
ESTCP Final Report:
USAR-PNNL Machine Learning 1 January 2025

FINAL REPORT

Optimizing Facility Operations by Applying Machine Learning to
the Army Reserve Enterprise Building Control System

Installation Energy and Water Projects

EW19-5300

January 2025

B. Ford, E. Wendel, T. Yoder, V. Chandan

PNNL-33364

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov

ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

TABLE OF CONTENTS
Page

ABSTRACT .. 9

EXECUTIVE SUMMARY .. 10
INTRODUCTION .. 10
OBJECTIVES ... 10
TECHNOLOGY DESCRIPTION .. 10
PERFORMANCE ASSESSMENT .. 12
COST ASSESSMENT .. 14
IMPLEMENTATION ISSUES .. 14

1.0 INTRODUCTION .. 18
1.1 BACKGROUND .. 18
1.2 DRIVERS ... 18
1.3 OBJECTIVE OF THE DEMONSTRATION ... 19
1.4 ACTIVITIES PLANNED BUT NOT COMPLETED .. 20

2.0 TECHNOLOGY DESCRIPTION .. 22
2.1 TECHNOLOGY OVERVIEW ... 22

Machine Learning Overview .. 22
Machine Learning for Buildings ... 22

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY.................... 24
2.3 DEMONSTRATION PLATFORM: EBCS .. 26

3.0 FACILITY/SITE DESCRIPTION .. 29
3.1 GENERAL FACILITY/SITE SELECTION CRITERIA 29
3.2 DEMONSTRATION FACILITY/SITE LOCATION AND OPERATIONS 30
3.3 SITE-RELATED PERMITS AND REGULATIONS .. 31
3.4 PROPERTY TRANSFER AND DECOMMISSIONING 31

4.0 PERFORMANCE OBJECTIVES .. 32
4.1 SUMMARY OF PERFORMANCE OBJECTIVES ... 32
4.2 PERFORMANCE OBJECTIVE DESCRIPTIONS ... 32

Fault Detection .. 33
Building Energy Use ... 33

5.0 TEST DESIGN ... 35
5.1 CONCEPTUAL TEST DESIGN .. 35

Use Case Selection .. 35
Algorithm Testing ... 36

5.2 BASELINE CHARACTERIZATION .. 37
5.3 DATA MANAGEMENT.. 37

Data Sources ... 37
Equipment Calibration and Data Quality Issues ... 39
Instrument Data Processing .. 39

5.4 DESIGN AND LAYOUT OF SYSTEM COMPONENTS 40
5.5 OPERATIONAL TESTING ... 40

Performance Objective Analysis Overview .. 40
Model Predictive Accuracy ... 41

5.6 DATA INTEGRATION PLATFORM ... 43
PNNL Cybersecurity Posture .. 44

5.7 DATA QUALITY ANALYSIS AND CLEANING ... 45
Data Quantity .. 45
Outlier (Anomaly) Detection .. 48

6.0 PERFORMANCE ASSESSMENT .. 50
6.1 USE CASE SELECTION ... 50
6.2 BASELINE PREDICTION .. 53

ML Model Comparison... 53
Input Feature Selection ... 58

6.3 FAULT DETECTION .. 62
Fault Detection Data Requirements .. 62
Fault Detection Performance .. 63

6.4 SITE PRIORITIZATION ... 65
Prediction Task Complexity ... 67

7.0 COST ASSESSMENT .. 69
7.1 GENERAL COST MODEL ... 69
7.2 COST DRIVERS .. 70
7.3 COST ANALYSIS CONSIDERATIONS .. 71

8.0 TECHNOLOGY TRANSFER .. 72

9.0 IMPLEMENTATION ISSUES .. 77
9.1 DATA QUALITY ISSUES .. 77

Data Availability and Quality ... 77
Data Integration .. 79
Unavailable Metadata and Inconsistent Point Naming Conventions 81
Limited Detail in Maintenance Logs .. 83
Misalignment of System Functional Design and ML Objectives 84

9.2 CYBERSECURITY ISSUES ... 84

10.0 REFERENCES ... 86

APPENDIX A: POINTS OF CONTACT ... 88

APPENDIX B: MACHINE LEARNING METHODS... 89
C.1 Use Case Prioritization and Machine Learning for Buildings 93
C.2 DOD Best Practice for Applying ML to Building Systems 99

ESTCP Final Report:
USAR-PNNL Machine Learning 4 January 2025

LIST OF TABLES
Page

Table 1. Characteristics of 10 Initial Demonstration Buildings ... 30
Table 2. Performance Objectives .. 32
Table 3. External Validation Metrics .. 43
Table 4. ML Use Case Prioritization Matrix Applied to USAR Buildings Data 51
Table 5. ML Model Types Implemented and Tested .. 54
Table 6. Average Baseline Model Performance Accuracy Metrics for All Buildings by Model

Type .. 57
Table 7. Average Baseline r2 score for All Buildings by Model Type and Input Feature 60
Table 8. Input Features Used in the Expected Annual Site Energy Model 66
Table 9. Performance Metrics of the Expected Annual Site Energy Model 66
Table 10. Inputs to a Traditional Cost Model for ML Technology Implementation 69
Table 11. Example Data from CSS ... 83

LIST OF FIGURES
Page

Figure 1. Overview of Machine Learning Methods for Buildings ... 23
Figure 2. Reserve Centers on the Enterprise Building Control System .. 27
Figure 3. Enterprise Building Control System Interface .. 28
Figure 4. A Typical Army Reserve Center ... 29
Figure 5. Equipment Types Present in a Set of 12 EBCS-connected Buildings........................... 31
Figure 6. Schematic of EBCS Network Architecture ... 38
Figure 7. Data Integration Platform Schematic .. 44
Figure 8. Sample Output of Gap Statistics from MDMS.. 46
Figure 9. An Example of a DQA Plot Showing the Relationship between Features and the

Prediction Target ... 47
Figure 10. An Example of a DQA Plot Showing the Daily Average Hourly Energy and Two

Standard Deviations .. 48
Figure 11. Outlier Identification Illustrated with Hourly Energy and Temperature Plotted over

Time and a Scatter Plot of the Same Hourly Energy Data as a Function of
Temperature .. 49

Figure 12. Down-selection to Buildings with Adequate Data for ML ... 50
Figure 13. Several ML Model Predictions of Baseline Consumption .. 53
Figure 14. Actual Energy Usage Compared to Predictions by the Random Forest Model 55
Figure 15. Sample FCNN Architecture from Kim et al. (2022) ... 56
Figure 16. Comparison of Model Performance (full set regression score) for All Buildings that

Had Sufficient Data... 56
Figure 17. Representative hourly electricity use profile for an Army Reserve training Center in

the month of June. ... 57
Figure 18. Effect of Cyclically Encoded Time Features ... 59
Figure 19. Relative Importance of the Baseline Features for the Random Forest Model 59

Figure 20. Average Test and Training Set r2 Score for the Random Forest Model for Different
Input Features.. 61

Figure 21. Hierarchy of Fault Validation Data Sources ... 63
Figure 22. Potential Fault Indicated by a Low Regression Score at the Same Time as a Large

Number of Alarms .. 64
Figure 23. Example of a Building with Sufficient Data for a Baseline Model but Few Alarm

Points... 65
Figure 24. Site Annual Consumption Compared vs. Model Prediction Error 67
Figure 25. Cost Breakdown for Demonstration Project by Major Task 70
Figure 26. Application Architecture for Proof-of-Concept and Production Deployment 74
Figure 27. Screenshots from the Deployment Application Demonstration 75
Figure 28. Buildings with Adequate Data for ML .. 77
Figure 29. Meter Data Availability in MDMS and EBCS .. 79
Figure 30. Non-overlapping Coverage of Control Point Readings for Multiple EBCS Buildings80
Figure 31. Example Graphical Model of a Boiler System in EBCS ... 82

ESTCP Final Report:
USAR-PNNL Machine Learning 6 January 2025

ACRONYMS AND ABBREVIATIONS

AMI advanced metering infrastructure
AMP Amy Metering Program
ARIMD Army Reserve Installation Management Directorate
ARNet Army Reserve Network
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
ATO Authority to Operate
AUC area under curve
BAS building automation system
BCS building control system
CAC Common Access Card
CART Classification and Regression Trees
C.E.M. Certified Energy Manager
CONUS continental United States
CPU central processing unit
CSS Customer Support System
CTO Certificate to Operate
CY calendar year
DoD U.S. Department of Defense
DOE Department of Energy
DQA data quality analysis
DPW Directorate of Public Works
DRL deep reinforcement learning
EBCS Enterprise Building Control System
EMIS energy management information system
ESTCP Environmental Security Technology Certification Program
EUI energy use intensity
FCNN fully connected neural network
FDD fault detection and diagnosis
FEMP Federal Energy Management Program
FISMA Federal Information System Management Act
FOUO For Official Use Only
FTP file transfer protocol
G-6 Office of the Army Chief Information Officer
GPU graphics processing unit
HOA hand-off-auto

HQ Headquarters
HVAC heating, ventilation, and air conditioning
IEEE Institute of Electrical and Electronics Engineers
ISD Integrated Surface Database
IT information technology
LEED Leadership in Energy and Environmental Design
MB megabyte
MDMS Meter Data Management System
ML machine learning
MMBtu million British thermal units
MNIST Modified National Institute of Standards and Technology
MPC model predictive control
MSSQL Microsoft SQL Server
NCEI National Centers for Environmental Information
NIST National Institute of Standards and Technology
NMBE normalized mean bias error
NOAA National Oceanic and Atmospheric Administration
OA outdoor air
OLS ordinary least squares
OUO Official Use Only
PII Personal Identifiable Information
PNNL Pacific Northwest National Laboratory
PNSO Pacific Northwest Site Office
PR public relations
RD Readiness Division
ReLU Rectified linear unit
RNN recurrent neural network
ROC receiver operating characteristic
SVM support vector machine
SVR support vector regression
UCPM Use Case Prioritization Matrix
USACE U.S. Army Corps of Engineers
USAR U.S. Army Reserve
VAV variable air volume
VM Virtual Machine
XGB Extreme Gradient Boosting

ACKNOWLEDGEMENTS

This demonstration is the result of numerous people working to identify the best opportunities for
applying machine learning to U.S. Army Reserve buildings. The authors wish to acknowledge the
ESTCP Energy and Water Program lead and committee for their guidance and leadership. This
could not have been possible without the partnership with the U.S. Army Reserve, led by Mr. Paul
Wirt, who has championed innovation in energy management across the Army complex. The
authors would also like to thank the following current and former PNNL staff for collaboration on
this project: Bill Chvala Jr, Sarah Newman, Xiaoli Duan, Tim Salsbury, Stephanie Johnson, Eric
McKay, Hayden Reeve, Osman Ahmed, Majid alDosari, James Goddard, Abinesh Selvacanabady,
and Lucy Huang.

ABSTRACT

Introduction and Objectives
Thousands of U.S. Department of Defense (DoD) buildings have building automation systems
(BASs) and/or advanced meters. Although these systems have a wealth of data, performance
optimization requires time and expertise to review and act on that information. Machine learning
(ML) can provide automated and actionable insights to controls operators. This demonstration
implemented proven ML methods on the Army Reserve Enterprise Building Control System.
Technology Description
ML refers to algorithms that “learn” from data and improve their performance on a given task
over time. In the buildings domain these tasks range from predicting future energy consumption,
to identifying operational issues before faults occur, to optimizing control decisions. To learn,
ML requires input data, which – for buildings – typically consists of instrument data such as
energy consumption data and subsystem controls information such as set-point temperatures, and
context data consisting of information such as the physical location of the building, the area of
the building, and the weather. ML models use the relationships learned from the input data to
make predictions with new, previously unseen, data.
Performance and Cost Assessment
The team was able to investigate and successfully implement the following ML use cases:
labeling consumption data as anomalous or non-anomalous; baseline whole-building load
prediction (unknown fault status); fault detection (validation not possible); and site prioritization
for energy-related projects. Due to the constraints of the project, interventions were not able to
be implemented during the demonstration; therefore, assessments of operational cost savings and
maintenance avoided could not be performed.
Implementation Issues
Throughout the demonstration, the primary obstacle to successful use case investigation was a
lack of access to complete, high-quality data. In general, ML algorithms require large volumes of
input data to produce models that have high predictive accuracy. For many USAR buildings,
however, the minimum required data were simply unavailable.
Publications
The project has been presented at two leading national building conferences1 and two additional
publications to peer-reviewed journals2 are currently in preparation.

1 American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Annual conference (June
2021) presentation “Applying Machine Learning to Enhance Building Performance at US Army Reserve Centers”.
National Institute of Building Sciences Building Innovation Conference (September 2021) presentation “Applying
Artificial Intelligence to Buildings with Imperfect Data”.
2 A paper describing the “Challenges to Applying ML to Existing Building Energy and Controls Data at Scale” and
a paper describing “ML for Buildings: A Use Case Perspective” (both in Draft to be submitted).

EXECUTIVE SUMMARY

INTRODUCTION

Thousands of U.S. Department of Defense (DoD) buildings have building automation systems
(BASs) and/or advanced meters. These systems have the potential to enable significant
reductions in energy use through identification of operational issues. Yet in many buildings, the
systems are often not actively monitored or leveraged to improve operations. The building
operators do not have time to sift through the BAS lists of alarms, alerts, and settings. The BASs
do not prioritize the most important actions needed to be taken on a given day. In some cases, the
way BASs are set up causes inefficient operations and premature failure of equipment. Advanced
approaches to energy management can contribute significantly to meeting energy-reduction goals
and reduce the mission impact of downtime associated with building system failure that could
have otherwise been avoided.
The U.S. Army Reserve (USAR) has an extensive source of operational information through its
Enterprise Building Control System (EBCS), which integrates control system data and data from
the Army’s Meter Data Management System (MDMS) into a common analytic platform.
Although EBCS has a wealth of building and system-level data, optimization of performance
normally requires a trained controls operator to review and act on that information. Machine
learning (ML) methods can provide automated and actionable insights to controls operators.
A team from Pacific Northwest National Laboratory (PNNL) with expertise in building controls,
ML, and technology assessment executed this demonstration, and hosted by USAR from 2019-
2022.

OBJECTIVES

The goal of the demonstration documented in this report was to show that common, industry-
standard machine learning (ML) algorithms can be applied to USAR buildings data to automate
the identification of operational issues and energy-savings opportunities. The demonstration
aimed to investigate a variety of use cases, including prediction of baseline electricity demand,
automated fault detection and diagnosis, and controls optimization methods. Further, the
demonstration aimed to quantify cost savings associated with measures identified by the ML
algorithms.

TECHNOLOGY DESCRIPTION

ML refers to algorithms that “learn” from data and improve their performance on a given task
over time. In the buildings domain these tasks range from predicting future energy consumption,
to identifying operational issues before faults occur, to optimizing control decisions. To learn,
ML requires input data, which – for buildings – typically consists of instrument data such as
energy consumption data and subsystem controls information such as set-point temperatures, and
context data such as the physical location of the building, the area of the building, and the
weather. ML models use the relationships learned from the input data to make predictions with
new, previously unseen, data.
Figure ES.1 illustrates how different ML technologies can be applied to buildings data to
produce an optimized solution suite. The first step is to collect and process the input instrument

data and context data. Data integration and preprocessing involves tasks such as making the
data accessible in a format and location such that ML algorithms can easily access them and
resolving any data quality concerns such as data gaps and noise.

Figure ES.1. Overview of Machine Learning Methods for Buildings

The ML models can then be trained using the processed input data to make predictions for
various use cases. Some of the common use cases for ML in the operation of commercial
buildings are (note that not all of these use cases were investigated in this demonstration):
1. Baseline consumption modeling: Predict power consumption (under business-as-usual

conditions/without optimization of controls) at the building level for a specified time period
in future.

2. Unsupervised fault/anomaly detection: Use a baseline consumption model to predict
baseline consumption. Then compare the baseline prediction with real/measured
consumption. If the deviation is more than a certain use-prescribed threshold, classify the
performance as anomalous.

3. Labeling consumption data as anomalous/non-anomalous: Use cluster analysis to
segregate (training data only) into anomalous and non-anomalous. However this is only
applied on training data for the purpose of autonomously labeling data as anomalous and
non-anomalous (in the absence of expert opinion). Such labeled data are needed as an input
for the use case below.

4. Supervised fault/anomaly detection: Use data labeled as anomalous vs. non-anomalous
(either labeled by an expert or by using the methodology in the above use case) as training
data to train classification ML algorithms for fault detection.

5. Baseline control-oriented modeling: Train regression ML models that predict energy use
and indoor environment variables (e.g., temperature). The inputs are control knobs and
exogenous variables.

6. Model-based control optimization: Use models trained in the above use case to optimize
control settings to achieve a prescribed objective (reduce energy/cost) over a prescribed
period of time. Can be implemented as a lookup table.

7. Model-free control optimization: Train control policies directly (without the aid of a model,
hence different from model-based control optimization use case) to optimize them to achieve
a prescribed objective (reduce energy/cost) over a prescribed period of time. Implementation
on an actual building is outside the scope of the project; therefore, the model developed in
above use case or a pre-existing simulation model can be used as a proxy to demonstrate the
proof-of-concept.

8. Transfer Learning: Transfer models learned on one “source” building to another “similar”
“target” building. Both baseline consumption model and baseline control-oriented models
can be examined for transferability.

9. Supervised Fault Diagnosis: Use data labeled in two layers: (1) anomalous vs. (2) non-
anomalous. Anomalous data is labeled with the cause of the fault. Train classification ML
algorithms on such data to diagnose (specify) the type of fault. Data can be generated from
simulation models if field data required for the analysis are challenging to obtain.

10. Predictive Maintenance: Analyze the health of the subsystems in a building using data from
equipment and estimate probability of failure.

PERFORMANCE ASSESSMENT

Given the available data during the demonstration performance period, the team was able to
investigate the following ML use cases:

• labeling consumption data as anomalous or non-anomalous
• baseline whole-building load prediction (unknown fault status)
• fault detection (validation not possible)
• site prioritization for energy-related projects.

Models trained to label data as anomalous or non-anomalous and to predict baseline loads
generally performed well. For the baseline energy consumption modeling use case, the project
team tested a number of leading regression algorithms to test which would produce the highest
accuracy results across all the buildings with sufficient input data. The regression scores of the
different models for each of the buildings with sufficient data are shown in Figure ES.2. All the
models exceeded the success criteria metrics for accuracy, but the random forest model was
ultimately chosen for implementation in the demonstration deployment application due to its
high accuracy across a range of inputs.

Figure ES.2. Comparison of Model Performance (full set regression score) for All Buildings that

Had Sufficient Data

Baseline prediction is a precursor to fault detection, wherein a model is trained to predict demand
patterns under normal operations; then, deviations in actual demand from predicted demand can
be flagged and investigated as potential faults. As discussed further below in Implementation
Issues, it was not possible to verify whether the baseline prediction models were trained on fault-
free data, which undermined the reliability of subsequent fault detection models. Finally, a
separate random forest regression model was trained to prioritize USAR sites for energy-related
projects. The model was used in a virtual Installation Energy and Water Plan (v-IEWP)
performed by PNNL for USAR to identify sites at which energy conservation measures should
be prioritized.
Despite the deployment and data challenges, the demonstration accomplished the following
tasks:

• Successfully demonstrated anomaly detection, baseline modeling, and fault detection use cases
(with caveats).

• Created a Use Case Prioritization Matrix for evaluating which ML applications are appropriate
for an end user given data availability, user priorities, and other key decision metrics.

• Developed an extensible Python-based data integration platform that allows users to readily
merge controls, meter, weather, and other data sources and feed integrated data into an ML
modeling pipeline.

• Documented opportunities and constraints that shape the ML solution space within the USAR
context and recommendations for improvement to extend the scope of ML applications.

• Produced a user-friendly demonstration web app (currently hosted on the PNNL network) that
allows users to build their own baseline prediction models on USAR data and generate graphs
and compare prediction to actual consumption.

COST ASSESSMENT

This demonstration highlighted the fact that the installation costs to integrate machine learning
models into data and decision systems, and timeline can be much greater than originally planned,
in large part due to the data preparation costs. The specific calculation varies depending on the
use case, but the economic benefits component would relate back to one or more of the
performance objectives, namely analysis effort, building energy use, and system maintenance.
Due to the constraints of the project (discussed in the following Implementation Issues section),
interventions could not be implemented during the demonstration; therefore, assessments of
operational cost savings and maintenance avoided could not be performed.

IMPLEMENTATION ISSUES

Several challenges that were not well understood at the outset of the demonstration caused delays
and created barriers to successful use case investigation and deployment of ML algorithms.
Deployment: When the demonstration began, the USAR was planning to transition a number of
Army Reserve Network (ARNet)-hosted systems to the Microsoft Azure cloud platform. Among
the systems planned for transition was the Enterprise Building Control System (EBCS), which
integrates control system data across dozens of USAR buildings into a common analytic
platform. To date, however, that transition has not occurred; consequently, throughout the
demonstration there has been uncertainty regarding the ultimate deployment environment and the
cybersecurity requirements associated with deployment. Because of the ongoing uncertainty
about deployment requirements, the ML tools developed during this demonstration were not
deployed to EBCS directly but instead are hosted on the PNNL network. The team will continue
to work with USAR after the demonstration concludes to plan a future EBCS deployment.
Data: Throughout the demonstration, the primary obstacle to successful use case investigation
was a lack of access to complete, high-quality data. In general, ML algorithms require large
volumes of input data to produce models that have high predictive accuracy. For many USAR
buildings, however, the minimum required data were simply unavailable. The most prominent
example of data unavailability occurred in the Meter Data Management System from June 2018
to September 2019, during which time almost no USAR meter data were recorded due to a
networking connectivity issue. However, even when high-resolution utility meter and control
systems data were available for a building, there was rarely a long enough period of temporal
overlap between sources that the data could be integrated and used to train a baseline prediction
model.
An additional barrier to investigating fault detection use cases was the facility maintenance data
provided by the Customer Support System (CSS), an enterprise system for tracking work orders
at USAR sites. The CSS tickets did not provide sufficient detail to definitively identify fault
causes or durations. Hence, it was not possible to build fault-free baseline prediction models or
validate the predictions of fault detection models. When the fault status is unknown—i.e., we do
not know when and if there are faults present in the training data—it precludes generating
baseline models that are capable of positively identifying faults, although it does not eliminate
the possibility of creating baseline models entirely. Baseline models can be generated for the
buildings with sufficient data, but we cannot say whether they reflect the ideal fault-free

operation of the building. We only know the models can predict the current operation, faults
included.
For example, if a building has a fault of a stuck open terminal damper, which has caused an
increase in the total building energy consumption, that fault would be present in the training data
for the baseline model, and the model’s baseline power prediction would include the higher
energy consumption caused by the fault. Any faults in the available training data will be
incorporated into the models’ whole-building consumption predictions. Because we do not have
any information about the faults in the training data (or even know if they exist), we cannot teach
the model anything about those faults or use the model to identify existing faults.
Ultimately, only nine USAR buildings had adequate data for investigating ML use cases beyond
data quality analysis and baseline prediction. Table ES.1 summarizes the data requirements and
actual data availability associated with three ML use cases investigated during the
demonstration. The table is an application of the Use Case Prioritization Matrix, which was
developed for the demonstration.

Table ES.1. ML Use Case Prioritization Matrix Applied to USAR Buildings Data

Use Case
Description

Use Case
Category

Data
Attribute Data Required Actual Data Available

Labeling
consumption
data as
anomalous or
non-
anomalous

Pre-
processing
anomaly
detection

Measurements Utility use data (hourly or
smaller resolution):
• Gas consumption
• Electricity consumption
• Water consumption
Outdoor environmental
data (hourly or smaller
resolution).

Data requirements met.

Data Volume No strict minimum
requirement.

Data requirements met.

Data Quality Gaps are tolerable. Data requirements met.
Baseline
consumption
modeling

Fault
detection,
energy
benchmarking

Measurements Utility use data (hourly or
smaller resolution):
• Gas consumption
• Electricity consumption
• Water consumption
Outdoor environmental
data (hourly or smaller
resolution).

Outdoor environmental data
available at hourly resolution
from NOAA across all of
CONUS.

Where utility meter data is
available, it is available at
hourly or smaller intervals.
Utility meter data are only
available for a portion of the
buildings that have control
data. Many buildings with
utility meters do not have
control data available.

Where utility meters are present

Use Case
Description

Use Case
Category

Data
Attribute Data Required Actual Data Available

at buildings, electricity is the
most common meter type. Gas
and water utility meter data are
not consistently available.

Data Volume At least 1 year. Multiple
years are preferred.

At least 1 year of overlapping
meter and controls data
available for just 9 of ~70
buildings.
Multiple years not available.

Data Quality Must be fault-free.
Sparse gaps are tolerable (a
few data points missing).

Fault status unknown, not
possible to say whether data are
fault-free.
Depends on building, but large
gaps (a few hours up to a few
months) are present.

Unsupervised
fault/anomaly
detection

Fault
detection

Measurements Step 1 (baseline
consumption model
training): fault-free data as
required to train baseline
consumption model.

Step 1: Same data availability
constraints as described in the
baseline consumption modeling
use case, fault status unknown.

Step 2 (fault detection):
consumption measurements
for time period for which
fault detection is to be
performed (can be a real-
time stream).

Step 2: N/A, cannot progress
past Step 1 without fault-free
data.

Data Volume Step 1 (baseline
consumption model
training): At least 1 year.
Multiple years is preferred.

At least 1 year of overlapping
meter and controls data
available for just 9 of ~70
buildings.
Multiple years not available.

Data Quality Step 1 (baseline
consumption model
training): must be fault-
free.

Step 1: Fault status unknown,
not possible to say whether data
are fault-free.

Step 2 (fault detection): can
have faults.
Both: Sparse gaps are
tolerable (a few data points
missing).

Step 2: N/A, cannot progress
past Step 1 without fault-free
data.

The initial results of this demonstration are promising, but long-term changes in data acquisition
and storage would be needed to extend the applications of ML. These changes include the
following:

• Implement metadata or semantic models (e.g., standardize point categorization and mapping
across all buildings in EBCS).

• Assure that complete point histories are saved in long-term data storage, and restore points that
go off-line as soon as possible to prevent large data gaps.

• Assure that histories of the rule-based fault alarms are generated by EBCS and saved in long-
term data storage.

• Improve maintenance recordkeeping to include specific detail about when faults occur and
what specifically occurred (e.g., terminal damper stuck open).

• Continue to prioritize EBCS integration in buildings with advanced meters. Connecting the
metering data directly to the EBCS was shown to improve data quality. (Note that USAR is
already doing this.)

1.0 INTRODUCTION

This section provides a general overview of this demonstration for the Environmental Security
Technology Certification Program (ESTCP), including background on operations at Army
Reserve facilities, legislative and policy drivers relating to the demonstration, objectives of the
demonstration, and a discussion of activities planned at the outset of the demonstration that were
not completed.

1.1 BACKGROUND

Thousands of U.S. Department of Defense (DoD) buildings have building automation systems
(BASs) and/or advanced meters. These systems have the potential to enable significant
reductions in energy use through identification of operational issues. Yet in many buildings, the
systems are often not actively monitored or leveraged to improve operations. The building
operators do not have time to sift through the BAS lists of alarms, alerts, and settings. The BASs
do not prioritize the most important actions needed to be taken on a given day. In some cases, the
way BASs are set up causes inefficient operations and premature failure of equipment. Advanced
approaches to energy management can contribute significantly to meeting energy-reduction goals
and reduce the mission impact of downtime associated with building system failure that could
have otherwise been avoided.
Like many DoD commands, the USAR can access whole-building meter data through the
Army’s Meter Data Management System (MDMS), yet these data are largely underutilized for
real-time energy management. At the inception of this project, the USAR was analyzing meter
data quarterly for 364 buildings and identifying optimization measures using a rules-based
approach. This process is very effective but requires highly skilled analysts to sift through the
data and manually prioritize actions, which is time-consuming and expensive.
The USAR has another extensive source of operational information through its Enterprise
Building Control System (EBCS), which integrates control system data into a common analytic
platform. At the end of calendar year (CY) 2019, 60 buildings across the U.S. were scheduled to
be connected to the EBCS, enabling remote monitoring and control of building systems.
Although the EBCS will have a wealth of building and system-level data, optimization of
performance normally requires a trained controls operator to review and act on that information.
Machine learning (ML) methods can provide automated and actionable insights to controls
operators. Once fully operational and consistently trending data, the USAR EBCS will offer a
prime platform for implementing ML methods that provide both diagnostic and predictive
intelligence to building operators. Although EBCS was still under development during the
demonstration performance period, the demonstration attempted to implement proven ML
methods on the USAR enterprise system to automate the identification of operational issues and
energy-savings opportunities through system optimization.

1.2 DRIVERS

The following drivers relate to this demonstration and support the methods and goals:

• Executive Orders (E.O.s): E.O. 13834 of May 17, 2018, Efficient Federal Operations (83 FR
23771, revoked) was in effect during the start of the project and required agencies to achieve

and maintain annual reductions in building energy use and implement energy efficiency
measures that reduce costs. E.O. 14057 of December 8, 2021, Catalyzing Clean Energy
Industries and Jobs Through Federal Sustainability (86 FR 70935), defines a Federal
Sustainability Plan and sets out a range of goals to deliver an emissions reduction pathway,
including through building efficiency.

• Legislative Mandates: The Energy Policy Act of 2005 requires electric meters to be installed at
the building level. The Energy Independence and Security Act of 2007 requires comprehensive
energy and water evaluations, including an assessment of building retro commissioning
opportunities. The Energy Act of 2020 added to the requirements for water metering,
evaluations and efficiency.

• DoD Policy: Strategic Sustainability Performance Plan – Inform decisions, optimize use,
assure access, build resilience, drive innovation. The DoD Utilities Meter Policy (January
2021) requires each Component to meter energy and water use to provide installations with the
information necessary to improve resilience and mission assurance, increase utility systems
reliability, and optimize resource use.

• Service Policy: Army Directive 2020-03 – Installation security policy requiring that critical
missions be supported with power and water for a minimum of 14 days in the event of service
disruption. Reducing loads and equipment failure leads to increased reliability. Army Directive
2014-10 specifies an advanced metering policy in accordance with the DoD Utilities Meter
Policy, requiring the use of advanced meters to quantitatively determine how much energy and
water the Army is using. The Army is currently targeting 60% coverage for electric, natural
gas and water. The Army Climate Strategy, released in 2022 has a 50% reduction in net
greenhouse gas pollution by 2030 and aims to get to zero emissions by 2050. Line of Effort 1.4
requires all land holding commands to implement installation-wide building control systems
by 2028.

• Specifications: American Society of Heating, Refrigerating, and Air Conditioning Engineers
(ASHRAE); Leadership in Energy and Environmental Design (LEED); Institute of Electrical
and Electronics Engineers (IEEE); and International Code Council codes (International
Mechanical Code, International Plumbing Code, International Energy Conservation Code, etc.)
require building control systems (BCSs) and optimized operations.

1.3 OBJECTIVE OF THE DEMONSTRATION

The objective of this demonstration was to show that the application of ML methods to building
data can automate the identification of operational issues, leading to cost and energy-savings
opportunities.
Pacific Northwest National Laboratory (PNNL), the directly funded performer of this
demonstration, tested several different ML methods and applications of ML on buildings data.
The initial demonstration plan was focused on using ML methods to automate tasks like fault
detection and diagnosis (FDD) and controls optimization, which have traditionally required
highly skilled building analysts to perform them.
The findings from this demonstration create value for DoD in several ways:

1. The methods validated and deployed on USAR building data in this demonstration could be
leveraged to deliver cost and energy savings.

2. The methods will be transferable to other DoD buildings for which the same or analogous
data sources are available. At a minimum, this means that as additional USAR buildings are
connected to EBCS, the ML models developed for this demonstration could be adapted and
retrained to identify operational issues in those buildings as well. These algorithms could be
extended further to data sources for other Components and services, provided that the
appropriate input data were available. Technology transfer activities planned for this
demonstration are described in Section 8.0.

3. The demonstration will generate a record of the opportunities and constraints that shape the
ML solution space within the USAR. ML methods present the possibility of automating
operational issue identification at a large scale; however, the methods are only as good as
their input data. Throughout the demonstration, the project team discovered significant
limitations in the quality and availability of the EBCS and MDMS data sources.

4. A key output of this demonstration is a thorough description of data quality and availability
issues, in order to inform future deployments (see Section 9.0 for additional details). Results
from this demonstration will help DoD understand the scope of what is possible given
potential data limitations. This information could be used to inform future decisions about
how and where to invest resources in data collection, storage, and communication
technology; for example, whether to deploy new advanced meters or dedicate more resources
to maintaining existing ones. It could also be considered in a future procurement process for
building data analytics software that includes ML-based capabilities.

DoD has an interest in supporting research into applied ML across a wide range of activities. It is
currently investigating the use of ML in self-driving vehicles and drones, among other
applications. This demonstration extended that research into the area of building systems and
produced results that can be communicated throughout DoD to justify investment in further
research and deployment of applied ML technologies.

1.4 ACTIVITIES PLANNED BUT NOT COMPLETED

At the outset of the demonstration, the team planned to perform several activities that ultimately
could not be completed during the performance period. Various issues contributed to this
outcome, most notably an overall lack of meter and controls data that delayed model
development and led the team to request a 9-month no-cost extension for the demonstration.
(Data quality and availability issues are discussed in greater depth in Section 9.0) Even with the
extension, the team was not able to perform certain planned activities, which are described
below. Nevertheless, PNNL has a multi-year support contract with the USAR and plans to
continue with the joint deployment of Control Score and the ML models developed under this
demonstration to EBCS after the ESTCP demonstration performance period ends.
Implementation of recommended actions
Once an operational issue is identified, the appropriate operations and maintenance staff must be
notified of the issue and the recommended corrective measure. Examples of such measures
include implementing building scheduling, optimizing equipment setpoints, restoring HOA
(hand-off-auto) switches to auto mode, replacing miscalibrated sensors, and replacing faulty

components such as stuck valves and dampers. Implementation of the recommended measures
would result in additional cost savings derived from decreased building energy use and
reductions in unscheduled system maintenance.
As discussed further in Section 6.0, data quality issues limited the team’s ability to investigate
fault detection use cases. In particular, facility maintenance tickets did not provide sufficient
detail to definitively identify fault causes nor durations. Hence, it was not possible to build fault-
free baseline prediction models nor to validate the predictions of fault detection models.
Consequently, the team is not currently able to make ML-based recommendations regarding
corrective measures. This report includes a discussion of the data quality issues that limit the
development of ML-based fault detection models and recommendations for long-term changes in
data acquisition and storage would be needed to extend the applications of ML.
Cost models
The PNNL project team planned to develop models to quantify the costs and benefits of
implementing ML algorithms for operational issue identification. The cost models, empirically
informed by data generated by the demonstration itself, would be used to characterize costs and
benefits at the level of an individual building as well as at scale for an entire portfolio of
buildings. Marginal cost was expected to decrease with increasing scale. In addition, the
demonstration planned to estimate the cost and energy savings resulting from the implementation
of recommended measures.
As noted above, the team is currently unable to make ML-based recommendations regarding
corrective measures. As a result, no measures have yet been implemented at USAR facilities
based on ML-modeled fault detection predictions and no empirical cost savings data have yet
been collected.

2.0 TECHNOLOGY DESCRIPTION

The technology demonstrated in this project is machine learning (ML) applied to utility meter
and automation controls data at USAR buildings across the country.

2.1 TECHNOLOGY OVERVIEW

Machine Learning Overview

“Machine learning” refers to algorithms that learn representations of data. This representation
can be used to perform tasks such as regression (the prediction of a continuous value),
classification (the prediction of a category), and optimal strategy identification (the prediction of
value and optimal policy). These methods have been applied to solve problems in image
recognition, voice detection, visual analysis, and autonomous control and optimization. In a
buildings context, ML tasks could include baseline energy use prediction (regression) and FDD
(classification). ML can be applied at multiple scales, ranging from the entire building to
subsystems (e.g., air handlers, boilers, chillers).
ML is a mature technology with a diverse range of industrial, commercial, and research
applications. ML algorithms are integral to the functionality of many services and products on
the market today, including internet search engines, voice recognition technologies, and robotics.
DoD is currently investigating the use of ML in self-driving vehicles and drones, among other
applications. Research in this field of computer science has been ongoing for 70 years, although
widespread industry adoption was generally hindered by limitations in computational capacity
and data availability for algorithm development until the late 1990s. Today, the availability of
highly parallel computing systems (e.g., graphics processing units [GPUs] and tensor co-
processors) reduces cost barriers and provides optimized tensor calculations to speed up deep
neural network training. Similarly, the use of state-of-the-art sensing devices facilitates the
deployment of cost-effective sensor networks able to capture data at unprecedented volumes and
level of detail.
Since Google announced a substantial reduction in the amount of energy used for cooling their
data centers by using an ensemble of deep neural networks on a substantial amount of sensing
points, there has been a growing interest in applying deep learning to building energy
optimization. In particular, the application of deep reinforcement learning has shown promising
results in this field (Li et al. 2017; Mocanu et al. 2018). Diverse ML approaches have also been
used to detect and identify faults in building systems (Kim and Katipamula 2018). Automatic
fault detection is a mature technology that facilitates the design of preventive maintenance plans.

Machine Learning for Buildings

Figure 1 illustrates how different ML technologies can be applied to buildings data to produce an
optimized solution suite. The first step is to collect and process different types of instrument data
such as energy consumption data and subsystem controls information such as set-point
temperatures, and context data such as the physical location of the building, the area of the
building, and the weather. Data integration and preprocessing involves tasks such as making the
data accessible in a format and location such that ML algorithms can easily access them and
resolving any data quality concerns such as data gaps and noise.

Figure 1. Overview of Machine Learning Methods for Buildings

An important next step is to separate the data into two categories: one corresponding to fault-free
conditions and the other corresponding to known faults, with the underlying faults also known.
Regression algorithms can then be applied to fault-free consumption data to establish baseline
consumption values through load prediction models. A comparison of predicted baseline
consumption with real-time measured consumption data can be used to detect anomalies or
faults. For instance, if the measured consumption at a given time instance deviates significantly
(based on an appropriate threshold) from the baseline consumption, that indicates that there
might be a fault in the system.
Once the presence of a fault is indicated, the next step is to diagnose the fault. This can be done
by training classification algorithms on labeled faulty data. The training can be done off-line (on
historical data), resulting in pre-trained fault diagnosis algorithms. These algorithms identify
signatures for specific faults in the data. For example, a stuck variable air volume (VAV) damper
is likely to exhibit a different response on measurements such as delivered air flow or indoor
temperature than a miscalibrated thermostat. Such pre-trained fault diagnosis algorithms could
then potentially be applied online to diagnose faults in real time.
In addition to FDD, ML algorithms can also be used to optimize control decisions. Fault-free
data can be used to build dynamic models that map outputs of interest (e.g., power consumption,
energy cost, indoor temperatures) to control inputs. These models can be used to train algorithms
that optimize the control inputs based on user/operator-specified criteria such as minimizing the
cost of energy while maximizing occupant comfort.
The project team planned to investigate solutions in all three areas—baseline prediction, FDD,
and controls optimization—subject to the opportunities and constraints discussed in Section 9.0.
As explained further in that section, limitations in data quality and availability meant the team
was able to implement models for baseline prediction and anomaly detection, but not controls
optimization. The open-source ML libraries used for this demonstration are industry standard,
with scikit-learn, TensorFlow, and Keras all originating at Google. The demonstration applied
existing algorithm implementations (i.e., ML libraries) to building data on the USAR EBCS

platform; hence, no new ML algorithm development was required. See Appendix A: for a more
detailed discussion of ML methods.

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

ML has proven to be very effective in many areas, such as speech recognition, natural language
processing, and image classification. Recently, deep learning has emerged as one of the most
popular and powerful concepts in ML. The buildings domain is not left untouched by the current
wave of ML, especially deep learning. ML is well suited for the buildings domain, given the
complexity of nonlinear operations and the increasing abundance of data. However, several
challenges also exist when applying ML that are unique to the buildings domain. Some factors
that have contributed to the popularity of ML methods in recent times are listed below under
advantages and disadvantages along with explanations of how they apply to the buildings
domain.

• Advantages
– Availability of data: Widespread deployment of both traditional and newly emerging,

low-cost sensor technologies has led to the ubiquitous presence of data in several
domains. Society has also entered the era of “big data.” The exponential growth of big
data has enabled researchers to develop and train ML algorithms, which are powerful in
revealing nonlinear and complex patterns. This has resulted in the ability to mine more
and more useful and actionable information. The buildings domain has not been
untouched by this trend. The increasing use of BASs to manage buildings, especially
modern buildings, has resulted in much more available data that spans long time windows
(e.g., multiple years). While data are certainly increasing in “breadth” (time window),
they are still limited from a “depth” perspective; sensing is limited to measuring certain
key quantities of interest, such as zone temperatures and building energy consumption.
Hence, there is a need to develop ML methods that can navigate this data depth challenge
in buildings.

– Higher performance computation: Significant improvements in hardware affordability
have accelerated the adoption of ML in various domains. Advances in hardware
(i.e., central processing units [CPUs]) and new computational models (i.e., GPUs) have
created a large opportunity for ML to handle a high degree of parallel operations and
perform matrix multiplications efficiently. In particular, GPUs provide a parallel
architecture that has been especially powerful when applied to the types of calculations
needed for neural networks. CPUs have also made advances for better parallelization and
more efficient matrix computations. However, these developments have not yet
penetrated the buildings domain, and the computational infrastructure used within
buildings is still quite limited. New computational models (e.g., cloud computing), which
provide inexpensive access to high-performance computational resources using pay-per-
use business models, can potentially be leveraged.

– Advanced algorithms: The advent of algorithms that are of higher performance and lower
in computational resources makes it easier to test and develop advanced algorithms,
because they are not limited by the hardware constraints of the past. These advances in
learning algorithms have made training deep architectures feasible; it has been shown that
such advanced ML models can provide performance that is superior or comparable to

state-of-the-art methods. For example, deep learning algorithms have been shown to
perform better than human experts in various fields (e.g., some learning algorithms have
become world champions at a variety of games, from Chess to Go). These advanced
algorithms appear to hold promise for improved performance in the buildings domain as
well.

– Software libraries: Deep ML algorithms can be very easily built and customized today
using available software libraries such as TensorFlow, Caffe, Torch, and Theano. Various
ML algorithms are made available as “black boxes” within these libraries. The advent of
such software packages is unlocking new possibilities that were unimaginable a few years
ago. These libraries allow powerful learning algorithms to be built with a few lines of
code. The availability of these libraries also enables researchers to build, implement, and
maintain ML systems for a variety of real-world domains. This is promising in the
context of building systems, where such libraries can be used to build control applications
in less time and with less effort on top of the cloud computing infrastructure discussed
earlier.

• Disadvantages
Despite the recent successful applications of ML to the buildings domain, certain
challenges and limitations remain as described below:

– Data requirements: ML imposes strict requirements on data quality and quantity. For
instance, data should be of high quality (with minimal gaps) and a sufficiently large
amount of data should be available—at both temporal and spatial scales—so that the
models trained on them are accurate. Data that are deficient in quality and quantity are
likely to result in poor representations. Data quality, availability, and fault labeling are
expected to be a challenge for this demonstration. To address these limitations, where
feasible, unreliable or missing data were detected and corrected using methods described
in Section 5.7. It is important to recognize, however, that calibration and connectivity
issues pose challenges not only to this demonstration, but to system users in general. One
key output of this demonstration is a thorough characterization of data quality and
availability, as discussed in Section 9.0.

– Scalability: A major limitation of ML is that models that were trained on one system are
not easily generalizable to other systems, especially in the buildings domain. This creates
a challenge with regard to scaling the ML algorithms to a large set of systems. For
example, a model trained on one building can be quite inaccurate when applied to a
different building. In recent years, transfer learning-where some attributes of a model
learned on one system are re-used to build a model for a different but related system-has
been proposed as a potential solution to address this problem. Without transfer learning,
ML can require a large amount of training data to achieve satisfactory accuracy.
Although transfer learning has been demonstrated to address the generalizability and
scalability challenges of ML models in other domains, it has been investigated only to a
limited extent for buildings. To address this limitation, in this project we attempted to use
transfer learning between buildings of similar types. However, a full-fledged
demonstration of transfer learning is beyond the scope of the project.

– Rigorous feature selection requirement: A key benefit offered by deep learning, which
has made it very popular in domains such as computer vision and computer games, is that

it overcomes the need to identify input features rigorously. However, feature optimization
is still an important requirement in literature related to ML for buildings. This can be
attributed in part to the observation that the networks were not deep enough.

– Lack of generalizability: There is a need to develop a generalized modeling framework
that can work across buildings, which has not been attempted in this domain so far. In the
absence of such a framework, the modeling problem for each building becomes a tedious
exercise in which the appropriate architecture and parameters must be determined
separately for each building, requiring time-consuming effort. Lack of standardization in
BAS implementations across buildings plays a large role in this problem, because
different systems are measured and trended at different buildings and a variety of
inconsistent point naming and metadata conventions are used across the building
automation industry (see Section 9.0 for further discussion). The lack of generalizability
impedes the ability to use these models for large-scale investigations, such as those at the
level of a distribution grid involving tens or thousands of buildings. In this project, we
were able to use energy consumption data from multiple buildings to implement a generic
baseline prediction ML model that represents the portfolio of buildings. However, a
large-scale demonstration of a generic ML model for buildings at the subsystem controls
level was beyond the scope of the project.

2.3 DEMONSTRATION PLATFORM: EBCS

In 2014, the Army Reserve Installation Management Directorate (ARIMD) started an initiative
to implement an USAR-wide EBCS. The objective of the initiative is to connect existing
building-level control systems to a common EBCS server on the Army Reserve Network
(ARNet) to greatly expand the capability and impact of the building-level control systems. The
EBCS Working Group was formed with representatives from Readiness Divisions, Mission
Support Command, ARIMD, G-6, and PNNL spanning fiscal years 2014 through 2019.
A “pilot” phase was conducted from May 2016 through August 2017, successfully connecting 40
buildings across 3 regions and 16 states to the central EBCS server. The sites represented 8
different controls vendors, and more than 28,000 data points were successfully integrated. A total
of 141 controls optimization measures were identified, with potential savings estimated at $137K
per year for all 40 buildings (Koehler et al. 2017). An additional 40 buildings were added to the
EBCS during Phase 2, which began in October 2017 (see Figure 2). Additional phases for adding
buildings to EBCS are currently under way.

Figure 2. Reserve Centers on the Enterprise Building Control System

The EBCS is available to USAR personnel with appropriate permission through the ARNet,
including remote Virtual Private Network access. The primary user interface (see Figure 3)
includes region- and site-level navigation, building-level graphics, system-level graphics,
scheduling screens, and trend data viewers. In fiscal year (FY) 2019, the system, which is based
on the Tridium Niagara Framework® platform, migrated to the N4 version, adding further
analytic features and tools.

Figure 3. Enterprise Building Control System Interface

In the near term, the demonstration team plans to deliver the initial set of ML modeling tools for
baseline prediction and anomaly detection to EBCS as part of a package deployment with the
Control Score tool, which is also under development by PNNL. More discussion of this
deployment is included in Section 8.0 on Technology Transfer.

3.0 FACILITY/SITE DESCRIPTION

Reserve Centers can range in size from as small as 20,000 ft2 to as large as 200,000 ft2.
Generally, a Reserve Center encompasses between two and four buildings (see Figure 4),
although several large sites have dozens of buildings. Although some sites have buildings with
specialized functions, all sites have an administrative building, which includes an assembly hall,
fitness room, and showers. A typical Reserve Center also has an organizational maintenance
shop, an area maintenance support activity, or both. Often, sites include a storage building,
heated storage building, or heated and cooled storage.
Reserve Centers are unique in their operation in that most have limited staff during the work
week and an influx of soldiers on training weekends. It is common to have a staff of three during
the week and host 300 people on the weekend. These facilities also host special training events at
any time and have increased usage during summer months.

Figure 4. A Typical Army Reserve Center

3.1 GENERAL FACILITY/SITE SELECTION CRITERIA

The ML demonstration will be an integrated part of the EBCS system, connected to data sources
as previously described. The actual ML tools currently reside on a secure test platform at PNNL
until they are deployed on the EBCS. The actual buildings evaluated were based on data
availability across all of the information systems. As of September 2019, advanced meters
installed at most USAR buildings were not communicating with the Army MDMS server. USAR
attempted to obtain missing data in early FY 2020 but was unable to due to the local storage
limits on the devices. Due to this lack of metering data, initially only 10 Reserve Centers were
included in the initial ML algorithm testing and selection phase. This sample size was feasible
for the study, but not ideal. As of April 2020, meter communications began to be restored;
however, data for most meters dating back to summer 2018 were irretrievably lost, meaning the
demonstration required a no-cost extension while waiting for new data to accumulate in a

sufficient quantity to support ML model development. (See Section 9.0 for a characterization of
meter data loss in the MDMS and EBCS.)

3.2 DEMONSTRATION FACILITY/SITE LOCATION AND OPERATIONS

The USAR buildings in the dataset are located in different regions across the U.S. and have
similar equipment types. Table 1 describes 10 initial demonstration buildings with size, regional,
and climate context.

Table 1. Characteristics of 10 Initial Demonstration Buildings

Building City State

U.S.
Department
of Energy
Climate

Zone

Heating
Degree
Days

Cooling
Degree
Days

Floor
Area (ft2)

Building 1 Mountain
View

CA 3C 2,983 0 179,575

Building 2 Rockville MD 4A 4,647 927 31,316
Building 3 Schuylkill

Haven
PA 5A 5,395 551 23,129

Building 4 Bellefonte PA 5A 5,577 559 26,662
Building 5 Cranberry

Township
PA 5A 5,667 572 29,814

Building 6 Seagoville TX 3A 2,161 2,424 60,158
Building 7 Seagoville TX 3A 2,161 2,424 31,517
Building 8 Seagoville TX 3A 2,161 2,424 27,013
Building 9 Grand

Prairie
TX 3A 2,161 2,424 23,475

Building 10 Grand
Prairie

TX 3A 2,161 2,424 44,618

Figure 5 illustrates the most common types of equipment in EBCS-connected buildings at the
outset of the demonstration; VAV units, air handling units, and hot water supply pumps were the
most common points in the EBCS. Each “number of records” represents a single type of system
in the building, and there could be several points associated with the control of that equipment.

Figure 5. Equipment Types Present in a Set of 12 EBCS-connected Buildings

3.3 SITE-RELATED PERMITS AND REGULATIONS

Because this demonstration is occurring on existing systems, and only dealing with the data from
the systems, no site-related permits are required. The EBCS has gone through the Risk
Management Framework process and is approved for use on the ARNet. The programming
language used for both the exploratory ML algorithm testing and the demonstration platform,
Python, does not have explicit approval for use on the ARNet, although embedded versions (e.g.,
Python is embedded, or packaged, within geographic information system(GIS) platforms) do
exist on the network.

3.4 PROPERTY TRANSFER AND DECOMMISSIONING

Because this demonstration is occurring on existing systems, and only dealing with the data from
the systems, no property transfer is required. If USAR deems the demonstrated tool to be useful,
a production-grade version of the application can be deployed on their network. Conducting the
demonstration on the PNNL network allows USAR to evaluate the tool without having to incur
the cost of a full deployment. USAR will own a copy of the ML code if they choose to continue
to use it.

4.0 PERFORMANCE OBJECTIVES

4.1 SUMMARY OF PERFORMANCE OBJECTIVES

The performance objectives listed in Table 2 were designed to evaluate how well the ML
methods identify opportunities for improving operational efficiency. The success of ML model
performance is measured by the method’s ability to detect faults over the baseline, and estimated
reductions in building energy use.

Table 2. Performance Objectives

Performance
Objective Metric Data Requirements Success Measure

Fault Detection Accuracy Whole-building meter data and EBCS
data.

Number of faults identified
by ML compared to the
baseline and manual
evaluation

Building
Energy Use

Energy use
intensity
(MMBtu/ft2)

Whole-building meter data; building
square footage; results from prior
manual data evaluation tasks

Percent reduction
(estimated) compared to
the baseline and manual
evaluation

The success of the demonstration relative to each of these performance objectives was dependent
on the input data. As data exploration proceeded, the team discovered significant limitations in
the quality and availability of the EBCS and MDMS data sources. Although it is not a formal
performance objective, a key output of this demonstration is a thorough characterization of data
quality and availability.
Because of data limitations and the current pre-deployment stage of the demonstration, key
inputs for evaluating performance relative to these metrics were not available at the time of this
report. With respect to fault detection, ground-truth validation data were not available either
through maintenance records or through EBCS because histories for the rule-based fault
detection algorithms used on EBCS are not stored. The demonstration team instead explored an
approach of using alarm points that are automatically recorded by the system as a proxy for rule-
based faults. The alarm points are generally rule-based and activate when a threshold is exceeded
(e.g., a zone temperature is below the cooling set point). While the alarm proxy approach
generated promising results (discussed further in Section 6.3), this unfortunately means that it
was not possible to evaluate the success measure directly by comparing anomalies/faults detected
by the ML model to those identified by the current approach in EBCS, nor to make ML-based
recommendations regarding corrective measures. In the absence of specific recommendations, it
is not possible to estimate savings from implementing corrective measures.

4.2 PERFORMANCE OBJECTIVE DESCRIPTIONS

The original performance objective descriptions from the Demonstration Plan are reproduced
below for reference.

Fault Detection

Purpose: When equipment operates outside of intended parameters, it risks using excessive
energy, shortening the equipment lifespan, and triggering component failures that can lead to
shutdown operations. Fault detection algorithms can help facility energy managers detect when
equipment is operating improperly and potentially avert such unwanted outcomes. Traditional
fault detection algorithms are based on rule-based engineering calculations, and while they often
perform well, they can sometimes lead to excessive alarms or overlook more complex system
interactions. There is the potential for ML methods to supplement traditional rule-based methods
by optimizing fault detection thresholds for more precise alarms, as well as by potentially
detecting additional faults that are not explicitly accounted for in the existing FDD rule logic.
Metric: The metric for this performance objective is accuracy of fault detection, which will be
calculated by comparing the number of faults detected by ML methods to baseline and manual
evaluation. In addition, the team will characterize faults detected by the ML algorithms beyond
those captured using the baseline rule-based approach.
Data: Input data for this performance objective are whole-building meter data from MDMS and
building control system data from EBCS.
Analytical Methodology: The algorithms will use whole-building meter data from MDMS to
predict baseline energy use and detect usage anomalies. Those anomalies will be cross-
referenced with EBCS building controls data by the ML methods to identify operational
signatures that correspond to faults. ML-flagged faults will be compared to rule-based alarms
recorded by EBCS to calculate algorithm accuracy, and if no alarm exists, a potentially
undiagnosed fault will be documented and investigated.3
Success Criteria: Percent accuracy of ML methods relative to the baseline, as well as distribution
of undiagnosed faults.

Building Energy Use

Purpose: Progressive reductions in building energy use are mandated by federal legislation as
well as DoD and service policy (see Section 1.2). Reducing energy demand increases energy
security and resilience, thereby ensuring a greater capacity for the military to meet mission
needs. The ML algorithms tested in this demonstration will attempt to automate the process of
identifying certain operational issues and corresponding corrective measures that result in energy
and cost savings.
Metric: The metric for this performance objective is building energy use intensity (EUI). It is
calculated as the sum of energy used at a given building over a particular period of time divided
by the total floor area of that building. It is usually reported as yearly MMBtu per gross square
foot.
Data: Whole-building meter data will be provided by the MDMS and may be additionally
validated with monthly utility data when available. Building floor area data available from
MDMS or EBCS will be used to normalize energy use and calculate the EUI metric.

3 The term “potentially undiagnosed fault” implies that a fault occurred that was not captured by the existing rule-
based FDD logic.

Analytical Methodology: Because it is unlikely that the demonstration team will have the
opportunity to recommend ML-informed energy conservation measures (ECMs) and analyze
post-implementation data during the demonstration period, savings from recommended ECMs
will be estimated. Energy-savings estimates will be based on standard engineering calculations
for estimating savings from operational improvements or equipment retrofits. PNNL has
developed specific engineering calculations for USAR buildings based on prior work. Cost
savings derived from energy savings will be calculated based on the general cost model
described in Section 7.0.
Success Criteria: Percent reduction (estimated) compared to baseline and manual methods.

5.0 TEST DESIGN

5.1 CONCEPTUAL TEST DESIGN

Hypothesis
The project team hypothesized that applying ML methods to building energy and control systems
data could produce automated identification of operational issues, which can lead to energy and
cost savings if the appropriate corrective measures are implemented.

Use Case Selection

ML encompasses a vast range of methods and potential use cases. The first phase of the process
is to identify the relevant opportunities and constraints that shape the solution space. This step
was critical to the success of the demonstration. Use cases were selected with consideration
given to the following:

• Sponsor priority: What are the highest-priority use cases from the USAR’s perspective?

• Value: Which measures produce the highest value with respect to the performance objectives
of the demonstration?

• Data characterization

– Availability: For which buildings are energy data, control system data, maintenance
records, and other supporting data available? What is the time period spanned by the
data? Which equipment/systems are represented in the data? What is the prevalence of
faults/operational issues in the data?

– Quality: Are there issues with data gaps and spikes, meter/sensor calibration,
measurement accuracy and precision, or ground-truth validation that could compromise
the analysis?

• State of research: Which building energy systems have been previously studied and which ML
methods have been applied? Of those, which are relevant to this demonstration given the
opportunities and constraints identified above?

Use case categories initially explored included the following:

• Data Cleaning: Utility meter and control system time-series data are often noisy and
incomplete, and significant effort may be required to pre-process such data for use by ML
algorithms. The problem of poor-quality data itself can be addressed using various ML
methods, however; in fact, commercial developers of ML-based analytics for building energy
management information systems have reported that most of their effort is focused on data
quality-related use cases.

• Load Prediction: Accurate prediction of whole-building power consumption with business-as-
usual operations provides a baseline in comparison to which anomalies can be detected.
Baseline load prediction is an important prerequisite for many fault detection algorithms.

• Fault Detection: When equipment operates outside of intended parameters, it risks using
excessive energy, shortening the equipment lifespan, and triggering component failures that

can lead to shutdown operations. Fault detection algorithms can help facility energy managers
detect when equipment is operating improperly and potentially avert such unwanted outcomes.

• Controls Optimization: Advanced ML methods can assist building operators in identifying
optimal control sequences that reduce energy use and cost.

– Ultimately this use case was not feasible given the data quality issues.

Algorithm Testing

Once use cases were defined, the next step for the team was to proceed with algorithm
investigation. This process was guided by the principle of simplicity: All other things being
equal, a less complex model is preferable to a more complex model. If a heuristic provided
adequate performance, there would be no need for an ML model; likewise, if a linear regression
model performed similarly to a deep neural network, the linear model would be generally
preferable (Zinkevich 2019). The more easily interpretable the model, the more likely its outputs
are to gain acceptance by the end user.
The general framework for ML algorithm development is an iterative process between training,
testing, and validating.

• Train: In training, most of a dataset is used to tune an algorithm for optimal performance. The
performance is quantified through an appropriate loss function, which represents a metric that
the ML algorithm is trying to optimize. For instance, in the problem of fault detection, an
appropriate loss function could be the number of true positives.

• Test: The optimized algorithm from the training phase is then evaluated on a separate test
dataset. Results from the testing can then inform algorithm selection and configuration choices
in training-test cycles. Even within the same algorithm, several parameters— called
hyperparameters—need to be tuned to optimize performance. For instance, in the case of
recurrent neural network (RNNs), the activation functions, the number of layers, and the
number of nodes are the underlying parameters that need to be optimized.

• Validation: After selecting the final model configuration in the test step, a third held-out
dataset is used to evaluate model performance after initial testing. It is important that the
dataset used for validation be non-overlapping with the training and test datasets. In other
words, the ML algorithm should not have seen the validation dataset, in order to remove any
potential bias. Often, the metric used to report the model performance is the same as the loss
function used in the training and validation steps.

The performance of each algorithm was evaluated with respect to one or more of the external
validation metrics detailed in Section 6.0. Algorithm performance depends on proper model
specification as well as adequate data quality and availability. Poorly performing algorithms
were documented alongside well-performing algorithms. As noted in Section 1.3, there is value
in studying unsuccessful cases, because they may lead to a deeper understanding of which
methods are appropriate for which use cases, how performance may be affected by data
limitations, and other considerations.

5.2 BASELINE CHARACTERIZATION

Unlike the typical demonstration project, this demonstration did not require an initial period of
baseline data collection. As stated above, the objective of the demonstration was to apply ML
methods to existing building data sources. Sufficient energy and control systems data already
exist to characterize baseline performance for multiple buildings on the EBCS. Baseline data
collection continues automatically because the MDMS and EBCS record meter readings and
sensor values at regular intervals. For each building studied, the baseline collection period
spanned the period from the earliest date for which building energy and control systems data are
available to the last point at which data are available. Data sources are described in further detail
in the following section.

5.3 DATA MANAGEMENT

Data management involves handling the sources of data, equipment calibration and data quality
issues, and instrument data processing needs.

Data Sources

Data collection and storage are handled by a set of functionally related but distinct data
management systems that are owned and maintained by stakeholders external to the project. The
project team was granted access to each of the systems and implemented a data pipeline from the
external sources to an internal development environment.
Copies of external data sources are stored locally at PNNL. All project data were backed up
automatically and routinely.

U.S. Army Reserve Enterprise Building Control System

The EBCS links buildings at USAR sites to a common analytic platform, allowing for remote
monitoring and control of building systems. Using EBCS, an operator can view control system
data for geographically distributed buildings from a single location (see Figure 6). In addition to
real-time monitoring and control, EBCS is configured to record trend data for the hundreds or
thousands of control system points in each building. Examples of control system points include
valve and damper positions, supply and return air temperatures, and discharge fan speeds. Trends
are recorded at varying intervals; some trends are configured to record values at pre-defined
intervals, such as 1 hour or 15 minutes, while others record a value only when a state change is
detected. These control system trends represent the core input data to the algorithms tested in this
demonstration.

Figure 6. Schematic of EBCS Network Architecture

During the project, EBCS migrated from Tridium Niagara version 3.8 to version 4 (N4). At the
end of CY 2019, 60 buildings across the U.S. were connected to the EBCS, enabling remote
monitoring and control of the building systems. This migration process resulted in reporting gaps
for buildings while they are migrated to N4. This and other data availability challenges are
discussed in Section 9.1.

U.S. Army Meter Data Management System

The U.S. Army MDMS is an enterprise system for tracking the Army’s energy and water use at
facilities on installations around the world. The Army has installed over ten thousand advanced
meters to track whole-building electricity, natural gas, and water use at high-priority buildings.
Meters are generally configured to report usage at 15-minute intervals. As a Component of the
Army, the USAR maintains a subset of those advanced meters at the building level, which are of
significance to this demonstration. The Army’s advanced meters report usage data to a central
MDMS database server. The project team accesses that external MDMS database server to
acquire energy use data for the buildings of interest in this demonstration. This demonstration
used energy meter data as an input to the ML models, but not water data. Starting in FY 2019,
the USAR began using the EBCS infrastructure to also transmit the MDMS meter data to the
central Army MDMS server. So, the EBCS database also contains MDMS data.

Customer Support System

The USAR CSS is an enterprise system for tracking work orders at USAR sites. The CSS
database contains information about orders for heating, cooling and air conditioning (HVAC)

system installation, maintenance, and replacement at USAR sites. Orders are dated, and in some
cases estimated and actual service costs are recorded, usually at the building level. At the onset
of the project, this dataset was hoped to be used to validate the algorithms’ inferences about
equipment faults and failures.

NOAA NCEI Integrated Surface Database

That National Oceanic and Atmospheric Administration’s (NOAA’s) National Centers for
Environmental Information (NCEI) is the world’s largest provider of weather and climate data.
The Integrated Surface Database (ISD) consists of global hourly and synoptic observations
compiled from numerous sources into a single common ASCII format and common data model.
The ISD includes more than 35,000 stations worldwide, and tracks parameters such as wind
speed and direction, wind gust, temperature, dew point, cloud data, sea level pressure, altimeter
setting, station pressure, present weather, visibility, and precipitation. For this demonstration,
only the outdoor air temperature was considered as a model input.
The ISD is publicly accessible at https://www.ncdc.noaa.gov/isd. For this demonstration, data
were accessed via FTP at ftp://ftp.ncdc.noaa.gov/pub/data/noaa.

Other Data Sources

The project team accessed additional non-structured data sources, including various reports about
comprehensive energy and water evaluations, security readiness assessments, and other related
audits at USAR sites at the building level. These sources provided contextual information about
building systems and operations that were used to inform use case selection and help the project
team interpret data.

Equipment Calibration and Data Quality Issues

The PNNL project team did not have direct control over any data collection equipment for the
data sources described in the previous section. All data sources are externally owned and
maintained by the USAR, NOAA, and/or the Army. Whenever possible, the project team alerted
the system owners (or parties responsible for sustainment/operation) of calibration, connectivity,
and other data quality issues.
Data quality and availability were a challenge for this demonstration. Section 9.1 discusses these
issues in greater detail. Prior to the project getting under way, several major instrument data
processing issues, discussed below, were known to the project team. Where feasible, unreliable
or missing data were detected and corrected using methods described in Section 5.7. It is
important to recognize, however, that calibration and connectivity issues posed challenges not
only to this demonstration, but to system users in general. One key output of this demonstration
is a thorough characterization of data quality and availability.

Instrument Data Processing

ML models do not generally take instrument readings, such as those reported by control points
and building energy meters, as direct input. The characteristics of the data must match the
requirements of the algorithm. Consequently, some processing of data in preparation for use by a

https://www.ncdc.noaa.gov/isd
ftp://ftp.ncdc.noaa.gov/pub/data/noaa

given algorithm is typically necessary. Data processing may involve imposing logical structure,
categorization, aggregation, or correction of bad or missing data.
“Ideal” data (1) represent the actual process being measured, and (2) are sampled at a frequency
high enough to capture relevant patterns. Deviations from this ideal can limit the number of
applicable models and/or complicate their application. The following are examples of deviations
present in “non-ideal” data that can be characterized statistically.

• Noise: Data can appear to be volatile at short time scales yet exhibit smoothness at longer
scales. This volatility can be taken as noise in the measurement if the characteristics of this
volatility are the same (predictable) throughout the data.

• Gaps: Data gaps can be flagged if the time difference between readings is not as expected.
However, a data gap can be interpolated if it is not severe. The project team defined limits
below which data interpolation was acceptable. If a gap in a trend at a particular building was
large enough, all data for that building during that time period had to be excluded from the
analysis.

• Instrument drift: Instrument drift is a type of instrument calibration problem. Ideally, over long
periods of time, instrument measurements should not drift from some central tendency.

These problems were identified by inferring some expected characteristics and flagging
deviations. There are various statistical approaches to doing this, depending on the nature of the
data. In addition, energy managers and building analysts were consulted to define these
expectations based on expert judgment.

5.4 DESIGN AND LAYOUT OF SYSTEM COMPONENTS

The system integrates building energy and controls data from multiple external sources, applies
ML methods to the data to identify specific issues as defined by the use case selection process
(see Section 6.1), and communicates the results to building operators and energy managers via
the EBCS platform. The key components of the system in this demonstration are:

• USAR buildings
• physical sensors and meters
• external database servers
• a PNNL internal ML development environment
• the EBCS platform
• building operators and energy managers.

5.5 OPERATIONAL TESTING

Performance Objective Analysis Overview

The performance objectives of the demonstration were:

• fault detection
• building energy use (MMBtu/ft2/yr).

As discussed in Section 4.0, it was not possible to fully calculate these metrics due to data
limitations. The project team initially planned to measure the metrics associated with these

performance objectives before and after the period of implementation of the ML analytics tools,
to determine the effect of the technology. The metrics were to be calculated individually for each
building, and the results aggregated to get the mean and standard deviations for each metric
across the dataset. Because insufficient data were derived from this demonstration, t-tests were
not able to be conducted to determine the significance of performance changes across the
population of buildings. As such, the determination of project success relies on the metrics
described in Table 3 below.

Model Predictive Accuracy

Additional analysis was conducted to validate the accuracy of the ML models. While this
analysis did not directly measure the improvement of performance objectives, the accuracy of the
models informs the usefulness of their application to the performance objectives and allows for
comparison to state-of-the-art models used across the industry.
Three types of model validation were employed: (1) internal validation during model training,
(2) external validation on a subset of historical data not used for model development, and
(3) external validation on real data in a set of test buildings for which the technology has been
deployed. The first two types of validation will require ground-truth data of building faults from
a set-aside validation dataset. It was hoped these data would be available from work order logs,
on-site confirmation with staff, and the results of the clustering algorithms used for data
preparation. However, as discussed in Sections 6.1 and 9.1, this validation was not possible
given the data quality issues present.

Internal Validation

The following techniques were employed to determine internal model validity and reduce
overfitting:

• k-fold cross-validation
• bootstrap validation
• recursive feature elimination.
These are standard techniques used for ML model evaluation.

External Validation

For external validation using both historical and post-implementation data, the metrics described
in Error! Reference source not found. below were calculated. These metrics focus on
measuring how well the ML models estimate baseline energy consumption, predict the presence
of faults, identify the correct fault type, and improve fault detection over the baseline.
The baseline model accuracy was characterized by the adjusted r2 value of the model, also
known as the coefficient of determination. This metric determines how well a model predicts its
target compared to just taking the average of the target value and is often used to evaluate
regression models. The baseline models were also evaluated using the CV(RMSE) metric
(Coefficient of Variation of the Root Mean Square Error) and the NMBE metric (Normalized
Mean Bias Error), which both measure the normalized deviation of the model from the target
value.

The baseline model accuracy metrics are defined as:

𝑟𝑟2��� = 1 − (1 − 𝑟𝑟2)
𝑛𝑛 − 1

𝑛𝑛 − 𝑝𝑝 − 1
(1)

where 𝑟𝑟2��� = adjusted r2 value,
 𝑟𝑟2 = regression score (r2) – un-adjusted,
 𝑛𝑛 = sample size, and
 𝑝𝑝 = number of explanatory variables in the model.

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =
1
𝑦𝑦�

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 100% =
1
𝑦𝑦�

 �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛
× 100% (2)

where 𝑦𝑦� = average value of the true series,
 𝑦𝑦𝑖𝑖 = the true value of the 𝑖𝑖-th sample,
 𝑦𝑦𝚤𝚤� = the predicted value of the 𝑖𝑖-th sample, and
 𝑛𝑛 = sample size.

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1
𝑦𝑦�

 𝑀𝑀𝑀𝑀𝑀𝑀 × 100% =
1
𝑦𝑦�

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛
× 100% (3)

where 𝑦𝑦� = average value of the true series,
 𝑦𝑦𝑖𝑖 = the true value of the 𝑖𝑖-th sample,
 𝑦𝑦𝚤𝚤� = the predicted value of the 𝑖𝑖-th sample, and
 𝑛𝑛 = sample size.

The fault detection and model accuracies were to be measured using the ROC (receiver operating
characteristic) curve, which compares the true positive (detection) rate of a model with its false
positive (false alarm) rate. This metric is very commonly used to evaluate the predictive
capability of ML models and is very useful for optimizing a model to meet specific goals (i.e.,
maximizing the true prediction rate or minimizing the false prediction rate). However, as
discussed in Sections 6.1 and 9.1, it was not possible to assess the developed models with these
metrics because they require ground-truth fault data, which were not available.

Table 3. External Validation Metrics

Objective Metric Success Criteria
Baseline model
accuracy

Adjusted r2 value
CV (RMSE)
NMBE

r2 > 0.7
CV < 25%
-0.5% < NMBE < 0.5%

Fault detection
model accuracy

ROC curve (tradeoff of detection and
false alarm rates) for identified faults

ROC area under the curve (AUC) >
0.9

Fault detection
model
performance(a)

Number of faults detected; number of data
points required to detect fault as compared
with previous methodology

Statistically significant improvement
in the number of correctly detected
faults and a reduction in the number
of data points required for detection

Fault-
identification
model accuracy

(b)

ROC curve for each fault type Average ROC AUC > 0.9

(a) Ability of the model to detect that a fault has occurred.
(b) Ability of the model to correctly identify the fault type.

In addition to model accuracy, the project team initially planned to compare the performance of
the ML models to the baseline methodology for fault detection (manual data inspection) by
examining the number of detected faults and the number of data points required to detect the
faults with both methods. As with the performance objectives, the average and standard
deviations of these metrics were not able to be obtained due to insufficient data.

5.6 DATA INTEGRATION PLATFORM

The data for the project were collected from multiple sources and compiled in a single database
on the PNNL network. As described in Section 5.3, the primary data sources for the project are
NOAA temperature data, MDMS utility consumption data, and EBCS control point data.
Each building integrated into EBCS can have thousands of individual points, depending on the
control system present at the building, each with its own stored time-series history. These time
series can record as often as every 5 seconds for multiple years. Given the volume of data
involved, it was necessary to develop a programmatic way to interact with the data, because
manually downloading and analyzing data at that scale are difficult. To that end, a data
integration platform was created to query the databases programmatically (i.e., with the Python
programming language). The basic functionality of the data integration platform is illustrated in
Figure 7.

Figure 7. Data Integration Platform Schematic

Not only does this programmatic access allow the database to be queried without having to write
raw SQL scripts, but it also allows the process to be highly repeatable and extensible to multiple
buildings. The platform not only handles querying the database, but also brings the data into the
Python programming environment so that they can be incorporated into ML models.

PNNL Cybersecurity Posture

PNNL has the Authority to Operate (ATO) to meet Federal Information System Management
Act (FISMA) requirements and approval to operate information systems as approved by the
Department of Energy’s (DOE’s) Pacific Northwest Site Office (PNSO). PNNL is approved to
manage and operate moderate risk level systems—those that collect, process, or store Official
Use Only (OUO)/ For Official Use Only (FOUO)/Personal Identifiable Information (PII) data.
This includes Impact Level 4 Controlled Unclassified Information (CUI) data, as defined in
DoDI 5200.48.
PNNL is one of 10 DOE Office of Science Laboratories, which has been operated by Battelle for
DOE since the Lab’s inception in 1965. PNNL has had a formal computer security program in
place since the 1980s. DOE National Laboratories must maintain an ATO for each major
information system they operate. The DOE ATO process is based on Federal Information
Processing Standards (FIPS), FISMA, and National Institute of Standards and Technology
(NIST) guidance for the security authorization of information systems.
PNNL maintains a baseline security profile for any system managed or owned by PNNL, which
is identified in the Site Security Plan and approved by DOE as part of the ATO process. PNNL’s
minimum level of protection assumes OUO/FOUO/PII data are processed and or stored on the
system. PNNL has implemented extensive system-wide tools for staff and system administrators
to ensure security is part of their system’s life cycle. Example measures include a Public Key
Infrastructure joined with DOE that is embedded in desktop products, continuous monitoring of
all systems, regular proactive patching, malware signature updates, and mandatory annual
operational security and security training for all staff and collaborators.
Any software considered for deployment on the EBCS was subjected to operational testing on a
PNNL virtual machine with appropriate Security Technical Implementation Guides applied to

replicate the controls in the EBCS deployment environment. Cybersecurity concerns related to
the technology transfer and application deployment are discussed in Section 9.2.
During the demonstration, EBCS data were captured via file transfer by PNNL/Army staff via
DoD SAFE (Secure Access File Exchange) and did not rely on a live connection to the ARNet.
In accordance with the PNNL contract with USAR PNNL staff are authorized to have USAR
computers and contractor access to the EBCS and MDMS. All performers are aware of the
cybersecurity requirements and constraints on access to the Army servers. Future live
connections between systems will be coordinated and implemented by USAR.

5.7 DATA QUALITY ANALYSIS AND CLEANING

As stated throughout this report, the quality of the input data has a direct impact on the output
accuracy of a ML model. For this reason, an important part of every ML project workflow is an
analysis of the input data quality and cleaning of the data prior to their being fed into a model for
training.
Before any analysis can be performed, data formats must be standardized. Different systems are
responsible for recording the data from each source. These systems have different recording
frequencies and temporal precisions. NOAA temperature data are stored at an hourly frequency
with a minute precision (e.g., each value is recorded with a time stamp like “2019-03-18 12:30).
The data from the MDMS and EBCS are recorded as often as every 5 seconds, with timestamps
captured to a millisecond precision (e.g., each value is recorded with a time stamp like “2019-03-
18 12:30:00.047). In order to be combined, these time series have to be aligned to the same
frequency and precision. Each time series is rounded to the nearest 15-minute increment. For
some signals this means they are being up-sampled (e.g., the NOAA hourly temperature data are
up-sampled to 15-minute increments using linear interpolation). For other signals it means they
are being down-sampled (e.g., a discharge temperature point that records every 5 seconds is
down-sampled so that only one sample in each 15-minute increment is kept).
After standardizing the timestamps associated with the data, the NOAA temperature data and the
EBCS control point data are ready to move to the next data processing step. However, additional
data preparation is required for the MDMS meter data. The advanced meters in the Army’s
Metering Program record the running total consumption of the meter at each 15-minute interval.
As such, the interval usage must be calculated as the difference between adjacent 15-minute
intervals.
After these initial data-cleaning steps, data quality analysis (DQA) is an important next step in
examining what is and what is not possible given the data available. The analysis primarily
focuses on two areas: (1) identifying where data are or are not sufficient for ML and (2)
identifying outliers/anomalous data. If too many data are missing from a time series in a given
date range (i.e., a data gap is too large), it can preclude certain ML use cases that rely on large
volumes of data to ensure a minimum level of model accuracy. Moreover, outliers in the training
data can degrade the accuracy of a ML model, so they were removed prior to training.

Data Quantity

The most important factor in determining whether data are or are not sufficient for ML is how
many data, if any, are missing from a given time series. Hence the first step of the DQA is to

analyze the time series for missing data. Figure 8 shows the results of this analysis, which
generates some statistics and visual representations of the data gaps. For the use cases
investigated in this report, small gaps are acceptable, but large periods of missing data are not.

Figure 8. Sample Output of Gap Statistics from MDMS

After the amount of data present has been verified, the DQA generates various plots that show
relationships between different features (temperature and temporal measurements) and the
prediction target (whole-building energy consumption) as well the expected behavior of the
prediction target. This portion of the DQA primarily informs feature selection (discussed further
in Section 6.2) and provides context for the range of expected model predictions.

Figure 9. An Example of a DQA Plot Showing the Relationship between Features and the

Prediction Target

Figure 10. An Example of a DQA Plot Showing the Daily Average Hourly Energy and Two

Standard Deviations

Outlier (Anomaly) Detection

The second portion of the DQA addresses the identification of outliers (anomalous data) and
their subsequent removal. Outliers can result from faulty measurements, calculation errors, or
simply valid data that for some reason is well outside the normal expected range of values. No
matter the reason for the outlier, they can cause ML prediction accuracy to degrade if they are
present in the training data, so they are typically removed from the dataset prior to training. The
outlier detection procedure of the DQA was incorporated into the data ingestion pipeline for each
model, similar to the data-cleaning stage. Hence, before any model in the project was trained, it
first went through the outlier detection step.
The outlier detection method used for this project is itself an ML algorithm. Instead of relying on
hard-coded thresholds (e.g., >95th percentile) as a means of excluding outliers, a clustering
approach was used. Clustering is a type of unsupervised learning that groups samples into
clusters that are similar based on some defined distance metric. The clustering algorithm used for
this project was a Density Based Spatial Clustering of Applications with Noise, or DBSCAN
(Ester et al. 1996) as implemented in scikit-learn.4 The DBSCAN algorithm has a few attributes
that make it well suited for outlier identification. First, the total number of clusters does not need
to be known beforehand in contrast to other clustering algorithms (e.g., K-means clustering).
Second, because the clusters are defined based on the density of surrounding points, the clusters
can be an arbitrary shape. Additionally, the DBSCAN algorithm can efficiently handle a large
number of samples. All of this together makes DBSCAN well suited to be incorporated as the
outlier detection method. Figure 11 provides an example showing clear outliers (identified with
red dots) in both temperature and energy time series that were identified and removed.

4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

Figure 11. Outlier Identification Illustrated with Hourly Energy and Temperature Plotted over

Time and a Scatter Plot of the Same Hourly Energy Data as a Function of Temperature

6.0 PERFORMANCE ASSESSMENT

6.1 USE CASE SELECTION

The range of possible ML use cases is dependent on what data are available to train the
algorithms. Each ML use case has inherent data requirements that, if not met, preclude accurate
and actionable results and may preclude the use case entirely. During this demonstration, data
quality and availability issues presented a challenge to investigating even simple use cases. As
illustrated in Figure 12, only nine USAR buildings had adequate data for investigating ML use
cases beyond DQA and baseline prediction (using meter and weather data inputs only).

Figure 12. Down-selection to Buildings with Adequate Data for ML

The Use Case Prioritization Matrix, presented in Appendix C, provides a tool for evaluating
which use cases are possible given the available data in the context of USAR. Table 4 presents
the results of that evaluation for use cases that were initially proposed as part of this project. The
background color of the Actual Data Available column indicates whether the requirements are
met by the available data; green indicates that the data requirements are sufficiently met by the
available data, yellow indicates they are partially met, and red indicates the requirements are not
met.

Table 4. ML Use Case Prioritization Matrix Applied to USAR Buildings Data

Use Case
Description

Use Case
Category

Data
Attribute Data Required Actual Data Available

Labeling
consumption
data as
anomalous or
non-
anomalous

Pre-
processing
anomaly
detection

Measurements

Utility use data (hourly or
smaller resolution):
• Gas consumption
• Electricity consumption
• Water consumption
Outdoor environmental
data (hourly or smaller
resolution).

Data requirements met.

Data Volume No strict minimum
requirement.

Data requirements met.

Data Quality Gaps are tolerable. Data requirements met.

Baseline
consumption
modeling

Fault
detection,
energy
benchmarking

Measurements

Utility use data (hourly or
smaller resolution):
• Gas consumption
• Electricity consumption
• Water consumption
Outdoor environmental
data (hourly or smaller
resolution).

Outdoor environmental data
available at hourly resolution
from NOAA across all of
CONUS.

Where utility meter data is
available, it is available at
hourly or smaller intervals.
Utility meter data are only
available for a portion of the
buildings that have control
data. Many buildings with
utility meters do not have
control data available.

Where utility meters are present
at buildings, electricity is the
most common meter type. Gas
and Water utility meter data are
not consistently available.

Data Volume

At least 1 year. Multiple
years is preferred.

At least 1 year of overlapping
meter and controls data
available for just 9 of ~70
buildings.
Multiple years not available.

Data Quality

Must be fault-free.
Sparse gaps are tolerable (a
few data points missing).

Fault status unknown, not
possible to say whether data are
fault-free.
Depends on building, but large
gaps (a few hours up to a few
months) are present.

Use Case
Description

Use Case
Category

Data
Attribute Data Required Actual Data Available

Unsupervised
fault/anomaly
detection

Fault
detection

Measurements

Step 1 (baseline
consumption model
training): fault-free data as
required to train baseline
consumption model.

Step 1: same data availability
constraints as described in the
baseline consumption modeling
use case, fault status unknown.

Step 2 (fault detection):
consumption measurements
for time period for which
fault detection is to be
performed (can be a real-
time stream).

Step 2: N/A, cannot progress
past Step 1 without fault-free
data.

Data Volume

Step 1 (baseline
consumption model
training): At least 1 year.
Multiple years is preferred.

At least 1 year of overlapping
meter and controls data
available for just 9 of ~70
buildings.
Multiple years not available.

Data Quality

Step 1 (baseline
consumption model
training): must be fault-
free.

Step 1: fault status unknown,
not possible to say whether data
are fault-free.

Step 2 (fault detection): can
have faults.
Both: Sparse gaps are
tolerable (a few data points
missing).

Step 2: N/A, cannot progress
past Step 1 without fault-free
data.

The only use case that has actual data that meet the data requirements is the preprocessing step of
identifying anomalous data. The DBSCAN clustering algorithm described in Section 5.7 was
incorporated into the data pipeline as a data-cleaning step before training any of the additional
ML algorithms. This use case was successfully demonstrated because the data requirements for
the use case were met.
The baseline consumption modeling use case adequately meets the data requirements for both
the available measurements and the volume of data for a small subset of all the EBCS buildings,
resulting in the “partially met” designation for those requirements. However, the data quality
requirement is not met by the available data. Specifically, the fault status is unknown—i.e., we
do not know when and if there are faults present in the training data. While this precludes
generating baseline models that are capable of positively identifying faults, it does not eliminate
the possibility of creating baseline models entirely. Baseline models can be generated for the
buildings with sufficient data, but we cannot say whether they reflect the ideal fault-free
operation of the building. We only know the models can predict the current operation, faults
included.
For example, if a building has a fault of a stuck open terminal damper, which has caused an
increase in the total building energy consumption, that fault would be present in the training data
for the baseline model, and the model’s baseline power prediction would include the higher
energy consumption caused by the fault. Any faults in the available training data will be

incorporated into the models’ whole-building consumption predictions. Because we do not have
any information about the faults in the training data (or even know if they exist), we cannot teach
the model anything about those faults or use the model to identify existing faults.
As such, the baseline models are not able to identify existing faults in the buildings. This limits
the models’ use in fault detection. Therefore, as shown in Table 4, the minimum data
requirements are not met for this use case. However, given additional years of data (compared to
the minimum length of time needed for training) the models would be able to detect new faults in
the building that cause an increase in whole-building energy consumption.

6.2 BASELINE PREDICTION

Despite the data challenges described above, there was sufficient data for nine buildings to train
ML models to predict the buildings’ baseline whole-building electrical consumption. Two
fundamental steps in building those models are (1) selecting which type of model to use and (2)
determining which input features (i.e., the input variables fed into the model) to select. Both
steps are described below.

ML Model Comparison

Baseline energy consumption prediction is a regression task and many types of ML models are
capable of regression. Although some types of models generally outperform others, it is very
difficult to determine beforehand exactly which model type will perform the best for any given
task on a specific dataset. Therefore, it is necessary to experiment with different model types and
architectures to see which one ultimately should be used for the task at hand. To that end, we
tested eight different types of ML models to see which would perform the best at predicting
whole-building electricity consumption for each of the buildings that had sufficient data. Figure
13 shows an example of several models’ predictions of baseline consumption compared to actual
consumption.

Figure 13. Several ML Model Predictions of Baseline Consumption

Each model was implemented in the data integration platform (described in Section 5.6). We
tracked all the ML model experimentation (including this preliminary model type selection
experiment) with MLflow, a Python library designed to record and manage ML experiments.5
These tools allowed us to explore which models performed best without the need to manually
record or save the input features, model hyperparameters, or output results. Table 5 shows the
types of models implemented, which family those models belong to, and which Python
implementation was used for this project.

Table 5. ML Model Types Implemented and Tested

Model Type Model Family

Python
Implementation

Used
Ordinary least squares (OLS) Linear regression scikit-learn (a)
Support Vector Regressor (SRV) Support vector machines scikit-learn(a)

Random Forest Classification and Regression Trees (CART) scikit-learn(a)
Gradient Boosted Regression Tree
(GBRT)

Classification and Regression Trees (CART) scikit-learn(a)

Adaptive Boosting (AdaBoost) Classification and Regression Trees (CART) scikit-learn(a)
eXtreme Gradient Boosting (XGB) Classification and Regression Trees (CART) XGBoost (b)
Multi-layer Perceptron (MLP) Neural network scikit-learn(a)
Fully connected neural network
(FCNN)

Neural network Keras (c)/
TensorFlow

(a) https://scikit-learn.org/stable/
(b) https://scikit-learn.org/stable/
(c) https://xgboost.readthedocs.io/en/stable/

Relative to many state-of-the-art ML problems, the input data for this project are relatively
simple. The training datasets used for any given building never exceed a few hundred megabytes
(MB). For comparison, one of the leading language models, OpenAI’s Generative Pre-Trained
Tranformer-3 (GPT-3) was trained on 45 terabytes (TB)—roughly 1,000,000 times more data
than in our case. The relatively small size of our dataset had a notable impact on which model
performed best. More complex models, like the fully connected neural network (FCNN), were
outperformed by simpler models.
The Classification and Regression Trees (CART) family of algorithms is well suited for dealing
with our relatively simple data. Random forest, Gradient Boosted Regression Tree, AdaBoost,
and XGB (eXtreme Gradient Boosting) are four of the most commonly used and performant
algorithms in this family and all showed excellent performance on this project. The scatter plot in
Figure 14 illustrates predictions made by the random forest model compared to actual
observations; the orange line represents perfect prediction.

5 https://mlflow.org/

Figure 14. Actual Energy Usage Compared to Predictions by the Random Forest Model

The models were all implemented into a single Python class that served as the ML pipeline for
the project. The class standardized the inputs and outputs of model training, making it simple to
switch between models during the experimentation phase, and assured that the models received
the same inputs for evaluation. The scikit-learn models (see Table 5) and the XGB model all
have more rigid architectures; although there are some hyperparameters to tune, they do not
significantly affect the model architecture. In contrast, the FCNN (which is implemented with
Keras/TensorFlow) is a custom model with manually defined layers. The model is implemented
as a sequential model (a linear stack of neural network layers) that consists of three layers. The
first two layers are dense layers (each neuron is connected to every neuron in the previous
layer) with the same shape as the input features, using rectified linear units (ReLUs) and sigmoid
activation, respectively. These layers are referred to as hidden layers. The last layer (output
layer) is also a dense layer but only has a single output, using a linear activation. The model is
compiled with an ADAM optimizer and uses mean squared error as the loss parameter. Figure 15
illustrates the FCNN architecture employed for this project.

Figure 15. Sample FCNN Architecture from Kim et al. (2022)

Each model type performs slightly differently for each building on which it was trained. A
varying amount of data is available at each site, which affects the overall performance. Each
model type was trained and tested at each building using the same input features. Figure 16
shows the full set regression score (r2) for each building, along with the model average r2 value
for all the buildings. These results are also compared to the “naive” prediction, where the
prediction is simply the value from the previous timestep. The naive prediction does quite well
for a single timestep forecasting window; this is a common benchmark used to gauge the relative
performance of the other models.

Figure 16. Comparison of Model Performance (full set regression score) for All Buildings that Had

Sufficient Data

Table 6 presents the average r2 values show in Figure 16 along with the model accuracy metrics
described in Section 5.5, averaged across all buildings for each model. These results show that
all the models met the success criteria for baseline prediction described in Table 3.

Table 6. Average Baseline Model Performance Accuracy Metrics for All Buildings by Model Type

Model Average Full Set r2
Average

Adjusted r2
Average

CV(RMSE)
Average
NMBE

OLS 0.887 0.887 11.1% 0.0%
SVR 0.894 0.894 10.7% 0.6%
Random Forest 0.978 0.977 4.8% 0.0%
GBRT 0.914 0.914 9.6% 0.0%
AdaBoost 0.832 0.839 13.5% -3.6%
XGB 0.953 0.953 6.9% 0.1%
MLP 0.883 0.887 9.7% -0.1%
FCNN 0.919 0.921 8.9% -0.2%
Naive prediction 0.871 0.887 11.1% 0.0%

Note that there are many different types of commercial buildings with a variety of operational
profiles. The buildings analyzed in this dataset have well-defined schedules and occupancy so
there is fairly minimal hour-to-hour variability in energy consumption except during startup and
setback. Figure 17 illustrates an average hourly electricity use profile for a representative Army
Reserve training center in the month of June.

Figure 17. Representative hourly electricity use profile for an Army Reserve training Center in the

month of June.

Naïve prediction uses the model Q_t = Q_t-1; as such, accuracy is a function of temporal
variability. When the naïve model performs well it means that there is relatively little change
between timesteps. This would be expected for a building with well-defined profiles, with large
changes limited to a few hours a day during startup and setback. The research team recognizes

the simple predictive models could be less accurate with more diverse commercial building
energy consumption profiles.

Input Feature Selection

Input features are what an ML model uses to predict a corresponding output (in our case, whole-
building electrical consumption). Input feature selection is just as important as model type
selection for a given task. The process of selecting which input features to use and which, if any,
transformations to apply to the features is generally referred to as feature engineering. Poorly
selected input features can significantly reduce the performance of an otherwise well-performing
model, so robust feature engineering is a critical step in the model development process.
As with model selection, it is difficult to determine exactly which combination of features will
produce the best performing results beforehand, so feature engineering typically involves varying
the input features and evaluating how the changes affect the model’s accuracy.
All the features are scaled with scikit-learn’s Robust Scaler6 prior to model training. Each feature
is scaled independently. The Scaler subtracts the median and scales the values to the interquartile
range (e.g., the 25th and 75th quantile). The input features can have very different scales (e.g.,
the month range is in [1-12] while recorded electricity consumption could be over 10,000 kWh)
which some models are not well suited to handling without hurting performance. Some models
also expect the features to be centered around zero or are built with assumptions about their
variance. The Robust Scaler accommodates these requirements.
Additional transformations are applied to the time-based features before the centering and
scaling of the Robust Scaler. The weekday/weekend feature is transformed using a method
known as one-hot encoding. The day-of-the-week value is an integer that is in [1-7]; one-hot
encoding transforms these values into a binary feature with 0 corresponding to a weekend and 1
corresponding to a weekday. The other time-based features (month, day-of-the-year, hour,
minute) are transformed into two component columns through cyclical encoding. These features
are inherently cyclical, always restarting at the beginning of the sequence after reaching the end.
Cyclical encoding transforms the raw values into sine and cosine components representing the
progress through the cycle. This allows the model to recognize that the 23rd hour (11:00 pm-
11:59 pm) is next to the 0th hour (12:00 am-12:59 am). Without this encoding, the model
interprets the two endpoints as far apart in the feature space. Figure 18 illustrates how the
encoding transforms the raw hour feature into the two cyclical component features. The month,
day-of-the-year, and minute features are transformed in the same manner. In the figure, the
panels show the raw hour value (left), cyclically encoded hour values (center), and visualization
of cyclical relationship of encoded hour feature (right).

6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

Figure 18. Effect of Cyclically Encoded Time Features

The project started with a baseline set of input features: electricity consumption during the
previous time stamp (Q_t-1), outdoor air temperature (OA temp), the hour of the day, the month,
and if the day was a weekday or weekend (wk_day). These were the features used in the model
selection described above. With these simple inputs, all of the baseline models were able to
achieve accuracy that exceeded the success criteria defined at the beginning of the project.
Figure 19 shows the relative importance of each of these features on the random forest model.
Not surprisingly, the consumption value of the previous stamp is by far the most important
feature. It is in effect incorporating the naive prediction (itself a good predictor, as discussed in
the ML Model Comparison section) into the model.

Figure 19. Relative Importance of the Baseline Features for the Random Forest Model

While the baseline features described above produced accurate models, we were interested in
investigating different combinations of features to achieve as many of the following outcomes as
possible:
1. Improve model performance.
2. Obtain performant models without using NOAA temperature data as an input feature.

(Obtaining outside air temperature data from NOAA requires an open network connection to
the internet, and the team was unsure if the deployment environment on the USAR’s network
would allow that connection.)

3. Obtain performant models without using the previous timestep consumption value as an input
feature.

Including the previous timestep value as an input to the model limits the model’s utility in
predicting faults. Faults are unlikely to affect the energy consumption for only a single timestep.
By including the previous timestep as an input, any change in energy consumption caused by a
fault would be incorporated into the next prediction, essentially calibrating the model to predict
the change in consumption caused by the fault.
To investigate the above objectives, the team ran each model type on each building for each
different feature set included in the investigation. In addition to removing the OA Temp and
previous timestep features, the team investigated whether model performance could be increased
by including data from temperature sensors within the building. To that end, any point with the
sub-string “temp” in the point name (referred to as the Building Temps features) were included
as features. That led to training eight separate instances of each model type, each with a different
input feature set. The model accuracy of each feature set and model type is shown in Table 7 and
compared to the naive prediction results. Each feature set iteration varies the input features, but
all iterations keep the time-based features (month, hour, and weekday). All the model types were
investigated to see if the different combinations of features would lead to a different type of
model, beating out the random forest model. While all the CART models performed well, the
Random Forest regressor still performed best.

