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Summary 

In situ soil flushing is being using at the Hanford 100 K-East (100 KE) area to transport mobile chromium 
contamination in the vadose zone to the water table, where it can be collected and treat through pump and 
treat operations. The efficacy of soil flushing is directly related to the volume of clean water that 
infiltrates through contaminated soils. In practice, it is infeasible to comprehensively monitor which 
regions of the vadose zone are being infiltrated through direct sampling of pore water. Consequently, 
there can be significant uncertainty about which regions of the subsurface have been treated, especially if 
hydrogeologic conditions are favorable for the development of unstable flows and preferred flow 
pathways through the vadose zone (Jarvis, Koestel, and Larsbo 2016). 

Current approaches for quantitative monitoring of soil flushing performance rely on contaminant 
concentration measurements collected from extractions wells. There is no quantitative information on the 
volume of flush water delivered to targeted regions of the vadose zone at the Hanford Site, leading to 
significant uncertainty regarding source term removal and long-term impacts to groundwater. If the 
subsurface hydrogeologic properties at the 100 KE Area were adequately known, qualitative metrics of 
soil flushing performance could be simulated, thereby negating expenses required to obtain quantitative 
performance information through borehole drilling/sampling. However, estimating in situ hydrogeologic 
properties has long proven elusive, due primarily to a lack of sufficient information to constrain 
heterogeneous property estimates to a useful degree of certainty. Estimating vadose zone hydrogeologic 
properties is particularly challenging due the dependence of hydraulic conductivity on saturation.  

This report describes progress toward a first-of-its-kind demonstration using surface time-lapse 3D 
electrical resistivity tomography (ERT) monitoring data to estimate the hydrogeologic properties that 
control flush water transport at the 100 KE soil flushing site. The ultimate objective is (1) to verify 
sufficient information exists in the ERT monitoring data to adequately resolve vadose zone hydraulic 
properties, and (2) generate a “digital twin” (i.e., a numerical simulator) that can be used to simulate the 
amount of flush water that has been delivered to each targeted region of the vadose zone, and thereby 
assess the efficacy of flush water delivery. Resulting performance estimates can be used in leu of 
comprehensive borehole drilling and direct sampling (or wellbore logging) that would otherwise be 
required to obtain the same information.  

Estimating the hydrogeologic properties that govern soil flushing behavior will ultimately be 
accomplished using new multi-physics joint inversion capabilities recently implemented in the high-
performance parallel PFLOTRAN flow and reactive transport simulator. This report describes preparatory 
steps taken for the joint inversion, including development of a PFLOTRAN-trained deep neural network 
(DNN) designed to (1) assess the information content in the time-lapse ERT data in terms of resolving the 
governing hydrogeologic properties of the 100 KE soil flushing site, and (2) provide an accruing starting 
estimate of hydrogeologic parameters for the joint inversion.  

Initial results of the DNN training and performance assessment suggest the time-lapse ERT data contains 
sufficient information to accurately estimate hydrogeologic properties if (1) hydrogeologic properties can 
be considered homogeneous within a given stratigraphic unit, (2) stratigraphic unit boundaries are well 
known, and (3) uniform application of flush water at the soil surface is an adequate approximate to actual 
flush water application. Given each of these assumptions, Figure S1 shows an example of the DNN-based 
prediction of soil saturation after 7 days of soil flushing, compared to the corresponding time-lapse ERT 
image of the change in bulk electrical conductivity, which represents the current state-of-the-art use of 
time-lapse ERT data. Both treatments show the influence of the interface between backfill and native 
formation soils, shown in the right image as a white line. Specifically, the interface acts as a vertical flow 
impediment, causing a redistribution of flush water to low points in the boundary.  
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In contrast to the imperfectly resolved ERT image, the DNN assessment is constrained by the physics of 
flow and transport and is therefore physically accurate. A version of the DNN-estimated hydrogeologic 
properties will serve as the starting estimate for the joint inversion, which will be conducted in 2024. The 
resulting digital twin will enable (through simulation) quantitative assessments of soil flushing behavior 
that are not currently possible, such as the transport pathways of flush water to the water table and the 
number of pore volumes of flush water treating a particular volume of soil. Finally, the calibrated digital 
twin will be used in a secondary inversion to constrain the possible location and contaminant 
concentrations of source zones within the treated volume.  

