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Abstract 
This document reports the development of the Wholesale Electricity Analysis via Simulation and 
Learning Experiments (WEASLE) platform and the pilot competition that was conducted to test 
the platform. Due to the increasing reliance on variable renewable energy resources for bulk 
power, the pilot competition, called the Energy Storage Participation Algorithm Competition 
(ESPA-Comp), was used to test the effect of various market designs on storage utilization and 
market efficiency. Basic details of the platform are provided, including an overview of the market 
clearing engine, the battery dispatch and degradation models, electric grid topology and 
resource mix, and software architecture. Two market designs were tested: a two-settlement 
market analogous to typical ISO design today, and a multi-settlement market that allows 
additional forward-trading periods during the real-time market. Results from the pilot competition 
show that the storage bidding problem is nontrivial and is well suited for future challenges. We 
find that: 1) all four teams utilized different approaches to the bidding problem, 2) different 
methodological approaches led to substantially different offer behaviors, 3) resource profits are 
clustered by team and methodological approach, 4) simulated offers reduced market surplus by 
about 0.5%, 5) substantially different prices between two-settlement and multi-settlement 
markets albeit minimal difference in overall market surplus. 
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1.0 Introduction 
Market design has emerged as an important tool to ensure reliable, efficient, and secure 
transition to a high-renewable electric grid (Milligan et al. 2016, Ela et al., Perez-Arriaga, 
Jenkins, and Batlle 2017, Litvinov, Zhao, and Zheng 2019, Eldridge and Somani 2022a). In the 
US, state policies continue to push wholesale energy markets to integrate higher proportions of 
clean and renewable energy (Barbose 2023). While regulatory and policy mandates can push 
the grid integration of new resources, efficient market design can ensure that it is done at least 
cost and with minimal disruptions to grid resilience and reliability.  

Battery energy storage systems (BESS) are likely to play a key role, as it allows meeting higher 
regulatory renewable energy targets with less renewable investment and less renewable 
curtailment (Arbabzadeh et al. 2019). However, BESS integration with bulk grid market 
operations is still developing (Haas et al. 2022). To support rigorous assessment of new market 
design proposals, this paper describes a new simulation platform called Wholesale Analysis via 
Simulation and Learning Experiments (WEASLE) and an associated pilot competition called the 
Energy Storage Participation Algorithm Competition (ESPA-Comp).  

Batteries profit in wholesale energy markets through three main channels. First, batteries ca 
provide arbitrage, i.e., purchasing energy for charge at a lower cost than the revenue from 
energy discharge (Salles et al. 2017). Today, few batteries are profitable through energy 
arbitrage alone. A second revenue stream comes from providing ancillary services (Chen et al. 
2010). Ancillary services can differ from market to market but are typically reserve products, 
which provides reliable backup service in case of system contingencies, or regulation service, 
which is used to balance the second-to-second fluctuations (Cramton 2017). Although many 
BESS profit primarily through ancillary services today, continued investment in BESS has the 
potential to collapse ancillary service prices (Salles et al. 2017, Bhatnagar et al. 2013). Energy 
arbitrage may therefore become a crucial part of BESS operation and grid stability in high-
renewable electric grids (Arbabzadeh et al. 2019). 

Today’s electricity markets use a two-settlement (TS) market design, in which generation 
schedules are scheduled and receive a forward financial settlement at the day-ahead price for 
their planned production schedule in the day-ahead market (Crampton 2019). The difference 
between a resource’s day-ahead position and their actual production is subsequently settled in 
the real-time market at the real-time price. This results in exactly two settlements per resource: 
first in the day-ahead market and once again in the real-time market. 

The TS market was designed to best suit the needs of conventional generators (Eldridge and 
Somani 2022b). Many of these generators have long start up times and must commit their 
plants 8 to 24 hours before power is needed. Day-ahead markets are designed for this purpose. 
Storage systems have different constraints, however. They are typically much faster to respond 
to changes in power demand, but many BESS are limited to a maximum of about 4 hours of 
discharge time when fully charged. Alternative market structures may be better suited to 
planning battery operations, but high quality market simulations and studies are required to 
make any more concrete recommendations.  

