

PNNL-36070

Core Model Proposal 397

Update to Hector V3.2.0
June 2025

Kalyn Dorheim Pralit Patel

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401 fox: (865) 576-5728 email: reports@osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

Core Model Proposal 397

Update to Hector V3.2.0

June 2025

Kalyn Dorheim Pralit Patel

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Core Model Proposal 397: Update to Hector V3.2.0

Product: Global Change Analysis Model (GCAM)

Institution: Joint Global Change Research Institute (JGCRI)

Authors: Kalyn Dorheim & Pralit Patel

Reviewers: Abigail Snyder & Steve J Smith

Date committed: 05/28/2024

IR document number: PNNL-36070

Related sector: emissions/climate

Type of development: code & queries

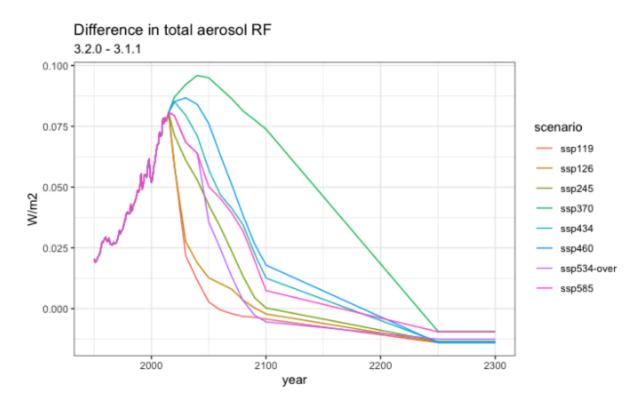
Purpose: Update the GCAM-Hector coupling from Hector V3 to V3.2.

Description of Changes

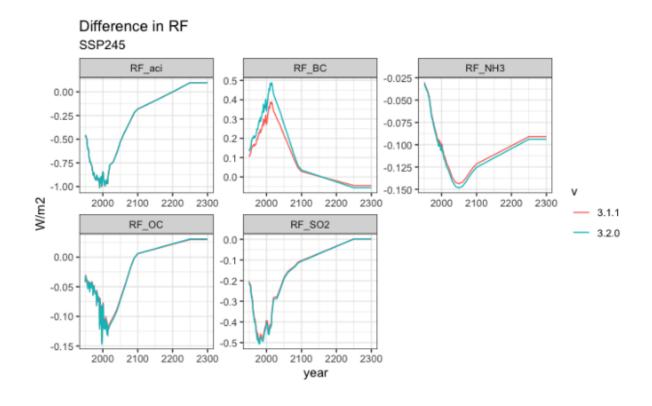
Hector behavior changes

Update the Hector-GCAM integration to Hector V3.2.0 (previously, GCAM used Hector V3.1.1), the changes associated with this CMP fall into two categories:

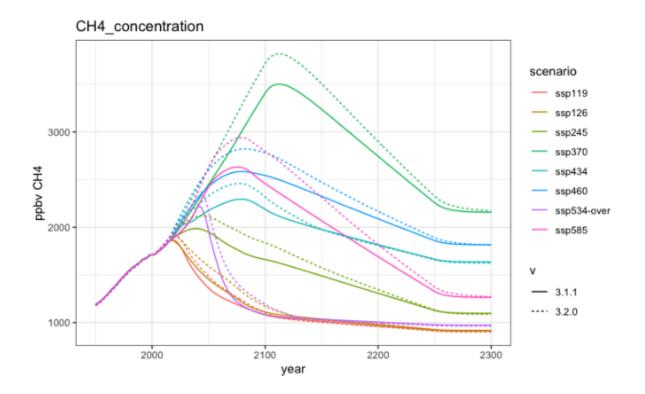
- 1. Hector behavior changes
- 2. Hector-GCAM coupling changes

