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Abstract 

A distribution energy resource aggregator (DERA) constitutes a group of distribution energy 
resources with small generation capacities that, when combined, meet the threshold to 
participate in the electricity wholesale market. This document investigates the DERA offer model 
formulation with three components of solar, battery energy storage system (BESS), and the 
demand response resources (DRRs). Different economical assessment methodologies have 
been developed to incorporate bids for individual distributed resources, including a solar offer 
model, BESS opportunity cost offer algorithm, and nested utility function model for DRRs. In 
addition, an optimization-based method and a cost-based method are proposed to aggregate 
individual cost offers to a DERA cost curve to bid in the wholesale electricity market while the 
schedule-following method and profit-following method are also introduced to simulate the DER 
actual dispatch. Based on the DERA models in this document, the SCUC-DER project will be 
able to assess the impacts of DERA on the distribution system’s operation and reliability. 
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1 Overview  

FERC Order 2222 has significantly impacted distributed energy resources (DER) participation 
rules in US electricity markets. The order lowers the power threshold to 0.1 MW to remove 
barriers and enable broader participation of DERs, such as solar panels, batteries, and electric 
vehicles, in wholesale electricity markets. It requires grid operators to revise their market rules 
to accommodate DER aggregations, allowing them to participate alongside traditional 
generators (Eldridge and Somani, 2022). 

While grid operators are required to revise their market rules to accommodate distribution 
energy resources aggregations (DERAs), there are a lot of challenges to be addressed in 
registration, bidding, scheduling, and settlement processes to ensure fair and efficient 
participation (ERCOT,2020; ISO-NE, MISO, 2022; NYISO, PJM, 2021). However, DER 
aggregation is still in early stages of development (Lu et al., 2019; Wang et al., 2019; Ross and 
Mathieu, 2021) because it is difficult to find quality data on how DER assets are economically 
valued and aggregated (Alshehri et al., 2020; Su and Kirschen, 2009). This document presents 
a general model to better value each distributed resource both economically and computational 
efficiently.  

The DERA model considered here consists of three components: solar, battery energy storage 
system (BESS) and demand response resource (DRR). Hybrid mix of solar with battery backup 
is widely installed for residential and commercial applications while DRR can be employed in 
nearly any distribution feeder and is generally expected to be an important component for future 
grid operations. In general, each DER aggregator maximizes its profit through optimized bidding 
strategies in the wholesale market, which includes the optimal charging/discharging schedules 
for BESS and best price-responsive actions for DRR. 

This document first demonstrates detailed offer models for each individual resource. For the 
DRRs, the associated money-valued cost for demand response actions is derived using generic 
economic consumption on a nested utility function. By treating energy consumption at each of 
arbitrary time periods as a distinct good, the time preference of energy consumers is decoded to 
represent its response to price changes over time. The detailed steps are shown about how to 
generalize the utility function with different choices of parameters, such as elasticity parameters, 
share parameters, etc. For the BESS, an opportunity cost-based offer is incorporated because 
other typical costs like degradation costs and fixed costs requires binary or nonlinear 
constraints. This paper focuses on the deriving the price-quantity cost curves for charging and 
discharging based on the energy price estimates in the future. Three approaches are proposed 
for computing opportunity cost curves: an approximation method, which estimates costs over a 
backward and forward time window; an optimization method, which calculates costs at each 
period by fixing quantities for that time interval in the profit-maximization problem; and a 
deterministic method, which identifies the closest upcoming profitable opportunity for the 
battery. 

With cost offers derived for each resource type above, the aggregation offer blocks are 
constructed for further bidding of DERA into the wholesale market. Two methods are 
demonstrated to aggregate the individual costs based on DERA’s baseline dispatch schedule. 
The optimization-based method generates the offer curves by optimizing the dispatch of 
resources at each time step while the cost-based method directly merges cost curves of each 
resource type into blocks.  
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Finally, the optimal dispatch schedule is disaggregated for each resource in DERA with 
schedule following method or profit following method. The former obtains the device-level 
dispatches at each time 𝑡 by solving the deviation minimization problem from the dispatch 
baseline while the latter by maximizing DERA’s total profit. 

1.1 Nomenclature 

1.1.1 Sets and Indices 

Sets 

𝑖, 𝑗 ∈ ℐ Buses 

𝑘 ∈ 𝒦 All distributed energy resources (DERs) 

𝑙 ∈ ℒ Transmission lines 

𝑛 ∈ 𝒩 DER aggregators 

𝑜 ∈ 𝒪 Blocks in DERA offer 

𝑡 ∈ 𝒯 Time intervals in the market clearing horizon 

Subsets 

𝒦𝑖
bus ⊂ 𝒦 Set of DER resources connected to bus 𝑖. 

𝒦𝑛 ⊂ 𝒩 Set of all Individual DERs in DERA 𝑛 

𝒦𝑛
BAT ⊂ 𝒦𝑛 Set of battery storage resources in DERA 𝑛 

𝒦𝑛
DRR ⊂ 𝒦𝑛 Set of demand response resources (DRRs) in DERA 𝑛 

𝒦𝑛
SOL ⊂ 𝒦𝑛 Set of solar resources in DERA 𝑛 

1.1.2 Parameters 

Table 1.1 lists the parameters associated with the model in this paper. 

Table 1.1: DER Parameters 

Symbol Description Domain Unit 

𝐴𝑡   Share parameters for inner utility 
function 

(0,1] Unitless 

𝐴0  Share parameter for outer utility 
function 

(0,1] Unitless 

𝐵𝑡𝑡′ Parameters for creating 
combinations of goods 

Real numbers Unitless 
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Symbol Description Domain Unit 

𝐶𝑘,𝑡  The marginal cost of each distributed 
resource 𝑘 at time 𝑡 

Nonnegative numbers $/MWh 

𝐸𝑘
init Initial SoC of battery 𝑘 Nonnegative numbers MWh 

𝐸𝑘
min Lower limits of battery state of 

charge (SoC) 
Nonnegative numbers MWh 

𝐸𝑘
max Upper limits of battery SoC Nonnegative numbers MWh 

𝑃𝑘,𝑡
max,drr

 Upper limits for demand response of 
DRR 

Nonnegative numbers MW 

𝑃𝑘,𝑡
max,load

 Upper load limits of load Nonnegative numbers MW 

𝑃𝑘,𝑡
min,drr

 Lower limits for demand response of 
DRR 

Nonnegative numbers MW 

𝑃𝑘,𝑡
min,load

 Lower load limits of DRR Nonnegative numbers MW 

𝑃𝑘
max,c

 Upper limits for battery charging Nonnegative numbers MW 

𝑃𝑘
max,d

 Upper limits for battery discharging Nonnegative numbers MW 

𝑃𝑘
max,sol

 Upper power limits of solar 
resources 

Nonnegative numbers MW 

𝑅′ Transformed elasticity parameter for 
the outer utility function 

𝑅′ ≤ 1 or 𝑅′ =  ∞ Unitless 

𝑆′ Elasticity parameter for the outer 
utility function 

𝑆′ ≥ 0 or 𝑆′ = −∞ Unitless 

𝑅 Transformed elasticity parameter for 
the inner utility function 

𝑅 ≤ 1 or 𝑅 = ∞ Unitless 

𝑆 Elasticity parameter for the inner 
utility function  

𝑆 ≥ 0 or 𝑆 = −∞ Unitless 

𝑇 Number of time intervals Nonnegative numbers Unitless 

𝑌 Total budget Nonnegative numbers $ 

∆𝑇 Duration of intervals Nonnegative numbers minutes 

ζ𝑘 Self-discharge rate for energy 
storage unit 𝑘 

(0,1) Unitless 

𝛼 The time smoothing rate  [0,1) Unitless  
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Symbol Description Domain Unit 

𝛽 The time preference parameter [0,∞)  Unitless 

𝛾𝑛 Loss factor for DERA 𝑛 Nonnegative numbers Unitless 

𝜀 The time smoothing proportion 
parameter 

[0,∞) Unitless  

𝜂𝑘 Round-trip efficiency for energy 
storage unit 𝑘 

(0,1) Unitless 

𝜆0 Initial electricity price forecast vector Nonnegative numbers $/MWh 

𝜆rel Retail rate Nonnegative numbers $/MWh 

𝜆𝑖,𝑡
0  Initial price at bus 𝑖 at time 𝑡 Nonnegative numbers $/MWh 

𝜌0 The share of the budget spent on 
energy at reference point 

(0,1) Unitless 

1.1.3 Variables 

Table 1.2 shows the variables associated with the DERA resources. 