We have thus far used multi-physics simulations and deep machine learning to demonstrate at a minimum 
that if (1) soil hydraulic properties can be considered homogenous within each of the three primary 
stratigraphic units in the system and (2) uniform application of flush water at the surface is a valid 
approximation, then there is sufficient information in the time-lapse ERT data to accurately estimate 
governing hydraulic properties of the backfill and Hanford formation, and to a lesser extent the Ringold 
Formation. An assessment of the uncertainty induced by assuming homogeneous stratigraphic units and 
uniform application of flush water will also be conducted in 2024. 

 

  

Figure S.1. (left) Deep neural network prediction of saturation along three cross-sections after 7 days of 
soil flushing compared to (right) time-lapse ERT images of changes in bulk electrical 
conductivity after 7 days of soil flushing.  
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Acronyms and Abbreviations 

BEC  bulk electrical conductivity 

DNN  deep neural network 

ERT  electrical resistivity tomography 

PNNL  Pacific Northwest National Laboratory 
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1.0 Introduction 

Former operations in the 100 KE Area at the Hanford Site resulted in hexavalent chromium in the vadose 
zone that provides a source of groundwater contamination. Contaminated groundwater is currently being 
hydraulically captured, removed, and transported to a pump-and-treat facility through a series of 
extraction wells. Although these current mitigation procedures are protective of the Columbia River, 
vadose zone soils within the 100 KE Area are expected to provide a continued source of groundwater 
chromium that may prevent site closure for decades.  

Soil flushing is being used at the 100 KE Area to accelerate the removal of the chromium source zone. 
Soil flushing works by applying a continuous stream of clean water at the surface and allowing it to 
percolate to the water table. As the water migrates downward through contaminated soil, it transports the 
chromium from contaminated vadose zone soil to the groundwater, where it is removed through 
pump-and-treat extraction. The efficacy of soil flushing is directly related to the volume of clean water 
that infiltrates through contaminated soils. In practice, it is infeasible to comprehensively monitor which 
regions of the vadose zone are being infiltrated through direct sampling of pore water. Consequently, 
there can be significant uncertainty about which regions of the subsurface have been treated, especially if 
hydrogeologic conditions are favorable for the development of unstable flows and preferred flow 
pathways through the vadose zone (Jarvis, Koestel, and Larsbo 2016).  

Time-lapse electrical resistivity tomography (ERT) imaging is a method of remotely imaging spatial and 
temporal changes in the bulk electrical conductivity (BEC) of the subsurface. Because BEC is governed 
in part by soil saturation, 3D time-lapse ERT can be an effective tool for monitoring when and where the 
vadose zone is impacted by flush water. ERT works by injecting electrical currents and measuring 
electrical potentials (i.e., voltages) on an array of electrodes installed (in this case) along the ground 
surface. ERT data is then numerically processed to produce an imperfectly resolved image of subsurface 
BEC. In monitoring applications, ERT data is collected on a repeating schedule and processed to produce 
images of changes in BEC over time. During soil flushing, increases in BEC with respect to background 
conditions are diagnostic of increased soil moisture. Time-lapse images of increases in BEC may 
therefore be interpreted to diagnose when and where flush water has reached a given region of the vadose 
zone. 

Although time-lapse ERT monitoring can significantly enhance soil flushing performance monitoring 
compared to the use of boreholes alone, it only provides quantitative and limited-resolution information 
regarding the distribution of flush water at a given point in space and time. Time-lapse ERT cannot 
provide quantitative performance information, such as the total volume of flush water that has percolated 
through a given region of the subsurface at a given time. Ideally, soil flushing performance could be 
analyzed through accurate numerical simulation. However, as with most subsurface flow and transport 
simulations, there is insufficient data to adequately constrain estimates of the hydrogeological properties 
that govern vadose zone flow, and therefore to simulate flow with enough certainty to provide a useful 
approximation of flushing performance under heterogeneous field conditions.  

Recognizing the significant but implicit information regarding governing hydrogeological properties 
embedded in time-lapse ERT data, Pacific Northwest National Laboratory (PNNL) recently dedicated 
Laboratory Directed Research and Development funding to develop numerical tools that enable ERT 
monitoring data to directly inform flow and transport simulations. In essence, a high-performance flow 
and transport simulator (PFLOTRAN) (Jaysaval, Hammond, and Johnson 2023) simulates the raw ERT 
data collected during flushing operations, and then systematically modifies governing hydrogeologic 
properties until the simulated ERT data honors both the observed ERT data and any other traditional 
sources of monitoring data (e.g., flush water application rates and locations, flush water fluid 
conductivity). The ultimate objective of the analysis is to generate a calibrated “digital twin” of the soil 
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flushing system that honors all available characterization and monitoring data, and can be used to (among 
other things) quantitatively simulate flushing performance metrics (e.g., the number of pore volumes of 
flush water that passed through a given region of the subsurface).  