1.1 Contribution 

We propose a novel electricity market modeling platform that allows multiple users to interact 
through realistic market processes in a competitive environment. Market modeling methods 



PNNL-36729 

 2 
 

typically fall into one of three categories: optimization, equilibrium, or simulation (Haugen et al. 
2024). Each method has strengths and weaknesses which need to be appropriately harnessed 
or mitigated depending on the scope of research. Optimization-based methods attempt to solve 
system dispatch decisions to optimality. However, this method has difficulty including strategic 
decisions that market participants might make, and it therefore might overestimate the benefits 
of newly proposed market designs. Equilibrium approaches model the strategic incentives of 
market participants, and therefore holds promise to analyze market design issues. However, 
because equilibrium problems can often be orders of magnitude more complex than 
optimization problems, there is a limited scope of problems that can analyzed via equilibrium 
methods. Instead, equilibrium methods often rely on simplifications of the underlying system, for 
example, simplified technology constraints, representative agents, reduced decision space, or 
relaxed equilibrium conditions. In contrast, simulation-based methods allow a high degree of 
modeling detail regarding both technological constraints and strategic incentives.  

Overall, the simulation platform that we’ve developed, called WEASLE, mainly falls into the 
simulation category. However, it is composed of modules that each utilize a different method. 
The first main component is the market clearing engine. We developed an optimization-based 
market clearing model in GAMS (GAMS 2022). As shown in Figure 1, the market clearing 
engine takes inputs from the electric topology, generation supply, and consumer demand from 
the physical system as well as market design features such as the energy and ancillary service 
product definitions and the assumed trade frequency and horizon. This aspect of the platform 
models the standard security-constrained unit commitment problem, a mixed-integer linear 
programming (MILP) problem that is solved in typical production cost modeling software found 
throughout industry and the research community (Hobbs 2001, Holzer et al. 2024). 

 
Figure 1: WEASLE Platform Overview 

Second, the platform includes a physics simulation of BESS dispatch and degradation cost for a 
lithium-ion battery system. Our model implements the zero-order equivalent circuit model to 
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simulate nonlinear charging and discharging efficiencies and a degradation cost calculation, 
both based on formulations in Rosewater (2019). We include these facets of BESS operations 
separately from the market clearing engine; because the simulated efficiency and degradation 
costs are nonlinear, they cannot be cast within the MILP problem formulation framework used 
for solving SCUC. These features of BESS dispatch must therefore be approximated and 
entered into the market clearing engine through storage bidding parameters. 

Last, the platform includes a module for bidding algorithms for resources that participate in the 
simulated market. The bidding problem is an equilibrium problem: the goal is to maximize 
resource profits subject to the physical constraints of the resources, the market clearing 
process, and the strategic incentives of all other market participants. The WEASLE platform’s 
bidding module allows multiple distinct users to submit separate bidding algorithms for each 
resource. This enables the platform to operate a competition with human participants who 
submit bidding algorithms that respond to realistic market incentives. 

As mentioned above, participants in such a competition are tasked with solving an equilibrium 
problem. Often, this problem will be too complex to be solved exactly, and we anticipate that a 
participant’s bidding algorithm must make some tradeoffs regarding which physical constraints, 
strategic incentives, or other aspects to model. Uncertainty may also play a key role since not all 
market inputs (e.g., load and weather forecasts) can be known with certainty. However, by 
rewarding the bidding algorithms based on their profits in the market simulation, our hope is that 
the competition provides a testbed for generating resource bids that reflect similar incentives as 
faced by real-world market participants. 

To this end, we developed the Wholesale Electricity Analysis via Simulation and Learning 
Experiments (WEASLE). The WEASLE platform is built around a market clearing engine 
designed to easily accommodate a wide range of market structures. WEASLE also uses a 
physical battery dispatch and degradation model to effectively model storage performance 
outside of the market. This platform is also designed to call external algorithms and accept 
offers produced. This enables the platform to operate a competition with realistic human bidding 
strategies. WEASLE is the engine behind the Energy Storage Participation Algorithm 
Competition (ESPA-Comp). 

In this paper we describe the WEASLE architecture and summarize results from the ESPA-
Comp Pilot. Section 2.0 describes the WEASLE SCUC formulation, our high-renewable grid 
topology, and our battery model. Section 3.0 describes the website and platform designed to run 
the ESPA-Comp and how our pilot competition was run. Section 4.0 presents the results for the 
pilot competition, and Section 5.0 concludes with discussion of lessons learned and steps for 
future competitions. 
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2.0 Models 
Complete formulations for all models are given in Eldridge et al. (2024). The general market 
clearing optimization model is a security constrained unit commitment (SCUC) model. Battery 
dispatch and degradation are formulated as two separate models: one dispatch model that is 
formulated as a nonlinear program (NLP), and a separate degradation cost calculation.  

2.1 Market Clearing Engine 

The WEASLE market clearing engine is a formulated as a surplus maximization problem. It 
includes system constraints on bus voltage angles, line flow, and power balance. Network 
power flows are modeled using DC power flow and do not include losses. The market clearing 
engine is written in GAMS (GAMS 2022) and solved using CPLEX. 

