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Abstract 
We are currently at risk of generating false conclusions based on limited methods to identify 
small molecules in biological systems and in chemical forensics. By definition, the chemical 
structures of novel small molecules have not been determined, let alone measured or 
synthesized. Currently, unambiguous structure determination of small molecules is constrained 
by the time and effort needed to isolate compounds and perform de novo structure elucidation 
using laboratory-based methods, significantly extending the time to inform mitigation strategies. 
To address this gap, we have developed a deep learning approach to directly map molecular 
structure to experimental signatures. We aim to unify measurement technologies employed in 
untargeted small molecule identification studies—such as infrared (IR) spectrometry, tandem 
mass spectrometry (MS/MS), ion mobility spectrometry-derived collision cross section (CCS)—
through use of a multimodal, multitask deep learning architecture. Where existing methods 
require direct generation of information-rich spectra and/or properties, an inherently difficult 
task, we will simplify molecular signature-based identification by posing the problem as a 
recognition or retrieval task. The model is thus presented with relevant endpoints – structure 
and one or more molecular signatures – and need only determine whether they are semantically 
related. Thus, our approach offers the following advantages over existing techniques: (i) 
circumvents difficulties associated with direct generation of molecular signatures from structure 
and structure from signatures; (ii) incorporates multiple molecular signatures simultaneously, as 
available, to support identification; and (iii) enables rapid computation of structural embeddings 
toward broad coverage of known chemical space. Taken together, the approach removes the 
need to explicitly obtain or compute reference spectra, representing a powerful method for 
compound identification that requires only experimentally observed signatures. 
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Summary 
We developed an approach to perform molecular structure retrieval from multiple measurement 
sources: IR and MS/MS. Framing molecular identification in this manner eliminates the need for 
reference libraries containing measured experimental nor computationally predicted signatures. 
Our approach utilized state-of-the-art networks to embed molecular structure and corresponding 
signatures, relating proximity in the embedding space according to the Tanimoto similarity 
between endpoints. An advanced loss function, InfoNCE, was ultimately utilized to maximize 
mutual information among like pairs, theoretically resulting in rich embedded representations. 
Together, these selections culminated in high validation accuracy of 90.48% and 78.91% for 
structure:IR and structure:MS/MS, respectively. However, such pairwise assessments do not 
generalize to real-world performance, as evaluated by top-k accuracy: even our most 
performant model was only able to achieve 0.397% top-5 accuracy. 
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Acronyms and Abbreviations 
CCS: collision cross section 
NMR: nuclear magnetic resonance 
IR: infrared 
MS/MS: tandem mass spectrometry 
GNN: graph neural network 
nD: one, two,..n-dimensional 
CNN: convolutional neural network 
InfoNCE: information noise contrastive estimation 
NIST: National Institute of Standards and Technology 
EPA: Environmental Protection Agency 
JCAMP-DX: Joint Committee for Atomic and Molecular Physical Data Exchange 
GNPS: Global Natural Product Social Molecular Networking 
SMILES: simplified molecular line input system 
InChI: international chemical identifier 
CAS: Chemical Abstract Service 
m/z: mass-to-charge ratio 
CID: compound identification 
CLERMS: contrastive learning-based embedder for the representation of tandem mass spectra 
SELU: scaled exponential linear unit 
GLDM: graph latent diffusion model 
FiLMConv: feature-wise linear modulation 
RELU: rectified linear unit 
MoLeR: molecule level reward 
BCE: binary cross entropy 
L2: Euclidean distance 
PyPI: Python Package Index 
AMD: Advanced Micro Devices 
DDR4: double data rate fourth generation 
RAM: random access memory 
CUDA: compute unified device architecture 
MHz: megahertz 
GB: gigabyte 
HBM2: high bandwidth memory second generation 
GPU: graphics processing unit 
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1.0 Introduction 
A major challenge in the identification of molecules via high-throughput metabolomics studies is 
a lack of reference data against which to query. Experimental signatures are typically searched 
against reference libraries containing spectra and properties from analyses of authentic 
reference standards. However, chemical reference libraries currently represent less than 1% of 
known molecules, require significant time and resources to expand, and do not include 
compounds that are difficult to obtain or synthesize.1 While researchers have demonstrated 
nascent success with in silico prediction of some molecular attributes, such as collision cross 
section (CCS),2,3 nuclear magnetic resonance (NMR) chemical shifts,4 infrared (IR) spectra,5 and 
tandem mass spectra fragmentation patterns (MS/MS),6,7 limitations in throughput and accuracy 
have stymied broad, immediate use. Moreover, existing approaches have yet to fully leverage 
multiple measurements simultaneously to inform probabilistic annotations. 
 
