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Abstract 
Complete characterization of unknowns via proteomics remains challenging. There exist regions 
of mass spectrometry-based proteomics data where empirical measurements are not attributed 
to peptides, and/or sequenced peptides from mass spectra are not attributed to any source. 
These uncharacterized regions are known as the “dark” proteome. Many proteomics tools rely 
on some a priori knowledge of sample composition; few tools allow for investigation of 
unknowns without relying on composition assumptions. Further, the potential low abundance of 
minor traces in these uncharacterized regions can make elucidation of the “dark” proteome 
challenging. Herein, we describe the development and evaluation of approaches to study the 
“dark” proteome and move towards an untargeted approach for more complete characterization, 
namely by studying minor human protein traces in non-human samples and combining that 
approach with non-human source organism identification without relying on assumptions. 

Human protein markers, in the form of genetically variant peptides, have been extensively 
examined in a variety of human matrices, including blood, plasma, and hair, but have yet to be 
investigated in non-human samples, such as cell cultures, as human contaminant traces. 
Genetically variant peptides are those that are found in proteins carrying single nucleotide 
polymorphisms.  

In this work, we aimed to (1) investigate the feasibility of detecting human contaminant 
genetically variant peptides (GVPs) in a diverse set of non-human organisms using public 
proteomics data and a computational pipeline, as well as to (2) develop a combined capability 
for untargeted source organism characterization and GVP detection. To our knowledge, this is 
the first report of applying these approaches towards a more complete proteomic 
characterization of unknowns. 

We successfully demonstrate the feasibility of broad human contaminant GVP detection in 
proteomics data, develop a better understanding of GVP detectability, characterize the sample-
to-sample variability in GVP detection, and identify a core set of GVPs that can potentially be 
used as markers indicative of the human contaminant traces portion of the “dark” proteome. 
Further, we developed and evaluated a combined pipeline, MARLOWE-GVP, that enables both 
untargeted source organism characterization and GVP detection. We show high accuracy of 
correct source organism characterization and high degree of similarity of human contaminant 
GVP detection compared to the conventional approach. Success on both these efforts have 
allowed us to advance our understanding and characterization of the “dark” proteome.  
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Acronyms and Abbreviations 
DDA: data-dependent acquisition mass spectrometry 

DIA: data-independent acquisition mass spectrometry 

ENSEMBL: public database of genomes and protein sequences for known organisms 

FASTA: text-based format for representing protein sequence information  

FDR: false discovery rate 

gnomAD: Genome Aggregation Database 

GVP: genetically variant peptide 

KAP: keratin-associated protein 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

KRT: keratin 

MS/MS: tandem mass spectrometry 

PRIDE: public repository of mass spectrometry-based proteomics data 

PSM: peptide-spectrum match 

SNP: single nucleotide polymorphism 

SVM: support vector machine 

UniProtKB: public database of protein sequences for known organisms 
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1.0 Introduction 
Characterization of unknowns via proteomics can be challenging. Several strategies and 
applications, depending on the question at hand, exist, but may have limitations. Detection and 
characterization of minor protein components in unknowns for complete proteomic 
characterization presents even more of a challenge. Often, uncharacterized regions of 
proteomics samples will remain, which is known as the “dark” proteome. In this work, we set our 
sights on better characterization and understanding of unknowns via proteomics, and develop 
computational capabilities that enable us to investigate the “dark” proteome. 

1.1 Forensic Proteomics  

While mass spectrometry-based proteomics is the premier tool for detecting and quantifying 
proteins in a sample, this technique has only recently been applied to address forensic 
questions. The application of proteomics to forensics (i.e., forensic proteomics) is most useful 
when analyzing samples where DNA is absent or degraded. For example, common samples 
such as hair, protein toxins, and red blood cells do not contain intact, genomic DNA. In addition, 
protein-based analysis is expected to allow for analysis of samples that have undergone a 
variety of storage or weathered conditions, whether intended or not, as proteins are typically 
more stable than DNA. Proteomics analysis has been successfully used for snake venom 
identification1, protein toxin detection and identification2-6, identification of body fluids at crime 
scenes7-9, human individualization from hair10-12 and bone13, and species identification, including 
microbes14-16. 

One application of forensic proteomics that could potentially be leveraged to investigate the 
“dark” proteome is genetically variant peptide detection, which has primarily been performed in 
human proteomics samples10, 17. However, this approach has not been applied to non-human 
samples beyond an initial proof-of-concept reported in Chu and Lin (2024, preprint)18, which 
entails detection of minor components potentially at low abundance, even though it is known 
that human protein traces could be left behind owing to sample handling. These minor protein 
traces, if present, could represent a part of the “dark” proteome of non-human samples that is 
currently not well-characterized. 

1.2 Unknown Source Organism Identification 

Determining the source organism of an unknown sample is often one of the first questions that 
is asked when a forensic or biodefense sample is obtained. While DNA-based analysis is often 
used to answer this question, proteomics analysis can provide additional or confirmatory 
information. In this section, we describe common strategies and existing tools for source 
organism identification of unknown proteomics samples. 

One strategy for proteomic species identification relies on detecting peptides present in a 
sample using database search. In a database search, experimentally collected spectra are 
searched against a user-defined protein database that contains protein sequences that are 
expected to be present in the sample. This approach assumes that the composition of the 
sample is well-characterized, which may not be true for forensic samples. Two different 
approaches to database search can be implemented for species identification. The first relies on 
curating a database of suspected organisms in the search, and then relying on a list of 
organism-unique peptides to determine the taxonomic composition of the sample.19 For 
example, if a detected peptide sequence was only found in Escherichia coli proteomes, then E. 
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coli can be said to be present in the sample. The second method utilizing database search 
makes no assumption on potential source organism by including proteomes of all known 
organisms into the database. An example method that utilizes this type of approach includes 
MiCId20. This method produces species identification, relying on statistics to describe the 
confidence of each identification. 

One of the challenges with the first database search method is that it suffers from signal 
erosion. Signal erosion occurs when peptides that were originally unique to a single organism 
but becomes non-unique as additional genomes are sequenced.21 As a result, new strategies 
for proteomic species identification are needed, that are not as strongly affected by signal 
erosion as more genomes are sequenced. 

An alternative approach for proteomics species identification relies on de novo detection of 
peptides present in a sample. Instead of searching spectra against a user-defined database, 
evidence of peptides is directly derived from the spectra by looking directly at the distance 
between fragment peaks and comparing those distances to known masses of amino acids. This 
approach makes no assumptions on the source organism of unknown proteomics samples. 
Following de novo peptide detection, other tools to assign peptides to organisms are typically 
used (e.g., UniPept22). MetaNovo utilizes UniPept to assign de novo peptides to organisms23. 

However, de novo peptide sequencing is rarely accurate for the entire sequenced peptide; it 
usually yields a partially correct peptide sequence. This is because mass spectra rarely contain 
complete information on every amino acid within the associated peptide sequence. For this 
reason, the unknown organism characterization tool MARLOWE uses only the highly-confident 
regions of de novo peptide detections, thus maximizing the value and avoiding the limitations of 
de novo peptide sequencing. MARLOWE returns a ranked list of potential taxonomic 
contributors to a proteomics sample by performing confident peptide region assignments to 
organisms via protein inference as well as peptide strength14 to avoid signal erosion issues21. 
MARLOWE has been demonstrated on a variety of samples without knowing their composition, 
which has utility in forensic science and metaproteomics.  

1.3 Aims 

Two efforts are outlined in this work to push the boundaries of proteomic characterization of 
unknowns. We aim to (1) characterize the feasibility and reproducibility of human contaminant 
GVP detection, that is, presence of minor traces, for broad application to non-human proteomics 
samples, and (2) demonstrate and evaluate a combined, untargeted capability for unknown 
source organism characterization via MARLOWE and human contaminant GVP detection. 
Success in achieving both aims will enable a more complete proteomic characterization of and 
further elucidation of the “dark” proteome in unknowns. 
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2.0 Human Contaminant Peptide Detection 
During mass spectrometry-based proteomics data analysis, spectra are searched against a 
database of protein sequences that are expected to be present in the sample. This database 
typically consists of the reference proteomes of the set of organisms in the sample. In addition, 
a set of contaminant proteins, such as human keratins and trypsin, are appended to account for 
proteins that are artificially introduced into the sample during sample preparation. Recent work 
has been performed to create universal contaminant libraries for both data-dependent 
acquisition (DDA) and data-independent acquisition (DIA) mass spectrometry data24 as well as 
affinity purification mass spectrometry25. In addition, there are legacy databases, such as 
CRAPome26, that have been created but not updated in years.24 

In addition to the development of contaminant proteins databases, there has been additional 
research identifying new classes of protein contaminants not already present in these 
databases. For example, recent work has shown that mass spectrometry can be used to detect 
contaminant human genetically variant peptides (GVPs) present in non-human samples18. 
GVPs are peptides that contain single amino acid polymorphisms that result from non-
synonymous SNPs in protein coding regions of DNA.  

In this work, we build on the previous effort18 to detect human contaminant GVPs in non-human 
proteomics samples. Chiefly, we aim to (1) examine the feasibility of detecting these GVPs with 
a more diverse set of non-human organisms and across more available datasets and (2) 
examine the variability of human contaminant GVP detection when we expect the same GVP 
profiles in datasets prepared by the same individual. These efforts will expand our 
understanding and provide a more complete characterization of the “dark” proteome, that is, the 
unknown portions of a proteomics sample that have not been attributed to the source organism, 
of which we hypothesize that human contaminant GVPs are a fraction. 

We find that human contaminant GVPs can be broadly detected in proteomics data, regardless 
of source organism, and that a subset of GVPs is frequently detected, albeit not strictly 
reproducible across all proteomics datafiles. Human contaminant GVP detection is still variable, 
even when we expect to detect the same GVPs across proteomics samples prepared by the 
same individual. This effort enabled a better understanding of which human contaminant GVPs 
could be reasonably detected, from which human protein sources, and expected variant type, 
and any effects of source organism on GVP detectability, thus advancing the characterization of 
the “dark” proteome.  