Table 1.2: DERA Resource Variables 

Symbol Description Domain Unit 

𝑐bat Total cost of batteries in each DERA Reals numbers $ 

𝑐drr Total cost of DRR in each DERA Nonnegative numbers $ 

𝑐sol Total cost of solar in each DERA 0 $ 

𝑐tot Total cost for all distributed energy 
resource in DERA 

Nonnegative numbers $ 

𝑐𝑘,𝑡 Device-level cost at time 𝑡 Real numbers $ 

𝑐𝑜,𝑡  Cost block 𝑜 at time 𝑡 Nonnegative numbers $ 

𝑒𝑘,𝑡 SoC of battery at end of time 𝑡 for 

𝑘 ∈ 𝒩𝑛
BAT 

[𝐸𝑘
min, 𝐸𝑘

max] MWh 

𝑜𝑐𝑘,𝑡
ch,appx

 Opportunity cost of charging for 
battery 𝑘 at time 𝑡 with the 

approximation method  

Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
ch,dtm

 Opportunity cost for charging for 
battery 𝑘 at time 𝑡 with the 

deterministic method  

Nonnegative numbers $/MWh 
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Symbol Description Domain Unit 

𝑜𝑐𝑘,𝑡
ch,opt

 Opportunity cost for charging for 
battery 𝑘 at time 𝑡 with the optimal 

method  

Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
ch  Opportunity cost of charging for 

battery 𝑘 at time 𝑡 
Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
dis,appx

 Opportunity cost of discharging for 
battery 𝑘 at time 𝑡 with the 

approximation method  

Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
dis,dtm

 Opportunity cost of discharging for 
battery 𝑘 at time 𝑡 with the 

deterministic method  

Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
dis,opt

 Opportunity cost of discharging for 
battery 𝑘 at time 𝑡 with the optimal 

method  

Nonnegative numbers $/MWh 

𝑜𝑐𝑘,𝑡
dis Opportunity cost of charging for 

battery 𝑘 at time 𝑡 
Nonnegative numbers $/MWh 

𝑝
𝑡′
sch,dera

 Scheduled power vector of all 
distributed resources at time 𝑡′ in 

real time market 

Real numbers MW 

𝑝𝑘,𝑡 Output power of solar  at time 𝑡 for 

𝑘 ∈ 𝒩𝑛
SOL 

[0, 𝑃𝑘
max,sol] MW 

𝑝𝑘,𝑡 Load power of DRR at time 𝑡 for 𝑘 ∈
𝒩𝑛

DRR 
[𝑃𝑘,𝑡

min,load, 𝑃𝑘,𝑡
max,load] MW 

𝑝𝑘,𝑡
base,c

 Baseline charging schedule for 
storage resource at time 𝑡 

Nonnegative numbers MW 

𝑝𝑘,𝑡
base,d

 Baseline discharging schedule for 
storage resource at time 𝑡 

Nonnegative numbers MW 

𝑝𝑘,𝑡
base,load

 Baseline load schedule for DRR 𝑘 at 
time 𝑡  

Nonnegative numbers MW 

𝑝𝑘,𝑡
base,sol

 Baseline solar 𝑘 schedule at time 𝑡 Nonnegative numbers MW 

𝑝𝑘,𝑡
bat Net output power of battery 

resource  at time 𝑡 for 𝑘 ∈ 𝒩𝑛
BAT 

Real numbers MW 

𝑝𝑘,𝑡
c  Charging power of battery 

resource  at time 𝑡 for 𝑘 ∈ 𝒩𝑛
BAT 

[0, 𝑃𝑘
max,c] MW 

𝑝𝑘,𝑡
d   Discharging power of battery 

resource  at time 𝑡 for 𝑘 ∈ 𝒩𝑛
BAT 

[0, 𝑃𝑘
max,d] MW 
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Symbol Description Domain Unit 

𝑝𝑘,𝑡
max,bat

 Maximum power limit for battery 𝑘 at 
time 𝑡 

Nonnegative numbers MW 

𝑝𝑘,𝑡
min,bat

 Minimum power limit for battery 𝑘 at 

time 𝑡 
Nonpositive numbers MW 

𝑝𝑜,𝑡  Power block 𝑜 at time 𝑡 Nonnegative numbers MW 

𝑝𝑡 Total output power of each DERA Real numbers MW 

𝑝𝑡
base,load

 The total DRR baseline load for all 

𝑘 ∈ 𝒦𝑛
DRR 

Nonnegative numbers MW 

𝑝𝑡
bat Total net power of battery in each 

DERA 
Real numbers MW 

𝑝𝑡
max,bat

 Aggregate maximum battery power 
limit 

Nonnegative numbers MW 

𝑝𝑡
max,drr

 Aggregate maximum demand 
response 

Nonnegative numbers MW 

𝑝𝑡
max,tot

 Overall minimum power for battery 
and DRR aggregated 

Nonnegative numbers MW 

𝑝𝑡
min,bat

 Aggregate minimum battery power 
limit 

Nonpositive numbers MW 

𝑝𝑡
min,drr

 Aggregate minimum demand 
response   

Nonpositive numbers MW 

𝑝𝑡
min,tot

 Overall minimum power for battery 
and DRR aggregated 

Real numbers MW 

𝑝𝑡
sch,dera

 A vector for scheduled power of all 
distributed resources in DERA 

Real numbers MW 

𝑝𝑡
sch Total scheduled power of DERA at 

time 𝑡 
Real numbers MW 

𝑝𝑡
sol Total output of solar resources in 

DERA  
[𝑃𝑡

sol,min, 𝑃𝑡
sol,max] MW 

𝑞0 The prices vector of the composite 
energy goods at reference point 

Nonnegative numbers $/MWh 

𝑞𝑡
0 The reference price of composite 

energy goods at time 𝑡 
Nonnegative numbers $/MWh 

𝑤0
 The consumed quantity vector of the 

composite energy goods at 
reference point 

Nonnegative numbers MW 
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Symbol Description Domain Unit 

𝑤𝑡  The consumed quantity of the 
composite energy good at time 𝑡 

Nonnegative numbers MW 

𝑤 A quantity vector consumed of the 
composite energy good over time 

horizon 

Nonnegative numbers MW 

𝑤𝑡
0 The reference quantity of the 

composite energy goods at time 𝑡 
Nonnegative numbers MW 

𝑥0 The consumption of anything other 
than energy 

Nonnegative numbers Unitless 

𝑥0
0

 The quantity of other goods 
consumed at reference point 

Nonnegative numbers Unitless 

𝛿− Dispatch deviation down from 
baseline schedule 

Nonnegative numbers MW 

𝛿+ Dispatch deviation up from baseline 
schedule 

Nonnegative numbers MW 

𝜆𝑖,𝑡 Device-level LMPs Nonnegative numbers $/MWh 

𝜆𝑡
rel Retail price Nonnegative numbers $/MWh 

𝜋 Profit for each DERA  Real numbers $ 

∆𝑝𝑘,𝑡
−   Negative demand response of DRR 

for 𝑘 ∈ 𝒩𝑛
DRR 

Nonpositive numbers MW 

∆𝑝𝑘,𝑡
+   Positive demand response of DRR 

for 𝑘 ∈ 𝒩𝑛
DRR 

Nonnegative numbers MW 

∆𝑝𝑘,𝑡
base− Negative demand response of DRR 

from the baseline schedule 
Nonpositive numbers MW 

∆𝑝𝑘,𝑡
base+ Positive demand response of DRR 

from baseline schedule  
Nonnegative numbers MW 

∆𝑈out Decrease in money-valued nested 
utility function from the baseline to 

the actual energy consumption 

Nonnegative numbers $ 

∆𝑐𝑡
rel Retail charges decrease from 

baseline to the actual energy 
consumption   

Nonnegative numbers $ 

𝑀𝐶𝑜,𝑡 Marginal cost for offer block 𝑜 Nonnegative numbers $/MWh 

𝑀𝑄𝑜,𝑡 Marginal quantity for offer block 𝑜  Reals numbers MW 
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Symbol Description Domain Unit 

𝑀𝑄𝑜,𝑡
bat Marginal quantity for demand offers 

block 𝑜 of battery 
Reals numbers MW 

𝑀𝑉𝑜,𝑡
bat Marginal value at demand offer 

block 𝑜 of battery 
Nonnegative numbers $/MWh 

2 DER Model Derivations 

In the proposed DERA model, various methods are formulated to derive the associated costs for 
different types of distributed resources. For demand response resources (DRR), a utility-based 
cost model is derived while for battery resources, opportunity costs are computed in detail. 

2.1 DRR Utility Function 

Demand response can be implemented through many different mechanisms that allow 
consumers to adjust their energy usage in response to price signals, grid conditions, or other 
incentives. DRR here participates in the wholesale market directly via the DERA, which is a 
variant of incentive based DRR. The demand response values then can be determined either by 
considering demand elasticity as in (Su and Kirschen, 2009) or by randomizing consumer 
assigned value from a distribution as in (Xu et al., 2024).  

To model such price-based response of DRR in the day-ahead SCUC market and the real-time 
SCED market, a utility function can be used to derive the cost to dispatch DRR. Four utility 
function forms have previously applied to represent such preference values of electricity 
consumption over different time periods. That is, the Constant Elasticity of Substitution (CES) 
functional form, Cobb-Douglas form, Leontief form and linear form. 

Instead of using a constant scaling parameter to convert the four utility functions into dollars, the 
derivation here employs a nested utility function to ensure such conversion. Let 𝑝𝑘,𝑡  and 

𝑥0 denote the DRR electricity consumptions and other goods separately. Then the value of DRR 

can be written in various utility function forms 𝑈(𝑝𝑘,𝑡) shown in (1) - (4) respectively. As such, 

each DRR 𝑘 is represented by 𝑈(𝑝𝑘) where 𝑝𝑘 is a vector for the energy consumption at each 
time interval and 𝑈(𝑝𝑘) is defined as a money-valued concave cardinal utility function of energy 

consumption power levels 𝑝𝑘,𝑡 during the time intervals 𝑡. 

     CES form:   

 

𝑈(𝑝𝑘) = (∑𝐴𝑡

1
𝑆𝑝𝑘,𝑡

𝑆−1
𝑆

𝑡

+ 𝐴0

1
𝑆𝑥0

𝑆−1
𝑆 )

𝑆
𝑆−1

, 𝑘 ∈ 𝒦𝑛
DRR 

(1) 

 Cobb-Douglas form:  

 𝑈(𝑝𝑘) = ∏ 𝑝𝑘,𝑡
𝐴𝑡

𝑡

× 𝑥0
𝐴0 , 𝑘 ∈ 𝒦𝑛

DRR (2) 

 Leontief form:   
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 𝑈(𝑝𝑘) = min {
𝑝𝑘.𝑡

𝐴𝑡

; ∀𝑡 ∈ 𝒯} , 𝑘 ∈ 𝒦𝑛
DRR 

(3) 

  
Linear form:  

 𝑈(𝑝𝑘) =  ∑ 𝑝𝑘.𝑡 , 𝑘 ∈ 𝒦𝑛
DRR

𝑡
 (4) 

Where 𝑆 is an elasticity parameter, 𝐴𝑡 is a share parameter in the utility functions such that 
∑ 𝐴𝑡 = 1𝑡 . Note that the parameters  𝐴𝑡, and 𝑆 do not necessarily take the same value in each 
functional form. Additionally, the Cobb-Douglas, Leontief, and linear utility functions are limiting 
cases of the CES function, where the elasticity of substitution parameter approaches limits of 1 
(moderate elasticity), 0 (completely inelastic, i.e. perfect complements), and ∞ (completely 
elastic, i.e. perfect substitutes) respectively. 

Furthermore, an intermediate commodity can be created using those utility function forms in 
addition to the primary commodities (i.e., energy consumptions) at each individual time 
intervals. 

To ensure a value function to be added to the market surplus objective, the intermediate 
commodities is carefully selected as composite energy goods, which is a weighted sum of 
electricity consumption. And a nested utility function is chosen in such a way as to be expressed 
by an explicit algebraic formula. That is, a nested generalized CES utility function 

𝑈(𝑥0, 𝑝𝑘,1 , … , 𝑝𝑘,𝑇 ) is introduced as follows. 

 𝑈(𝑝𝑘,1 , … , 𝑝𝑘,𝑇) = 𝑈out (𝑥0, 𝑈
′(𝑝𝑘,1 , … , 𝑝𝑘,𝑇))  

(5) 

Or, equivalently, 

 𝑈(𝑥) = 𝑈out(𝑥0, 𝑈
0) (6) 

 𝑈0 = 𝑈′(𝑤) (7) 

 𝑤 = 𝐵𝑥′ (8) 

Where 𝑥 = (𝑥0, 𝑥
′), 𝑥′ = (𝑝𝑘,1 , … , 𝑝𝑘,𝑇) with 𝑝𝑘,𝑡 denoting the quantity of energy consumed at 𝑡 

and 𝑥0  representing consumption of anything other than energy in the modeled time periods. 
The smoothing matrix 𝐵 is a nonsingular square matrix, 𝑤 is a vector representing the quantity 

consumed of a composite energy good determined by a weighted sum of electricity over 𝑡′, 
which can be written as following: 

 𝑤𝑡 =  ∑ 𝐵𝑡𝑡′𝑥𝑡′

𝑡′
 (9) 

Where the entries 𝐵𝑡𝑡′ represent the weight of energy consumptions at 𝑡′ in the composite 

electricity consumption good at 𝑡. The inner utility function 𝑈′ is the consumption preference 
over the composite electricity consumption goods at various time periods, while the outer utility 
function 𝑈𝑜𝑢𝑡 represents energy consumption over other goods. A log-scaled form for the outer 
utility function is defined in (10) to serve as a value function for DRR in the market clearing 
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process, which maximizes the market surplus over producers and consumers with money-
denominated cost and value functions.  

 𝑉(𝑥) = 𝑌 log𝑈(𝑥) (10) 

Where 𝑌 is the budget for DRR to consume all goods. Note that 𝑉(𝑥) still has the same 
consumption preferences with 𝑈(𝑥) because it’s invariant to strictly monotone transformation. 

In this project, CES form (1) is used for both inner and outer utility function since it has limiting 
cases of all three other forms. The choice of parameters, such as the elasticity parameter 𝑆 and 
the share parameter 𝐴𝑡, specifies its form shown in (2)-(4). For example, when the elasticity of 

substitution over electricity consumption is set as 𝑆 ∈ (0,∞), then the inner utility function can be 
written as: 

 𝑈′(𝑤) = (∑𝐴𝑡
1−𝑅𝑤𝑡

𝑅

𝑡

)1/𝑅, 𝑅 ∈ (−∞, 1) (11) 

Where 𝑅 = 1 −
1

𝑆
 and ∑ 𝐴𝑡 = 1, 𝐴𝑡 ≥ 0.𝑡   

Note that the inner utility function (11) won’t be applied when 𝑅 = 0 (i.e., 𝑆 = 1). However, the 
limit is equivalent to the following when 𝑅 → 0: 

 𝑈′(𝑤)  =   ∏ 𝑤𝑡  
𝐴𝑡

𝑡
  (12) 

Which is the Cobb-Douglas case. If 𝑆 = 0 or 𝑅 = −∞, CES function is a Leontief form while a 
linear form if 𝑅 = 1 or 𝑆 = ∞. 

Likewise, the elasticity parameter 𝑆′  ∈ (0,∞) and a single share parameter 𝐴0 ∈ (0,1) are 

chosen to define the outer utility function 𝑈out(𝑥0, 𝑢) as a function of 𝑥0 and inner utility function 
value 𝑢 in (13)-(14). 

 
𝑈out(𝑥0, 𝑢) = [𝐴0

1− 𝑅′
𝑥0

 𝑅′
+ (1 − 𝐴0)

1− 𝑅′
𝑢 𝑅′

 ]

1
 𝑅′

, 𝑅′  ≠  0,   𝑅′  <  1   
(13) 

Where  𝑅′ = 1 − 1/ 𝑆′.  

For the Cobb-Douglas case, the outer utility function is defined as when 𝑅′ →  0 :  

 𝑈out(𝑥0, 𝑢) = 𝑥0
𝐴0𝑢1−𝐴0   (14) 

The smoothing matrix 𝐵 defines composite goods for energy consumption, so that consumers 
respond to changes in energy prices by shifting consumption away from more expensive 
periods and towards cheaper periods. For this, a smoothing rate 𝛼 ∈ [0,1] is defined to 
represent efficiency of shifting consumption at time periods and then a time preference 

parameter is set by 𝛽 = 𝛼 (𝛼 − 1)2⁄  ∈ [0,∞). A symmetric triagonal matrix 𝑀 is constructed as 
following with 2𝛽 + 1 on the diagonal except for 𝛽 + 1 in the first and last diagonal entries and 

−𝛽 just off the diagonal: 
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𝑀 =

[
 
 
 
 
 
 
 
 
𝛽 + 1 −𝛽 0 … … … … 0
−𝛽 2𝛽 + 1 −𝛽 0 … … … :
0 −𝛽 2𝛽 + 1 −𝛽 0 … … :
: 0 − 2𝛽 + 1 −𝛽 0 … :
: … 0 −𝛽 2𝛽 + 1 −𝛽 0 :
: … … 0 −𝛽 2𝛽 + 1 −𝛽 :
: … … … 0 −𝛽 2𝛽 + 1 −𝛽
0 … … … … 0 −𝛽 𝛽 + 1]

 
 
 
 
 
 
 
 

 

(15) 

By inverting the matrix 𝑀, the matrix  𝐵 is obtained: 

 𝐵 = 𝑀−1 (16) 

Based on the definitions for matrix 𝐵, three properties are concluded as: (1) 𝐵𝑡,(𝑡′+1) 𝐵𝑡𝑡′ ≈ 𝛼⁄  

for 𝑡′ ≥ 𝑡, which means the geometric rate of change in successive period weights is 

approximately equal to the smoothing rate; (2) 𝛽 = 0 means no time preference, thus all other 
times are able to substitute equally well for energy consumption at the specific time; (3) 𝛽 > 0 

indicates that energy consumption at 𝑡′ closer to 𝑡 substitutes better for that at 𝑡 than does 
energy at 𝑡′′ further from 𝑡.  

Additionally, the time smoothing proportion parameter 𝜀 represents the relative value in the 
current period of load consumed in future (or previous) periods, which can be converted to 𝛼. 

  𝛼 = 𝜀 (1 + 𝜀)⁄  (17) 

In the model, a known load baseline is considered as the reference point with the price-quantity 

pair (𝜆𝑖,𝑡
0 , 𝑝𝑘,𝑡

base,load). For simplicity, a price vector 𝜆0  is used to represent the energy price at the 

reference point, and an energy consumption vector 𝑝𝑘
base,load to represent the load at all time 

intervals for demand response resource 𝑘 ∈ 𝒦𝑛
DRR. With chosen elasticity parameters and the 

matrix 𝐵, the utility functions can be fully specified using the steps below. 

1) Given the reference consumption and prices for energy at the reference point, calculate 

the reference quantities (𝑤0) and prices (𝑞0) of composite energy goods: 

 𝑤0 = 𝐵𝑝𝑘
base,load

 (18) 

 𝑞0 = 𝐵−1𝜆0  (19) 

2) Then, the expenditure on energy at the reference point is: 

 ∑ 𝜆𝑖,𝑡
0 𝑝𝑘,𝑡

base,load

𝑡

= ∑𝑞𝑡
0𝑤𝑡

0

𝑡

 (20) 

 

3) With a chosen share parameter 𝜌0 for the budget spent on energy at the reference point, 
the total budget 𝑌 is computed as: 

 
𝑌 =

1

𝜌0 ∑ 𝜆𝑖,𝑡
0 𝑝𝑘,𝑡

base,load
𝑘,𝑡

 
(21) 

  While the expenditure on other goods at the reference point is (1 − 𝜌0)𝑌. 
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4) By assuming the price of other goods is $1 per unit, then the quantities of other goods’ 
consumption are computed as: 

 𝑥0
0 = (1 − 𝜌0)𝑌 (22) 

5) The share parameters  𝐴𝑡  for inner utility function at each time interval is: 

 
𝐴𝑡 =

(𝑞𝑡
0)1/(1−𝑅)𝑤𝑡

0

∑ (𝑞𝑡′
0 )

1/(1−𝑅)
𝑤𝑡′

0
𝑡′

  
(23) 

6) To set the share parameter 𝐴0 for outer utility function, it can be computed as (24) if it’s 

Cobb-Douglas form (𝑆′ = 1)  or as (25) if it’s a CES form: 

 𝐴0 = 1 − 𝜌0,  𝑅′ = 0 (24) 

 

𝐴0 =

(
𝜌0

1 − 𝜌0)

1/(1−𝑅′)

1 + (
𝑥0

0

𝑈𝑜)
𝑅′ (1−𝑅′)⁄

  

(25) 

 Where 𝑈0 is the value of the inner utility function at the reference point: 

 𝑈0 = 𝑈′(𝑤0) (26) 

In such a way, the constructed utility functions has a consistency property that a consumer 

choosing consumption quantities 𝑝𝑘,𝑡 so as to maximize the utility 𝑈(𝑝𝑘,1 , … , 𝑝𝑘,𝑇) subject to the 

total budget 𝑌 and prices 𝜆𝑖,𝑡 will consume the reference quantities if the prices are equal to the 

reference prices. 

With non-energy consumption fixed at the reference value, the actual energy consumption of 

DRR at each time interval is equal to the reference value minus the flexible energy 𝑝𝑘,𝑡
drr provided 

by demand response, i.e., 𝑝𝑘,𝑡 = 𝑝𝑘,𝑡
base,load − 𝑝𝑘,𝑡

drr. 

To compute the demand response cost, first the changes in utility functions (∆𝑈out) can be 
written with reference and actual energy consumption vector: 

∆𝑈out = 𝑌 𝑙𝑜𝑔𝑈(𝑝𝑘
base,load) − 𝑌 𝑙𝑜𝑔𝑈(𝑝𝑘) , ∀𝑘 ∈ 𝒦𝑛

DRR (27) 

To suppress DRR’s incentives to increase its load significantly without any penalties, an 

additional retail rate term (λrel) is introduced, which is computed as a constant equal to the 
average retail rate across the U.S electricity market is assumed with elasticity of 0.1. The 

associated retail price 𝜆𝑡
rel is obtained by normalizing based on the average energy 

consumption. 

 
𝜆𝑡

rel = 𝑇
λret𝑝𝑘,𝑡

base,load

𝑝𝑡
base,load

   
(28) 

Then, at time 𝑡, with demand response 𝑝𝑘,𝑡
drr dispatched, the change in retail costs ∆𝑐𝑡

rel  is 

computed as: 

 
∆𝑐𝑡

rel = 𝜆𝑡
rel[−𝑝𝑘,𝑡

drr − 𝑝𝑘,𝑡
base,load] (

∆𝑇

60
) 

(29) 
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Then the demand response cost is the signed decrease in the money-valued function 𝑈 from 
the baseline energy consumption to actual consumption minus the signed decrease in retail 
charges paid by the consumer. To be more consistent with the time-separable offer format 
required by typical wholesale electricity markets, we define a time-separable approximation of 
the demand response cost by considering the sum of differences in the money-valued utility 
over single interval consumption changes. 

 𝑐𝑘 = ∑ (𝑉(𝑝𝑘,𝑡
base,load) − 𝑉(𝑝𝑘,𝑡

base,load − 𝟏𝑡𝑝𝑘,𝑡
drr)) − ∆𝑐𝑡

rel

𝑡
 (30) 

Where 𝟏𝑡 is a vector equal to 0 except for 1 in entry 𝑡.  

Note that each DRR can responds to prices bidirectionally, which means it could be a positive 
demand response ∆𝑝𝑘,𝑡

+  or a negative demand response ∆𝑝𝑘,𝑡
− . Then the total demand response 

 can be written as: 

 𝑝𝑘,𝑡
drr = ∆𝑝𝑘,𝑡

+ − ∆𝑝𝑘,𝑡
−  (31) 

The LMP-based revenue for DRR is: 

 𝜋𝑘 = ∑ 𝜆𝑖,𝑡∆𝑝𝑘,𝑡
+

𝑡

, ∀𝑘 ∈  𝒦𝑛
DRR, ∀𝑡 ∈  𝑇 (32) 

2.2 Storage Opportunity Cost 

BESS cost calculations commonly assume a zero marginal cost dispatch, which is also 
considered as the explicit cost way for BESS.  However, the opportunity cost of BESS 
dynamically determines the potential value of the stored energy at each time. For example, 
BESS which chooses to discharge at the current time instead of discharging at a higher price in 
the future, has some opportunity cost occurred for this charging behaviors. Different methods 
have been applied to capture the optimal bidding strategies of BESS to maximize its profit 
(Biggins et al., 2022; He et al., 2018; Padmanabhan et al., 2019; Shabani et al., 2024). In this 
paper, three methodologies have been implemented to derive the opportunity cost for BESS, 
i.e., “approximation method”, “optimization method” and “deterministic method”, respectively.  

2.2.1 Approximation Method 

For the “approximation method”, at each time period 𝑡, an observation window with time interval 

of 6∆𝑇  are constructed over the whole-time horizon, i.e., [𝑡 − 3∆𝑇 , 𝑡 + 3∆𝑇] . The opportunity 
cost for charging and discharging can be obtained following: 

 
𝑜𝑐𝑘,𝑡

ch,appx
= {

min(𝜆𝑘,𝑡|𝑡 = 𝑡 − 3∆𝑇 , … , 𝑡 + 3∆𝑇) if charging at time 𝑡

max(𝜆𝑘,𝑡|𝑡 = 𝑡 − 3∆𝑇 , … , 𝑡 + 3∆𝑇) ∗ 𝜂k if discharging at time 𝑡
 

(33) 

 
𝑜𝑐𝑘,𝑡

dis,appx
= {

min(𝜆𝑘,𝑡|𝑡 = 𝑡 − 3∆𝑇 , … , 𝑡 + 3∆𝑇)/𝜂k if charging at time 𝑡

max(𝜆𝑘,𝑡|𝑡 = 𝑡 − 3∆𝑇 , … , 𝑡 + 3∆𝑇)  if discharging at time 𝑡
  

(34) 
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2.2.2 Optimization Method 

For the “optimization method”, the following steps are taken to calculate the opportunity costs 

for charging (𝑜𝑐𝑘,𝑡
ch,opt

) and discharging (𝑜𝑐𝑘,𝑡
dis,opt

) at time 𝑡 : 

1) If charging at time 𝑡, the opportunity cost for charging is obtained by maximizing the 

battery’s profit with fixed charging amount of 𝑝𝑘,𝑡
c , ∀𝑘 ∈ 𝒦𝑛

BAT; 

2) If discharging at time 𝑡, the opportunity cost for discharging is obtained by maximizing 

the battery’s profit with fixed discharging amount of 𝑝𝑘,𝑡
d , ∀𝑘 ∈ 𝒦𝑛

BAT. 

2.2.3 Deterministic Method 

For the “deterministic method”, battery’s opportunity cost is computed based on the DERA 
baseline schedule for BESS, which considers the closest upcoming profitable opportunity. 

At time 𝑡, BESS has three possible actions, i.e., charging, discharging, or nothing. Over the 
whole -time horizon, there are multiple charging or discharging in a row, and each decision 
needs to be dynamically adjusted based on the sequence of upcoming events. Let tch, tdis, tch

nx, 

tdis
nx   represent the time for current charging/discharging cycle and the next immediate 

charging/discharging events.  

1) At time 𝑡 = tch with a scheduled withdrawal (charging), the opportunity cost for charging 
and discharging are: 

 𝑜𝑐𝑘,tch

ch,dtm = min(min(𝜆𝑘,𝑡|𝑡 = 0, . . , tch − 1, tch + 1,… , , tdis − 1) , 𝜂k𝜆𝑘,tdis
) (35) 

 
𝑜𝑐𝑘,tch

dis,dtm = −𝜆𝑘,tch
+ min (

𝜆𝑘,𝑡

𝜂k
|𝑡 = tch + 1,… , tdis − 1) 

(36) 

The opportunity cost for charging in (35) reflects cost of missing a better opportunity to either 
charge at a lower price at other times than the current time before discharging happens or to 
wait and discharge at a higher price in the future with a discount of round-trip efficiency. The first 
term in opportunity cost for discharging at a scheduled charging event in (36) represents the 
potential loss if discharging now at the current period, while the second term represents the 
most profitable future discharge opportunity which could be missed by discharging now. 

2) At time 𝑡 = tdis with a scheduled power injection (discharging), opportunity cost for 
charging and discharging are: 

 𝑜𝑐𝑘,tdis

ch,dtm = −𝜆𝑘,tdis
+ max(𝜆𝑘,𝑡|𝑡 = tch

nx + 1,… , tdis
nx − 1) (37) 

 
𝑜𝑐𝑘,tdis

dis,dtm = max (max(𝜆𝑘,𝑡|𝑡 = tch
nx + 1,… , tdis

nx − 1) ,
𝜆𝑘,𝑡ch

nx

𝜂k

) 
(38) 

The opportunity cost for charging in (37) represents the potential lost revenue from not 
discharging at the current price and the best future charging opportunity while the opportunity 
cost for discharging in (38) represent the chance to discharge at a higher price in the future or to 
charge at a lower price and discharge at a later, more profitable time. 

3) For time periods before the first charging time 𝑡 < tch
fir,  the opportunity costs are: 
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 𝑜𝑐𝑘,𝑡
ch,dtm = max (𝜂k max(𝜆𝑘,𝑡′|𝑡′ = 𝑡 + 1,… , tch

fir − 1) , 𝜆
𝑘,𝑡ch

fir) , ∀𝑡 = 0,1, … , tch
fir − 1 (39) 

 
𝑜𝑐𝑘,𝑡

dis,dtm =
min(𝜆𝑘,𝑡′|𝑡′ = 0, … , 𝑡 − 1)

𝜂k

, ∀𝑡 = 0,1, … , tch
fir − 1 

(40) 

At time 𝑡 before the first charging happens, the opportunity cost of charging in (39) represents 
the potential lost benefits if charging now but not waiting until a future time before the first 
charging time when you could discharge at a higher price with round-trip efficiency accounted. 
And the opportunity cost for discharging before first charging happens in (40) reflect the lost 
benefits if discharging now but without having stored energy at a cheaper price. 

4) For time periods after the last discharging time tdis
lst , the opportunity costs are: 

 𝑜𝑐𝑘,𝑡
ch,dtm = 𝜂k max(𝜆𝑘,𝑡′|𝑡′ = 𝑡 + 1, … , 𝑇 − 1) , tdis

lst <  𝑡 < 𝑇  (41) 

 
𝑜𝑐𝑘,𝑡

dis,dtm =
min(𝜆𝑘,𝑡′|𝑡′ = 𝑡 + 1, … ,𝑇 − 1)

𝜂k

, tdis
lst <  𝑡 < 𝑇  

(42) 

At time 𝑡 after the final discharging until the end of the time horizon, the opportunity cost of 
charging in (41) is the potential benefit loss adjusted by round-trip efficiency by not discharging 
at a potentially higher price between 𝑡 and the end of the time horizon if charging at 𝑡. And the 
opportunity cost for discharging is the potential revenue loss from discharging now at a low price 
rather than waiting for a better price opportunity in the future, adjusted for efficiency. 

5) For other time intervals without ongoing charging or discharging between first charging 
and last discharging period, the opportunity costs for charging and discharging are: 

 𝑜𝑐𝑘,𝑡
ch,dtm = max(𝜂k max(𝜆𝑘,𝑡′|𝑡′ = 𝑡 + 1, … , tch

nx − 1) , 𝜆𝑘,𝑡) , ∀𝑡 ∈ (tch
fir, tch

lst) (43) 

 𝑜𝑐𝑘,𝑡
dis,dtm = min (min(𝜆𝑘,𝑡′|𝑡′ = 𝑡 + 1, … , tdis

nx − 1)𝜂k , 𝜆𝑘,tch
nx) , ∀𝑡 ∈ (tch

fir, tch
lst) (44) 

The opportunity costs of charging in (43) is the value missed if not charging during this hour, 
considering the best potential value which could have realized in the future. The value of not 
discharging now should be compared to the potential future value which could be realize if 
discharged at a later time, as shown in (44).  

The charging cost for battery 𝑘 in DERA 𝑛 (i.e., 𝑘 ∈  𝒦𝑛
BAT) is: 

 𝑐𝑘
ch = ∑ 𝑜𝑐𝑘,𝑡

ch𝑝𝑘,𝑡
c

𝑡
 , ∀𝑘 ∈  𝒦𝑛

BAT (45) 

The discharging cost for battery 𝑘 in DERA 𝑛 is: 

 𝑐𝑘
dis = ∑ 𝑜𝑐𝑘,𝑡

dis𝑝𝑘,𝑡
d

𝑡
 , ∀𝑘 ∈  𝒦𝑛

BAT (46) 

The LMP-based revenue for battery 𝑘 in DERA 𝑛 with the loss factor 𝛾𝑛 is: 

 𝜋𝑘 = (1 + 𝛾𝑛)∑ 𝜆𝑖,𝑡(𝑝𝑘,,𝑡
c − 𝑝𝑘,𝑡

d )

𝑡

, ∀𝑘 ∈  𝒦𝑛
BAT, ∀𝑡 ∈  𝑇 (47) 
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3 Constraints 

For each DERA, there are some constraints on the three resource types modeled in this 
document. Solar is considered as a non-dispatchable generator, BESS is modeled by a battery 
storage formulation with round-trip efficiency and per-period energy leakage. For the price-
responsive demand, (also called demand response in the document), a value function is 
introduced to transform the utility function to an economic value, where the demand elasticity is 
modeled using the utility function. Among the three DER types, DRR has an explicit cost 
function in the aggregator’s DER dispatch model while rooftop solar is assumed to have no 
explicit cost. For BESS, explicit cost is used to get the baseline schedule of DERA when DERA 
maximizes its profit. Opportunity cost-based cost is used in the dispatch model to help minimize 
cost of the overall aggregation. 

The following subsections describe individual features of the sub-components of DERA. For an 
aggregation 𝑛 ∈ 𝒩, each DER resource 𝑘 ∈ 𝒦 is considered a sub-component. 

3.1 Aggregation 

For each DERA 𝑛 in the market, each sub-component 𝑘 ∈ 𝒦 is distributed at buses (𝑖). The 

device-level prices can be represented with the local marginal price (𝜆𝑖,𝑡) by mapping the device 

to its locations.  Then a profit-maximizing optimization problem is formulated using the Pyomo 
library (Hart et al. 2011) as following. With 𝜆𝑖,𝑡 as inputs, Pyomo model outputs the power output 

schedules 𝑝𝑘,𝑡 for solar and DRR as well as charging and discharging schedule (𝑝𝑘,𝑡
c , 𝑝𝑘,𝑡

d ) for 

battery resources. Thus, the net output power of each battery resource is 𝑝𝑘,𝑡 = 𝑝𝑘,𝑡
d −

𝑝𝑘,𝑡
c , 𝑘 ∈ 𝒦𝑛

BAT  and the total power output of DERA (𝑝𝑡) can be obtained at each time with 

equation (49). 

 max𝜋 = ∑ ∑ (𝜆𝑖,𝑡𝑝𝑘,𝑡 − 𝑐𝑘,𝑡)

𝑘∈𝒦𝑛∩𝒦𝑖
bus𝑡∈𝒯

 (48) 

Subject to: 

𝑝𝑡 = (1 + 𝛾𝑛) ( ∑ ∆𝑝𝑘,𝑡
+

𝑘∈𝒦𝑛
DRR

+ ∑ 𝑝𝑘,𝑡

𝑘∈𝒦𝑛
SOL∪𝒦𝑛

BAT

) 

(49) 

 {𝑝𝑘,𝑡 , 𝑐𝑘,𝑡} ∈ 𝑊𝑘 (50) 

Where c𝑘,𝑡 represents the cost associated with power outputs for each resource 𝑘 ∈ 𝒦  at time 𝑡 
and ∆𝑝𝑘,𝑡

+  for the positive demand response from load 𝑘. For solar type, c𝑘,𝑡 = 0, while it can be 0 

for explicit cost method or opportunity cost-based method for battery type. The last constraint 
(50) indicates all sub-component resources need to satisfy their own operational constraints 

with 𝑊𝑘 representing the feasible set for resource 𝑘. 

3.2 Individual Resources 

Each individual resource in DERA needs to operate within its own constraints. For example, 
each resource has lower and upper output constraints. Battery resource must manage the SoC 
associated with charging/discharging cycles. The following sections discuss the constraints 
specifically to each resource type. 
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3.2.1 Solar 

For the set of solar resources 𝑘 ∈ 𝒦𝑛
SOL in each aggregation 𝑛 ∈ 𝒩, every individual unit 𝑘 has a 

power output of  𝑝𝑘,𝑡 at time 𝑡,  which constrained by 0 and maximum power output constraints. 

 0 ≤ 𝑝𝑘,𝑡 < P𝑘
max,sol, ∀𝑘 ∈ 𝒦𝑛

SOL  (51) 

 
The cost of solar generation 𝑐𝑘,𝑡 in constraint (50) can be written as: 

 𝑐𝑘,𝑡 = 𝐶𝑘,𝑡𝑝𝑘,𝑡 , ∀𝑘 ∈ 𝒦𝑛
SOL (52) 

 
The implementation assumes 𝐶𝑘,𝑡 = 0 for solar resources, i.e., zero marginal dispatch cost. 

3.2.2 Battery 

Storage resources 𝑘 ∈ 𝒦𝑛
BAT are modeled using round-trip efficiency 𝜂𝑘, maximum discharge 

rate 𝑃𝑘
max,d, self-discharge rate ζ𝑘 , maximum charge rate 𝑃𝑘

max,c, initial state of charge 𝐸𝑘
init , 

required end sate of charge 𝐸𝑘
end, and minimum/maximum state-of-charge 𝐸𝑘

min and 𝐸𝑘
max.  

For each storage unit at time 𝑡, the power output 𝑝𝑘,𝑡 is the net power between discharge 𝑝𝑘.𝑡
d  

and charge 𝑝𝑘,𝑡
c , as shown in (53). Both charging and discharging power have its own lower and 

upper bounds in (54) and (55). To prevent simultaneous charging and discharging by a single 
resource, the product of charge and discharge is introduced to be less than or equal to 0 in (56). 

For the state of charge (SoC) level, (57)-(59) represent the lower and upper bounds while (60) 
indicates the SoC level changes from 𝑒𝑘,(𝑡−1)to 𝑒𝑘,𝑡 at each time interval ΔT (minutes). 

 𝑝𝑘,𝑡 = 𝑝𝑘,𝑡
d − 𝑝𝑘,𝑡

c  (53) 

 0 ≤ 𝑝𝑘,𝑡
d ≤ 𝑃𝑘

max,c  (54) 

 0 ≤ 𝑝𝑘,𝑡
c ≤ 𝑃𝑘

max,c
 (55) 

 𝑝𝑘,𝑡
d 𝑝𝑘,𝑡

c ≤ 0 (56) 

 𝐸𝑘
min ≤ 𝑒𝑘,𝑡 ≤ 𝐸𝑘

max (57) 

 𝑒𝑘,0 = 𝐸𝑘
init (58) 

 𝑒𝑘,T ≥ 𝐸𝑘
end (59) 

 
𝑒𝑘,𝑡 = 𝑒𝑘,𝑡−1 ∗  (1 − ζ𝑘) +  (

∆𝑇

60
) ∗ (𝜂k ∗  𝑝𝑘,𝑡

c − 𝑝𝑘,𝑡
d ), ∀𝑘 ∈ 𝒦𝑛

BAT, ∀𝑡 ∈  𝑇 
(60) 

The cost for BESS in constraint (50) can be computed with either explicit charging/discharging 
cost in (61) assuming its zero marginal cost. Or it is the sum of the opportunity costs for 
charging and discharging in (62). 

 𝑐𝑘,𝑡 = 0, ∀𝑘 ∈  𝒦𝑛
BAT, ∀𝑡 ∈  T (61) 

 𝑐𝑘,𝑡 = 𝑜𝑐𝑘,𝑡
ch𝑝𝑘,𝑡

c + 𝑜𝑐𝑘,𝑡
dis𝑝𝑘,𝑡

d  , ∀𝑘 ∈  𝒦𝑛
BAT, ∀𝑡 ∈  𝑇 (62) 
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Where 𝑜𝑐𝑘,𝑡
ch , 𝑜𝑐𝑘,𝑡

dis denotes the charging/discharging cost from approximation method in (33)-

(34), the optimization method, or from the deterministic method in (35)-(44). 

3.2.3 Demand Response Resource 

In the optimization model, to maintain consistency with power injection provided by other 
resources, we model the arithmetic relationship between price-responsive demand 𝑝𝑘,𝑡, baseline 

energy consumption 𝑝𝑘,𝑡
base,load, and the demand response resource 𝑝𝑘,𝑡

drr that represents a virtual 

“injection” of power. To transform the value function to be included as DRR costs like other 
resources in the objective, the nested value function is subtracted from the value associated 

with DRR’s baseline consumption 𝑝𝑡
base,load: 

 𝑐𝑘,𝑡 = 𝑈out(𝑝𝑘,𝑡
base,load) − 𝑈out(𝑝𝑘,𝑡), ∀𝑘 ∈ 𝒦𝑛

DRR  (63) 

This transformation does not affect the resource’s optimal dispatch since it is a change in the 
objective function by a constant value, but it allows DRR to be associated with a positive cost 
function when demand is curtailed and a positive value function when demand is increased.  

For the constrains of DRR’s energy, the lower and upper limits of 𝑃𝑘
min,load and 𝑃𝑘

max,load are 

applied in (64) while the relationship between available demand response and the energy 
consumption is show in (65). 

 𝑃𝑘,𝑡
min.load ≤ 𝑝𝑘,𝑡 ≤ 𝑃𝑘,𝑡

max,load, 𝑘 ∈ 𝒦𝑛
DRR, ∀𝑡 ∈ 𝒯  (64) 

 𝑝𝑘,𝑡 = 𝑝𝑘,𝑡
base,load − (∆𝑝𝑘,𝑡

+ − ∆𝑝𝑘,𝑡
− ), 𝑘 ∈ 𝒦𝑛

DRR , ∀𝑡 ∈ 𝒯 (65) 

The upper and lower limits can be adjusted, for example, to allow demand response up to a 
percentage 𝜗 ∈ (0,1) of load, or to allow additional energy consumption as following. 