We hypothesize that the lackluster performance of in silico prediction methods are testament to 
the challenge of modeling the relevant dynamics under complex conditions. Existing methods 
require direct generation of information-rich spectra and/or properties, an inherently difficult 
task. Instead, molecular signature-based identification can be posed as a recognition or retrieval 
task,8 as opposed to the more complex prediction task. The model is thus presented with 
relevant endpoints – structure and one or more molecular signatures – and need only determine 
whether they are semantically related. 
 
To this end, we have developed a deep learning architecture to learn a joint representation of 
molecular structure and experimental signatures. By employing methods widely used in the 
image-text retrieval space9—that is, given an image, retrieve relevant descriptive text (and vice 
versa)—we jointly encoded a shared representation of molecular graphs and their associated 
molecular signatures. To build this joint embedding, we implemented domain specific 
embedding networks: a graph neural network (GNN)10,1112 to embed a 3D molecular structure 
and (one-dimensional) 1D convolutional neural networks (CNNs)13 to embed corresponding 
signatures. We trained the network by optimizing over an information noise contrastive 
estimation (InfoNCE) loss14 modified by the inclusion of a Tanimoto similarity objective. We 
trained the network to simultaneously minimize the error with respect to Tanimoto similarity 
between embedding pairs and to maximize the similarity of positive embedding pairs arising 
from the same structure. In other words, the distance between joint embeddings was 
conditioned such that matching structure-signature pairs will coalesce in the embedded vector 
space, whereas incorrect pairs will diverge, and allows for ambiguity according to structural 
similarity. 
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2.0 Methods 
2.1 Data and Preprocessing 

2.1.1 Infrared (IR) Spectral Data 
Experimental IR spectra were obtained from the National Institute of Standards and Technology 
(NIST) Standard Reference Database 3515 (henceforth, NIST35), containing both NIST and 
Environmental Protection Agency (EPA) values. The dataset was comprised of 5,228 spectra in 
the Joint Committee for Atomic and Molecular Physical Data Exchange (JCAMP-DX) format. 
Spectra from NIST were reported in the 550 - 3846 cm−1 range, while EPA values ranged from 
450 - 3966 cm−1, both at 4 cm−1 resolution. To achieve uniformity, values were truncated to the 
overlapping 550 – 3846 cm−1 range, linearly interpolated to share wave number, and normalized 
such that vectors were of unit norm. 

2.1.2 Tandem Mass Spectrometry (MS/MS) Data 
Tandem mass spectra were obtained from the NIST20 tandem mass spectral library, Global 
Natural Product Social Molecular Networking (GNPS) aggregated database, and RIKEN.16–19 

Tandem mass spectral data corresponding to NIST35 compounds were observed in both GNPS 
and NIST20, amounting to 15,441 GNPS spectra and 20,961 NIST20 spectra, representing 
1,085 (21%) of compounds with associated IR data. We additionally included the remainder of 
NIST20 spectra for which compounds had a valid Chemical Abstract Service (CAS) lookup 
number, totaling 952,336 spectra representing 24,102 compounds. To remove the potential 
confounding effect of including the precursor mass-to-charge ratio (m/z) in tandem mass 
spectra, according to,20 we additionally removed all fragments with m/z greater than or equal to 
the precursor m/z. Tandem mass spectra, both with and without precursor m/z, were evaluated. 

2.1.3 Collision Cross-Section (CCS) Data 
Experimentally acquired CCS values were compiled from the McLean CCS Compendium21 and 
CCSbase.22 Note that the values from CCSbase are sourced from multiple data sources 
between 2014–2022.22–45 In total, 14,854 CCS values for 8,690 compounds are represented in 
the full database. The overlap of CCS values with either IR or MS/MS spectra was surprisingly 
small, at an intersection of 1000 compounds. For this reason, and due to difficulties achieving 
success with the more information-rich IR and MS/MS spectra, CCS was not evaluated for the 
purposes of this report. 