The inputs of the market clearing engine include data on grid characteristics and a general 
discrete time horizon as well as bids and offers provided by demand and supply resources 
along with technical resource capabilities. The outputs include schedules of commitment status 
and dispatch of energy and ancillary products for each resource as well as market clearing 
prices of energy and ancillary products. The output variable values are chosen so as to 
maximize the total market surplus subject to constraints on individual resource operation and on 
the system as a whole.  

Five different resource types are modeled with distinct sets of constraints: conventional 
generation, renewable generation, storage units, flexible demand, and virtual offers. 
Conventional generators and storage units have associated binary unit commitment variables. 
All other constraints are linear, resulting in a MILP formulation.  

Resource operation constraints include maximum and minimum real power output levels, 
ramping limits, must-run and planned outage, minimum uptime and downtime, and others 
specific to certain types of resources, such as state of charge management for storage. System-
wide constraints include supply and demand balance for energy and ancillary products and 
security constraints preventing the power flows along lines from exceeding their limits. The 
market surplus maximization objective consists of the value to consumers derived from 
consuming energy, minus the cost to producers incurred by producing energy, minus penalties 
on violations of certain constraints that are treated as soft constraints. The value and cost of 
producing energy is modeled as typical economic supply and demand functions, with 
diminishing returns to scale. In addition to these convex cost and value features, the objective 
includes nonconvex startup, shutdown, and fixed operating (no load) costs. After the model is 
solved a first time to determine resource dispatch schedules, the discrete variables (which 
generally consist of the resource commitment variables) are fixed to their optimal values, and 
then the model is solved again. This second solve is a convex optimization problem and 
therefore produces Lagrange multipliers that are used as market clearing prices for energy and 
ancillary products. 

The market clearing engine is deliberately agnostic to the specific market structure, allowing it to 
solve the market under a wide range of structures. Unit commitment variables are fixed during 
the real-time market. Four ancillary services, regulation up, regulation down, spinning reserve 
(up), and non-spinning reserve (up) are added as reliability constraints. The capacity that a 
resource provides for each service is cumulative depending on the up or down direction of the 
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reserve. That is, a resource that provides some of its unused capacity for regulation up service 
cannot also use that capacity to provide spinning or non-spinning reserve. 

2.2 Market Design Specification 

One of the features of the WEASLE platform is a flexible market design specification. Each 
market type can be given multiple specifications for different market clearing models that might 
run at different frequencies, at different times of the day, or with different settlement rules. An 
example of different market types within a single market specification would be a day-ahead and 
real-time market.  

Each interval within each market model must be specified as one of the following settlement 
types: 

• Physical Delivery Interval (PHYS): a time interval that represents physical delivery of 
all products cleared by the market optimization. 

• Forward Interval (FWD): a time interval in the market clearing optimization model that 
does not require physical delivery but is cleared and results in a financially binding 
schedule. 

• Advisory Interval (ADVS): a time interval in the market clearing optimization model that 
does not require physical delivery and does not result in any financially binding 
schedules. These intervals are typically included to avoid “end-of-horizon” effects in the 
market clearing solution. 

To specify each market type, a user provides four input parameters. 

• Starting Period: The first time interval included in the market model. 

• Market Clearing Period: The clock when the market model is solved, which may be in 
advance of the starting period. 

• Interval Durations: A list of the number of intervals and the duration of each interval, 
which may be different for each interval. 

• Interval Types: A list of the type of each interval, which may be either physical, forward, 
or advisory. Only physical and forward periods are associated with a settlement. 

We developed three distinct market structures for the platform. 

• Two-Settlement (TS): This is the conventional market design. A day-ahead market 
(DAM) clears once a day at 9:00am, covering 36 hours starting at midnight on the 
upcoming day. The first 24 hours contain forward settlements while the last 12 are 
advisory. A real-time market (RTM) clears every five minutes of each day for a total of 
288 RTM per day. The RTM clears 3 hours ahead on a five minute interval. The first 
interval is a physical interval while the remaining 35 are advisory. 

• Multi-Settlement (MS): This includes a DAM identical to the TS market. The real-time 
market (RTM) clears every five minutes of with a 3-hour lookahead time. The first 
interval is a physical interval, then the MS market adds an additional 23 forward intervals 
to the real time market. The last 12 intervals are advisory. 
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• Rolling Horizon Forward (RHF): This market features 3 distinct clearing intervals, all 
with one physical interval and the remainder forward. The first is a 36 hour lookahead 
cleared at the top of every hour. This has a non-uniform time interval with 24 5-minute 
intervals, 40 15-minutes intervals, and 24 60-minute intervals. The second is a 12 hour 
lookahead cleared every intermediate 15 minutes with 24 5-minute intervals and the 
remainder 15. The last is a 2 hour lookahead cleared every intermediate 5 minutes with 
5-minute intervals only. 