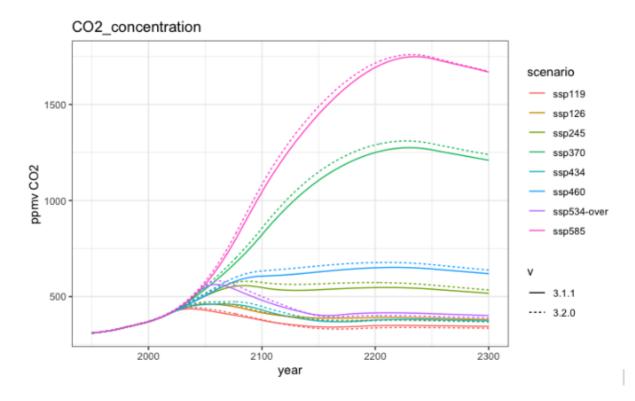

Hector V3.2.0 is the version documented in Dorheim et. al (accepted in GMD), the changes between the previous version coupled with GCAM were in response to the reviewer feedback. We corrected aerosol forcing coefficients based on Zelinka et al. (2023), enabled the permafrost module to be on by default, and recalibrated the model. These changes mean that we had to update the hector-gcam.ini file, it also causes some changes in Hector output behavior (described below) which may have implications on GCAM runs. Ultimately Hector is cooler by about 0.15 degrees, although this is scenario dependent.

Changes in aerosols


The aerosols were changed specifically in PR 724

Parameter	Old Value	New Value
aci_beta (aerosol cloud interaction)	2.09841432	2.279759
Rho_bc	0.0508	0.06386286
Rho_oc	00621	-0.006407143
Rho_so2	00000724	-7.469841e-06
rho_nh3	00208	-0.002146032

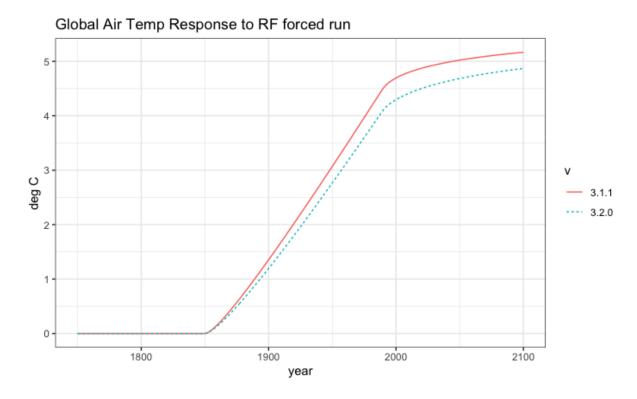

The change in parameter values cause the total aerosol RF (RF_ACI + RF_BC + RF_OC + RF_SO2 + RF_NH3) to change, but the magnitude and direction vary depending on year and scenario.


Which, in the grand scheme of things, represents about, at most a 3% change in total RF.

The permafrost module is now on by default as of PR 722! Which causes the atmospheric CH4 concentrations to increase. However, in the grand scheme of things, this translates to about a 2% change in total RF.

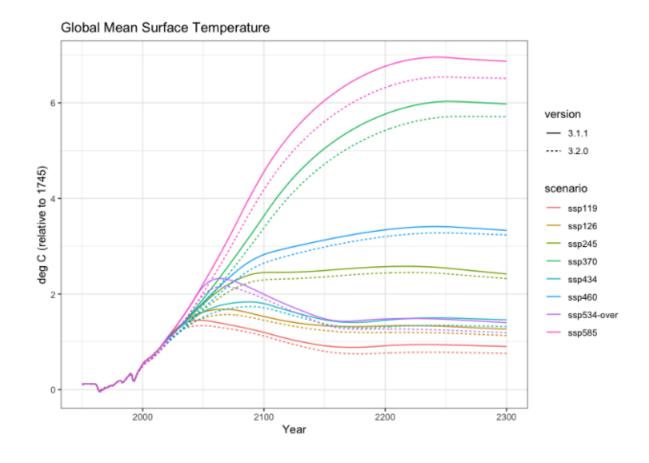
The permafrost feedback also increases CO2 concentrations (see Woodard et al. 2021) more so in higher warming scenarios.