2.1.4 Molecular Structures 
Molecular structures were sourced as two-dimensional (2D) graphs from NIST35 in MDL Molfile 
format (.mol), indexed by CAS number. Missing structures were reconciled by CAS identifier 
lookup using the cactus Chemical Identifier Resolver (cactus.nci.nih.gov). For MS/MS and CCS 
databases (NIST20, GNPS, RIKEN, McLean, and CCSbase), available identifiers, including 
SMILES (simplified molecular line input system),46 InChI (international chemical identifier),47 CAS 
registry number, and PubChem Compound Identification (CID), were used to determine 
structure. Each identifier, as available, was used to lookup or otherwise compute, using the 
RDKit chemistry toolbox (www.rdkit.org), a representation by SMILES. All SMILES were 
canonicalized using RDKit to ensure uniformity. To ensure a consistent index of molecular 
identity, canonicalized SMILES were converted to InChI hash keys, or InChI key, and used to 
index compounds henceforth. 
 

http://www.rdkit.org/
http://www.rdkit.org/


PNNL-36742 

Methods 3 
 

Additionally, to enable structural similarity comparison during training, the molecular fingerprint48 

of each molecule was calculated using RDKit using default RDKitFingerprint. Parameters were 
specified as minPath = 1, maxPath = 7, fpSize = 2048, bitsPerHash = 2, useHs = True, tgtDensity = 
0.0, and minSize = 128. During training, Tanimoto similarity48 is evaluated for the structures 
relevant to each modal endpoint according to their precomputed fingerprints. 

2.2 Infrared Embedding Model 
To embed infrared signals, we explore using 1D deep residual networks,49 1D Xception 
networks,50 and 1D Vision Transformers.51,52 

2.2.1 ResNet 
Deep residual networks,49 or ResNets, are a type of convolutional network typically used in 
computer vision tasks to provide a performance baseline to more advanced models. They 
benefit from having small computational overhead due to their limited complexity, allowing them 
to be scaled to arbitrary depths. Moreover, their convolutional architecture provides a consistent 
interpretability across layers in the form of low, middle, and high level feature maps. 
 
To apply ResNets to signal tasks, it is simple enough to convert all two-dimensional convolution 
filters to one-dimensional convolution filters. Several instances of the success of ResNets have 
been recorded in human bioactivity and industrial monitoring tasks,53–55 as well as in mass 
spectra classification tasks,56 collision cross-section prediction,57 and mass spectra annotation.58 

Specific to our task is the application of one-dimensional convolutional neural network variants 
to infrared embedding and classification tasks.59–61 Specifically, Zhang et al.62 introduce the idea 
of blending the features from the Inception Network63 with a basic ResNet, which suppresses the 
resolution of deeper convolutional filters while maintaining performance and reducing 
computational overhead. With the noted successes of ResNet variants across domains, and 
applied to various types of temporal and non-temporal data, we choose to apply ResNet as an 
embedding network for infrared spectra. 

2.2.2 Xception 
A major difference between the Xception network50 - specifically its depth-wise separable 
convolutions - and a regular convolutional neural network is that the prior proposes for cross-
channel correlations and spatial correlations to be learned entirely independent of one another. 
In Xception’s depth-wise separable convolutions, a set of channel-wise spatial convolutions, 
typically 3×3, are applied over an image or signal, producing a separate convolution for each 
channel. Then a point-wise 1 × 1 convolution is applied across all channels output from the 
earlier spatial convolutions. By following this sequence of convolutions, it is hypothesized that 
spatial information (channel-wise spatial convolutions) and cross-channel information (point-
wise convolution) can be learned separately, thereby unburdening the network from having to 
account for these simultaneously.50 Such modifications to the convolutional architecture have led 
to increases in accuracy and model efficiency.50 To use the Xception network on infrared 
signals, we similarly replace all two-dimensional convolutions with one-dimensional convolutions 
and apply no other changes. To our knowledge, there are no instances of a direct application of 
the Xception network to infrared signals. While the 1D Xception variation was explored, we 
found the ResNet implementation more performant, and thus used that variation in our 
experimentation. 

2.2.3 Vision Transformer 
Vision transformers were introduced by Dosovitskiy et al. as a method to exploit the base 
transformer64 architecture for computer vision tasks.52 The main difference between these 
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architectures is the use of convolution layers in the prior to encode image patches which are 
then fed into the virtually unmodified architecture of the latter. In similar fashion to converting a 
ResNet to work for one-dimensional applications, one can simply replace the two-dimensional 
convolutions in Vision Transformers with one-dimensional convolutions for use in spectral 
applications. There are, however, few instances of 1D vision transformers being applied to 
signal data in the literature. Weng et al., for example, apply one-dimensional vision transformers 
with multi-scale convolutions for bearing fault diagnosis,65 while Dong et al. apply one-
dimensional vision transformers with deformable convolutions for arrhythmia classification.65 To 
our knowledge there are no instances of 1D vision transformers applied directly to infrared or 
near-infrared spectra. We amend a PyTorch implementation of a one-dimensional vision 
transformer, but replace the dense layers in the patch embedding with one-dimensional 
convolutions for better performance. 

2.3 Tandem Mass Spectra Embedding Model 
We experiment with several embedding models for MS/MS. Unlike infrared spectra, whose 
intensities are collected at a constant interval, MS/MS spectra include a variable number of 
m/z–intensity pairs corresponding to the fragmentation pattern of a specific precursor. As a 
result, the models used to encode1 them necessarily reflect these differences. Specifically, 
special care is taken in all MS/MS-embedding models to project variable-length MS/MS 
sequences bijectively into an nD space. 
 
MS/MS spectra are typically encoded by choosing a fixed number of bins, and therefore a fixed 
resolution window, to group m/z values and their associated peaks. By discretizing the real m/z 
space, subsequent analysis forgoes the distinguishing, high-resolution information captured in 
the m/z peaks neighbored within a small interval. Such relevant peak information is inevitably 
collapsed by and conflated within the binning process.66 For this reason, in all MS/MS-
embedding models, we choose to replace discretized binning with a bijective mapping between 
peaks and fixed-length numerical peak vectors following the methods outlined in Voronov et al.66 

and explicated below in Equation 1. 
 

  
Equation 1. Sinusoidal embedding. 

 
 

https://github.com/lucidrains/vit-pytorch
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Figure 1.Transformer architecture for MS/MS embeddings. 
 
To embed MS/MS signals, we explore using plain transformer networks outfitted with the 
sinusoidal encodings described in Voronov et al. as contrastive learning-based embedder for 
the representation of tandem mass spectra (CLERMS).67 The model architecture consists of six 
encoding and six decoding layers. For input, the original precursor mass is corrected according 
to adduct type, producing a shifted neutral molecule mass which we label as ion m/z, and whose 
derivation is seen in Equation 2. 
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Equation 2. Mapping between neutral molecule m/z and adduct ion m/z. 
 
To ensure uniformity of input length, and roughly following the methods outlined by Guo et al.,67 

MS/MS spectra are selected for their hundred highest peaks or padded with zeros if one 
hundred peaks aren’t available. The MS/MS spectra and ion m/z are then concatenated and fed 
into a sinusoidal embedding module which encodes the spectra via Equation 1. Intensity is then 
concatenated to this encoding, and it is passed through a series of dense layers before entering 
the transformer encoder’s layers. This output is then fed to the cross-attention head in the 
decoder. 
 
Along with the encoder output, we encode the ionization mode, ionization type, instrument type, 
and collision energy meta data of the spectra by passing them through separately initialized 
embedding networks each comprising a small feed forward network. These embeddings are 
then concatenated and fed into the decoder along with the encoder output. The decoder output 
is then projected to a 512-dimension vector, and sent through a MaxPooling, BatchNorm, and 
Linear layer before a scaled exponential linear unit (SELU) activation sends it to its final 
representation. 

2.4 Structure Embedding Model 

2.4.1 AttentiveFP 
To facilitate the acquisition of robust structural molecular encodings by the multimodal model, 
molecules were represented as graph structures suitable for neural network consumption. This 
process, referred to as molecular featurization, requires the creation of node vectors 
characterizing individual atoms and edge vectors representing bonds between pairs of atoms. 
Key attributes embedded within node vectors encompass atom type, formal charge, 
hybridization, and the number of hydrogen bonds, while edge vectors incorporate information 
including bond order, whether the atoms within the pair are part of a ring, and the conjugation 
status of the bond. 
 
These features were then passed into AttentiveFP, a GNN designed for molecular property 
prediction tasks.68 AttentiveFP leverages attention mechanisms to discern non-local 
relationships between atoms, encouraging the model to extract the most salient aspects of 
molecular structure essential for accurately mapping molecules to their corresponding 
experimental signatures. 
 