The WEASLE platform can readily simulate these three market structures. The interface allows 
the easy addition of further market structures. 

2.3 Battery Dispatch and Degradation 

The physical battery model is based on Rosewater et al. (2019). The characteristics for each 
battery system are shown in Table 2.1. Following Rosewater, we limit the state of charge to vary 
between 20% and 95% of capacity, restricting to a range in which the model is valid. We 
selected scales such that the battery has roughly four hours of discharge capacity when 
discharging from 95% to 20%. Internal resistive losses are calculated by a zero-order circuit 
model. The model’s open circuit voltage model is calculated by a cubic best fit model based on 
the state-of-charge (SoC).  

Table 2.1 : Battery Dispatch Model Parameters 
Parameter Value 

Charge Capacity 3413.33 
Coulombic Efficiency 0.946 
Inverter Efficiency Coefficient, 0 0 
Inverter Efficiency Coefficient, 1 0.99531 
Inverter Efficiency Coefficient, 2 -0.00027348 
Battery Internal Resistance 365.333 μΩ 
Maximum Discharge Power 125 MW 
Maximum Charge Power 125 MW 
SoC Capacity 640 MWh 
Maximum SoC 95% 
Initial SoC 60% 
Minimum SoC 20% 
Minimum Battery Voltage 680 V 
Maximum Battery Voltage 820 V 
Maximum Current Discharge -1000 A 
Maximum Current Charge 1000 A 
Voltage Cubic Polynomial Fit, 0 669.282 
Voltage Cubic Polynomial Fit, 1 201.004 
Voltage Cubic Polynomial Fit, 2 -368.742 
Voltage Cubic Polynomial Fit, 3 320.377 
Cell Count 250 
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We include a temperature model with resistive heating and passive cooling of the battery 
coupled to the environment. We impose a maximum temperature of 45 Celsius, above which 
the battery will not be able to dispatch. 

Battery degradation costs are based on a state of health calculation from Rosewater et al. 
(2019). The calculation considers four components to degradation: battery lifetime, SoC history, 
depth-of-discharge (DoD) history, and temperature. DoD is computed using a rainflow counting 
algorithm (Downing, 1982) with the SoC history. Degradation increases with time, average 
temperature, average SoC, and average depth of discharge. Costs are then computed by 
determining an end-of-life cost, which can be interpreted as the battery replacement cost due to 
utilization of the asset. Storage units are scaled such that under typical operations battery 
lifetime is approximately 15 years. 

2.4 Grid Topology 

The grid’s electrical topology is based on an aggregate model of the Western Electricity 
Coordinating Council (WECC) 2030 planned system . All generation and demand within each 
balancing authority are aggregated, and lines connecting balancing authorities are combined. 
This gives the system shown in Figure 2 (Sourced from Hart and Mileva 2022), which includes a 
total of 40 buses and 118 transmission lines. 

 
Figure 2 : Western Interconnection Case Study Zonal Topology 

Generators within each balancing authority are aggregated by type including coal, natural gas, 
solar, wind, hydroelectric, and nuclear to provide a single representative resource of each type 
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of resource in each zone. We then scale all of the generation to a high-renewable mix scenario 
detailed in Table. 

 

 We set an overall system generation capacity of 300GW with a peak demand of 190GW. For 
wind resources we adopt a capacity factor of 0.25, and for solar resources we adopt a capacity 
factor of 0.15. For these renewables, the contribution to system capacity is computed as the 
maximum capacity time the capacity factor. The system has twelve identical storage resources. 
These are distributed across six different buses with 1-3 storage units at each bus. 