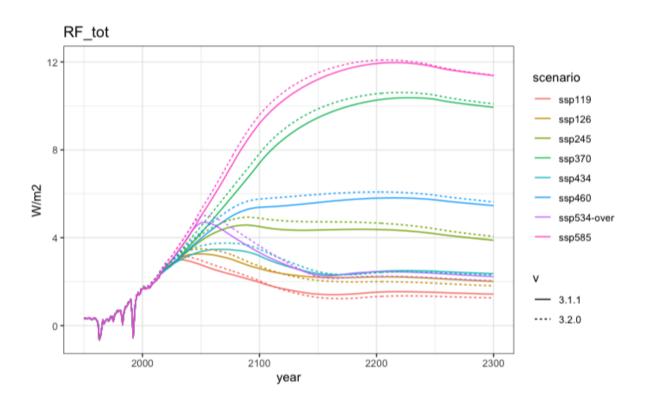
The mean difference between Hector with the permafrost feedback on vs without is summarized in the table below


Mean Difference (Permafrost - without Permafrost)					
	CH4 conc	CO2 conc	Temp		
Scenario	(ppbv CH4)	(ppmv CO2)	(deg C)		
ssp119	41.8	2.94	0.033		
ssp126	51.5	4.46	0.04		
ssp245	70.8	6.24	0.05		
ssp370	88.9	7.88	0.05		
ssp434	63.8	4.92	0.04		
ssp460	80.5	6.91	0.05		
ssp534- over	72.6	6.96	0.06		
ssp585	100	9.78	0.05		

Changes in carbon cycle parameters weaken the carbon-climate interactions see <u>PR 729</u> for more details

Parameter	Old Value	New Value
Beta (CO2 fertilization factor)	0.55	0.53
q10_rh	2.2	1.76

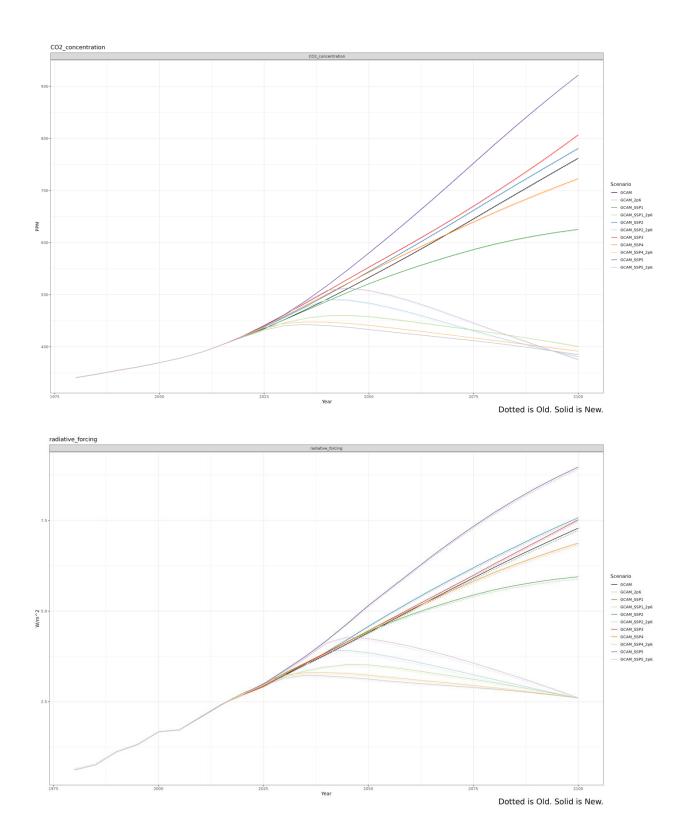

However, the change in ocean heat diffusivity as (see <u>PR 729</u>) ends up having the largest impact on Hector temperature. The change in the value of the diff parameter the direct results for the calibration protocol used in the Hector V3.2.0 documentation manuscript. Uncertainty surrounding this parameter is large, older versions of Hector set the default diff to 2.3 (see V2.2.0). The updated value for diff improves Hector's ability to reproduce historical global mean temperature observations and results in a TCRE and future warming levels consistent with IPCC AR6 (see Dorheim et al. in press for more details).