Together the featurization and GNN components constitute the structural encoder within our 
multimodal architecture. To implement this process, molecular geometries in MDL Molfile format 
were loaded using RDKit. Next, these molecular structures underwent featurization utilizing the 
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MolGraphConvFeaturizer from the DeepChem library.69 The featurized molecular graphs were 
then fed into the AttentiveFP model from the DGL-LifeSci package.70 Notably, the AttentiveFP 
implementation required a minor modification to yield intermediate embeddings of desired size, 
rather than scalar predictions. 

2.4.2 GLDM 
As an additional method for encoding molecular structures, we leveraged the pre-trained graph 
encoding network from the encoder portion of the graph latent diffusion model (GLDM).71 The 
GLDM encoder network is a molecular graph variational autoencoder which has been pre-
trained on the GuacaMol72 dataset for the task of encoding molecular graphs into a latent space 
via the encoding portion of the network, and then reconstructing the original graph from the 
latent representation via the decoding network. For our work, we solely leverage the encoding 
portion of the network. We fine-tuned the pre-network on our training dataset of molecular 
graphs following the training hyper-parameters outlined in the implementation of the GLDM. The 
overall architecture of the encoder is a graph neural network, composed of 12 GNN blocks 
consisting of a FiLM convolutional73 layer, a normalization layer, and a rectified linear unit 
(ReLU)74 layer. 
 
During pre-training, the GLDM autoencoder is trained according to the methodology described 
by molecule level reward (MoLeR),75 a paper which approaches the problem of molecule 
generation by decomposing larger molecules into ‘motifs’ which are then combined to create full 
molecules. We use the MoLeR algorithm to extract motif features from our dataset, then use the 
extracted features to represent the molecules in our dataset as PyTorch Geometric76 graphs for 
ingestion by the pre-trained model. In this graph formulation, nodes are motifs (either individual 
atoms or small structures of atoms) and edges are bonds between the atoms/structures. 

2.5 Multimodal Retrieval Network 
Each mode-specific embedding network necessarily produces an equal-length vector 
representation of its input, enabling direct comparability among modes. Thus, for a particular 
modal pair, corresponding embedding networks are engaged in the forward pass to produce 
respective embeddings, as seen in Figure 3. The resulting vectors are then compared, 
depending on the particular loss selected, according to a measure that confers the similarity 
between them. Each loss type explored during the project follows. 
 

 

Figure 2. Multimodal network single-pair input flow. Dotted lines indicate back-propagation. 
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2.5.1 Binary Cross Entropy Loss (BCE) 
The simplest form of loss was achieved by alternating positive (same) and negative (different) 
training instances, per modal pair. In this framing, we explored use of several distance metrics: 
cosine, Euclidean distance (L2), and a "learned" distance metric, whereby the network was 
configured with an additional layer to predict the distance metric among instances. Labels were 
initially supplied as strictly positive (label = 1) or negative (label = 0). We later modified this 
configuration to support the natural ambiguity among similar, but not identical, structures, by 
way of Tanimoto similarity. Thus, for example, cases in which two similar structures would 
otherwise be given a binary label of strictly 0, Tanimoto similarity allowed for intermediate 
values between 0 and 1. 

2.5.2 Contrastive Loss 
While BCE loss focuses on the correctness of the final binary decision ("same" versus 
"different"), contrastive loss directly optimizes the relative distances between modal pairs, which 
is critical for understanding and comparing complex patterns in signals. Therefore, contrastive 
loss more naturally aligns with the goal of distinguishing between similar and dissimilar signal 
pairs, often leading to superior performance in such tasks. 
 
We implemented contrastive loss with optional terms for positive margin – the distance at which 
like pairs are not further concentrated in the embedding space – and negative margin – the 
distance at which different pairs are not further dispersed in the embedding space. 

2.5.3 InfoNCE Loss 
A variant of contrastive loss, but sufficiently different to warrant its own section, is information 
noise contrastive estimation (InfoNCE) loss.14 With InfoNCE, all possible pairings within a 
particular batch, i.e. all N positive pairs and N(N − 1) negative pairs, are considered for the 
gradient update. This framing maximizes use of the already-embedded modal representations 
per batch, conferring maximum information to the update step. Additionally, we modified the 
loss term employed by CLERMS67 for MS/MS retrieval: instead of separate terms for InfoNCE 
and mean squared error against Tanimoto similarity, we pulled the Tanimoto target inside the 
InfoNCE evaluation, creating a unified loss term. These considerations maximize mutual 
information between positive pairs, encouraging the model to learn richer representations, and 
improves scalability, relative to the pairwise comparisons of standard contrastive loss. 
 
This information is captured in Equation 3. Here, Q and R denote paired inputs with shared 
molecular structure. Direct comparisons of these pairs comprise the positive examples in our 
batch. All other pairwise comparisons comprise negative examples, i.e. inputs not inheriting 
from a shared structure. Our loss maximizes positive similarity between positive pairs, while 
simultaneously encouraging negative pairs to converge to their pre-computed Tanimoto 
similarity, denoted as S. 

 

Equation 3. Modified InfoNCE loss that considers pairwise Tanimoto similarity. 
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2.6 Data Loader 
Equally important as the neural network architecture, a well-architected PyTorch Dataset object 
acts as an interface between data and model, allowing efficient and convenient access to 
training instances. Critically, it enables the loading and preprocessing of data before 
consumption by the neural network such as normalization, resizing, interpolation, etc., ensuring 
that the data is in a suitable format for training. Additionally, the Dataset object helps optimize 
memory usage by dynamically loading and processing data in batches, minimizing the memory 
footprint and enabling training on large datasets that may not fit entirely in memory. In the 
context of training a multimodal retrieval network, where a multitude of possible input pairings 
are associated with indication as to their correspondence, the Dataset object plays a crucial role 
in brokering the data-model relationship. 
 
Along these lines, class balance can be controlled, which is critical in multimodal retrieval 
network contexts. For a training set of size N with M modes, there are N(M − 1) possible 
positively labeled pairings and N(N − 1)(M − 1)/2 possible negatively labeled pairings. If strictly 
randomly sampled, the positive class would be severely underrepresented, leading to 
predictions biased to the negative class. 
 
During training, each batch alternates among possible mode pairings (e.g. structure:IR, 
structure:MS/MS, IR:MS/MS, etc.). For BCE and contrastive loss, positive and negative instance 
pairs are sampled randomly with equal proportion. Thus, for each epoch, all possible positive 
instance pairs are seen, alongside an equal number of randomly sampled negative instance 
pairs. For InfoNCE loss, positive and negative pairs are constructed from a batch of N InChI 
keys: pairwise comparisons are made among all batch members, where the diagonal represents 
"same" pairs, and the off-diagonal elements "different" pairs. 

2.7 Training 
Spectral data sourced from NIST2016,17 was split into train (70%), validation (15%), and test 
(15%) partitions by molecular identifier (InChI key) to ensure no leakage between sets. The 
network was trained to minimize selected loss term and was optimized using the Adam 
optimizer77 with 5 × 10−6 learning rate and an exponential learning rate scheduler with γ = 0.999. 
Training was performed with a batch size of 64 for 300 epochs. When using BCE loss and/or 
contrastive loss in a binary setting, validation metrics including AUPRC, AUROC, and accuracy 
were calculated following each epoch across all modal pairs, but also for all pairwise modalities 
used. In other words, both general and modality specific metrics were tracked during the training 
process. When using InfoNCE loss, only validation loss was tracked. The best-performing 
model iteration with respect to validation loss was kept. 
 
To train a multi-modal network with different modality-specific sub-networks, only those sub-
networks whose respective modalities were being used during the training step were allowed to 
receive gradient updates, while the remaining subnetwork’s weights were frozen (Figure 3).  
This remained the default setting for training runs unless another paradigm was directly 
specified (such as a fully frozen structural encoder). 

2.8 Package Implementation 
The multimodal retrieval network implementation, training and validation scripts, and example 
Jupyter notebooks have been made available as a Python package: molvis. We architected 
molvis to adhere to software development best practices, including installation through 
Anaconda or the Python Package Index (PyPI), in-line documentation via docstrings, and 
version control with Git. Upon achieving success and subsequent publication, the molvis 
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package will be open-source and freely available online at github.com/pnnl/molvis, and 
community contributions via pull request will be welcome. 