Table 2.2 : Benchmark Resource Capacity for Scenario Design 
Resource NREL LA100 

2045 SB100 
Stress Scenario 

CEC 
2045 SB100 
Core Scenario 

CA / WECC in 
ADS 2030 

 ESPA-Comp 
Scenariosd 

Source Cochran et al. 
(2021) 

CEC (2021) WECC (2024) Tarufelli et al. 
(2024) 

 Percentage of Total Capacity 
Battery Storage 7% 18% 2% / 1% 15% 
Wind 26% 14% 6% / 12% 15% 
Solar 31% 46% 17% / 13% 25% 
NG-
Steam/Combined 
Cycle 

9% 9% 32% / 31% 20% 

Coal 0% 0% 0% / 5% 2% 
Demand Response 1% 1% 5% / 3% 3% 
Other Renewables 26% 11% 38% / 35% 20% 

Coal and natural gas offer curves are based on average monthly prices within each balancing 
authority. Hydroelectric generation availability is based on historic data. Wind and solar 
resource availability is based on hourly profiles by balancing authority from the EIA, and five-
minute profiles from publicly available historic data for Bonneville Power Administration (BPA), 
and California ISO (CAISO). Correlated noise profiles were created to generate renewable 
energy forecasts. 
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3.0 Competition Platform 
ESPA-Comp participants are able to access the WEASLE platform as external users through 
the ESPA-Comp website, (espa-competition.pnnl.gov. The website allows participants to access 
competition resources, submit their offer algorithms in a sandbox test environment, and make 
their final algorithm submissions for competition evaluation. To run market simulations, 
algorithm submission are handled on the back-end via a virtual machine (VM) and high 
performance cluster (HPC). The VM runs the market clearing engine while the HPC runs 
participant offer algorithms.  

3.1 Submission Workflow 

The overall platform workflow is depicted below in Figure 3. This diagram includes two different 
modes of operation: sandbox or competition. Sandbox runs are intended to aid in the testing 
and development of participant algorithms. Competition runs are initiated by the ESPA-Comp 
admins are used to perform the final market simulation and evaluation of results. 

 
Figure 3: WEASLE Platform Backend Architecture 

In both cases, the market clearing engine aggregates data at each interval to send to participant 
algorithms. This data includes renewable and demand forecasts, previous market clearing 

https://espa-competition.pnnl.gov/
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results, historic renewable, demand, and prices, and resource-specific dispatch and settlement 
information. The participant algorithm must generate an offer, formatted such that the market 
clearing engine can accept it. Once the market clearing engine has received an offer, it clears 
the market and sends information back to participant algorithms. This continues until the end of 
the specified simulation time horizon. 

3.2 Sandbox 

Before entering the Sandbox, participants first must save their code to a GitHub repository 
linked through ssh keys to the WEASLE platform. Once an algorithm is ready for testing, 
participants use the ESPA-Comp website to initialize a submission. This submission first clones 
the participant code onto the HPC. Then it signals the VM to begin a market clearing simulation. 
During the submission, participants may specify the duration of the simulation, which can range 
from 5 minutes to 30 days. Participants may also select a market configuration from the options 
detailed in the Market Formulations document (Eldridge et al. 2024), a starting date, and a node 
location for their storage resource. All other storage units bid into the market with a default offer 
of $0/MWh for charging and discharging. 

The submission will run until completion or until an error is encountered. Upon termination of a 
simulation, results are made available to the participant through the ESPA-Comp website. 
These results include any offers generated, the latest profit summary, and any errors 
encountered. 

3.3 Competition 

ESPA-Comp participants must also submit their algorithm for competition evaluation. 
Competition submission are immediately cloned to the HPC but is not executed until the 
competition submission window closes. The competition admin selects the start date and 
duration of the simulation, the market structure, and the location of the storage units, which are 
all communicated to participants in advance. 

When ready, the admin initiates a competition simulation. The competition simulation calls all 
participant algorithms simultaneously. The market clearing engine will wait until all algorithms 
have completed execution and returned an offer. In the case of empty offers, the market 
clearing engine will use the last submitted offer. 

Like the sandbox, the competition runs until the specified end date is reached. Each participant 
may review results from their storage units as soon as the simulation completes. Additional data 
is saved for admin review, both for competition scoring and for market analysis. 
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4.0 Results 
For the ESPA-Comp pilot we first provided a two-month long Sandbox window, during which 
participants could develop and test their algorithms. For the competition, we ran two market 
structures, the TS and the MS market. Although we were able to develop the RFH market, it 
was removed from competition evaluation to allow more time for teams to devote to the TS and 
MS market designs and to allow more simulation time for each simulation. 

The month of August was selected to run the competition simulation. This month contained the 
summer peak conditions, when the electric system is closest to its maximum capacity, and it 
contained several days with LMP spikes during energy shortages. After an initial run for 25 days 
in August, additional time was given for participants to their review results and submit updated 
algorithms if desired. Both markets were then re-ran for three simulated days from August 17-
19. 

A baseline case was ran using default $0/MWh bids for all storage devices, and this baseline 
was used as a comparative benchmark for the competition simulation. In this section, we 
examine overall storage unit profits, the offers generated by the four different algorithms, and 
compare the market performance between the competition and the baseline case. 