Parameter	Old Value	New Value
diff (ocean heat diffusivity)	1.16	2.38

Here Hector 3.2.0 and Hector 3.1.1 runs are setup for an idealized experiment during which both versions of the model are driven with a specific RF pathway (aka Hector is running in RF constraint mode). Due to changes in ocean heat uptake Hector V 3.2.0 is cooler than the previous version of the model.

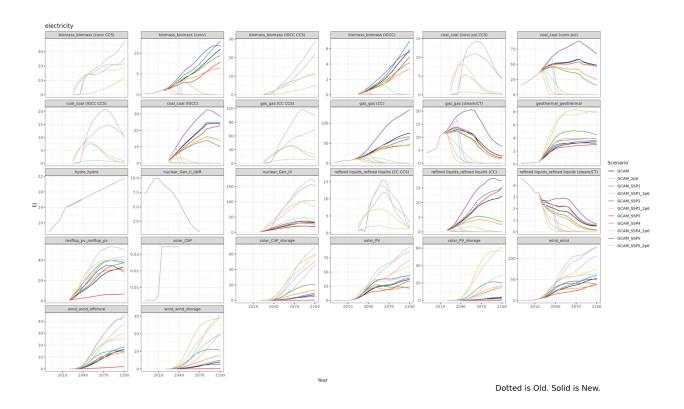
So, when we look at the multiforcing runs, we ultimately see that Hector V 3.2.0 is cooler than the previous version of Hector. The change in ocean heat uptake drives the changes in global temperature even though some scenarios see a small increase in total RF.

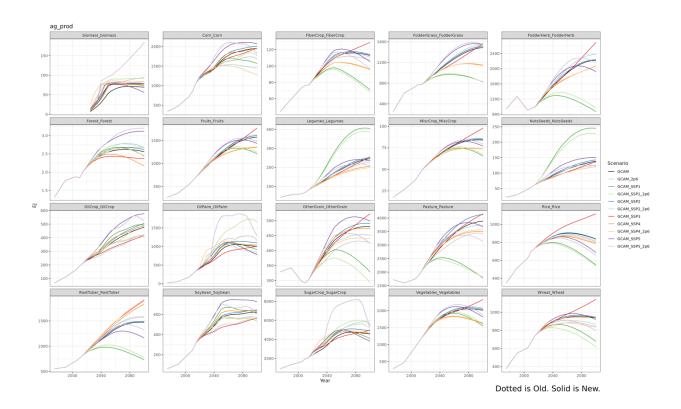
While Hector V3.2.0 is a cooler model, climate targets related to RF or CO2 concentrations may require similar or higher carbon prices.


Changes in GCAM to accommodate Hector v3.2

The changes to how Hector-GCAM are coupled with one another are relatively minor.

- Contents of the gcam emissions csv files were unchanged, we did correct a minor documentation problem (the units for the halocarbon emissions were for concentrations; this has now been fixed).
- Updated the GMAT_ADJUST & GMSAT_ADJUST values, the reference temperatures used to normalize the temperature results.
- As per requested by S. Smith we added Hector the additional aerosol RF values to the output saved by GCAM.


Validation


Recall from the figures above that V3.2.0 runs cooler than V3.1.0 when the same emission pathways are used, even though RF total increases slightly for the warmer scenarios. The GCAM RF and [CO2] output is consistent with what we were seeing from the stand-alone Hector comparisons.

Since this PR impacts Hector, we expect no change in the GCAM Reference scenarios (these runs do not impact take climate effects into account). However, since the GCAM target finder

scenarios must exactly reach a RF target in 2100 and Hector's total RF has changed GCAM will use a different CO2 price to hit a target which affects almost all the results. Which is why in the electricity and ag_prod plots show differences only the target policy runs. whereas there is a single line from the reference scenarios.

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov