyquiz.html
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Table 3: Our model configurations, comparing across GPT-NeoX and GPT-2.  

Size Model # of decoder layers hidden size # of attention heads #Params (B) 

S GPT-NeoX 12 768 12 0.18 

GPT-2 12 768 12 

M GPT-NeoX 24 1024 16 0.40 

GPT-2 24 1024 16 

L GPT-NeoX 24 1536 16 0.80 

GPT-2 36 1280 20 

XL GPT-NeoX 24 2048 16 1.47 

GPT-2 48 1600 25 

 

To reduce memory and increase training throughput, we used mixed-precision training (Rasley, 
et al. 2020) and the parallel attention and feed-forward implementations available in GPT-NeoX 
(Black, et al. 2022).  We also used the Rotary positional embeddings (Su, et al. 2021) instead of 
the learned positional embeddings used in the GPT-2 model (Radford, et al. 2019) because 
they offer performance advantages in tasks with longer texts by capturing relative position 
dependency in self-attention. Our models are pretrained across multiple workers with data 
parallelism. As the largest model in our experiments fit on a single GPU, we didn't use the 
model (tensor) or pipeline parallelism. Models were pretrained from scratch for a total of 320K 
steps. The original GPT-2 models are fine-tuned for 150K steps. 

We pretrained models with individual datasets (AMiner, CORE, MAG, PubMed, S2ORC, WOS) 
and combined abstracts and full texts. Goals of these experiments were to systematically study 
data biases in the model performance when pretraining models with individual datasets. We  
used 4 GPUs for the models pretrained with individual datasets and 8 GPUs for the combined 
models. This is to control the number of tokens seen during model pretraining (320,000 steps * 
4 GPUs * 4 micro batch size * 2,048 context size = 10B tokens) relative to the maximum 
number of tokens available in the respective datasets which varied in scale. We also trained one 
XL (4x) model with 4x larger batch size than what used in XL model to evaluate the impact of 
the number of training tokens. 

2.3.1 Key Highlights  

Novel findings using the GPT-NeoX models developed in FY22 demonstrated that (1) model 
size significantly contributes to the task performance when evaluated in a zero-shot setting; (2) 
data quality (aka diversity) affects model performance more than data quantity; (3) similarly, 
unlike previous work (Luu 2021) temporal order of the documents in the corpus boosts model 
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performance only for specific tasks, e.g., SciQ; and (4) models pre-trained from scratch perform 
better on in-domain tasks than those tuned from general-purpose models like Open AI’s GPT-2. 

Our evaluations across the five in-domain chemistry benchmarks show that one or more 
configuration of our models outperforms baseline GPT-2 models in two chemistry tasks, general 
science QA (SciQ), and science-focused generative text language modeling. For the remaining 
tasks, such as ARC and OpenBookQA, our models perform within 1-4% of the GPT-2 
baselines. Evaluations on the out-of-domain benchmarks commonly used for LLM evaluations 
illustrate that our chemistry-domain trained models outperform baseline GPT-2 performance for 
CB,WIC,and WSC and match best accuracy for BoolQ but that for the remaining tasks 
particularly Lambada and WikiText – the two general language modeling tasks – baseline GPT-
2 models have stronger performance. 

Temporal Training Analysis. Scientific knowledge evolves over time reflecting new research 
ideas, innovations, and findings. We tested how continual pretraining on temporal-aligned 
scientific publications impacts downstream performance. For these experiments, we maintained 
two variants of the MAG dataset with random-ordered and temporal-ordered articles, splitting 
each into ten equal subsets. We continue pretraining a base medium (M) sized model iteratively 
with the subsets in the order they appeared in the respective data variant. For example, in the 
temporally aligned experiments, we first pretrain a model with 3.4M (10%) articles from before 
1978, and then use it as the base model to continue pretraining with another 3.4M (10%) 
articles from between 1978 and 1989. We train the initial model for 150K steps and each 
subsequent model for 10K steps with additional data.  

There were two key findings. First, SciQ and ARC-E zero-shot task performances improve over 
time with the models trained with temporally ordered scientific texts. For example, SciQ 
accuracy improved from 0.64 to 0.73 from the base model checkpoint to the final model 
checkpoint. Similarly, ARC-E accuracy improves from 0.43 to 0.45. When the model was 
pretrained with random-ordered data subsets, we observe only a slight (<1%) performance 
increase. However, there were mixed patterns in performance across out-of-domain tasks. For 
example, a slight performance increase in the PIQA, CB, PubMedQA, and WIC over time with 
the models trained with temporally ordered scientific texts. On the other hand, there is a 
performance drop in the BoolQ and WSC over time. This may be due to the catastrophic 
forgetting prevalent in continual learning (Ramasesh, Lewkowycz and Dyer 2021).   

2.4 MOLJET 

A collaboration with the University of Washington (UW) in FY22 focused on addressing key 
challenges in the domain of multi-property constrained optimization of molecules through 
generative de novo design models. Recognizing the gap between the reported performance in 
literature and practical utility in real-world scenarios, and the inaccessibility of such models to 
chemists without a computer science background, we developed and assessed a generative 
foundation model named the Multimodal Joint Embedding Transformer (MOLJET). 
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Figure 4. Outline of Multimodal Text+SMILES model development completed in collaboration 

with University of Washington, under a subcontract. 

The MOLJET development focused on conditional generation of desired molecular distributions 
based on text-based chemistry prompts in a zero-shot setting. Evaluation leveraged standard 
benchmarks from the GuacaMol and MIMOSA frameworks, including structure-based sampling 
tasks and multi-property optimization tasks (designing drug-like molecules under realistic 
property constraints). Experiment results demonstrated that with self-supervised pretraining, 
MOLJET outperformed 80% of task-optimized models using zero-shot inferences and was able 
to surpass all baselines after minimal supervision. 

 

 
Figure 5. Summary of MOLJET model performance. 

2.5 AISLE Chemistry Models 

In our FY23 experiments we compare two core model architectures using their HuggingFace 
(Thomas Wolf 2020)1 implementations or architectures: the Generative Pre-trained Transformer 
Model (GPT-2) ( (Alec Radford 2019) and the BigScience Large Open-science Open-access 
Multilingual Language Model (BLOOM) (Teven Le Scao 2022). We collected and/or trained the 
following configurations for each model architecture: 

 
1 https://huggingface.co/ 
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• the off-the-shelf baseline model, 
• an AISLE model pre-trained from scratch using our Chemistry Pretraining dataset, 
• a baseline model with instruction fine-tuning, 
•  and an AISLE pre-trained from scratch model with instruction fine-tuning. 

Baselines. We used the GPT2-XL model with 1.5B parameters and the BLOOM-3B model with 
3B parameters. We used the pre-trained weights and standard GPT-2 or BLOOM tokenizers 
available from HuggingFace (Thomas Wolf 2020). 

AISLE Models Trained from Scratch. We leverage our aggregated scientific data to train 
seven models from scratch across the two architectures (GPT and BLOOM). We trained these 
models for three epochs each over 10B tokens from 53 million scientific documents. All of these 
AI from Scientific Literature AISLE models were pre-trained with a 95/5 train/validation split. 
 
Instruction Fine-tuned Models. To better adapt models for the chemistry domain, we perform 
instruction fine-tuning across a variety of tasks leveraging molecular database features (formula, 
SELFIE string, molecular weight) and chemical entity extraction/recognition using CHEMDNER 
data. Prompt templates are shown in Figure 5. Fine-tuning for two epochs with early stopping, 
we conduct experiments with both the off-the-shelf baseline models and our domain pre-trained 
AISLE models of each architecture and fine-tune on a combination of the training data for all five 
tasks we consider resulting in four fine-tuned models: Baseline GPT2 , Baseline BLOOM, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺2, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 
 
 

 
Figure 6. Prompts for the CHEMDNER and PubChem instruction tasks. Italicized clauses in 
angle brackets are replaced for each example. 
 

2.5.1 Key Highlights  

Experiments using the AISLE models and comparisons to both GPT-2 (general language) and 
BLOOM (general science) identified several key findings.  Our results show that not only do in-
domain base models perform reasonably well on in-domain tasks in a zero-shot setting but that 
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further adaptation using instruction fine-tuning yields impressive performance on chemistry-
specific tasks such as named entity recognition and molecular formula generation.  

When we evaluate the model's ability to answer chemistry exam questions at the high school 
(HT-HC) and college (HT-CC) level, using the chemistry tasks from the MMLU benchmark, we 
see that our domain-pretrained AISLE models outperform baseline models, as shown in Figure 
6 that illustrates the percent improvement by our model over three baselines on high-school 
(HC) and college (CC) level questions, showing consistent strong performance by the AISLE 
GPT model. In particular on the college-level task where there were improvements of 20%+.  

 
Figure 7. AISLE GPT2-XL Improvement over Baselines for Chemistry Exam Questions. Relative 
improvement in accuracy, ranging from 10%-50%, achieved by the AISLE GPT 2 model over 
baselines for zero-shot (0) and few-shot using 3 examples (3). 
 
Expanding beyond chemistry alone, as shown in Figure 7, we find that a domain-pretrained 
AISLE model outperforms consistently in Chemistry-adjacent topics (ChemBioMed, Health, 
STEM). Interestingly, we see some higher performance compared to baselines in the Social 
Science (Social Sci.) focused topic. When we evaluate the models across the MMLU 
benchmark overall, comparing average performance across all tasks regardless of topic, we 
also see that our strongest AISLE model outperformed both baseline models by a small margin. 

 
Figure 8. Model performance (accuracy) in zero- and few-shot evaluations across subsets of the 
MMLU benchmark. We use a ‡ to denote if both AISLE models († if one) outperform baselines.    

2.6 Climate Models 

The project’s second science use case (FY22) was focused on climate security. Climate 
security encompasses the physical, economic, or societal changes associated with climate 
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environment changes. Given the influence of scale and emergent behavior on foundation model 
performance, we chose to explore the impacts of data source, pretraining scale, and pretraining 
objective on the ability of foundation models to perform on climate-related knowledge and 
reasoning tasks. Specifically, we set out to answer the following research questions: 

• To what degree does fine-tuning general-language models on climate data change 
performance compared to climate data pretraining? 

• How does downstream climate and general language performance change for the above 
conditions as a model's number of tokens seen during training increases? 

We explored six different transformer networks, namely three each based on the popular 
autoregressive GPT-2 (as used in Chemistry models) and RoBERTa (Yinhan Liu 2019). GPT-2 
is pretrained using an autoregressive generation task, whereas RoBERTa is pretrained using a 
dynamic masked language modeling (MLM) task. For each model variant, we explored three 
settings: evaluating an open-source baseline for each model directly on our downstream climate 
and general language benchmarks, fine-tuning the baseline model on our climate-specific 
corpus, and pretraining entirely on our climate corpus from a random initialization.  

GPT-2 models were trained using the "gpt2-xl" (1.5B parameters) configuration, while RoBERTa 
models use the "roberta-base" (150M parameters). Due to the number of parameters in the 
GPT-2 models, we leverage the highly efficient and scalable GPT-NeoX python library when 
training or finetuning them. All RoBERTa models were trained using the huggingface library. All 
models were pretrained (if trained from scratch) or finetuned (if leveraging pretrained weights) 
on the climate corpus for 125,389 iterations with a batch size of 512. Since the models used a 
context window of size 1024, this is equivalent to a single full pass through the 65.74B-token 
training set. All models were trained using 8 40Gb GPUs from a single A100 machine. 

The scale of the climate dataset for pretraining was much smaller than the volume of data used 
in our chemistry experiments. We found that this has a significant impact on the strength of 
model performance in both fine-tuned and pretraining from scratch settings. Table ?? highlights 
the pretrained “from scratch” and fine-tuned checkpoints that we trained using our climate 
corpus compared to an off-the-shelf baseline and illustrates that the domain-trained from 
scratch model was able to outperform on two of the three in-domain tasks but the fine-tuning 
alone actually showed worse performance than the off-the-shelf baseline. Findings of the 
significant impact of increasing scale and vocabulary size on model performance that was seen 
in our chemistry results underscore that there would be a need for much larger climate focused 
resources to realize the full benefits of pretraining from scratch. 

 
Table 4. In-Domain Zero-Shot performance using Macro F1.  

Strongest performance for each benchmark is indicated in bold. 
Model CleanNetQA cFEVER SciDCC 
From scratch GPT-XL 0.208 0.325 0.102 
Finetuned GPT-XL 0.264 0.214 0.047 
Baseline GPT-XL 0.299 0.28 0.080 
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3.0 Scaling AI for Security Missions  
In the final year (FY 2024), the project focused on a cyber security use case with a primary 
focus on the development and adaption of foundation models for cybersecurity tasks such as 
vulnerability assessment and annotation.  

3.1 Finetuning and Evaluation Data 

To create the vulnerability assessment dataset, we collected datasets for the two primary 
components used in Root Cause Mapping: a set of reported Common Vulnerabilities and 
Exposures (CVEs) and a set of Common Weakness Enumeration (CWE) labels that 
characterize them. Overall, we created a training set and two test sets: 

• Finetuning set: CVEs published between 2002 and 2020, totaling 124,000 CVEs, with a 
subset from that same time frame reserved for validation (22,000 CVEs) stratified across 
training years. 

• 𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐𝟐𝟐−𝟐𝟐𝟐𝟐 : CVEs published between 2021 through 2023 (71,000 CVEs) 

• 𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐𝟐𝟐 : CVEs published in 2024 (19,000 CVEs) 

3.1.1 Common Vulnerabilities and Exposures (CVE) Data  

Annual CVE lists were downloaded from the National Vulnerability Database (NVD) provided by 
the National Institute of Standards and Technology. This downloaded data included known 
vulnerabilities for each year, encompassing an ID field, a vulnerability description, related 
CWEs, and an impact report describing vulnerability severity and exploitability. Initially, we 
collected CVE lists from January 2002 through December 2023, followed by a second download 
to incorporate data from January 2024 to August 2024 for use as an additional held-out test set. 
The "CVE-2002" data also contained CVEs for years prior (1988-2002). 

Over time, NVD's CVE list datasets are modified to correct invalid or erroneous CVEs. These 
entries, flagged with the keyword "REJECT," were removed from our collection sets. Each 
yearly list could include CVEs published in previous years due to updates in CWE labels or 
other content. We aligned CVEs to their publish date rather than the yearly list date. In our 
dataset, each CVE mapped to zero or more CWEs, with a maximum of five CWEs mapping to a 
given CVE and an average of one CWE per CVE. In total, this included 237,049 unique CVEs 
from 1988 through August 2024. 

 
Figure 9. Volume of CVEs by original year published. 



PNNL-37221 

Scaling AI for Security Missions 15 
 

3.1.2 Common Weakness Enumerations (CWE) Data 
We aggregated CWEs and corresponding metadata from the National Vulnerability Database 
and the Mitre Common Weakness Enumeration database, from the Research Concepts (1000) 
view. CWE Weaknesses have hierarchical relationships and map to one of four levels: Pillars 
(abstract theme), Class (1-2 dimensions reflected), Base (2-3 dimensions), and Variants (3-5 
dimensions, most specific descriptions of weaknesses), as shown in Figure 10. 

 
Figure 10. Taxonomy of CWE weaknesses. 

After collecting our CVE dataset, we cross-referenced with the CWEs mapped to each CVE and 
scraped additional CWEs not collected in our initial downloads from Mitre. This resulted in a 
collection of 964 unique CWEs with fields including unique ID, name, description, extended 
description, weakness abstraction type, impact report, affected software and programming 
languages, as well as CWE hierarchical relationship information. Table 3 presents the top 10 
most common CWEs and the number of mapping CVEs. NVD uses a subset of CWEs for 
mapping instead of the entire CWE list. The NVD-CWE-Other category indicates weakness 
types not covered by that subset. 
 
Table 5. Table of Top 10 Most Frequent CWEs with the number of CVEs mapped to each CWE. 

CWE # CVEs with link to CWE 
NVD-CWE-Other: Other 28,926 
NVD-CWE-noinfo: Insufficient Information 26,781 
CWE-79: Improper Neutralization of Input During Web Page 
Generation (Cross-site Scripting) 

26,430 

CWE-89: Improper Neutralization of Special Elements used in an 
SQL Command (SQL Injection) 

11,388 

CWE-119: Improper Restriction of Operations within the Bounds of a 
Memory Buffer 

11,192 

CWE-787: Out-of-bounds Write 9,020 
CWE-20: Improper Input Validation 8,810 
CWE-200: Exposure of Sensitive Information to an Unauthorized 
Actor 

6,617 

CWE-22: Improper Limitation of a Pathname to a Restricted 
Directory (Path Traversal) 

5,647 

CWE-125: Out-of-bounds Read 5,303 
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3.2 Experiments 

In our cyber-focused experiments, we focused on the development of models targeting 
vulnerability assessment and characterization – i.e., a generative approach to annotating CVE 
(Common Vulnerabilities and Exposures) descriptions with their related CWEs (Common 
Weakness Enumerations). The outputs for this task are either (a) a list of relevant CWEs or (b) 
a response indicating there are no relevant CWEs (“none”), or that there is insufficient 
information to determine relevant CWE(s) (“no-info”).  

Every vulnerability (CVE) is related to zero or more weaknesses (CWE). Therefore, each 
model's response can contain a list of many CWEs. Since CWEs have a hierarchical structure, 
simply judging the results of the models by checking against the ground truth does not fully 
convey the nuances of how well the model identifies the appropriate CWEs. Therefore, we 
evaluate the model output along three levels of matching to the groundtruth CWEs: 

• Exact Match: Do the output CWE(s) exactly match the gold labelled CWE(s)? 
• Parent Match: Are any output CWEs the parent of the gold labelled CWE(s)? This 

allows us to examine the models' understanding of relationships between CVEs and 
CWEs, even if it fails at finding the precise CWE. 

• Child Match: Are any output CWEs the children of the gold labelled CWE(s)? As the 
children CWEs are more specialized than the parents, models that predict child CWEs 
are more specific. 

For each level, we compute the precision, recall, and F1 scores to evaluate the models' 
performances. For each of the partial match considerations, we consider either an exact match 
or a partial match as correct when calculating the metrics. 

This is a challenging task due to the scale of CVE and CWEs and that the list of potential CWEs 
is continuously evolving due to new weaknesses being added to the CWE hierarchies over time. 
We evaluated models in two settings: zero-shot and few-shot. The prompts for zero-shot and 
few-shot approaches are consistent, with the few-shot prompt including additional examples. 
Figure 11 provides an overview of the template used across tasks.  

 
Figure 11. Example prompt format. The orange text only appears in the few-shot prompts. 
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3.3 Model Architectures and Baselines 

We used three well-performing 7 billion parameter large language models as baseline models 
and as initial base models for fine-tuning cyber-adapted versions of each model fine-tuned for 
vulnerability assessment tasking:   

• Mistral (mistralai/Mistral-7B-v0.1), a fast-inference large language model that utilized 
grouped-query attention to handle sequences of arbitrary length. 

• CodeLlama (codellama/CodeLlama-7b-hf), a large language model optimized for code 
generation based on Llama 2. 

• WizardCoder (WizardLM/WizardCoder-Python-7B-V1.0), a code-based large language 
model that incorporated complex instruction fine-tuning.  
 

Table 6. Hyperparameters and GPU resources used. 
Hyper-Parameter  Value 

Number of training examples 124,703 
Total combined train batch size 3 

Instantaneous batch size per device 128 
Gradient accumulation steps 4 
Total GPUs used for training 8 

Total optimization steps 2,922 
Memory per GPU 80GB 

To fine-tune the models efficiently, we used a combination of Low-Rank Adaptation (LoRA) and 
Fully Sharded Data Parallel (FSDP). As CodeLlama and WizardCoder share the same base 
model, Llama, their trainable parameter count with LoRA was the same (29.58%), whereas 
Mistral's was slightly lower (28.88%). 

3.4 Key Highlights 

In general, the Mistral models outperform all Llama models on both test sets with roughly twice 
the F1-score in exact matches as well as child and parent matches. In some instances, 
particularly over the 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡2021−2023 set, the Llama models have stronger recall. Table 7 provides 
an overview of the performance across test sets and for exact, child, and parent definitions of 
each metric. We also investigated further which CWEs we found that the models were over- 
(and under-) predicting in our test sets. In Table 8, we highlight the tendency of each model to 
over or under represent the top 10 most commonly occurring CWEs. We find that both model 
types, regardless of few-shot prompting, severely under-predict NVD-CWE-noinfo (a class label 
used to denote insufficient information about the weakness or details are unknown or 
unspecified that prevent a CWE classification). This may be an indication of the weakness of 
models to attempt to produce an unreliable response of a known CWE over indicating lack of 
support – e.g., over-predicting a highly common CWE such as CWE-119 or CWE-200 instead. 
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Table 7. F1, precision (Pr), and recall (Re) results for each model under two settings: the 
original base model (Base) and a fine-tuned model (Fine). Results are included for exact match 
definitions of each metric and that allow credit for partial (child, or parent) matches in 
predictions. Top performance is indicated in bold.   

 

 
Table 8. The ratio of predictions to ground truth labels made by each model per Top 10 CWE. 
Darker red cells indicate over-predicting, and darker blue cells indicate under-predicting. A value 
of 1 indicates equal predictions to ground truth. 0 denotes no predictions made for the CWE. 
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