4.1 Storage Unit Profits 

ESPA-Comp scores and rankings were determined by overall storage unit profits. Rankings for 
each category are shown in Tables 4.1 and 4.2. Rankings are based on the final 3-day 
simulation. Across both market designs, resources from Team PNNL-A earned an average of 
$11.7k per day and WayneSt resources earned $2.8k/day. PNNL-B and JHU-UCSD resources 
both lost money on average. 

Table 4.1: Team Rankings, Two-Settlement Market 

Rank Team Resource ID 
Average Daily Profit  

($1000s, 25-day simulation) 
Average Daily Profit  

($1000s, 3-day simulation) 
1 PNNL-A R00231 315.08 27.66 
2 PNNL-A R00234 315.80 23.44 
3 WayneSt R00230 85.92 20.65 
4 PNNL-A R00232 312.92 19.20 
5 WayneSt R00240 85.00 15.21 
6 WayneSt R00239 83.44 8.56 
7 PNNL-B R00229 -39.16 8.54 
8 PNNL-B R00237 13.36 -7.00 
9 PNNL-B R00238 43.36 -10.97 
10 JHU-UCSD R00236 -40.84 -32.08 
11 JHU-UCSD R00235 -35.48 -33.18 
12 JHU-UCSD R00233 -45.32 -33.79 
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Table 4.2: Team Rankings, Multi-Settlement Market 

Rank Team Resource ID 
Average Daily Profit  

($1000s, 25-day simulation) 
Average Daily Profit  

($1000s, 3-day simulation) 
1 PNNL-A R00231 230.32 2.90 
2 WayneSt R00230 -11.4 1.98 
3 PNNL-A R00232 106.92 -0.21 
4 WayneSt R00240 -82.4 -2.20 
5 PNNL-A R00234 219.96 -2.97 
6 PNNL-B R00237 108.92 -4.58 
7 PNNL-B R00238 106.52 -9.28 
8 PNNL-B R00229 -38.08 -16.39 
9 WayneSt R00239 -100.68 -27.18 
10 JHU-UCSD R00236 24.12 -29.591 
11 JHU-UCSD R00235 23.88 -32.92 
12 JHU-UCSD R00233 26.92 -56.08 

Several points are apparent from the rankings. First, algorithm scores tend to cluster by team. 
Team WayneSt had the largest spread, yet scores for other teams are separated by at most one 
rank. This indicates that the approaches used by different teams lead to significantly different 
outcomes. In other words, the storage bidding problem is apparently not trivial and requires 
careful consideration of the problem space. 

Second, many storage units posted a loss over the competition. In the MS market, only two 
resources were profitable during the final 3-day simulation. This outcome is a result of 
degradation costs outstripping market revenue. As stated in the previous paragraph, this 
reiterates that the problem is not trivial. Furthermore, these results stand in contrast to results 
from traditional production cost modeling, which typically show positive profits for all resources. 
The inclusion of degradation costs is an important aspect of systems with significant BESS 
capacity. 

Third, we clearly see that the TS market was more profitable for storage units than the MS 
market. Although this may be considered good from a BESS owner perspective, the driver of 
the result is shortage pricing caused by insufficient generation capacity. The MS market avoids 
much of the shortage due to better management of storage state-of-charge, but unfortunately, it 
is difficult to ensure that storage units are compensated for helping avoid the tight conditions. 
This is likely to be a reoccurring issue in electricity market design. That is, if high prices and high 
resource profits are often driven by short term shortage conditions, and the task of market 
design is (partially) to avoid shortage conditions, then how can resources be rewarded in the 
absence of system shortages? 

Next, Tables 4.3 and 4.4 divide the storage unit profits from each team into components of day 
ahead market (DAM) settlements, real-time market (RTM) settlements, and degradation cost. 
The aggregate results show that degradation costs were significant in both markets. In the TS 
market, storage unit profits on average exceeded degradation cost, while in the MS market 
degradation costs significantly outweighed profits. The degradation costs and DAM profits are 
similar between both markets. The difference was in the RTM, which makes sense given that 
the RTM clearing intervals differ between TS and MS. In our competition, most storage units 
posted a loss in the MS RTM, in contrast to strong earnings in the TS RTM. 
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Table 4.3: DAM, RTM, and Degradation Profit Components, TS Market 

 
 DAM  
(K$)  

RTM  
(K$)  

 Degradation  
(K$)  

Total  
(K$) 

PNNL-A 65.65 75.93 -71.28 70.30 
WayneSt 74.60 38.86 -69.05 44.41 
PNNL-B -1.89 50.54 -58.08 -9.43 
JHU-UCSD -12.04 -1.56 -85.44 -99.04 

 
Table 4.4 DAM, RTM, and Degradation Profit Components, MS Market 

 
 DAM  
(K$)  

RTM  
(K$)  

 Degradation  
(K$)  

Total  
(K$) 

PNNL-A 64.37 13.65 -78.31 -0.28 
WayneSt 73.39 -27.97 -72.81 -27.39 
PNNL-B 16.82 15.71 -62.78 -30.25 
JHU-UCSD -20.80 -19.38 -78.42 -118.59 

4.2 Storage Unit Offers 

All competitors used the same algorithm for each resource and for both TS and MS markets. 
Each competitor algorithm produced distinct offer values. Offers for the TS market are 
illustrative and are shown in Figures 4-7. Offers are aggregated by team across all three units. 
The median value is shown with a solid line. A band encompassing the 16th to 84th percentile is 
shown in a lighter shade. For teams that submitted block offers, each block is included in the 
calculation, weighted by the MW quantity offered. 

 
Figure 4: DAM Offers, PNNL-A, TS Market 

 

 
Figure 5: DAM Offers, WayneSt, TS Market 
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Figure 6: DAM Offers, PNNL-B, TS Market 

 
Figure 7: DAM Offers, JHU-UCSD, TS 
Market 

Teams showed a variety of bidding strategies in the DAM. The winning team, PNNL-A, used a 
offer strategy with a constant $6 spread in charge and discharge prices. Team JHU-UCSD 
employed a dynamic algorithm with charge and discharge offers varying over time. Teams 
WayneSt and PNNL-B used a $0 base offer with occasional increases in offer values. 

In the RTM, all participants provided SoC offers. The SoC offer is a single bid curve for energy 
at the last offer period in the market horizon, which influences whether the storage unit charges 
or discharges depending on whether the energy can be charged at less than the bid value. As in 
the DAM, the participant algorithms all returned a variety of different offers. RTM offers are 
shown in Figure REF. Team PNNL-A offered with a $0 baseline and occasional increases 
throughout the competition. Team JHU-UCSD offered in predominantly negative offers. These 
were rarely accepted by the market, limiting this team’s RTM profits. Team WayneSt offered at 
a constant $0/MWh. Team PNNL-B offered in at two levels, both with a very high offer cost. 

 
Figure 8: RTM Offers, PNNL-A, TS Market 

 

 
Figure 9: RTM Offers, WayneSt, TS Market 
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Figure 10: RTM Offers, PNNL-B, TS Market 

 
Figure 11: RTM Offers, JHU-UCSD, TS 
Market 

4.3 Market Performance 

The competition simulates a realistic, imperfect market, in comparison to the baseline 
simulation. When the TS and MS market designs result in changes compared to baseline, the 
differences can be attributed to 1) strategic incentives from the market, and/or 2) effects from 
the device dispatch and degradation simulation. 

LMPs from the simulation are shown in Figures 12-14. For simplicity, only the RTM LMP is 
shown. LMPs from the baseline simulation were identical for both TS and MS markets. The 
baseline simulation shows a price spike around $700/MWh on the first day, and then two 
smaller price spikes around $200/MWh on the second and third day. Prices in the TS market 
also reach fairly close to $700/MWh on the first day but are somewhat higher, around $400-
$500/MWh on days two and three. For the MS market, price spikes are much more restrained, 
around $200-$300/MWh on days one and three, and no noticeable price spike on day two. 

 
Figure 12: Real-time LMPs, TS and MS Baseline Results 
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Figure 13: Real-time LMPs, TS Competition Results 

 
Figure 14: Real-time LMPs, MS Competition Results 

The implication from the differences in LMP is that our 3-day window includes very tight system 
capacity conditions. The MS market is evidently much better at avoiding these tight conditions. 
However, although this likely contributes a reliability benefit, it is not clear if the MS is overall 
more efficient than TS. For a clearer comparison of market efficiency, we must look at changes 
in the simulated market surplus with appropriate adjustments for storage bidding values and 
degradation costs. 

Table 4.5 shows the overall market surplus and degradation costs for the competition. This 
compares the competition to baseline for TS and MS markets and for DAM and RTM. For the 
RTM surplus, we used the physically dispatched values for both TS and MS. We also adjusted 
the RTM surplus to incorporate degradation. Storage units offer in with opportunity costs, which 
can be interpreted as a proxy for the degradation cost, so we removed the RTM storage unit 
offer surplus and added degradation costs. In all cases, we find that the competition surplus is 
below the baseline surplus by roughly half a percent. We found nearly identical surplus values in 
the TS market and the MS market. This result held for both the baseline case and the 
competition, suggesting that market efficiency is approximately the same for both market 
configurations. 
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Table 4.5: Market Surplus Comparison 

        Case  
 TS DAM  
($M/day)  

 TS RTM  
($M/day)  

 MS DAM  
($M/day)  

 MS RTM  
($M/day)  

Baseline  183 189 183 189 
Competition  182 188 182 188 
Difference (%)  -0.54 -0.53 -0.54 -0.53 

Table 4.6, below, compares load curtailment and penalty violations between the baseline and 
competition runs. Curtailed loads are shown as a percentage of the peak load, meaning that the 
baseline case curtailed load equivalent to 1.24% of the system’s peak. Both TS and MS markets 
curtailed less load, with the MS market curtailment nearly half of the baseline case. This 
suggests that under these offer strategies, the system was better able to meet demand in the 
competition than the baseline. However, the competition results also show a small amount of 
transmission violation for the TS market, and very modest transmission violation in the MS 
market. 

Table 4.6: Reliability Comparison 

        Case  
 TS Curtailed Load  

(%)  
 MS Curtailed Load  

(%)  
 TS Violation 

($k)  
 MS Violation  

($k)  
Baseline  1.24 1.24 0 0 
Competition  0.94 0.64 14.1 0.1 
Difference (%)  -24.19 -48.39 N/A N/A 
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5.0 Conclusion and Discussion 
The WEASLE simulation platform and ESPA-Comp Pilot represent a significant new capability 
to assess electricity market design. Approaches based on traditional production cost modeling 
tools or game-theoretic analysis are limited by assumptions that don’t fully capture real-world 
markets. For example production cost models must assume perfect competition and cannot fully 
reflect inefficiencies caused by strategic actions taken by market participants. While such 
strategic behavior is possible in game-theoretic models, they often make other simplifications 
such as perfect information, deterministic outcomes, or otherwise simplified technology 
constraints. Many existing models are generally constrained by selective focus on specific 
market failures, or are geared towards other applications, such as long term planning, where 
market design details may be less influential.  

The WEASLE platform aims to overcome these limitations through the use of large, open 
competitions in the style of the ARPA-E GO Competition. Competitions involve real participants 
who are incentivized through monetary rewards to mimic market behavior found in the real 
world. This approach allows high-fidelity modeling of electricity market dynamics and the 
underlying physics of the resources that produce or consume electricity. Unlike agent-based 
simulations, our competition-based approach maintains the integrity of participant behavior, 
which is not biased towards specific outcomes by the modeler. Therefore, we believe that the 
WEASLE platform is capable of providing a more accurate market design evaluation and a 
consistent platform for evaluating diverse approaches to the market bidder problem. 

One of the key innovations of the WEALSE platform is its ability to support a wide variety of 
bidding algorithm methods. Competitors are free to submit code that leverages advances in 
artificial intelligence, machine learning, optimization, or any other methods that can be compiled 
in code. Unlike traditional economic experiments that use human subjects to manually bid into 
simulated markets, WEASLE allows automated bid generation to drastically decrease the cost 
of simulating the market and ed markets, WEASLE allows automated bid generation to 
drastically expedite market clearing iterations and decrease the overall cost of the experiment. 
As well, the platform’s detailed market clearing engine allows simulating much more precise, 
complex, and realistic market settlements than earlier economic experiments. 

Key results from the ESPA-Comp pilot showed that markets like the two-settlement (TS) system 
resulted in larger transmission violation penalties, higher LMPs, and higher resource profits than 
the multi-settlement system. Although market surplus did not change significantly between the 
two market designs, this effect on transmission violations and system reliability provides one 
possible metric for market designers to support changes to market policies. 

The main outcome from the ESPA-Comp pilot was the successful demonstration of the 
WEASLE platform’s capability. The platform effectively supported participation of multiple 
competition teams, each submitting different offer algorithms, and it facilitated results and 
analysis of the competition market simulation. At this proof-of-concept stage, the WEASLE 
platform is now read for additional development to allow simulations of broader technologies 
and market policies.  

In conclusion, the WEASLE platform addresses many limitations of traditional production cost 
model simulations by providing high-fidelity simulations of electric system resources and 
distributed offer generation by competitive participants. It offers a realistic, flexible, and scalable 
framework for evaluating electricity market design reforms, and it allows novel insights into 
strategic behaviors of market participants. With further development, we hope that the WEASLE 
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platform demonstration can lead to future competitions that may help influence future market 
design reforms to help integrate an efficient, reliable, and resilient high renewable electric 
system. 
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