In this interim report, we describe progress toward generating an accurate numerical model (i.e., the 
digital twin) that can be used to quantitively approximate soil flushing behavior at the 100 KE site by 
estimating the in situ unsaturated hydraulic properties that govern transport. The analysis first involves an 
assessment of the information content in the ERT data in terms of its capability to estimate unsaturated 
hydraulic parameters within the three primary stratigraphic units at the 100 KE site. Next, we use the ERT 
data to estimate the hydraulic properties that govern flush water flow and the petrophysical parameters 
that relate BEC to hydraulic properties and subsurface states (e.g., porosity, saturation, and pore fluid 
conductivity). When provided as input parameters into a PFLOTRAN simulation of soil flushing 
behavior, the simulation will accurately predict the ERT data, and presumably the flush water migration 
that controls the ERT response. Initial results suggest that flush water transport is influenced by the 
presence of pit backfill soils. Specifically, flush water is redirected along the interface between the higher 
permeability backfill sediments and the lower permeability Hanford formation. Continuing efforts are 
underway to refine the parameter estimates, develop estimates of uncertainty, and demonstrate how the 
100 KE digital twin can be used to provide quantitative estimates of flushing.  
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2.0 100 KE Soil Flushing Site and ERT Monitoring Array 
Summary 

Figure 1 shows three historical images of the Hanford 100 KE Area. The 100 KE Area includes the K 
East Reactor and supporting facilities, including a sodium dichromate storage tank and transport piping in 
the annotated area in the Figure 1 photos from 1964 and 2017. Sodium dichromate was used to inhibit 
piping corrosion. During operations, releases of sodium dichromate occurred in the K East Area, 
contaminating vadose zone sediments and creating a slow-release source zone of chromium to the 
groundwater.  

 

Figure 1.  Historical images of the 100 KE Area showing unplanned releases from the sodium dichromate 
storage tank located in the K East contaminated vadose zone soils, which presently act as a 
slow-release source zone for groundwater chromium contamination.    

Initial efforts to remediate chromium-contaminated vadose zone sediments involved excavating 
contaminated soils. Excavation proceeded by testing soils at the bottom of the excavation pit for 
chromium, and excavating where contaminated soils were located. Maintaining side-slopes required for 
geotechnical stability became infeasible after the pit reached a certain depth, and the pit was filled with 
clean backfill.  

After the excavation pit was backfilled, soil flushing was chosen to remediate contaminated sediments 
remaining beneath the pit boundary. Figure 2 (top) shows an aerial image of the pit taken near the end of 
excavation operations. Figure 2 (bottom) shows the flush zone boundary superimposed on an aerial image 
of the post-backfill excavation zone. Clean flush water was sourced from the 200 West Area pump-and-
treat system effluent and applied at the ground surface with an array of dispersion hoses distributed within 
the flush zone.  
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Figure 2. (top) Aerial view of the excavation pit constructed to remove chromium-contaminated 
sediments from the vadose zone. (bottom) Aerial of the soil flushing zone superimposed on the 
backfilled excavation pit.  

To monitor the migration of flush water through the vadose zone, a surface-based ERT electrode array 
was installed over the flush zone as shown in Figure 3. The array consisted of 8 lines of 32 electrodes 
each, with 4-m spacing between electrodes and 5.4-m spacing between lines. ERT imaging depth is 
determined in large part by the length of the array. In this case, the line lengths were limited by the 
building foundation located on the eastern margin of the array. Consequently, imaging depth was limited 
to approximately 20 m below the ground surface.  
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Figure 3. Location of surface ERT electrode lines (black dots) installed over the soil flushing zone. The 
lateral extent of the array, which impacts imaging depth of investigation, was limited by the 
building foundation located at the eastern margin of the array.   

For perspective, Figure 4 (top) shows an oblique 3D view of the pit backfill boundary, flush zone 
boundary, electrode positions, extraction well positions, and the location of historical chromium handling 
infrastructure (i.e., tanks and piping systems) suspected of releasing chromium during site operations. 
Figure 4 (bottom) shows a vertical cross-section oriented perpendicular to the long axis of the infiltration 
zone, including the locations of the undisturbed Hanford and Ringold formations as interpreted from 
wellbore logs. The interface between the bottom of the pit backfill and the top of the Hanford formation is 
located at least 2 meters below the ground surface at its shallowest point within the soil flushing zone, and 
approximately 10 meters at its deepest. Consequently, all flush water applied at the surface migrates 
through a section of backfill material before reaching the Hanford formation interface. Furthermore, 
except for the pit bottom, the contact between backfill materials and the Hanford formation angles 
downward toward the bottom of the pit.  
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Figure 4. (top) Oblique view of the boundary between the pit backfill and the Hanford formation. 
(bottom) Cross section showing the approximate position of the water table, the Ringold 
Formation, the Hanford-Ringold formation contact, and the contact between the Hanford 
formation and pit backfill.  

Flush water was applied in three different zones (west, center, and east) within the infiltration gallery as 
shown in Figure 5A. Application rates in each zone over time are shown in Figure 5B. Flush water was 
applied continuously to the center zone with variable flow rate for the 49 days of flushing. In the east and 
west zones, flush water was applied intermittently for the first 21 days, and with continuously increasing 
flowrate after 21 days. The total application rate increased continuously to a maximum of ~431 lpm 
(114 gpm) after 49 days of flushing. This report is focused on ERT data collected during the first 28 days 
of flushing.  

Figure 6 shows two photographs of the soil flushing system operating during the first week of flushing. 
Flush water application lines are shown in Figure 6 (left), and the ERT array (i.e., white boxes connected 
by cables) is shown in Figure 6 (right). Of note is the distribution of shallow surface ponding shown in 
Figure 6 (right), caused by slight variations in surface topography. Regions of ponding may facilitate the 
development of preferred vadose flow paths within the backfill soils.  
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Figure 5. A) Flush water application zones and B) application rates over time in each zone within the 
infiltration gallery.  
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Figure 6. (left) Photograph taken during the first week of soil flushing, highlighting the distribution of 
flush water lines and shallow surface water ponding cause by slight variations in topography. 
(right) Photograph highlighting the ERT electrode array (white boxes connected by cables) 
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3.0 Time-Lapse ERT Imaging Summary and Interpretation 

This section summarizes the Central Plateau Cleanup Company-supported time-lapse ERT monitoring 
results collected during the first 28 days of soil flushing in the 2023 campaign. ERT data was collected 
and autonomously processed using PNNL’s E4D code (Johnson et al. 2010) every 2 hours for the full 
duration of the soil flushing operations. Figure 7 through Figure 10 provide summary images and 
corresponding interpretations of flush water flow paths for the first 28 days of flushing. Each figure 
shows the increase in BEC (warm colors) caused by the presence of flush water in three different cross-
sections at 10-m offsets perpendicular to the ERT lines. The bottom cross-section (cross-section 1) 
traverses the deepest portion of the pit backfill, while the middle and upper cross-sections move north-
westward and traverse progressively shallower portions of the pit. The contact between backfill materials 
and the Hanford formation is superimposed on each cross-section (white line) to aid interpretation of the 
ERT images, and magenta arrows designate the active flushing zones for the 7 days prior to the time 
when the image was collected. Figure 7 through Figure 10 show cross-sections for days 7, 14, 21, and 28, 
respectively, after the commencement of soil flushing. Depth resolution only extends 5 to 10 meters 
below the pit boundary, so the absence of changes in BEC at depth does not indicate the absence of flush 
water.  
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Figure 7. Summary of time-lapse ERT images after the first 7 days of flushing, highlighting the 
development of preferential flow paths within the pit backfill soils and redistribution of flush 
water along the pit boundary. Magenta arrows indicate the active flushing zone for the previous 
7 days. White dappled surface is the pit boundary, and the white line denotes the pit boundary 
projected on the cross-section. 

Figure 7 illustrates the development of preferential flow paths, or finger flow, within the backfill 
sediments, evident as horizontal discontinuities in BEC within the pit soils. Finger flow is a common 
phenomenon in vadose infiltration scenarios (Jarvis, Koestel, and Larsbo 2016, Kung 1990, Glass, 
Parlange, and Steenhuis 1989, Glass, Steenhuis, and Parlange 1989, Glass et al. 1990). Its occurrence 
becomes more likely as hydraulic conductivity and/or infiltration rate increases. In each cross-section 
shown in Figure 7, finger flow paths appear to enhance over time, which is consistent with both the 
increasing flush water application rates (Figure 5) and the increase in unsaturated hydraulic conductivity 
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known to occur as sediments become more saturated. Furthermore, the development of finger-flow in the 
backfill sediment may have been facilitated by the shallow surface ponding shown in Figure 6, where 
preferential flow paths develop beneath the ponding zones.  

Figure 7 through Figure 10 also highlight the influence of the interface between the backfill and Hanford 
formation sediments on flush water flow paths. In the upper cross-sections, which intersect sloped 
portions of the pit boundary, it is evident that flush water supplied from preferential flow paths within the 
backfill redistributes along the pit boundary surface. Furthermore, minimal infiltration below the pit 
boundary suggests flush water migrates down-slope along the boundary surface, as opposed to downward 
vertically through the boundary. In the center cross-section of each figure, it is apparent that the flush 
water congregates at a low point in the pit boundary before moving vertically downward beneath the 
western end of the infiltration gallery. The high BEC zone appears to be disconnected from the surface for 
most of the center cross-sections images, suggesting the flush water congregating at the low point in the 
pit boundary is supplied from out-of-plane (e.g., from the northward region of the pit boundary). In each 
of the bottom cross-sections, it is clear that the flush water moving through preferential flow paths in pit 
soils is redistributed laterally along the deepest part of the pit and moves vertically downward into the 
Hanford formation without any apparent finger flow. Redirection of flow along the pit boundary appears 
to direct flush water to the bottom of the pit boundary, and likely has a significant influence on which 
regions of the Hanford and Ringold formations received flush water. These results also suggest the 
backfill materials are more permeable than the Hanford formation.  
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Figure 8. Summary of time-lapse ERT images after the first 14 days of flushing, highlighting the 
development of preferential flow paths within the pit backfill soils and redistribution of flush 
water along the pit boundary. Magenta arrows indicate the active flushing zone for the previous 
7 days. White dappled surface is the pit boundary, and the white line denotes the pit boundary 
projected on the cross-section. 
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Figure 9. Summary of time-lapse ERT images after the first 21 days of flushing, highlighting the 
development of preferential flow paths within the pit backfill soils and redistribution of flush 
water along the pit boundary. Magenta arrows indicate the active flushing zone for the previous 
7 days. White dappled surface is the pit boundary, and the white line denotes the pit boundary 
projected on the cross-section. 
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Figure 10. Summary of time-lapse ERT images after the first 28 days of flushing, highlighting the 
development of preferential flow paths within the pit backfill soils and redistribution of flush 
water along the pit boundary. Magenta arrows indicate the active flushing zone for the 
previous 7 days. White dappled surface is the pit boundary, and the white line denotes the pit 
boundary projected on the cross-section. 
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4.0 ERT-Based Deep Neural Network Training and 
Prediction of Field Soil Flushing Behavior 

This section describes progress toward building a digital twin of the 100 KE soil flushing system, which 
is a numerical simulation that honors available monitoring data collected during flushing operations, 
including ERT monitoring data. The conceptual model includes the three distinct stratigraphic units 
shown in Figure 4, including pit backfill, Hanford formation, and Ringold formation soils, and their 
corresponding unsaturated hydraulic properties and petrophysical relationships. Petrophysical 
relationships for each unit describe the relationship between BEC and porosity, saturation, pore fluid 
conductivity, and surface conductivity, represented in the form of Archie’s law (Archie 1942).  

Generating the digital twin involves estimating the hydrogeologic properties and petrophysical 
relationships for each stratigraphic unit, and the fluid conductivity of the native pore water and the flush 
water. Hydrogeologic parameters that must be estimated include porosity, horizontal permeability, 
vertical permeability, residual saturation, and the van Genuchten function Alpha and M fitting parameters 
(using the Mualem saturation function). Petrophysical parameters that must be estimated include Archie’s 
law cementation exponent, saturation exponent, tortuosity constant, and surface conductivity. In total, 
nine parameters per stratigraphic unit plus the native pore water conductivity and the flush water 
conductivity are estimated to generate the digital twin (29 parameters total).  

 

Figure 11. Flow diagram showing training and application of a deep neural network for prediction of soil 
flushing behavior using field ERT monitoring data. 

Model parameters will ultimately be estimated using new joint hydro-geophysical inversion capabilities 
recently implemented in the massively parallel PFLOTRAN subsurface simulation code (Jaysaval et al. 
2023). However, a well-known limitation of joint inversion involves the occurrence of local minima, 
which causes the inversion to converge to a non-optimal solution if the initial guess is far from the 
optimum. To provide an accurate starting model and reduce the risk of converging to local minima, 
PFLOTRAN was used to train a deep neural network (DNN) to estimate each of the 29 model parameters 
using the time-lapse ERT data collected during the first 28 days of soil flushing. A flow chart for the 
DNN training and parameter estimation is shown in Figure 11. In the training phase, model realizations 



PNNL-34983 Rev 0 
DVZ-RPT-102 Rev 0 

ERT-Based Deep Neural Network Training and Prediction of Field Soil Flushing Behavior 16 
 

are generated by selecting each of the 29 parameters from uniform random distributions with physically 
realistic bounds for each stratigraphic unit. Bounds on porosity and van Genuchten parameters were 
chosen as the maximum and minimum values reported in Table 1 of Khaleel and Freeman (1995), who 
measured Hanford 200 Area soils classified as SS (sand mixed with finer fraction), S (sand), SSG (sand 
and gravel mixed with finder fraction), GS (gravelly sand), SG1 (sandy gravel with gravel fraction < 
60%), and SG2 (sandy gravel with gravel fraction > 60%). Horizontal intrinsic permeability bounds were 
chosen as 1e-13 m2 to 1e-7 m2 for all soils. The ratio of vertical to horizontal intrinsic permeability was 
bounded between 0.2 and 1.0 for all soils. Archie’s cementation exponent (commonly assumed to be 1.3 
for unconsolidated sediments) was bounded between 1.1 and 2.1; Archie’s saturation exponent 
(commonly assumed to be 2.0 for unconsolidated soils) was bounded between 1.6 and 2.6; Archie’s 
tortuosity factor (commonly assumed to be 1.0 for unconsolidated sediments), was bound between 0.8 
and 1.2; and soil surface conductivity was bound between 1e-5 and 1e-2 S/m for all soils.  

Each random parameter set is used as input to PFLOTRAN, which simulates the ERT data time series 
collected during soil flushing for each simulation. Next, random noise is added to the ERT data and the 
realizations are randomly divided, with 75% of the realizations used for DNN training, and 25% used to 
assess the performance of the DNN. Once the DNN is trained with the training data set, the test 
realizations are input to the DNN, which then predicts the 29 model parameters corresponding to each 
realization. Finally, the predicted model parameters are statistically compared to the true model 
parameters to assess DNN performance.  

Assuming the conceptual model used to generate the training data is sufficiently accurate (i.e., 
homogenous properties in each stratigraphic unit, uniform flush water application, etc.), the DNN 
performance assessment provides quantitative metrics regarding the capability of the ERT data to resolve 
the 29 estimated parameters. For example, if the trained DNN can predict parameters with a high degree 
of fidelity using the test data sets, then the training data must collectively contain enough independent 
information about the parameters to independently resolve each one. Comparisons between true and 
DNN-predicted parameters provide a natural assessment of uncertainty in the estimated parameters, 
which can be extended to uncertainty in soil flushing behavior through simulation. Conversely, if the 
DNN cannot be trained to accurately predict the test parameters (within 10% of the true values), then 
there may not be sufficient information in the training data to resolve the parameters. In either case, 
uncertainty in parameter predictions is a natural outcome of the DNN performance assessment.  

Initial testing of the DNN prediction capabilities used 200 generated realizations, 150 for training and 50 
for performance assessment. Standard deviations of the prediction error for each parameter were under 
5% for each of the parameters in the backfill soil and Hanford formation. Prediction errors were larger for 
Ringold Formation sediments, presumably because the ERT data has limited sensitivity at the depth of the 
Ringold Formation.  

To generate the starting model for the joint inversion, the field ERT data are applied to the trained DNN 
as shown in the lower flowchart in Figure 11, resulting in 29 parameters that, given an accurate 
conceptual model, should honor the true 100 KE soil parameters within the 5% error range suggested by 
the DNN performance assessment. However, the conceptual model does not consider some aspects of the 
system that are present in reality, the foremost being heterogeneity within each of the stratigraphic units, 
unequal distribution of the flush water at the surface, and preferential flow paths within the backfill soil. 
The effects of variations in flush water temperature and/or fluid conductivity, or geochemical reactions 
that may alter fluid conductivity, are also not considered, although they are expected to be small. For 
these reasons, the DNN-based parameter estimates generated using field data are expected to be less 
accurate than estimates generated using synthetic data to a degree that hasn’t yet been quantified. 
Regardless, the DNN is trained to provide generalized parameter estimates based on data trends, and is 
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anticipated to provide a starting model that is closer to a global minimum (i.e., closer to the true field 
parameters) than is otherwise available.  

Table 1 shows the parameter estimates for each stratigraphic unit predicted by the DNN using ERT 
monitoring data collected during the first 28 days of operation. Some characteristics of the predictions are 
consistent with the ERT images and interpretations presented in Section 3.0. First, the permeability of the 
backfill is greater than the permeability of the Hanford formation – a condition necessary to enable flush 
water redirection along the boundary between the backfill soils and the Hanford formation. Horizontal 
permeability is predicted to be greater the vertical permeability in each stratigraphic unit, which is a 
predominant condition encountered in sedimentary depositional systems. Flush water electrical 
conductivity is predicted to be 0.064 S/m, which is about six times the predicted native pore water 
conductivity, but within the range of observed field values of flush water conductivity (0.044 to 
0.067 S/m1).  

Table 1. DNN-predicted 100 KE soil hydraulic properties and petrophysical parameters. 

 Pit Backfill Hanford Formation Ringold Formation 

Porosity 2.34E-01 2.58E-01 3.23E-01 

Horizontal Permeability (m^2) 1.85E-11 1.22E-12 2.07E-13 

Vertical Permeability (m^2) 1.11E-11 8.10E-13 1.50E-13 

Residual Saturation 1.00E-03 8.00E-02 1.00E-03 

van Genuchten Alpha (1/Pa) 8.03E-04 7.10E-02 8.03E-04 

van Genuchten M 3.40E-01 3.19E-01 3.40E-01 

Archie Cementation Exp. 1.22E+00 1.88E+00 1.28E+00 

Archie Saturation Exp. 1.68E+00 2.26E+00 2.32E+00 

Archie Tortuosity Constant 9.80E-01 1.11E+00 1.08E+00 

Archie Surface Cond. (S/m) 2.00E-04 9.10E-05 1.10E+00 

Native Pore Water Cond. (S/m) 1.55E-02 

Flush Water Cond. (S/m) 6.36E-02 

In addition to being used as the starting model for the joint inversion (which is in progress), the DNN-
based parameter estimate can be used to simulate general soil flushing behavior. Although the simulation 
will not account for the effects of intra-unit heterogeneity, surface ponding, or temperature variations 
among other factors, it will provide behavior predictions that honor the ERT data, obey physical laws of 
unsaturated zone transport, and may accurately predict the general behavior of flush water in the 
subsurface. For example, Figure 12 through Figure 15 respectively show the simulated progression of the 
increase in soil saturation along three cross-sections after 7, 14, 21, and 28 days of flushing. Each figure 
also includes cross-sections showing interfaces between stratigraphic units to aid in demonstrating the 
impact of interface between the backfill and Hanford formation, and of the Hanford/Ringold contact. 
These images are essentially DNN predictions of 100 KE soil flushing behavior given the ERT 
monitoring data.  

Figure 12 shows the predicted increases in saturation after the first 7 days of flushing in the west and 
central flushing zones. Immediately evident is the increase in saturation that occurs across the 
backfill/Hanford formation interface in the shallow (top two) cross-sections. This effect is caused by the 
decrease in permeability from the backfill to the Hanford formation and the corresponding requirement to 

 
1Jeremy Lynn (CPCCo), 03/09/2023. 
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maintain mass balance of flush water. In the bottom cross-section where the backfill is deeper, flush water 
is just beginning to arrive at the Hanford formation on day 7. Although the DNN predicted flush behavior 
does not capture the preferential flow paths through the backfill material that are evident in the ERT 
images, the increase in saturation (and therefore BEC) at the backfill/Hanford formation interface is 
consistent between the two in terms of general flow behavior. 

With the exception of the preferential flow path in the backfill soil, and with the understanding that the 
ERT images do not resolve flush water behavior at the deeper Hanford/Ringold contact, the DNN 
predictions are generally consistent with the ERT images through day 28; however, the DNN predictions 
reveal notable behaviors that are not resolvable by the ERT imaging.  