2.9 Compute Resources 
Computations were performed on the Pacific Northwest National Laboratory Research 
Computing cluster, Deception, comprised of 188 compute nodes, each with 64 cores (dual AMD 
EPYC 7502 processors at 2.5 GHz) and 256 GB DDR4 RAM. For machine learning training and 
evaluation, nodes equipped with Nvidia Tesla V100 (12 nm lithography, 5120 CUDA cores at 
1246 MHz, 32 GB HBM2 memory) GPUs were utilized. 
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3.0 Results and Discussion 
Initial results with AttentiveFP68 (structure), ResNet49 (IR), and CLERMS67 (MS/MS) subnetworks, 
trained with BCE loss, appeared optimistic: structure:IR validation accuracy of 72.7% and 
structure:MS/MS validation accuracy of 69.0%. However, the context of this result is important, 
as this represents the proportion of pairwise comparisons that were judged correctly by the 
network, not the ability of the network to discern the correct structure from a (ostensibly large) 
library. 
 
Real world retrieval performance must be evaluated using another metric, separate from 
the task the network was trained on: typically, top-k accuracy. That is, in what proportion of 
queries does the correct classification appear in the k top-scoring outputs. For molecule 
identification, this would ideally mean high top-1 accuracy, where the top-scoring model output 
contains the correct classification. Our well-performing network with respect to binary accuracy 
produced surprisingly low top-k results. Even with k = 5, accuracy remained below 1%. 
 
This led to the exploration of loss functions better equipped to handle the intricacies of inter-
embedding distances across modal pairs. First among them, contrastive margin loss, which 
quickly netted improvements to binary validation accuracy: 76.6% and 72.6% for 
structure:MS/MS and structure:IR, respectively. Other small improvements, such as 
batchbalancing, learning rate modifications, and contrastive hinge adjustments eventually 
yielded a maximum binary validation accuracy of 90.48% and 78.91% for structure:IR and 
structure:MS/MS. Despite these improvements, both in theoretical soundness of the approach 
and according to pairwise accuracy assessments, top-k remained sub-1%. Use of InfoNCE, 
hypothesized to further improve embedding space conditioning, also yielded a sub-1% top-k 
accuracy. 
 
Following this, we conducted unimodal spectral retrieval experiments for MS/MS:MS/MS and 
IR:IR. Achieving passable results, we speculated that capacity of the structural encoder was 
insufficient for the multimodal task. We therefore decided to freeze the rich pretrained GLDM71 

structural encoder and lower the learning rate to 1 × 10−7 in order to see if we could move our 
spectral embeddings in the direction of GLDM’s structural embeddings. This again yielded a 
sub-1% top-k accuracy. 
 
We hypothesize that the poor top-k performance could be due to one or more of the following 
factors: (i) Insufficient weight in the loss term for positive pairs. The current configuration 
weights batch size N positive pairs equal to N2 negative pairs, potentially resulting in overfitting 
latent space dispersion of negatives at the expense of positive coalescence. (ii) Modality 
competition, generally. Huang et al. suggest that modal representations which correlate more 
with the randomly initialized weights of an encoding network will be better learned than those 
which do not.78 Although their experiment uses a single encoding network for multimodal 
training, the idea of modality-biased model weight shifting is still an open concern in our 
experiments. (iii) Lacking a unified, fused representation for modal pairs. Contrastive, BCE, and 
InfoNCE14 losses seek to push similar embeddings together and disparate embeddings apart. 
However, these optimizing strategies are not forced to create a cohesive, single-vector 
representation for inputs. 
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4.0 Conclusion 
We developed an approach to perform molecular structure retrieval from multiple measurement 
sources: IR and MS/MS. Framing molecular identification in this manner eliminates the need for 
reference libraries containing measured experimental nor computationally predicted signatures. 
Our approach utilized state-of-the-art networks to embed molecular structure and corresponding 
signatures, relating proximity in the embedding space according to the Tanimoto similarity 
between endpoints. An advanced loss function, InfoNCE, was ultimately utilized to maximize 
mutual information among like pairs, theoretically resulting in rich embedded representations. 
Together, these selections culminated in high validation accuracy of 90.48% and 78.91% for 
structure:IR and structure:MS/MS, respectively. However, such pairwise assessments do not 
generalize to real-world performance, as evaluated by top-k accuracy: even our most 
performant model was only able to achieve 0.397% top-5 accuracy. 
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