2.1 Genetically Variant Peptide Detection Pipeline Development 

Detection of genetically variant peptides in proteomics samples relies first on curation of a set of 
these variant peptides to then be incorporated into a database search. As our focus is on 
detection of GVPs from human contaminant proteins, we considered only human keratins and 
keratin-related proteins. Following the workflow outlined in Chu and Lin (2024, preprint)18 with 
minor modifications, we generate a set of in silico trypsin-digested peptides, including variants 
(i.e., GVPs) from expected effects of SNPs, from human contaminant proteins of interest. These 
target peptides are then combined with the proteome of the ground truth source organism for 
database search of a sample’s mass spectrometry data, to detect peptides, and more 
importantly, GVPs. The sections below detail the development of this bioinformatics pipeline. 
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2.1.1 Genetically Variant Peptide (GVP) Selection 

We curated genetically variant peptides derived from genes related to human keratins. First, we 
selected relevant genes, after surveying UniProtKB27, and retrieved all resultant transcripts from 
ENSEMBL/Biomart28. Then, using ENSEMBL/Variant Effect Predictor28, we surveyed all single 
nucleotide polymorphisms (SNPs) detected in these genes (with GRCh38 build of the reference 
genome), including only those SNPs with global minor allele frequencies ≥ 0.01 (as reported by 
the Genome Aggregation Database, gnomAD29). This includes multi-allelic SNPs, that is, SNPs 
that contain more than two alleles. This selection process yielded 430 SNPs. 

2.1.2 GVP FASTA File Creation 

The GVP FASTA file contains a combination of human keratin reference peptides (i.e., peptides 
that do not contain any SNP sites) and GVPs. GVPs were generated from the selected SNPs 
acting on the appropriate transcript using an in-house script. Here, we produce both the 
reference and mutated (also alternate) alleles on in silico trypsin-digested peptides resulting 
from transcripts to represent the effects of SNPs. Peptides were required to contain between 6 
and 50 amino acids. Proline blocking was not considered. Effects of multiple SNPs acting on the 
same peptide were accounted for by permuting all combinations. Multi-allelic SNPs were also 
accounted for by permuting all alternate alleles. 

Custom headers were then created for GVPs as unique identifiers, such that the SNP(s) 
included can be identified as either the reference or mutated variant following the database 
search, even if there are multiple SNPs present in the peptide. Gene name, transcript, and SNP 
information were included in the header to track each GVP. These GVPs were then combined 
into a GVP FASTA file with human reference keratins for database search. This GVP FASTA 
file, combined with a FASTA file containing common contaminant proteins as described by 
Frankenfield et al. (2022)24, augmented the FASTA file containing the source organism’s 
proteome (downloaded from UniProtKB27). 

2.1.3 Database Search Workflow  

We used a database search to detect peptides in proteomics runs. In this work, we used the 
Tide search engine30 implemented within Crux31. Each mass spectrometry run was searched 
against a database containing the source organism proteome, human reference keratins, GVPs, 
and common contaminant proteins24. Additional details regarding database construction are 
described above. For all of these searches, all other parameters were set to their default values, 
except --compute-sp=T and --pin-output=T. Two different sets of post-translational modifications 
were used during database search of proteomics data from the two data sources. The first, for 
PRIDE projects, applied modifications that aligned with the reported modifications from the 
dataset source. Standard modifications include static cysteine carbamidomethylation, variable 
methionine oxidation (up to 5 modifications), and variable peptide N-terminal acetylation. 
Additional custom modifications to PRIDE projects, as needed, include glutamine deamidation 
and serine, threonine, and/or tyrosine phosphorylation. The second, for in-house repository 
datasets, used solely static cysteine carbamidomethylation. Following the database search, 
which was performed separately for each datafile within a PRIDE project or an in-house 
repository campaign, all peptide detections for datafiles within a project or campaign were 
combined and the false discovery rate was estimated using Percolator32 within Crux. Results 
were filtered to not allow any matches with an FDR of more than 1% and 5%, respectively, at 
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the peptide-level33. The GVPs that were identified at the end of this pipeline were then reported. 
Prior to the database search, raw mass spectrometry files were converted to mzML format using 
either MSConvert within the Proteowizard34 suite or ThermoFileRawParser35. 

2.2 Detection from PRIDE Repository Datasets 

2.2.1 Dataset Selection 

We selected a subset of data-dependent acquisition mass spectrometry datasets within the 
external ProteomeXchange/PRIDE repository36 for this work to represent a diversity of non-
human organisms that are well-studied. To inform dataset selection, we obtained statistics for 
the number of projects—projects and datasets are henceforth used interchangeably—by 
organism in the repository, as of May 2023 (Figure 1). Figure 1 below displays the top 10 
organisms most well-represented with datasets in the PRIDE repository. Given this information 
and our criteria above, we elected to use datasets from the following species: Mus musculus, 
Saccharomyces cerevisiae, Arabidopsis thaliana, Escherichia coli (K-12 strain), and Drosophila 
melanogaster.  
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Figure 1. Barplot of the distribution of the number of data-dependent acquisition mass 
spectrometry projects deposited into the ProteomeXchange/PRIDE repository by source 
organism, as of May 2023. 

We curated datasets and their metadata derived from the five organisms listed above. Of the 55 
total projects selected (11 E. coli, 13 D. melanogaster, 11 S. cerevisiae, 10 M. musculus, 10 A. 
thaliana), the total number of viable datafiles per project ranged between 3 and 637; on 
average, 42 ± 91 (s.d.) datafiles.  

2.2.2 Human Contaminant GVP Detection 

We confirm the feasibility of human contaminant GVP detection that is broadly applicable to 
non-human organisms. Of the 55 DDA projects curated for database search and GVP detection, 
45 projects were found to contain detectable GVPs at both 1% and 5% peptide-level FDR 
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control. Figure 2 below displays the number of detected unique GVP sequences per dataset, by 
organism, at 1% peptide-level FDR control. Interestingly, GVP detections ranged widely among 
datasets, though M. musculus datasets tended towards having fewer detected GVPs (on 
average, 6 ± 4 (s.d.) GVPs) compared to other datasets from other organisms.  

 
Figure 2. Barplot displaying the number of unique GVP sequences detected from each PRIDE 
project (each represented by a single bar), grouped by source organism, at 1% peptide-level 
FDR control. 

As expected, we see a slight increase overall in the number of GVPs detected per dataset when 
applying 5% FDR control. The most obvious increase is observed in M. musculus datasets (on 
average, 17 ± 8 (s.d.) GVPs). To account for the range of datafiles per PRIDE project in which 
we detected GVPs, we normalized the number of detected unique GVP sequence to the 
number of respective datafiles per project. On average, we observe 2 ± 2 (s.d.) GVPs per 
datafile (median = 1, max = 8). 
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Figure 3. Barplot displaying the number of unique GVP sequences detected from each PRIDE 
project (each represented by a single bar), grouped by source organism, at 5% peptide-level 
FDR control.  

The detected GVPs at 5% FDR were then examined further, described in the next sections, to 
address the following questions: 

1. What proteins and genes do the detected human contaminant GVPs derive from? 

2. Are GVP sequences unique to human contaminant proteins?  

3. Which alleles are more likely to be detected: reference (typically the major allele) or 
alternate (typically the minor allele)? 

4. Are there common GVPs among these organisms? 

2.2.3 Proteins and Genes Associated with GVPs 

Across the 45 PRIDE projects with human contaminant GVP detection, the top 10 most 
frequently detected human contaminant GVPs (out of 244 unique sequences) derive from 
keratins, and not surprisingly, most are cytoskeletal keratins and/or are enriched in skin. This is 
consistent with the conventional wisdom that contamination during sample handling likely 
derives from skin cells. Table 1 below displays the GVP detection frequency along with the gene 
names associated with the proteins that these human contaminant GVPs derive from. Also not 
unexpectedly, the predominant chromosomes associated with these genes are chromosomes 
12 and 17, which contain the vast majority of keratin-related genes. 
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Table 1. List of top 10 most frequently detected human contaminant GVPs across PRIDE 
datasets and genes and chromosomes from which they derive 

GVP sequence Detection frequency Gene name Chromosome 

LAADDFR 39 KRT13 17 

VTMQNLNDR 37 KRT14 17 

AQYEEIAQR 36 KRT76 12 

FASFIDK 36 KRT75 12 

DYQELMNVK 33 KRT76 12 

LEQEIATYR 30 KRT14 17 

FLEQQNQVLETK 28 KRT74 12 

SLYGLGGSK 24 KRT6C 12 

FLEQQNK 22 KRT6B 12 

YQELQITAGR 19 KRT77 12 

Of the 244 unique GVP sequences, the predominant proteins that contain these detected 
human contaminant GVPs are a mix of cytoskeletal keratins (e.g., KRT76) as well as structural 
proteins (e.g., FLG) (Table 2).  

 
Table 2. List of top 10 predominant genes associated with detected human contaminant GVPs. 

Gene name GVP detection frequency Chromosome 

FLG 39 1 

DST 13 6 

MICA 9 6 

KRT72 7 12 

KRT76 7 12 

KRT78 7 12 

KRT13 6 17 

KRT37 6 17 
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KRT77 6 12 

KRT74 5 12 

 

2.2.4 GVP Protein Assignment Ambiguity 

Next, we examined protein assignment ambiguity of detected GVP sequences, that is, whether 
these sequences unambiguously belong to human proteins or can be found in proteins in other 
organisms (i.e., the source organism). Protein assignment ambiguity of detected human 
contaminant GVP sequences is important to establish, as any ambiguity in their protein 
assignment, particularly to other organisms, would not allow us to rule out the competing 
hypothesis that the detected GVP may instead be an unmodified peptide from a different protein 
source. 

We find that some of the detected human contaminant GVPs are also assigned to mouse 
proteins (74 GVPs across all 879 unique sequence detections from 45 projects) and sheep 
proteins (17 GVPs across 45 projects), regardless of source organism. However, interestingly 
and fortuitously, with the exception of some GVPs mapping to mouse or sheep proteins, none of 
the detected contaminant GVPs mapped to the other source organisms (e.g., E. coli, D. 
melanogaster). Further, many of the ambiguous mappings to mouse and sheep proteins are to 
mouse and sheep keratins, respectively, which are known to be highly homologous to human 
keratins (e.g., Keratin, type II cytoskeletal 1b, from the Krt77 gene in mouse; Keratin, type II 
microfibrillar, component 7C in sheep) and are also known contaminants.  

This observation indicates that any detection of human contaminant GVPs are much more likely 
to be from human contamination than attributed to the source organism.  

Unsurprisingly, some ambiguity in human protein assignment exists for a few of the detected 
GVPs. Human keratins are notoriously well-conserved for its structural functions. Notably, 5 
GVP sequences can be attributed to more than one human keratin (Table 3), though both 
protein sources in each ambiguous mapping derive from the same chromosome (e.g., 
Chromosome 12). Also of note is that most of these genes encode for hard (cuticular) keratins 
that are mostly found in hair and nails (with the exception of KRT40), as opposed to the 
cytoskeletal keratins reported in Table 1 that are associated with the most often detected human 
contaminant GVPs. 

 
Table 3. List of GVPs that map to more than one human keratin. 

GVP Detection frequency Genes Chromosome 

DNAELENLIR 8 KRT31, KRT33B 17 

DSLENTLTESEAR 12 KRT33B, KRT34 17 

EEINELNR 5 KRT81, KRT83 12 
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LEGEINTYR 3 KRT40, KRT32 17 

SQYEALVETNR 7 KRT31, KRT34 17 

 

2.2.5 GVP Alleles 

Characterizing the variant type (also allele type) of each detected human contaminant GVP 
provides us with further insight into the SNPs that are associated with each GVP, along with an 
understanding of which SNPs’ effects we are able to detect as GVPs in proteomics data. Given 
the limitations of data-dependent acquisition mass spectrometry, wherein only the most 
abundant peptides are likely to be detected, we expect that only a small fraction of possible 
human contaminant GVPs can be detected. Attribution of detected GVPs to the SNPs and 
variant types provides insight into proteotypic GVPs (that is, more likely to be detected in 
proteomics data owing to their ionization efficiency, which is a distinct issue from GVP detection 
as related to SNP population frequencies). 

For this analysis, we excluded the GVPs that exhibit human protein assignment ambiguity (i.e., 
the GVPs represented in Table 3). Additionally, any GVPs that exhibited SNP assignment 
ambiguity were also removed. These GVPs with SNP assignment ambiguity come about from 
the same GVP peptide sequence mapping to different transcripts or protein isoforms for the 
same gene (and protein product), or mapping to different regions of the same protein, in which 
different combinations of SNPs act on different DNA regions but produce the same resultant 
GVP sequence.  

First, we examined the number of SNPs contained in each GVP. Figure 4 below displays the 
distribution of the number of SNPs per detected human contaminant GVP, grouped by 
organism. As expected, the vast majority of detected GVPs contain a single SNP, followed by 2 
SNPs, though interestingly, a handful of detected sequences contain 5 SNPs. Also of note is 
that the SNP distribution profile looks extremely similar across the 5 source organisms, 
indicating that we expect to detect similar types of GVPs (those containing single SNPs) 
agnostic to source organism. 
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Figure 4. Distribution of the number of SNPs contained in each detected human contaminant 
GVP, grouped by organism. The vast majority of detected sequences contain a single SNP. 

We then examined variant type (i.e., reference or alternate allele) for each detected GVP. 
Figure 5 below displays the distribution of variant type, grouped by source organism, with labels 
representing types for GVPs containing single and multiple SNPs, respectively. It is not 
surprising that the vast majority of detected human contaminant GVPs contain reference alleles 
of single SNPs. It is, however, interesting to note that the presence of alternate alleles from 
single SNPs is not insignificant (171 alternate alleles out of 833 GVP detections across all 
organisms). Surprisingly, for those GVPs containing multiple SNPs, a sizeable portion comes 
from having both the reference and alternate alleles, and those occur more frequently than 
having just multiple reference alleles. 
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Figure 5. Barplot displaying the distribution of variant types among detected human contaminant 
GVPs, grouped by source organism. Variant types include those with single SNPs (ref = 
reference, alt = alternate) and for those GVPs containing multiple SNPs (multi-ref = multiple 
reference alleles, multi-alt = multiple alternate alleles, both = containing both reference and 
alternate alleles in some combination). Notably, the reference alleles are most prevalent in 
detected GVPs, across all organisms. 

When we examine the frequency of variant type by the types of genes associated with these 
GVPs, we find that distribution of variant types differs by gene type. In Figure 6 below, we 
delineate GVPs associated with keratins, keratin-associated proteins (KAPs), and other 
structural proteins. For keratins, the distribution of variant type is similar to the distribution 
observed across the different source organisms in Figure 5, where the vast majority are 
reference alleles, followed by alternate alleles, derived from single SNPs. Most notably 
however, we observe detection of alternate alleles much more frequently compared to the 
reference alleles in keratin-associated proteins (12 alternate alleles out of 20 GVP sequences 
attributed to KAPs). Also interesting is the prevalence of detecting GVPs belonging to other 
structural (non-keratin and non-KAP) proteins that contain multiple SNPs and both the reference 
and alternate alleles within a single sequence (25 out of 91 GVP sequences attributed to other 
structural proteins). The stark difference in distribution of variant types by gene type provides us 
with additional insight into which GVPs we can expect to detect in proteomics data. It is also 
quite obvious, and not at all surprising, that most of the detected human contaminant GVPs 
derive from keratins, as opposed to KAPs or other structural proteins, given how similar its 
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variant type distribution profile is to the distribution profiles observed across all organisms in 
Figure 5. 

 
Figure 6. Barplot displaying distribution of GVP variant type, by type of gene associated with 
GVP sequence. Gene types include genes resulting in keratins (KRT), keratin-associated 
proteins (KAP), and other structural proteins. Variant types include those with single SNPs (ref = 
reference, alt = alternate) and for those GVPs containing multiple SNPs (multi-ref = multiple 
reference alleles, multi-alt = multiple alternate alleles, both = containing both reference and 
alternate alleles in some combination). 

2.2.6 Common GVPs 

Finally, we examined the extent to which we could detect a common subset of human 
contaminant GVPs within and across all the source organism datasets analyzed. Determining 
whether similar GVPs are detected within and across a diverse set of non-human organisms 
can provide us with insight into which GVPs are more likely to be detected, separate from the 
variant type analysis performed above, and a basis for identifying potential biomarkers of the 
“dark proteome” that could be robustly detected (as opposed to spurious detections), giving us 
more confidence in their detection.  

We first considered GVP detection among PRIDE datasets from the same organism. How often 
are GVPs detected in more than one project? Are there any GVPs that are more often detected 
than others, or perhaps ubiquitous across projects? Figure 7 below addresses these questions.  
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Figure 7. Histogram displaying distribution of number of human contaminant GVPs most often 
detected from PRIDE projects for each source organism. 

It is obvious that the frequency of GVP detection within an organism varies by organism (Figure 
7). In 4 out of the 5 organisms (the exception being A. thaliana), most GVPs are only detected in 
a single project. It is important to keep in mind that human contaminant GVP detection in non-
human samples is expected to be challenging, owing to the fact that these are minor 
components and are very likely to be present at only trace levels. Given that challenges in 
complete peptide detection (for the source organism) using the DDA MS/MS paradigm already 
exist, it is not surprising that few human contaminant GVPs, that are minor traces, are detected 
in multiple projects.  

Of note is that there are a handful of GVPs that are detected in almost all projects investigated 
per organism (e.g., 1 GVP detected in 10 S. cerevisiae projects out of 10 S. cerevisiae projects 
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with any GVP detections). Table 4 below compiles the GVP sequences observed with the 
highest frequency across projects per source organism. Many of these sequences are also 
detected quite frequently in the other organisms (e.g., LAADDFR detected in most PRIDE 
projects for each organism) and are represented in the top 10 most frequently detected GVPs 
out of all GVP detections (Table 1). The high prevalence of these GVPs within projects from a 
single organism and generally observed frequently across projects from different organisms 
suggests that these robustly detected GVPs could potentially be utilized as biomarkers of the 
“dark” proteome, as evidence of trace components.  

 
Table 4. Most frequently detected GVPs across PRIDE projects for each source organism. 

GVP D. melanogaster S. cerevisiae E. coli A. thaliana M. musculus 

VTMQNLNDR 7 8 7 7 8 

LEQEIATYR 7 6 4 7 6 

LAADDFR 8 8 6 7 10 

AQYEEIAQR 7 8 7 6 8 

FASFIDK 6 10 5 7 8 

When considering common GVPs across all source organisms, we observed 22 human 
contaminant GVPs to be detected in at least one project from each of the 5 source organisms of 
interest (Figure 8). Interestingly, this common set of GVPs is approximately equivalent to the 
number of GVPs only detected in M. musculus and E. coli (23 GVPs and 26 GVPs, 
respectively), and much greater than the number of GVPs detected solely in A. thaliana (7 
GVPs). However, 41% of detected GVPs in S. cerevisiae and 44% of detected GVPs in D. 
melanogaster are solely detected in those respective organisms. Clearly, different sets of GVPs 
are detectable for each organism, but a not insignificant number are able to be detected among 
a diverse set of non-human organisms. This leads us to conclude that it is possible to assemble 
a core set of common human contaminant GVP biomarkers that are broadly detectable as part 
of the “dark” proteome.   
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Figure 8. Venn diagram showing GVP sequence overlap among datasets from different 
organisms. 22 GVPs were found to be detected in at least one PRIDE project from each 
organism. 
 
With the investigation of the PRIDE datasets, we have demonstrated the feasibility of human 
contaminant GVP detection across a diverse set of non-human organisms, characterized the 
biological origins of these GVPs, developed a better understanding of GVP detectability, as well 
as determined the feasibility of establishing a robust set of common GVPs as indicators of 
human contamination to uncover more of the “dark” proteome. 
 
However, additional questions regarding human contaminant GVP detection remain. Chiefly, 
how reproducible or variable are human contaminant GVP detections in non-human samples 
prepared by the same individual? To address this question, we investigate GVP detection using 
another set of proteomics data, described below in Section 2.3.  

2.3 Detection from In-House Repository Datasets 

We apply a similar approach for GVP detection of datafiles with our in-house proteomics data 
repository as well as a similar analysis of detection results to that described in Section 2.2. The 
primary advantage of this in-house repository is the ability to link datafiles acquired to the 
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individual who prepared these samples, so that we can investigate the variability in GVP profiles 
across samples prepared by the same individual. This will allow us to establish the extent of 
reproducibility or variability of detecting minor protein components across different samples 
handled by the same individual. In the previous analysis of PRIDE projects, we could only 
assume that all the datafiles belonging to a single project were prepared by the same individual. 
But because our in-house repository tracks the entirety of the sample preparation, data 
acquisition, and data analysis process, we can have confidence in knowing which samples were 
prepared by the same individual. However, to ensure proper data handling, as per our IRB 
exemption protocol, all sample preparer names were deidentified and instead assigned a 
numeric identifier following data download from the repository. 

2.3.1 Dataset Selection 

To select projects (termed campaigns henceforth), we surveyed the number of datafiles 
acquired between 2015 and 2020, grouped by organism. The top 20 are shown in Figure 9. We 
selected organisms based on the following criteria: (1) non-human, (2) phylogenetic diversity, 
and (3) a subset of organisms that are the same as those organisms selected from PRIDE 
projects. We ultimately decided on datafiles from samples originating from M. musculus, A. 
thaliana, Rhodosporidium toruloides, E. coli (BL21 strain), and Bos taurus. 
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Figure 9. Barplot of the distribution of the number of data-dependent acquisition mass 
spectrometry datafiles deposited into the in-house repository by source organism, between 
2015 and 2020. Datafiles are further associated with campaigns. 

Of the selected organisms, we then surveyed a subset of campaigns (with the approval of the 
respective project managers for data reuse) that were prepared by different individuals. Figure 
10 below displays the distribution of campaigns along with the number of datafiles per campaign 
for each sample preparer. We elected to use datafiles corresponding to samples prepared by 
individual 37, owing to the individual having prepared a great number of samples from most of 
the organisms in consideration (4 out of 5 organisms).  
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Figure 10. Barplot of the number of campaigns and datafiles, grouped by organism, of samples 
prepared by each individual, between 2015 and 2020. Sample preparer 37 prepared the largest 
number of samples that exhibit the greatest organism diversity. 

In total, 10 campaigns, with datafiles ranging between 16 and 2059 (on average, 564 ± 697 
(s.d.) datafiles), were considered for GVP detection analysis, to examine variability of GVP 
profiles from samples prepared by the same individual. 

2.3.2 GVP Detection from a Single Sample Preparer 

Using our in-house repository of proteomics data, we again demonstrate the feasibility of human 
contaminant GVP detection that is broadly applicable to non-human organisms. Of the 10 DDA 
projects selected for database search and GVP detection, we found that 9 campaigns contain 
detectable GVPs at both 1% and 5% peptide-level FDR control. Figure 11 below displays the 
number of detected unique GVP sequences per campaign, by organism, at 1% peptide-level 
FDR control. One striking observation with these campaigns is the low number of GVP 
detections across the four organisms (on average, 11 ± 7 (s.d.) GVPs per campaign), compared 
to the results observed for the PRIDE projects at the same 1% FDR level.   
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Figure 11. Barplot displaying the number of unique GVP sequences detected from in-house 
repository campaigns (each represented by a single bar), grouped by source organism, at 1% 
peptide-level FDR control, where each sample within the campaign was prepared by sample 
preparer 37. 

We note that in contrast to the database search performed on the PRIDE datasets, the only 
post-translational modification considered for these datasets is cysteine carbamidomethylation. 
This difference likely contributes to fewer detected GVPs across the various campaigns. 
Interestingly enough, however, the M. musculus campaigns yielded higher number of detected 
GVPs (on average, 15 ± 6 (s.d.) GVPs) compared to campaigns from the other organisms, 
whereas the opposite trend was observed in PRIDE projects. This is likely owing to a greater 
number of datafiles within the M. musculus campaigns (between 24 and 2059 datafiles) than for 
the other organisms and also compared to M. musculus PRIDE projects. 

At 5% peptide-level FDR control, we again observe a slight increase in number of detected 
human contaminant GVPs compared to 1% FDR, and this increase in detections is especially 
apparent for E. coli (15 GVPs), M. musculus (on average, 22 ± 10 (s.d) GVPs), and R. 
toruloides campaigns (26 GVPs).  
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Figure 12. Barplot displaying the number of unique GVP sequences detected from in-house 
repository campaigns (each represented by a single bar), grouped by source organism, at 5% 
peptide-level FDR control, where each sample within the campaign was prepared by sample 
preparer 37. 
 
Following further confirmation of feasibility of human contaminant GVP detection in proteomics 
data, we investigate, from the set of detected GVPs at 5% FDR, biological sources of these 
GVPs, conditions related to detectability, as well as feasibility of detecting a common set of 
these minor components derived from the same individual, across various non-human samples. 

2.3.3 Proteins and Genes Associated with GVPs 

Again, we observe that the most frequently detected human contaminant GVPs derive from 
cytoskeletal keratins, some of which are known to be abundant in skin (Table 5). Many of these 
GVPs (i.e., 8 GVPs) are also reported as most frequently detected GVPs in PRIDE projects 
(Table 1). Note that the organisms investigated in these campaigns are slightly different than the 
set examined in Section 2.2, indicating that there likely exists a core set of human contaminant 
GVPs (including a subset of the ones listed below) that are easily and broadly detectable across 
non-human organisms.  
 
 

Table 5. List of top 11 most frequently detected human contaminant GVPs across in-house 
repository campaigns prepared by sample preparer 37. 

GVP sequence Detection frequency Gene name Chromosome 

AQYEEIAQR 8 KRT76 12 
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VTMQNLNDR 8 KRT14 17 

LAADDFR 7 KRT13 17 

FLEQQNK 6 KRT6B 12 

FLEQQNQVLETK 6 KRT74 12 

LEQEIATYR 6 KRT14 17 

IVLQIDNAR 5 KRT19 17 

ASLEAAIADAEQR 4 KRT8 12 

DYQELMNVK 4 KRT76 12 

FASFIDK 4 KRT75 12 

HSGIGHGQASSAVR 4 FLG 1 

Next, we examined which genes were more likely to be represented in detected human 
contaminant GVPs across campaigns of samples prepared by the same individual. We applied 
a minimum detection frequency of 2 GVPs. Six out of 9 genes in Table 6 were also reported in 
Table 2 as genes associated with the most GVP detections. Here, we see a mix of structural 
and cytoskeletal proteins, and 2 cuticular (hard) keratins, which represents a slightly different 
set of genes (more cytoskeletal keratins) than those associated with the most frequently 
detected GVPs in Table 5 above.   
 
 

Table 6. List of top 9 predominant genes associated with detected human contaminant GVPs 
across in-house repository campaigns prepared by sample preparer 37. 

Gene name GVP detection frequency Chromosome 

FLG 17 1 

KRT13 4 17 

KRT74 4 12 

DST 3 6 

IVL 3 1 

KRT14 3 17 

KRT37 3 17 
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KRT77 3 12 

KRT83 3 12 

 

2.3.4 GVP Protein Assignment Ambiguity 

In our examination of protein assignment ambiguity for detected human contaminant GVPs, we 
similarly observed ambiguous assignment to mouse proteins (61 GVPs out of 158 unique GVP 
sequence detections across 9 campaigns) and sheep proteins (15 GVPs across 9 campaigns). 
Additionally, we found ambiguous protein assignment to cow proteins (25 GVPs across 9 
campaigns). This was observed in both B. taurus campaigns as well as campaigns containing a 
mixture of M. musculus and B. taurus samples (though we labeled those mixed campaigns as 
dominated by either M. musculus or B. taurus, not both). With the exception of some GVPs 
mapping to mouse, sheep, or cow proteins, none of the detected contaminant GVPs mapped to 
the other source organisms (e.g., E. coli, R. toruloides).  

Further investigation of the ambiguous mappings showed assignments to mouse, sheep, and 
cow keratins. As keratins are generally known to be highly homologous, it is not surprising to 
find non-human keratins as additional assignments of human contaminant GVPs (e.g., Keratin, 
type II cytoskeletal 73, from the KRT73 gene in cow, Keratin, type II cytoskeletal 2 oral, from the 
Krt76 gene in mouse). 

Taking these observations and similarly those from Section 2.2.4, we can have more confidence 
that any detected human contaminant GVP from non-human proteomics data likely derives from 
human proteins rather than from the non-human source. 

There are instances of a particular GVP sequence ambiguously assigned to multiple human 
proteins (e.g., DNAELENLIR mapped to KRT33B and KRT31); all instances are already 
reported in Table 3 above. All ambiguous human protein assignments observed here are also to 
keratins, which again, is not surprising owing to their high degree of homology to carry out 
similar structural functions. 

2.3.5 GVP Alleles 

Across the 9 campaigns, we observe human contaminant GVPs containing only a single SNP 
as the most prevalent condition (Figure 13). This aligns with observations in Section 2.2.5. All 
human contaminant GVPs with ambiguous assignments to human keratins and ambiguous 
assignments to different combinations of SNPs were removed for this analysis. Notably, the 7 
GVPs detected in B. taurus campaigns only contain a single SNP. The maximum number of 
SNPs contained within a single GVP sequence for this set of proteomics data remains 5 SNPs, 
all carried within the gene FLG, which codes for filaggrin, a structural protein. 
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Figure 13. Histogram displaying the distribution of the number of SNPs contained in each 
detected human contaminant GVP, grouped by organism, across the in-house repository 
campaigns handled by sample preparer 37. Most GVPs contain only a single SNP.  

We find that the distribution of variant types in this set of proteomics data exhibits little variability 
(Figure 14). For example, the variant type distribution is very similar across the E. coli and R. 
toruloides campaigns. All 7 detected GVPs from B. taurus campaigns are reference alleles. 
Clearly, the dominant form in detected GVPs is the reference allele. However, it is interesting 
that a large number of detected GVPs from M. musculus campaigns contain multiple SNPs that 
include both the reference and alternate alleles (17 out of 106 GVPs from M. musculus 
campaigns), even greater than the number of GVPs containing only the alternate allele for a 
single SNP (11 out of 106 GVPs). These alleles are the SNP products carried in FLG, KRT23, 
and KRTAP4-8, and on average, contain 4 ± 1 (s.d.) SNPs. 
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Figure 14. Barplot displaying the distribution of variant types among detected human 
contaminant GVPs, grouped by source organism, for campaigns from the in-house repository of 
samples handled by sample preparer 37. Variant types include those with single SNPs (ref = 
reference, alt = alternate) and for those GVPs containing multiple SNPs (multi-ref = multiple 
reference alleles, multi-alt = multiple alternate alleles, both = containing both reference and 
alternate alleles in some combination). Notably, the reference alleles are most prevalent in 
detected GVPs, across all organisms. 
 
Slight differences exist between the distribution of variant type by gene type observed across 
these campaigns and that across PRIDE projects, likely owing to having a more modest total 
number of human contaminant GVPs detected across campaigns compared to PRIDE projects. 
In Figure 15 below, we find that alternate alleles occur much more frequently than reference 
alleles in GVPs from KAPs (though the gap is not very wide), reference alleles dominate GVPs 
from keratins, and multiple SNPs are more often contained in GVPs from structural proteins. 
Detection of the alternate alleles in this set of proteomics data is fairly low compared to PRIDE 
projects (Figure 6). Given that one of the main differences in this database search is the 
inclusion of fewer post-translational modifications, we hypothesize that this constraint and 
overall fewer detections of alternate alleles may be related. 
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Figure 15. Barplot displaying distribution of GVP variant type, by type of gene associated with 
GVP sequence, among in-house repository campaigns prepared by sample preparer 37. Gene 
types include genes resulting in keratins (KRT), keratin-associated proteins (KAP), and other 
structural proteins. Variant types include those with single SNPs (ref = reference, alt = alternate) 
and for those GVPs containing multiple SNPs (multi-ref = multiple reference alleles, multi-alt = 
multiple alternate alleles, both = containing both reference and alternate alleles in some 
combination). 

One commonality to the distribution of variant types observed here to the PRIDE project results 
is the similarity of the variant type profile for GVPs belonging to keratins to that of the profiles 
belonging to 2 out of the 4 organisms studied here: E. coli and R. toruloides. It is clear that the 
vast majority of detected human contaminant GVPs derive from keratins, and as such, the 
resemblance in variant type profiles is reasonable. It is more likely that detected human 
contaminant GVPs derive from keratins and contain only a single SNP exhibiting the reference 
allele, though detection of the alternate allele is also quite possible, depending on the SNP and 
proteotypicity of the alternate allele.  

The observation that there exists some differences in the other organisms’ variant type profiles 
likely implies that a different set of GVPs may be detectable among different non-human 
organisms, despite the samples having been handled by the same individual.  

We examine the degree to which these GVPs are reproducible among different non-human 
samples handled by the same individual in the next section. 

2.3.6 Common GVPs 

Analysis of common GVPs within and across campaigns handled by the same individual can 
provide us with insight into sample-to-sample reproducibility or variability expected in detected 
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human contaminant GVP profiles. In an ideal and complete peptide detection analysis, we 
would expect a highly reproducible set of detected GVPs, with little-to-no variation from 
proteomics sample-to-sample. However, given that DDA mass spectrometry yields an 
incomplete analysis, in that only the most abundant peptides are typically detected, detection of 
the trace components that are human contaminant GVPs in non-human samples are even more 
at a disadvantage. Thus, to demonstrate confidence in human contaminant GVP detection, with 
the alternative hypothesis being that they are spurious detections, it is important to characterize 
the extent to which we can detect the same GVPs in different samples when we expect the 
same GVPs to be found owing to the same human individual origin.  

We first investigate how often GVP sequences are detected in multiple datafiles from the same 
campaign. Figure 16 below displays the distribution of GVP sequence detection within each 
campaign. Because only a single R. toruloides and E. coli campaign, respectively, were 
selected for analysis, no conclusions can be drawn regarding repeated GVP detections in 
multiple campaigns for these organisms. But for the other two organisms, it is obvious that most 
detected GVPs are only found in a single campaign, suggesting that human contaminant GVP 
detection can be quite variable in proteomics data from the same source organism, even when 
the samples are prepared by the same individual. 

 
Figure 16. Histogram displaying distribution of number of human contaminant GVPs most often 
detected from select in-house repository campaigns for each source organism, wherein each 
sample from these campaigns was handled by sample preparer 37. 
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We then examined the feasibility in identifying a common set of detected human contaminant 
GVPs across all four non-human organisms of interest, wherein the GVP is detected in at least 
one campaign per organism. Figure 17 below displays the overlap in GVPs among campaigns 
from different organisms. Unfortunately, only a single human contaminant GVP (i.e., 
VTMQNLNDR) was found to be ubiquitous across the four organisms. With the exception of B. 
taurus campaigns, most of the detected human contaminant GVPs are only found in a single 
organism. Given the results from this analysis and the previous examination of GVP detection in 
multiple campaigns from the same organism, we observe a fair amount of variability in GVP 
detection even when the samples are handled by the same individual, and the extent of this 
variability may differ from source organism-to-organism.  

 
Figure 17. Venn diagram showing GVP sequence overlap among campaigns from different 
organisms. Only a single human contaminant GVP sequence overlap among all four organisms. 

Human contaminant GVPs with higher detections and observed in at least two organisms are 
represented in Table 7 below. Note the scarcity of detections within each organism for each 
GVP owing to the limited number of campaigns investigated here. Not unexpectedly, there are 
more instances of GVP detection in two organisms as opposed to three organisms, again 
suggesting organism-related variability in GVP detection. However, despite the variability of 
these detections across organisms, many of these frequently detected GVPs are also reported 
as frequently detected in PRIDE projects (Table 4), thus providing confidence that these GVP 
detections are real, as opposed to spurious detections, despite the modest set of campaigns 
considered. 
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Table 7. Most frequently detected GVPs across campaigns handled by sample preparer 37 for 

each source organism, where each GVP is observed in more than one organism. 

GVP M. musculus R. toruloides E. coli B. taurus 

DNAELENLIR 2 1 0 0 

VTMQNLNDR 5 1 1 1 

AQYEEIAQR 5 1 0 2 

DSLENTLTESEAR 1 1 0 0 

DYQELMNVK 2 1 0 1 

FLEQQNK 5 1 0 0 

LQFYQNR 1 1 0 0 

LAADDFR 5 1 0 1 

LEQEIATYR 5 0 0 1 

SISVSVAGGALWGR 1 0 1 0 

FLEQQNQVLETK 4 1 1 0 

FASFIDK 3 1 0 0 

LASELNHVQEVLEGYK 2 0 1 0 

QVVSSSEQLQSYQAEIIELR 1 0 1 0 

We examined a limited number of campaigns here to investigate human contaminant GVP 
profile variability in non-human organisms with samples prepared by the same individual. But 
from these results, it is difficult to identify a set of reproducibly detected GVPs when we expect 
to find them. This difficulty in reproducible detection may be owing to the combination of 
challenges with incomplete peptide detection and abundance of minor human contaminant 
proteins. Additionally, human biology may play a role, as it is known that the extent of human 
contamination (e.g., via skin cell shedding) varies from individual-to-individual.  

2.4 Comparison of GVP Detection Performance 

The previous Section, Section 2.3, provided insight into human contaminant GVP detectability 
performance the two sets of proteomics data: PRIDE projects and in-house repository 
campaigns of samples handled by sample preparer 37. In this section, we aim to compare 
similarity of sets of detected human contaminant GVPs from these two efforts and draw general 
conclusions regarding GVP detection in DDA mass spectrometry-based proteomics data. 
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Similar human contaminant GVPs can be detected in proteomics datasets from different data 
sources, which provides further confidence that detected human contaminant GVPs from one 
source are real detections—not spurious—that can be reproduced, to some extent, in another 
data source, regardless of source organism. Figure 18 below displays the overlap in detected 
GVPs between all PRIDE projects and all campaigns prepared by sample preparer 37. Although 
many more GVP sequences are unique to PRIDE projects, a substantial number are shared 
with those detected in the campaigns.  

 
Figure 18. Venn diagram of human contaminant GVP overlap between GVPs detected in 
PRIDE projects and the in-house repository campaigns prepared by sample preparer 37. 

In the previous sections, there were indications that human contaminant GVP detection may 
vary from organism-to-organism. To investigate the extent to which GVP detection in the two 
proteomics datasets containing the same source organism could yield similar GVPs, we further 
examined the overlap in detected human contaminant GVPs in E. coli (Figure 19) and M. 
musculus datasets (Figure 20), respectively. Datasets from these species were selected for 
analysis in both the PRIDE projects and in-house repository campaigns prepared by sample 
preparer 37. Note that the E. coli strain selected for analysis are different in these two sets of 
proteomics data: proteomics data from E. coli K-12 strain were examined in PRIDE projects 
while those belonging to the BL21 strain were examined in the campaigns. Given the difference 
in strain, we may observe some differences in detected GVPs. 
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Figure 19. Venn diagram of human contaminant GVP overlap between GVPs detected in 
PRIDE E. coli (K-12 strain) projects and the in-house repository E. coli (BL21 strain) campaigns 
prepared by sample preparer 37. 
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Figure 20. Venn diagram of human contaminant GVP overlap between GVPs detected in 
PRIDE M. musculus projects and the in-house repository M. musculus campaigns prepared by 
sample preparer 37. 

We found that many more GVPs are shared between the M. musculus proteomics datasets 
from the two different data sources (Figure 20), compared to the GVP overlap in E. coli datasets 
(Figure 19). However, because of an imbalance of E. coli datasets between the two data 
sources—only a single E. coli campaign was analyzed, whereas 11 E. coli PRIDE projects were 
analyzed—few conclusions can be drawn regarding the GVP overlap and any effect of E. coli 
strain differences. We expect an increase in GVP overlap with analysis of more datasets, and 
with more balanced data. On the other hand, the number of analyzed M. musculus datasets 
between the two data sources are more balanced, and we see many more detected GVPs 
being shared (Figure 20). In fact, the number of shared GVPs in M. musculus datasets makes 
up the majority of shared GVPs across all proteomics datasets from both data sources. This 
observation again highlights the feasibility of detecting a common set of human contaminant 
GVPs in proteomics data from different data sources and among datasets from the same and 
different source organisms, respectively. 

Taking these observations in GVP detection overlap between the two data sources, we can 
clearly see that while there exists some sample-to-sample variability in human contaminant 
GVP detection, there are a subset of GVPs that are more frequently detected within and broadly 
detected among proteomics datasets, regardless of source organism and data source. 
Implications of this effort include the potential of human contaminant GVP detection to advance 
understanding of the “dark” proteome, for a more complete characterization of a proteomic 
sample.  
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2.5 Conclusions 

Overall, we not only demonstrate the feasibility of human contaminant GVP detection broadly in 
proteomics data, considering many more non-human organisms than previous efforts, but also 
develop a better understanding of GVP detectability, characterize the sample-to-sample 
variability in GVP detection, even when we expect to observe a similar profile, and identify a 
core set of GVPs that can potentially be used as markers indicative of the human contaminant 
traces portion of the “dark” proteome.  

This effort focused on a portion of the “dark” proteome, and was primarily a qualitative 
assessment, but future efforts to continue to elucidate the “dark” proteome could provide a 
quantitative assessment of the extent to which elucidation of human contaminant GVPs 
provides a more complete protein analysis beyond the conventional consideration of the source 
organism. Investigation of other, unexpected traces and minor protein components belonging to 
the “dark” proteome could also provide additional insight.  

That being said, alternative peptide detection strategies, such as data-independent acquisition 
(DIA) mass spectrometry, could be valuable for more extensive elucidation of the “dark” 
proteome, including human contaminant GVP detection, to enable a more complete proteomic 
sample analysis.  

Additional capabilities compatible with human contaminant GVP detection can also be 
examined. One such capability is unknown source organism characterization, which enables an 
untargeted, unbiased approach to identifying the source organism in an unknown proteomic 
sample. This approach has demonstrated applicability in forensic and clinical samples. The next 
section, Section 3.0, examines the feasibility and accuracy of this combined capability, and 
assesses for any effects on human contaminant GVP detection. 
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3.0 MARLOWE-GVP Analysis 
Standard mass spectrometry-based proteomics data analysis methods are predicated on 
knowing the organism composition of the sample being analyzed. Specifically, knowledge of the 
taxonomic composition of the sample is required to create the protein sequence database that is 
used during the database search step. However, there are samples, such as forensic and 
metaproteomics samples, where the organism composition is not known. In these situations, 
additional data analysis is required to first determine what species are present in the sample. 

Several strategies have been developed for utilizing proteomics to understand the taxonomic 
composition of an unknown sample using as few assumptions about source organism as 
possible. One strategy is database searching of mass spectrometry-based proteomics data 
where the database contains proteins from all known organisms, such that one maximizes the 
likelihood that the unknown organisms in that sample are contained within that large database 
(e.g., MiCId20). A second method is to make no assumptions on the source organism by first 
performing de novo peptide identification and then applying species identification tools, such as 
UniPept and the lowest common ancestor approach22, to assign de novo-sequenced peptides to 
organisms (e.g., MetaNovo23).  

While these proteomics species identification tools have been successful, these methods are 
unable to fully characterize the protein content within a sample. This is because these methods 
do not account for contaminant proteins, such as media peptides and human keratins, that are 
artificially introduced into the sample during sample preparation. Therefore, new methods are 
needed for more complete characterization of samples of unknown origin. 

In this work, we present a method that aims to provide more complete characterization of 
samples of unknown composition by combining an unknown organism characterization tool, 
MARLOWE (Chu et al. (2024), submitted), with genetically variant peptide (GVP) detection. 
GVPs are peptides that contain single amino acid polymorphisms that result from non-
synonymous SNPs in protein coding regions of DNA. These peptides have been recently shown 
to be detectable by mass spectrometry in non-human samples18. We envision the ability to 
obtain two pieces of information through this combined, untargeted pipeline: unknown source 
organism identification and detection of human contaminant GVPs.  

MARLOWE precedes GVP detection here, wherein MARLOWE returns a ranked list of potential 
organisms in a sample, which then informs the database search and subsequent GVP 
detection. MARLOWE utilizes de novo peptide sequencing of mass spectrometry data to detect 
highly-confident regions of peptides (called tags) that can be matched to a database of tryptic 
peptides. These tryptic peptides are mapped to organisms following a protein inference that 
relies on peptide strength14. From this process, a weighted score is then applied to each 
assigned organism, thus resulting in a list of potential source organisms by score. These 
potential source organisms can then be included in the database search as the source organism 
component, and combined with the GVP portion of the database so that GVP detection can also 
be performed. 

We aim to examine the feasibility of this combined unknown source organism and human 
contaminant GVP detection capability. To our knowledge, this is the first method that aims to 
improve characterization of unknown samples by combining human contaminant GVP detection 
with organism characterization.  
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We demonstrate successful unknown source organism characterization and human 
contaminant GVP detection using this combined untargeted approach. We observe high 
accuracy (at least 90% correct characterization) in unknown organism characterization across a 
diverse set of non-human samples with varying degrees of sample complexity. Similar human 
contaminant GVP detection to the conventional GVP detection approach (using a database 
search containing the ground truth source organism) was achieved, with a high degree of 
similarity in GVP profiles. Through this effort that relies on an untargeted approach, we enable a 
more complete characterization of the “dark” proteome of unknown proteomics samples. 

3.1 MARLOWE-GVP Pipeline Development 

The bioinformatics pipeline combining MARLOWE and GVP detection is graphically depicted 
below (Figure 21). The subsections below describe the different steps of the pipeline in more 
detail. Briefly, de novo peptide sequencing is performed on unknown raw proteomics datasets, 
followed by MARLOWE, to determine a list of potential source organisms. These lists of 
potential organisms are then filtered, by applying a threshold determined by a trained support 
vector machine (SVM) machine learning model, and used in conjunction with the previously 
created GVP FASTA file in a subsequent database search to detect human contaminant GVPs.  

 
Figure 21. Bioinformatics pipeline combining MARLOWE and GVP detection. SVM machine 
learning model-based filtering occurs following a list of potential source organisms produced by 
MARLOWE, and filtered results are then used to inform creation of the final FASTA file that 
combines GVP sequences of interest and source organism proteomes for database searching 
and GVP detection. 

3.1.1 De Novo Peptide Sequencing 

De novo peptide sequencing of mass spectrometry-based proteomics data was performed using 
PEAKS Online X (build 1.7.2022-08-03_160501, Bioinformatics Solutions)37 and instrument-
specific default parameters, which include preset precursor and fragment ion mass error 
tolerances, and fragmentation method. Post-translational modifications were included that align 
with those reported for each dataset. 

Following de novo peptide sequencing, highly-confident regions of each peptide, called tags, 
were identified. Peptides with an average local confidence score below 50 and length below 7 
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amino acid residues were not considered. Each consecutive amino acid residue included in the 
tag (minimum length of 6 residues) must have a minimum local confidence score of 80. These 
lists of tags, obtained for each datafile within a project of interest, were then used as input to 
MARLOWE.  

3.1.2 Source Organism Characterization with MARLOWE 

Unknown source organism characterization was performed using MARLOWE, which contains 
the underlying KEGG (Kyoto Encyclopedia of Genes and Genomes) database of organisms’ 
proteomes (downloaded July 2019) for tag-organism assignment. Contaminant filtering was not 
applied. Post-translational modifications included in the characterization aligned with those 
utilized in de novo peptide sequencing. Through application of peptide strength and protein 
inference, organism assignments were scored. Final potential source organism lists with 
associated scores were produced by filtering to organisms with at least 2 peptide assignments. 
These lists of potential source organisms, one list per datafile within each project, were then 
filtered using criteria determined by a support vector machine learning model, to identify the 
most promising source organism candidates for inclusion in the database search. 

3.1.3 Support Vector Machine Model Development for Organism Filtering 

We used a support vector machine (SVM) model, created using the sklearn Python package, to 
inform our downselection of MARLOWE’s list of potential source organisms to be included in the 
FASTA file for the subsequent database search and GVP detection. The goal of the SVM 
classifier38, which is a supervised machine learning method, is to determine the optimal support 
vector or hyperplane (for more than two variables) that maximizes the distance between known 
groups or classes in higher dimensional space. Thus, training the SVM model requires the 
feature input(s), i.e., the information that the model will use for class prediction, as well as the 
labeled classes, i.e., the groups that the model will later predict once trained. 

In practice, in the training phase, our SVM model takes in different metrics associated with 
MARLOWE’s source organism characterization as feature inputs along with a binary class label 
of whether the metric is associated with the correct or incorrect organism relative to the ground 
truth source organism. For example, a potential feature input is a list of taxonomic ranks for a 
single proteomics datafile, and the class labels of interest are correct and incorrect source 
organism. As such, within that list, there will be taxonomic ranks associated with both labels, 
though in this case, given that our proteomics datasets contain only a single source organism, 
only one taxonomic rank would be associated with the correct organism label, and the 
remaining ranks on the list would be labeled with incorrect organism. 

Model training includes determining the support vector that maximizes the true positive and true 
negative determinations of correct and incorrect source organism given organism 
characterization metric(s) as feature input. Of the PRIDE datasets considered for this effort, we 
applied an 80/20 train/test split for model development. To avoid any bias in train/test splits 
towards any particular source organism, we applied this split at the PRIDE project level among 
datasets for each respective source organism.   

In the test and deployment phase, the SVM model takes in the metrics resulting from 
MARLOWE’s analysis of potential source organisms and predicts whether the metrics are 
associated with the correct or incorrect source organism.  
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We investigated different metrics from MARLOWE results that could be used as feature input by 
the SVM, to determine the optimal set that maximizes performance. After examining 
combinations of metrics as input, including taxonomic rank, normalized taxonomic score, and 
score ratio, we observed that many of the SVM models utilizing different combinations of these 
metrics as input performed similarly, with the exception of Model #3 that solely utilizes score 
ratio (Table 8).  

 
Table 8. Performance of each SVM model.  

Feature Input 
Combinations Used Accuracy Precision F1 

Classification 
Decision Equation 

Taxonomic rank 0.987 0.99 0.98 −2𝑥𝑥0 + 3.00
= 0 

 

Normalized 
taxonomic score 0.987 0.99 0.98 4.85𝑥𝑥0 − 2.11 = 0 

Score ratio 0.935 0.94 0.92 −2. 97𝑥𝑥0 + 1.24 = 0 

Normalized 
taxonomic score & 

rank 
0.987 0.99 0.98 −2𝑥𝑥1 + 3.00 = 0 

Score ratio & rank 0.987 0.99 0.98 −2𝑥𝑥1 + 3.00 = 0 

Score ratio & 
normalized 

taxonomic score 
0.987 0.99 0.98 1.48𝑥𝑥0 + 6.47𝑥𝑥1

− 3.64 = 0 

Rank & normalized 
taxonomic score & 

score ratio 
0.987 0.99 0.98 −2𝑥𝑥0 + 3.00 = 0 

SVM model results demonstrate that Model #1 using solely taxonomic rank performs as well as 
other models incorporating more metrics (e.g., Model #4 using both normalized taxonomic score 
and taxonomic rank). This indicates that the inclusion of additional feature inputs does not add 
value to the model in terms of improving performance. This observation is likely owing to the 
simplicity of datasets applied to SVM model for prediction. Since most datasets only include a 
single dominant organism, the SVM model is easily able to predict the correct organism, which 
is typically within the taxonomic group represented as the top-scoring or top-ranked hit returned 
by MARLOWE results. 

As such, we elect to apply the simplest of SVM models, that is, Model #1 that utilizes the 
taxonomic group as feature input, and apply the optimal threshold determined by this model, 
that is, the first-ranked taxonomic group, as the threshold for filtering MARLOWE results of 
unknown datasets to the “true” source organism. 

We expect that this approach could be easily adapted to and much more suitable for more 
complex datasets (i.e., datasets from samples containing more than one organism). It is likely 



PNNL-36661 

MARLOWE-GVP Analysis 39 
 

that a different model, such as the model utilizing normalized taxonomic score and score ratio, 
may be more applicable and perhaps more performant on datasets exhibiting higher complexity. 

3.1.4 MARLOWE-Informed GVP FASTA File Creation and Database Search 

Based on results from the optimal SVM model in Section 3.1.3, we created FASTA files to 
include proteomes of organisms represented in the top-ranked taxonomic group returned by 
MARLOWE. Here source organism proteome FASTA file construction was customized for each 
datafile within a PRIDE project, as MARLOWE analysis is performed on each datafile. 

To construct the source organism proteome FASTA file, as informed from MARLOWE-SVM 
model filtering, all organisms in the top-ranked taxonomic group with at least 2 peptide hits were 
retained, and their proteomes combined into a single source organism FASTA file. This file was 
then combined with the GVP FASTA file that contains human reference keratins, GVPs, and 
common contaminants as described in Frankenfield et al. (2022)24. Additional details regarding 
GVP database construction are described in Section 2.1.   

We then used a database search to detect peptides and GVPs in proteomics datafiles. In this 
work, we used the Tide search engine30 implemented within Crux31. For all of these searches, 
all other parameters were set to their default values, except --compute-sp=T and --pin-output=T. 
Only static cysteine carbamidomethylation was considered as a post-translational modification. 
Following the database search, all peptide detections for each datafile within the same PRIDE 
project were combined, and the false discovery rate was estimated using Percolator32 within 
Crux. Results were filtered to not allow any matches with an FDR of more than 5% at the 
peptide-level33. The GVPs that were identified at the end of this pipeline were then reported. 
Prior to the database search, raw mass spectrometry files were converted to mzML format using 
either MSConvert within the Proteowizard34 suite or ThermoFileRawParser35. 

3.2 Results of MARLOWE-GVP Analysis 

3.2.1 MARLOWE Correct Organism Classification 

Prior to applying SVM filtering, we examine results produced by conventional MARLOWE and 
compare correct classification rates, that is, whether the potential source organisms returned by 
MARLOWE match the ground truth organism.  

In our manual curation of the PRIDE DDA projects, we found that 19 of the 55 projects were 
suitable for MARLOWE analysis. This represents 844 datafiles (across 19 projects) in total 
(Table 9). 

 
Table 9. Number of datafiles, grouped by organism, from PRIDE projects on which conventional 

MARLOWE performance was evaluated 
Ground truth organism Number of datafiles 

Saccharomyces cerevisiae 573 

Mus musculus 77 

Escherichia coli 72 

Arabidopsis thaliana 68 
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Drosophila melanogaster 54 

Correct MARLOWE classification rates are reported below in Table 10. Correct classification is 
defined on two levels: (1) as the correct species detected within the top taxonomic group or (2) 
as the correct species detected within any taxonomic group from lists of potential organisms 
produced by MARLOWE.  

We find that MARLOWE performs well across the organisms of interest, with high correct 
classification as the top ranked organism, and substantial improvement in correct classification 
for E. coli and S. cerevisiae samples when considering any rank (Table 10). This performance 
demonstrates that MARLOWE can easily characterize to the correct source organism when 
these organisms represent the primary source organism, which is expected, and is broadly 
applicable to a diverse set of organisms. 

 
Table 10. Conventional MARLOWE correct classification rate for each organism, at two different 

levels (top rank, any rank) 

Organism Number of Datasets % Correct Classification (top rank/any) * 

A. thaliana 68 100/100 

D. melanogaster 54 96.3/96.3 

E. coli 72 88.9/97.2 

M. musculus 77 98.7/98.7 

S. cerevisiae 573 91.1/97.7 

*Bold text indicates a sizeable increase in correct classification when the ground truth organism 
was detected at any rank (as opposed to the top rank) 

 

In addition to characterizing performance by correct organism, we further wanted to examine 
MARLOWE’s performance on samples of varying complexity. MARLOWE was originally 
developed on datasets derived from fairly complex, whole-cell lysates. These more complex 
samples ensured datasets had sufficient peptide detections belonging to multiple proteins that 
could inform organism source. However, we challenged MARLOWE with much simpler 
samples, that is, simpler peptide composition, including with datasets derived from fractionated 
and/or purified samples. With fractionation and/or purification, we expect detection of fewer 
peptides per treated sample and thus, lower protein diversity, that could be source-organism-
informative.  

To capture different levels of sample complexity, we categorized by experiment type (simple, 
moderate, or complex), which is meant to loosely classify a project based on the variety of 
peptides expected to be in each sample. It is expected that a greater variety of peptides (e.g., in 
complex samples) will make it easier for MARLOWE to correctly classify to the ground truth 
organism as there will be more peptide coverage and potentially more strong peptides and tags 
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to support the characterization. The categories we used to label sample complexity are as 
follows: 

• Complex: A whole cell lysate with no enrichment or fractionation was always labeled as 
complex.  

• Moderate: If a sub-population of cells was isolated and used, this type of sample was 
labeled as moderate, as long as there were no further protein or peptide level selection 
steps. Projects that separated cytoplasm from membrane proteins were labeled as 
moderate level complexity. If a sample was a whole-cell lysate but “enriched” for certain 
proteins, it was labeled as moderate. Whole-cell lysates fractionated by a gel were 
labeled as moderate, as each portion would have a narrow range of proteins.  

• Simple: Any project with immuno-purification or affinity-purification steps to isolate 
certain proteins or peptides was always labeled as simple. Any project that isolated 
complexes of proteins in combination with DNA was labeled as simple. 

Interestingly, we note that MARLOWE’s performance across the varying sample complexities is 
comparable, and always achieving at least 90% correct classification (Table 11). This 
demonstrates MARLOWE’s broad applicability to analyze proteomics data for source organism 
characterization, as it is performant on samples spanning a wider range of sample preparation 
methods than intended during algorithm development. 

 
Table 11. Conventional MARLOWE correct classification rate to the ground truth organism, 

organized by sample complexity. 

Sample Complexity Number of Datasets % Correct Classification (top rank/any) * 

Simple 585 89.9/97.3 

Moderate 176 98.9/99.4 

Complex 83 98.8/98.8 

*Bold text indicates a sizeable increase in correct classification when the ground truth organism 
was detected at any rank (as opposed to the top rank) 

 

Now that we have established correct classification rates with conventional MARLOWE, given 
known ground truth, and demonstrated applicability not only to a diverse set of organisms but 
also to a wide range of sample complexities, we further examine performance of the entire 
MARLOWE-GVP pipeline where we may not know the source organism in unknown samples. 
Here, we are interested in utilizing MARLOWE to downselect to the most promising potential 
source organisms for a database search that includes GVP detection, and want to examine 
whether selection of organisms’ proteomes via an untargeted approach (i.e., MARLOWE) can 
affect GVP detection.  

Our intuition is to avoid utilizing all possible source organisms returned by MARLOWE in the 
database search. Increasing the search space in a target-decoy-based database search 
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algorithm will dilute the statistical power, thus resulting in more missed true targets compared to 
a database search with a smaller database. This will likely translate to detection of fewer human 
contaminant GVPs, as these GVPs represent a very minor component of the source organism 
sample. Therefore, we examine filtering criteria to restrict MARLOWE results of potential source 
organisms to create a reasonably-sized database for the database search that (1) maintains the 
flexibility of the untargeted nature of source organism characterization, because there is a 
possibility that the top-ranked hit from MARLOWE may not be the true source organism, but 
also (2) constrains the number of organisms that would be included in the database search to 
avoid low statistical power. As such, there needs to be criteria to downselect MARLOWE’s lists 
to the most promising candidates. 

Here, we apply a filtering threshold based on the results of an SVM model that was trained and 
optimized on PRIDE datasets for correct prediction of taxonomic groups.  

3.2.2 SVM Organism Filtering  

As demonstrated in Section 3.1.3, many of the SVM models we examined demonstrated similar 
performance. The one that we selected, Model #1 from Table 8 that utilizes solely taxonomic 
group rank as feature input, balanced performance with simplicity in model engineering, which 
we define as having the least number of necessary feature inputs that contribute to performance 
improvements.  

This SVM model found that considering only the top-ranked taxonomic group was sufficient for 
correct source organism prediction. Thus, extrapolating this prediction to performing MARLOWE 
analysis of unknown samples, we expect that the top-ranked taxonomic group returned by 
MARLOWE will most likely contain the true source organism. Note that the top-ranked 
taxonomic group will likely contain more than one organism; MARLOWE implements unknown 
source organism characterization to taxonomic groups, which are organized by proteomic 
similarity of organisms. All proteomes from organisms in the top-ranked taxonomic group will be 
included in the source organism FASTA file. This file is then combined with the GVP FASTA file 
for the database search. The GVP FASTA file here will be the same GVP FASTA file used for 
the GVP detection-only workflow.  

In general, when considering only the organisms within the top-ranked taxonomic group, we 
found that proteomes from 3 ± 5 (s.d.) organisms, on average, were included to represent the 
source organism portion of the FASTA file. We observed some variability in the number of 
included organisms’ proteomes, especially when comparing PRIDE projects from different 
ground truth organisms. Figure 22 below displays the distribution of the number of organisms’ 
proteomes included as the source organism portion of the FASTA file, grouped by the project’s 
ground truth organism.  
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Figure 22. Histogram displaying the distribution of the number of organisms’ proteomes included 
in the source organism FASTA file, as informed by SVM model filtering of MARLOWE’s 
potential source organism lists, grouped by ground truth source organism, for downstream 
database search and GVP detection from select PRIDE projects. The vast majority of FASTA 
files created from this approach contain a single organism’s proteome, though up to a maximum 
of 28 organisms’ proteomes for a minority of FASTA files. 

It is obvious that the vast majority of FASTA files informed by MARLOWE and SVM model 
filtering contain a single organism’s proteomes (A. thaliana and S. cerevisiae), though up to 28 
organisms’ proteomes were included in FASTA files for E. coli projects (Figure 22). The large 
number of organisms’ proteomes included in FASTA files for E. coli projects is likely owing to a 
high representation of E. coli strains in the KEGG database underlying MARLOWE and 
additional organisms (e.g., Shigella flexneri) that exhibits proteomic similarity to be contained 
within the same taxonomic group as E. coli (K-12 strain). The taxonomic group containing E. coli 
(K-12 strain) includes 79 organisms, but only those organisms with at least 2 peptide hits are 
included in the FASTA file, thus restricting to organisms that not only exhibit high proteomic 
similarity in general, but must demonstrate this in empirical measurements.  

For projects belonging to other source organisms, the number of organisms’ proteomes 
included in the FASTA file is much more modest (Figure 22). This distribution of organisms 
included in the database search aligns with our desire to create a reasonably-sized database 
that balances an untargeted approach to source organism characterization while minimizing the 
possibility of diluting statistical power in peptide detection.  
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These augmented MARLOWE-SVM informed FASTA files were then combined with the GVP 
FASTA file into a single complete FASTA file for database search and GVP detection. Note that 
of the 844 datafiles analyzed via MARLOWE, 62 returned MARLOWE results of potential source 
organisms where the top-ranked taxonomic group did not contain the ground truth source 
organism. In this case, the FASTA file for subsequent database search would not contain the 
true source organism. We expect that source organism peptide detections will be affected, 
however, human contaminant GVP detection may be less affected, as (1) the same GVP 
FASTA file was used, and (2) incorrect detections from having the incorrect organism proteome 
in the FASTA file for those datafiles may be diluted at the project level, as peptide detections 
are aggregated to the project level for FDR control. Effects of using such a FASTA file for 
database search and GVP detection will be examined in the next section. 

3.2.3 GVP Detection Performance  

GVP detection performance using the MARLOWE-GVP pipeline was examined. Of the 19 
PRIDE DDA projects tested, 17 projects yielded detectable human contaminant GVPs at 5% 
peptide-level FDR control. When compared to the GVP detection-only pipeline (where only the 
ground truth organism’s proteome was included in the database search) under the same FDR 
control conditions, we observed a systematic decrease in the number of detected GVPs with the 
MARLOWE-GVP pipeline (Figure 23). 

 
Figure 23. Comparison of the numbers of detected human contaminant GVPs per PRIDE 
project at 5% peptide-level FDR control, and grouped by ground truth organism, with the two 
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bioinformatics pipeline (gvp-only = GVP detection only; marlowe-gvp = via MARLOWE-GVP 
pipeline). 

This systematic decrease in number of detected human contaminant GVPs in the MARLOWE-
GVP workflow may be due to a slight difference in the database search step of the workflow 
between the two approaches. In the GVP detection-only workflow, modifications considered in 
the database search were matched to expected modifications as reported by each PRIDE 
project owner, either described in the project metadata or in the associated publications. 
However, in the MARLOWE-GVP workflow, the database search only considered cysteine 
carbamidomethylation as the sole post-translational modification (PTM).  

To investigate the extent of and potential explanations for this systematic decrease in detected 
GVPs, we also examined and compared holistic peptide detection from both pipelines, which 
includes source organism peptide detection. On average, 20,903 ± 16,767 (s.d.) unique peptide 
sequences were detected using the GVP detection-only pipeline (N = 18 PRIDE projects), 
compared to 15,494 ± 11,546 (s.d.) unique peptide sequences detected with the MARLOWE-
GVP pipeline (N = 18 projects). This decrease in peptide sequences was determined to be 
statistically significant via a paired t-test (p-value = 0.0136, df = 17). Given these consistent 
observations, we hypothesize that the difference in included PTMs for the database search 
between the GVP detection-only and MARLOWE-GVP pipelines may account for the systematic 
decrease in the number of GVPs as well as the total number of peptide sequences.  

Future efforts will focus on performing the database search using a consistent set of PTMs, to 
ensure that downstream GVP detections can be fairly compared between the two pipelines, to 
examine the accuracy of the MARLOWE-GVP pipeline for GVP detection. We expect that use of 
a consistent set of database parameters will yield greater similarity in the total number of 
detected peptides and human contaminant GVPs between the two pipelines. 

Despite the difference in database search parameters between the two pipelines, we examined 
the similarity in the set of detected human contaminant GVPs between the two pipelines: GVP 
detection-only and MARLOWE-GVP. To perform this comparison, we calculated the Jaccard 
index (i.e., taking the intersection of detected GVPs over the union of the two sets) between the 
two sets of GVPs per PRIDE project as a measure of GVP profile similarity. Figure 24 below 
displays the GVP profile similarity for each project, grouped by ground truth source organism.  
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Figure 24. Barplot displaying similarity of human contaminant GVP profiles for each PRIDE 
project and grouped by ground truth source organism, between the GVP detection-only and 
MARLOWE-GVP pipelines. 

Interestingly, despite the database search difference described above, we find that detected 
human contaminant GVP profiles using the two different pipelines share a high degree of 
similarity, which is fortuitous and also provides us with confidence in the GVP detection results 
from the MARLOWE-GVP pipeline. On average, we observe GVP profile similarities of 0.58 ± 
0.33 (s.d.), on a 0 – 1 scale, where 1 is identity and 0 is completely dissimilar. Clearly, there is a 
core set of GVPs without post-translational modifications that are present in proteomics data 
and can be detected, and those are not affected by the difference in database search PTM 
parameters between the two pipelines. However, we expect to see a higher degree of GVP 
profile similarity between the two pipelines with a consistent set of PTMs applied to the 
database search parameters in future efforts. 

While creating MARLOWE-SVM model informed FASTA files to capture the unknown source 
organism’s proteome in an untargeted manner, we observed that of the 844 datafiles filtered via 
the SVM model, the top-ranked taxonomic group for 62 datafiles (from 7 PRIDE projects out of 
19) did not contain the ground truth source organism. This represents, on average, 27 ± 36 % 
(s.d.) of each project. These projects also tended to be simple in sample complexity (e.g., S. 
cerevisiae project that utilized affinity purification during sample preparation). We investigate the 
effect of using the incorrect source organism’s proteome during database search on human 
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contaminant GVP detection and resulting GVP profiles, as compared to the profiles produced 
using the GVP detection-only pipeline. 

Of these 7 projects, only 5 contained detectable human contaminant GVPs (Table 12). Jaccard 
indices for these projects are quite high, above the average Jaccard index across all projects, 
allowing us to infer that human contaminant GVP detection may not be affected by having a 
portion of database searches with the incorrect source organism. 

 
Table 12. GVP profile similarity between GVP detection-only and MARLOWE-GVP pipelines for 

PRIDE projects containing datafiles searched with the incorrect source organism 

Ground truth source 
organism PRIDE project 

Number of 
GVPs (GVP 

detection-only) 

Number of 
GVPs 

(MARLOWE-
GVP) 

GVP profile Jaccard 
index 

E. coli PXD021798 7 4 0.571 

E. coli PXD034417 15 14 0.933 

S. cerevisiae PXD034656 35 28 0.700 

E. coli PXD036475 13 10 0.800 

M. musculus PXD038179 44 41 0.769 

Finally, to capture the core set of GVPs detected in both pipelines, we determined the top 10 
most frequently detected human contaminant GVPs using the MARLOWE-GVP pipeline that are 
also detected using the GVP detection-only pipeline (Table 13). Most of these GVPs (9 GVPs) 
are reported as top detected GVPs in the proteomics data from PRIDE projects (Table 1) and 8 
of these GVPs are reported as top detected GVPs in proteomics data from in-house repository 
campaigns, prepared by sample preparer 37 (Table 5). 

 
Table 13. List of top 10 most frequently detected GVPs in PRIDE projects using the 

MARLOWE-GVP pipeline that are also detected from the GVP detection-only pipeline. 

GVP sequence Detection frequency Gene name Chromosome 

LAADDFR 13 KRT13 17 

AQYEEIAQR 12 KRT76 12 

FASFIDK 11 KRT75 12 

VTMQNLNDR 11 KRT14 17 

DYQELMNVK 10 KRT76 12 
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FLEQQNQVLETK 8 KRT74 12 

LEQEIATYR 8 KRT14 17 

SLYGLGGSK 8 KRT6C 12 

FLEQQNK 7 KRT6B 12 

AEAEALYQTK 6 KRT78 12 

We observe a high degree of similarity in GVP detection between both pipelines, despite the 
PTM parameter difference in database search. GVP detection also does not appear to be 
affected by using the incorrect source organism’s proteome during database search. These 
results provide us with confidence into the accuracy of GVP detection using MARLOWE-GVP 
as a fully untargeted approach to determining the source organism for database search. We 
expect that addressing the PTM issue in future efforts for a true comparison of the pipelines will 
only produce an even greater level of similarity in GVP profiles, thus allowing us to be even 
more confident in the MARLOWE-GVP workflow as an alternative to the conventional database 
search approach. 

3.3 Conclusions 

We successfully demonstrate an end-to-end pipeline, MARLOWE-GVP, that combines two 
capabilities: untargeted unknown source organism characterization and human contaminant 
GVP detection. We further show the broad applicability of this approach to proteomics data from 
a diverse set of non-human organisms. This combined capability enables a more complete 
characterization of an unknown proteomics sample and advances our understanding of the 
“dark” proteome. 
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4.0 Concluding Remarks & Future Outlook 
Through our two lines of effort, human contaminant GVP detection and application of 
MARLOWE-GVP pipeline, we advance characterization and understanding of the “dark” 
proteome, towards a more complete proteomic characterization of non-human samples of 
potentially unknown origin. The development and assessment of these two capabilities have 
provided us with a better understanding of untargeted and minor protein analysis, though 
limitations still exist—primarily detection variability likely owing to incomplete peptide detection. 
To continue to push the boundaries and further our elucidation of the “dark” proteome, future 
efforts should examine alternative and more complete peptide detection strategies, such as 
data-independent acquisition mass spectrometry, and investigate other potential trace 
components of unknown proteomics samples. Further characterization efforts of this “dark” 
proteome can find broad applications, including in forensic science, metaproteomics, and 
evolutionary biology. 
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