 

Figure 12. (left) Cross-sections of DNN-predicted change in saturation from north (top) to south (bottom) 
after 7 days of flushing in west and center flushing zones. (right) Stratigraphic cross-section.  
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Figure 13. (left) Cross-sections of DNN-predicted change in saturation from north (top) to south (bottom) 
after 14 days of flushing. Center and east flushing zones were active from day 7 to day 14 (see 
Figure 5). (right) Stratigraphic cross-sections corresponding to each saturation cross-section. 

 

Figure 14. (left) Cross-sections of DNN-predicted change in saturation from north (top) to south (bottom) 
after 21 days of flushing. Center and west flushing zones were active from day 14 to day 21 
(see Figure 5). (right) Stratigraphic cross-sections corresponding to each saturation cross-
section.  
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Figure 15. (left) Cross-sections of DNN-predicted change in saturation from north (top) to south (bottom) 
after 28 days of flushing. All flushing zones were active from day 21 to day 28 (see Figure 5). 
(right) Stratigraphic cross-sections corresponding to each saturation cross-section. 

For example, within the Hanford formation, saturation levels are higher beneath tomographic lows in the 
pit boundary, again suggesting that flush water is redirected to low points in the boundary. In addition, the 
footprint of the flush water treatment decreases significantly with depth in comparison to the application 
footprint at the surface, largely due to the redirection of flush water to the bottom of the pit boundary.  
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5.0 Discussion and Next Steps 

This project represents a first-of-its-kind effort to directly inform a predictive simulator with time-lapse 
geophysical monitoring data, with the ultimate objective of using that simulator to accurately assess the 
behavior of subsurface processes (soil flushing in this case). The capability to develop a representative 
digital twin of the subsurface has long been hindered by a lack of sufficient information to adequately 
estimate system-governing parameters. In this case, we are using time-lapse ERT monitoring data to 
address the information gap. Consequently, success or failure in generating an accurate predictive 
simulation of 100 KE soil flushing behavior hinges directly on the value of information in the ERT data 
time-series, specifically regarding the unsaturated hydraulic properties that govern flush water transport. 
We have thus far used multi-physics simulations and deep machine learning to demonstrate at a minimum 
that if (1) soil hydraulic properties can be considered homogenous within each of the three primary 
stratigraphic units in the system and (2) uniform application of flush water at the surface is a valid 
approximation, then there is sufficient information in the time-lapse ERT data to accurately estimate 
governing hydraulic properties of the backfill and Hanford formation, and to a lesser extent the Ringold 
Formation.  

The advantages of assessing soil flushing behavior using simulation over ERT imaging alone are 
numerous, and include (but are not limited to) the following: 

 The digital twin assessment is bound by the physics of flow and transport, while the ERT images are 
not (i.e., they are smeared due to limited resolution). 

 The analysis provides valuable in situ estimates of soil hydraulic properties. 

 The digital twin can be used to extract qualitative performance metrics, such as the number of pore 
volumes of flush water moving through a given region of the subsurface. 

 The digital twin can be used to design and predict the performance of future remediation actions at 
the same site. 

The primary limitation is that errors in the conceptual model may lead to poor predictions of soil 
hydraulic properties and soil flushing behavior. Consequently, uncertainty estimation is a required for 
comprehensive analysis of the predictive simulations.  

Next steps in the development and demonstration include: 

 Refining and publishing the DNN assessment of the information value in time-lapse ERT data 

 Joint inversion using the DNN-based estimate as the starting model 

 Source-term inversion, whereby the digital twin and chromium concentration time series from the 100 
KE extraction well are used within a secondary inversion to identify the possible range of locations 
and concentrations of soil sources  

We will submit a second peer-reviewed publication on this topic as a deliverable for fiscal year 2024.  
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6.0 Quality Assurance 

This work was performed in accordance with the Pacific Northwest National Laboratory (PNNL) Nuclear 
Quality Assurance Program (NQAP). The NQAP complies with the United States Department of Energy 
Order 414.1D, Quality Assurance. The NQAP uses NQA 1 2012, Quality Assurance Requirements for 
Nuclear Facility Application as its consensus standard and NQA 1 2012 Subpart 4.2.1 as the basis for its 
graded approach to quality. This work emphasized acquiring new theoretical or experimental knowledge. 
The information associated with this report should not be used as design input or operating parameters 
without additional qualification. 
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