 𝑃𝑘,𝑡
min,drr = (1 − 𝜗)𝑝𝑘,𝑡

base,load,   𝑘 ∈ 𝒦𝑛
DRR, 𝑡 ∈ 𝒯 (66) 

 𝑃𝑘,𝑡
max,drr = (1 + 𝜗)𝑝𝑘,𝑡

base,load, 𝑘 ∈ 𝒦𝑛
DRR , 𝑡 ∈ 𝒯  (67) 

3.3 Objective Functions 

In the SCUC-DER project, various models are configured at different steps to help dispatch 
energy resources. The difference between them lies in either the objective functions they aim to 
optimize or the constraints they must include. Specifically, the profit maximizing operation, 
minimum cost dispatch following operation, and dispatch following operation are implemented. 
In this section, we will discuss the optimization models used for model operations. 

3.3.1 Profit Maximization 

In Section 3.1, the profit maximization problem for each DERA is formulated with (48)-(50). 
Alternatively, the profit maximization operation takes prices 𝜆  from relaxed SCUC as inputs and 
gives a commitment schedule for generators as outputs, with objective rewritten as: 

 𝜋 =  ∑𝜆𝑡𝑝𝑡

𝑡

− ∑𝑐𝑘,𝑡

𝑘,𝑡

  (68) 
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Where ∑ 𝜆𝑡𝑝𝑡𝑡  represents the LMP based revenue while ∑ 𝑐𝑘,𝑡𝑘,𝑡  for the total costs of distributed 

energy resources. 

3.3.2 Cost Minimization 

Instead of maximizing the profit, this method ignores the revenues but minimize the total costs 

𝑐tot The objective function can be written as: 

 𝑐tot = ∑ 𝑐𝑘,𝑡  
𝑘,𝑡

 (69) 

3.3.3 Deviation Minimization 

Unlike the profit-maximization or the cost minimization objective functions, the deviation 
minimization aims to minimize the total distance between the actual DERA dispatch and 
baseline schedules without considering revenues or cost at all. The corresponding optimization 
problem can be written as: 

 δtot =∑ (𝛿𝑡
+ + 𝛿𝑡

−)
𝑡

   (70) 

 𝛿𝑡
+ − 𝛿𝑡

− = 𝑝𝑡 − 𝑝𝑡
sch (71) 

 𝛿𝑡
+ ≥ 0  (72) 

 𝛿𝑡
− ≥ 0 (73) 

4 Model Specification 

The following section describes the full model specifications for different functional applications 
of the DERA model. That is, various configurations of the constraints formulated in Section 2 are 
implemented during various phases of DERA operations in the SCUC-DER simulation platform. 
Briefly, these configurations are summarized in Table 4.1 below. 

Table 4.1: Model specifications 

Specification Name Description Equations 

Profit All resources receive LMP revenue 
and incur dispatch costs. 

Objective: max 𝜋 
DERA: (49) 
Solar:(51)-(52) 
Battery:(53)-(61) 
DRR: (63)-(65)  

Schedule Ignores resource cost and minimizes 
the deviation from ISO dispatch 
schedule. 

Objective: min 𝛿tot 
DERA: (49) 
Solar: (51)-(52) 
Battery: (53)-(61) 
DRR: (63)-(65)  

Cost Minimize cost to dispatch resources, 
including an explicitly defined cost for 
storage. No assumed LMP revenue. 

Objective: min 𝑐tot 
DERA: (49)  
Solar: (51)-(52) 
Battery: (53)-(61) 
DRR: (63)-(65)  
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Specification Name Description Equations 

Offer Minimize cost to dispatch resources, 
assuming LMP revenue for storage. 
No assumed LMP revenue for other 
resources. 

Objective:min 𝑐tot 
DERA: (49) 
Solar: (51)-(52) 
Battery:(53)-(60),(62)  
DRR: (63)-(65)  

4.1 Aggregation Methods 

To offer its component DERs into the wholesale market, the DERA needs to format its offer 
specifically according to the market operator. For an aggregation of rooftop solar, the offer can 
be obtained by simply summing up the total available solar output. It is more complicated for 
battery storage and price-responsive demand, which may have intertemporal price 
dependencies. That is, the value of storage will depend on its round-trip efficiency and the 
expected prices that stored energy can be sold. In our model of Cobb-Douglas utility for price 
responsive demand, changes in consumption in any period can affect the utility of energy 
consumption other periods. Given these complications, the following models may not 
necessarily identify the optimal aggregation, but instead they are proposed as reasonable 
approaches to the DERA’s problem. 

Given the price forecasts from a relaxed SCUC problem, each DERA computes a baseline 
schedule to maximize its profit. Two methods are proposed to compute the aggregation cost 
curve based on the baseline schedule, an optimization-based method in Section 4.1.2 and a 
cost-based method in Section 4.1.3. 

Based on the DERA baseline schedule, the size of offer blocks (𝑜 ∈ 𝑂, |𝑂| ≤ 10) is first 
determined in MW at each time interval, and the minimum offer satisfies 𝑝𝑜,𝑡 ≥ 0.1MW in 

accordance with FERC Order 2222. When the baseline DERA schedule is less than the 0.1 
MW, no block is created. 

4.1.1 Baseline Schedule 

The baseline schedule is obtained with DERA to maximize the total profit over the time horizon 
based on the model configuration as shown in Table 4.2. The following steps are taken: 

1) Solve the relaxed SCUC problem in Prescient/Egret (Knueven, et al., 2022) to get the 

initial price forecasts 𝜆0; 

2) Taking 𝜆0 as the inputs for the day-ahead market, DERA solves the profit maximization 

problem which gives a baseline schedule vector 𝑝𝑡
sch,dera, as well as baseline schedules 

for each distributed resource, 𝑝𝑘,𝑡
base,load, ∆𝑝𝑘,𝑡

base+, ∆𝑝𝑘,𝑡
base−, 𝑝𝑘,𝑡

base,c,  and 𝑝𝑘,𝑡
base,d

. 

Based on the baseline schedule in day-ahead market, a SCED baseline 𝑝
𝑡′
sch,dera

 for the real-

time market can be derived using a splines interpolation method. For example, the SCED 
baseline for solar can be calculated shown in (74). The same approach can be used to compute 
the baseline schedule for battery and DRR respectively. 
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 𝑝
𝑘,𝑡′
base,sol = 𝑝𝑘,𝑡

base,sol + 𝑏(𝑡′ − 𝑡) + 𝑐(𝑡′ − 𝑡 )2 + 𝑑(𝑡′ − 𝑡)3 

𝑝𝑘,(𝑡+1)
base,sol = 𝑝𝑘,𝑡

base,sol + 𝑏 + 𝑐 + 𝑑 

(74) 

where 𝑡 and 𝑡′ denote the time in day-ahead and real time respectively.  

Furthermore, with the baseline schedule obtained, the lower and upper bounds of capacity for 
each resource can be obtained. For the DRR resource, equations (66)-(67) are used while for 
BESS, the following formula is used to compute its lower and upper bounds of capacity: 

 𝑝𝑘,𝑡
min,bat = −max (0,min (𝑝𝑘,𝑡

base,c,
𝑒𝑘,𝑡 − 𝑒𝑘,(𝑡−1)

η𝑘 ∆𝑇 60⁄
)) , ∀𝑘 ∈ 𝒦𝑛

BAT 
(75) 

 𝑝𝑘,𝑡
max,bat = max (0,min (𝑝𝑘,𝑡

base,d,
𝑒𝑘,𝑡

∆𝑇 60⁄
)) , ∀𝑘 ∈ 𝒦𝑛

BAT 
(76) 

Then for the battery resource type with multiple BESS, the overall bounds at time 𝑡 is: 
 

 𝑝𝑡
min,bat = ∑ 𝑝𝑘,𝑡

min,bat

𝑘∈𝒦𝑛
BAT

, ∀t (77) 

 𝑝𝑡
max,bat = ∑ 𝑝𝑘,𝑡

max,bat

𝑘∈𝒦𝑛
BAT

, ∀t (78) 

For the DRR resource type, the overall bounds at time 𝑡 is: 

 𝑝𝑡
min,drr = 0, ∀t (79) 

 𝑝𝑡
max,drr = ∑ ∆𝑝𝑘,𝑡

base+

𝑘∈𝒦𝑛
𝐷𝑅𝑅

, ∀t (80) 

Note that the lower bound for DRR capacity is implemented as 0, as negative demand response 
is not compensated. 

Table 4.2: Baseline model configuration 

Model component Equations 

DERA (49) 

Solar (51)-(52) 

Battery (53)-(61) 

Demand Response (63)-(65) 
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4.1.2 Optimization-based Method 

First, the offer block sizes are first determined within the maximum of 10 blocks before 
aggregating the cost offers. In the optimization-based aggregation method, the offer blocks for 
dispatch quantities can be decided at time 𝑡 as following: 

1) The total bounds without solar resource are computed with 𝑝𝑡
min,tot = 𝑝𝑡

min,drr + 𝑝𝑡
min,bat   

and 𝑝𝑡
max,tot = 𝑝𝑡

max,drr + 𝑝𝑡
max,bat respectively.  

2) Then the number of offer blocks 𝑜𝑡 is determined by 𝑜𝑡 = min(10,
(𝑝𝑡

max,tot−𝑝𝑡
min,tot)

0.1
 ). An 

array of power blocks can be obtained by evenly dividing the upper and lower bounds 
with 𝑜𝑡. The values in each block represents the dispatch quantities without solar 
resources. 

3) If the number of offer blocks for combined BESS and DRR is not 0, then the upper limits 
from solar will be added to all the bins with the available solar output. Multiplying the 
values in each bin by (1 + 𝛾𝑛) will generate the offer block sizes in MW for the 
aggregation cost offers. 

Note that if (𝑝𝑡
max,tot − 𝑝𝑡

min,tot < 0.1) in step 2, then the number of bins for combined BESS and 

DRR is 0. There will be no bidding blocks for BESS or DRR, only the quantities for solar 
resources will be included in the aggregation offer blocks.  

Based on the offer block for available DERA dispatch quantities, the optimization-based method 
generates the offer curves by optimizing the dispatch of resources at each time step. At time 𝑡, 
the total power of block offers is set to the baseline power 𝑝𝑡 and the model solves the DERA 

cost minimization problem (“Offer” model in Table 4.1) to determine the associated cost (𝑐𝑜,𝑡) for 

each block at each time interval.  

The following algorithm shows the steps to obtain the block cost 𝑐𝑜,𝑡 for each time interval 𝑡: 

1) Fix DERA dispatch∑ 𝑝𝑜,𝑡𝑜 = 𝑝𝑡; 

2) A cost-minimizing of DERA (the “Offer” Model in Table 4.1) is solved across all time 
interval based on the predicted price 𝜆𝑡 from the relaxed SCUC problem. The associated 
objective as shown in (69) is recorded as the resource cost block 𝑐𝑜,𝑡  in units of dollars. 

3) Also at each time interval, a zero-dispatch case (𝑝𝑡 = 0) is introduced to obtain an initial 

block cost (𝑐0,𝑡). 

Repeat step 1-3 for all blocks and all-time intervals. From these costs, an offer of marginal 
quantity (MQ) and marginal cost (MC) in each interval is constructed as following with length of 
∆𝑇 60⁄  hours. MQ is in units of MW and MC is in units of $/MWh. 

 𝑀𝑄𝑜,𝑡 = 𝑝𝑜,𝑡 − 𝑝(𝑜−1),𝑡;   𝑝𝑜,𝑡 > 0 (81) 

 𝑀𝐶𝑜,𝑡 =
𝑐𝑜,𝑡 − 𝑐(𝑜−1),𝑡

(∆𝑇/60) (𝑝𝑜,𝑡 − 𝑝(𝑜−1),𝑡)
 

(82) 
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For the batter storage system, battery charging is constructed as a demand offer with a MQ and 
marginal value (MV), which are showed as following. 

 𝑀𝑄𝑜,𝑡
bat = 𝑝𝑜,𝑡 − 𝑝(𝑜−1),𝑡;   𝑝𝑜,𝑡 < 0 (83) 

 𝑀𝑉𝑜,𝑡
bat =

𝑐(𝑜−1),𝑡 − 𝑐𝑜,𝑡

(∆𝑇/60) (𝑝(𝑜−1),𝑡 − 𝑝𝑜,𝑡)
 

(84) 

These offers are adjusted to ensure convexity, such that marginal cost offers are in increasing 
order and marginal value offers are in decreasing order. 

4.1.3 Cost-based Method 

Similarly to the optimization-based method, the offer block size is determined first from the 
DERA baseline schedule. In this method, an additional step is needed to divide the blocks by 
resource type. This gives dispatch quantities 𝑝𝑜,𝑡  where resource is composed entirely of either 

solar, battery or DRR. Note that the minimum power limits of 0.1 MW are not enforced on 
individual resource. However, it will apply to the aggregated blocks later. 

For solar at most one single block is included, depending on the available solar power from (51). 

If 𝑝𝑡
𝑠𝑜𝑙 = 0, the solar block will be omitted.  

For battery, although its dispatch could be divided into multiple blocks, the cost would be the 
same with a single battery type. Thus, at most a single block is employed to represent charging 
and discharging block respectively. Block sizes are set to the charge or discharge rate, limited 
by available SoC level based on (77) and (78) : 

 𝑝𝑜,𝑡
𝑑 = ∑ 𝑝𝑘,𝑡

min,bat

𝑘∈𝒦𝑛
BAT

 (85) 

 𝑝𝑜,𝑡
𝑐 = ∑ 𝑝𝑘,𝑡

max,bat

𝑘∈𝒦𝑛
BAT

 (86) 

The remaining blocks are assigned to DRR. If available DRR is below 0.2 MW, only one block is 
assigned to DRR. Otherwise, DRR will be divided into evenly sized blocks such that the total 
number of blocks, include solar, battery discharge, and DRR are less than or equal to 10. 

To compute the resource-based costs separately for each block, the following logics are 
employed: 

1) If it’s a solar resource, the associated cost 𝑐𝑜,𝑡 = 0; 

2) If it’s a battery resource,  𝑐𝑜,𝑡 is obtained as the form of opportunity cost in equations 

(33)-(34) or (35)-(44); 

3) If it’s a DRR resource, 𝑐𝑜,𝑡 is determined by equations (30). 

Then the blocks will be ordered by increasing marginal cost regardless of resource type. If 
there’s block with power less than 0.1 MW, it will be merged to the adjacent block. If after 
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merging, the sum of available MW at a time interval is still less than 0.1 MW, then no offer will 
be submitted for that interval.  

4.2 Disaggregation Methods 

After SCUC market clearing process is completed, the algorithms above are used to generate 

updated offers in a real-time SCED simulation. For real-time offers, the baseline case 𝑝
𝑡′
sch,dera is 

computed based on the baseline schedule in day-ahead market using a splines interpolation 
method as shown in (74).  

DERA dispatch is computed at each SCED interval using either profit-following, schedule-
following optimization, or self-schedule method. The optimization adopts the target dispatch 
from SCED and the latest available pricing. Once a dispatch value is determined, it is fixed to 
this value for future time intervals. There is also an option to limit the look-ahead dispatch 
window to reduce overall computation time. 

4.2.1 Schedule-following Method 

In the schedule-following method, at each time 𝑡, DERA solves the deviation minimization 

problem formulated in section 3.3.3. The per-period minimization process starts from 𝑡 = 1 until 
the end of the time horizon (𝑡 = 𝑇). During each period 𝑡, the optimization process will seek to 
adjust dispatch variables (i.e., battery charge/discharge, solar generation, DRRs.) to minimize 
total deviation of dispatch from the schedules for that specific period, which is formulated as in 
(70)-(73). Once the dispatch for 𝑡 is solved, those values are fixed, and the minimization moves 

to next period 𝑡 + 1. With this rolling-horizon optimization process, the sequential dispatch 
simulation is generated. 

4.2.2 Profit-following Method 

In the profit-following method, the optimal dispatch of DERA is to maximize its total profit at 
each time interval, which is formulated as in Section 3.3.1. Because the DERA dispatch (𝑝𝑡) in 

the profit following is always the same as in baseline schedules from maximizing DERA profit, 𝑝𝑡 
is disaggregated into the device-level baseline schedules. 

5 Future Development 

As described in the previous sections, the SCUC-DER simulation platform allows detailed 
modeling of DER aggregators participating in wholesale electricity markets. Additional updates 
are planned to broaden this capability and to provide more comprehensive analysis. We 
summarize some of these planned developments below. 

• Integration with regional-scale SCUC datasets 

• Mapping of regional datasets to PNNL’s taxonomy feeders 

• DERA self-schedule offers 

• Dynamic distribution factor adjustment for multi-node DERA offers 
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