Table 7. Average Baseline r2 score for All Buildings by Model Type and Input Feature

 Model Type

Features Used OLS SVR
Random
Forest GBRT AdaBoost XGB MLP FCNN

Model 0, Naive Prediction 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Model 1, Q_t-1, OA Temp 0.89 0.89 0.98 0.91 0.83 0.95 0.88 0.92
Model 2, Q_t-1, NO OA
Temp 0.89 0.89 0.97 0.91 0.84 0.95 0.88 0.91

Model 3, NO Q_t-1, OA
Temp 0.36 0.56 0.85 0.58 0.43 0.72 0.58 0.62

Model 4, NO Q_t-1, NO
OA Temp 0.36 0.50 0.58 0.53 0.47 0.58 0.52 0.56

Model 5, Building Temps,
Q_t-1, OA Temp 0.90 0.73 0.98 0.93 0.87 0.97 0.28 0.71

Model 6, Building Temps,
Q_t-1, NO OA Temp 0.90 0.73 0.98 0.93 0.87 0.97 0.08 0.78

Model 7, Building Temps,
NO Q_t-1, OA Temp 0.72 0.61 0.97 0.83 0.75 0.96 -0.04 0.73

Model 8, Building Temps,
NO Q_t-1, NO OA Temp 0.72 0.61 0.97 0.83 0.74 0.96 0.11 0.54

Figure 20 breaks the results further into the test and training set accuracy metrics for just the
random forest model. The difference in accuracy between these two datasets shows how well the
model will perform on unseen data. A model that is overfitted on the training data will have a
high predictive accuracy for the training set, but poor accuracy for the test set. As the figure
shows, the baseline features (Model 1) produce a model that is highly accurate and performs well
on unseen data. Removing the OA Temp feature (Model 2) has little impact on the test or
training accuracy. Consistent with the results shown in Figure 19, the Q_t-1 feature is has the
biggest effect on the model prediction. If that feature is removed from the baseline set of
features, the accuracy decreases significantly (Model 3 and Model 4). Removing the Q_t-1
feature but keeping the OA Temp feature results in a training set that still beats the naive
prediction (Model 3). However, upon reviewing the test set, the model is clearly overfitted and
does not perform well on new data, as shown by the large difference between train and test set
accuracy. Removing both the Q_t-1 and OA Temp features results in a model that performs
poorly on both the test and training datasets.
On the other hand, adding in the indoor building temperature point features makes the model
much more resilient to the removal of the OA Temp and Q_t-1 features (Models 5-8).
Impressively, when the building temperatures are included but the OA Temp and Q_t-1 features
are not (Model 8), the overall regression score is comparable to the score generated by the model
using the baseline input feature configuration. It does appear that there may be some overfitting,
but the model still performs well on unseen data. This is encouraging, because it suggests that
even in the absence of NOAA outside air temperature or knowledge of the previous timestep, the
model can achieve a high level of predictive accuracy.

Figure 20. Average Test and Training Set r2 Score for the Random Forest Model for Different

Input Features

The increased robustness of the model comes at the expense of additional training time, however.
When using the baseline features (OA Temp and Q_t-1) the average training time for the random
forest model was 17 seconds. When the baseline features were removed and the building
temperature points were included, the average training time increased to 130 seconds, primarily

due to the increase in data volume. Although each building had a different number of
temperature points available, in each case including those points dramatically increased the
amount of data in the input feature set. Improved performance and training time requirements are
common trade-offs in ML model development.
Ultimately, the random forest model selected for use in the demonstration deployment included
the Building Temps features but excluded NOAA outdoor air temperature and the previous
timestep value. This model only incorporates input features from the EBCS database and does
not require a live connection to the external internet, thereby simplifying the deployment from a
cybersecurity standpoint. Not requiring knowledge of the previous timestep value also increases
the robustness of the model for potential fault detection; as noted above, if the previous timestep
(Q_t-1) is included as an input feature, any change in energy consumption caused by a fault
would be incorporated into the prediction of the following timestep (Q_t), thereby essentially
calibrating the model to predict the change in consumption caused by the fault.

6.3 FAULT DETECTION

As discussed in Section 6.1, the team was not able to fully implement the fault detection use case
because the data requirements were not completely met; without any knowledge of the fault
status of the training data, we were not able to train a model to positively identify faults.
However, the baseline models can be used to identify periods of energy consumption that might
include faults. A baseline model trained on data that may or may not have faults present could
still be able to identify new (i.e., not present in the training data) faults that cause a change in
whole-building energy consumption. However, without the known fault data for validation, we
have no way to definitively say whether a deviation in actual consumption from the predicted
consumption was due to a fault in the building or some other factor.

Fault Detection Data Requirements

The data requirements for the fault detection use case (described in Section 6.1) include high-
resolution fault data that would identify all faults in the building. These data would need to be at
the same resolution as the input features and output consumption value, meaning they would
need to have hourly resolution or finer. Currently, no USAR data source meets those
requirements for this project.
The project team originally hypothesized that ground-truth maintenance ticket data, available
from the USAR CSS, could be used to identify faults. While these data are not recorded at an
hourly level, they do identify a date for each maintenance ticket. These data were insufficient for
fault detection, however, due to imprecise or vague fault descriptions and unreliable timestamps
(see the expanded discussion in Section 9.1).
In the absence of ground-truth fault data, traditional rule-based fault detection algorithms could
be used as a proxy. The EBCS platform does include some fault detection algorithms that would
be useful for validation; however, the histories of those analytics are not recorded.
As a last option, the EBCS does record the time-series data for threshold-based alarm points in
each building's BAS. These alarm points are generally rule-based and generate an alarm when a
certain threshold is exceeded. There can also be a temporal component to the logic (e.g., the
threshold must be exceeded for at least 5 minutes). Although the alarm data cannot definitively

substitute for ground-truth fault validation, they can be used as a weak proxy to provide some
insight into the performance of the baseline model as a fault detector.
Figure 21 illustrates the relative reliability of each of the data sources described above.
Ultimately, the project team only had access to the least reliable data source for fault validation.

Figure 21. Hierarchy of Fault Validation Data Sources

Fault Detection Performance

The fault detection use case employed the baseline prediction model from the previous use case.
The basic idea behind using the model as a fault detector is to compare the actual consumption
values to the predicted values from the baseline model. Provided that the model was trained on
sufficient fault-free data, a large deviation from the predicted values would indicate the presence
of a fault in the actual dataset.
As described in the previous section, we do not have the necessary data to validate performance
beyond a qualitative analysis. In the absence of those data, we are using the total number of
alarms as a proxy for the fault data. To assess how the model might perform as fault detector we
can compare the model accuracy to the number of alarms at different points in the dataset. A
negative correlation between the regression score and number of alarms (i.e., the regression score
is lower when there are more alarms) would indicate the model correctly identified a fault.
The model accuracy metrics are evaluated over the entire dataset at once. While this is useful for
assessing how well the model performs overall, it does not provide information about how that
performance varies over time. To use the baseline model as a potential fault detector, it is
necessary to identify specific time windows during which the accuracy of the model decreases.
To do this, we calculated the regression score of the predictions (compared to the actual values)
over a rolling 24-hour window. The score during the rolling window assesses the model accuracy
in every 24-hour period in the dataset, allowing us to see what period had the biggest deviation
between actual consumption and the predicted values. Because the model can accurately predict
consumption over the entire time period, large differences in the predicted and actual values in a
24-period indicate atypical consumption in the actual building.

Maintenance records:
high-resolution

ground truth fault data

Maintenance records:
low-resolution ground

truth fault data

BAS-generated rule-
based fault detection

alarms

Threshold-based
alarm point histories

Most reliable Least reliable

Another 24-hour rolling window was used to count the total number of alarms in each 24-hour
period; that count could then be compared to the rolling regression score at each time step.
Because no metadata were available for the points in EBCS that allowed for easy disambiguation
of specific alarm points, the names of each point were searched for the sub-string “alarm” and
any point containing that string was classified as an alarm point.
While an increase in alarms does not definitively prove there was a fault, it does provide some
indication that something was happening with the building operation that caused the alarm
thresholds to be exceeded. This can provide some idea of how well the model would perform as a
fault detector if validated fault data were available to evaluate the model. For the buildings tested
there was no correlation between the rolling regression score and the number of alarms, but there
were a few large spikes in alarms that could indicate, along with increased energy usage over
expected, that there was a fault. Figure 22 shows one of the most striking examples of this where
the model’s regression score reached a 6-month low point at the same time as a 6-month high in
the number of alarms. This is a strong indicator of something happening in the building operation
causing a deviation from predicted consumption, potentially a fault.

Figure 22. Potential Fault Indicated by a Low Regression Score at the Same Time as a Large

Number of Alarms

The alarm proxy evaluation could not be used at every building. The total number of alarm
points varied by building, with some containing hundreds of alarm points and others containing
only a few. This further reduced the number of buildings that could be evaluated, because each
building needed to have sufficient data for baseline modeling as well as a sufficient number of
alarms points trended and alarming during the same period. Figure 23 presents an example of a
building with only two alarm points that alarmed a total of four total times during the evaluation
period. Given these limited data, even the alarm proxy evaluation was insufficient for assessing
the baseline model’s fault detection potential.

Figure 23. Example of a Building with Sufficient Data for a Baseline Model but Few Alarm Points

That said, Figure 22 suggests that combining traditional rule-based FDD and ML prediction
could enhance fault detection. Given sufficient rule-based alarms data, the accuracy of a baseline
prediction model could be correlated with the incidence of rule-based alarms and thus could offer
an additional confirmatory signal indicating that there are performance issues to investigate at
the building. Because traditional alarms can be so numerous, they are sometimes ignored by
building operators; however, an additional whole-building prediction signal that deviates
substantially from the observed energy consumption could help operators prioritize which alarms
to investigate.

6.4 SITE PRIORITIZATION

Given the data quality and availability challenges present in the EBCS control data and MDMS
utility data, the project team explored additional opportunities to apply ML to USAR data that
could result in actionable results. To that end, an ML model was created to aid in site
prioritization for energy-related projects. The model identifies sites that are consuming more
energy annually than their peer USAR sites after accounting for differences such as building area
and climate. The model was used in a virtual Installation Energy and Water Plan (v-IEWP)
performed by PNNL for the USAR to identify sites where energy conservation measures should
be prioritized.
The expected annual site energy was predicted using a random forest regression model and then
compared to actual site energy use. The annual energy usage data comes from utility billing data
that records monthly total utility consumption for each site. The model does not use MDMS
utility meter data or EBCS building control data.
For input features, the regression model uses annual weather data at each site along with other
site information to predict the total energy consumption for the year. The site information
includes building types, areas, vintage, and the different utilities present at the site (e.g.,

electricity alone, or electricity and natural gas). The annual heating and cooling degree days are
calculated for each site as well as a similar metric for the site’s enthalpy. Table 8Table 8 lists the
features used, along with a brief description.

Table 8. Input Features Used in the Expected Annual Site Energy Model

Feature Description
HDD Heating Degree Day (65° base temperature)
CDD Cooling Degree Day (65° base temperature)
Enthalpy_dd Enthalpy Degree Day (28 Btu/lb base enthalpy)
elec Does the site have electrical consumption? (True/False)
gas Does the site have natural gas consumption? (True/False)
propane Does the site have propane consumption? (True/False)
fuel_oil Does the site have fuel oil consumption? (True/False)
vintage Weighted average vintage based on square footage
total_area Total Building Area
num_shop Number of “shop” buildings present at site
num_storage Number of “storage” buildings present at site
num_training_center Number of “training centers” buildings present at site
perc_shop Percentage of the total building area that are “shop” buildings
perc_storage Percentage of the total building area that are “storage” buildings
perc_training_center Percentage of the total building area that are “training center” buildings
latitude Site latitude
longitude Site longitude

The model was trained on historical data from FYs 2015–2019 for all the sites across the 63rd,
81st, 88th, and 99th Readiness Divisions. This analysis is similar to normalizing energy usage
for either heating or cooling degree days, but is more robust because it takes into account
additional information on the site. Table 9 presents the performance metrics of the model, which
show a high prediction accuracy.

Table 9. Performance Metrics of the Expected Annual Site Energy Model

Full Set r2 Score Adjusted r2 Score CV(RMSE) NMBE
0.948 0.948 25.93% 0.22%

Next, the input features from the most recent fiscal year available (FY 2020) were used to predict
the expected total energy for each site in that year. The percent difference between the expected
energy values and the actual values was then calculated to identify the sites that are using much
more or less energy than expected of a typical USAR site with similar characteristics. Figure 24
plots the percent difference for each site in the region against the site’s total annual energy
consumption. The sites that have higher than expected energy usage (>25% percent difference)
are labeled in the figure. These sites should be prioritized and investigated to identify the cause
of the excess energy usage.

Figure 24. Site Annual Consumption Compared vs. Model Prediction Error

Prediction Task Complexity

Data-driven tasks, like ML, are inherently constrained by the available input data for the task.
There is a general correlation between the task complexity and amount of data required to
complete the task, i.e., the more difficult the task, the more data are required.
Two important aspects of data availability for any given ML task are the granularity of data and
the coverage of the prediction space. The granularity of data describes the level of detail
provided by a dataset. For time-series data, the resolution would be the temporal resolution, or
the time interval, at which the data were recorded (e.g., 15-minute, hourly, annually, etc.).
Coverage of the prediction space refers to the portion of the possible model predictions covered
by the data. For a dataset to have good coverage it must contain samples of each distinct model
output. An example of a dataset with excellent coverage is the Modified National Institute of
Standards and Technology (MNIST) database (Deng 2012), containing 70,000 images of
handwritten digits (0-9) because it has many examples of each base-10 number.
These two qualities of a dataset dictate what is and is not possible with the dataset; the
complexity and range of outputs directly depends on the input data available for training. For
example, the MNIST dataset is perfect for recognizing handwritten numbers, but could not be
used to train a model to recognize letters or words because it contains no letters.
It may be counterintuitive that aggregated monthly utility consumption data could produce a
more actionable models than much more granular (e.g., 15-minute or hourly) building controls
and advanced utility meter data. However, the difference in available data and prediction task

difficulty can combine to enable a model trained on less granular data to produce a more useful
prediction.
To illustrate this point, consider an analogy of an image classifier that is attempting to identify
dogs, cats, and horses (good, bad, and average performing buildings in our case). For the image
classifier, thousands of 128x128 pixel images containing dogs, cats, and horses (analogous to
annual utility usage in this example) can train a much better identification model than dozens of
100-megapixel (~12,000 x 9,000 pixels) cat images (analogous to 15-minute utility interval
data). The three orders of magnitude increase in data resolution would not help the model
identify dogs or horses from cats because it has only seen cats. Similarly, the 15-minute interval
data, which are 8,760 times higher resolution than annual data, are ultimately less effective at
separating poorly performing buildings because the data are only available for a small subset of
all the buildings.
Predicting total annual energy consumption at an entire site is a much simpler task than
predicting 15-minute or hourly energy consumption at a single building. Total annual energy
consumption is more stable than hourly or sub-hourly interval energy consumption and is
unlikely to change drastically from year to year absent major changes or malfunctions in the
buildings’ operation. In contrast, 15-minute and hourly energy consumption is highly dependent
on occupant behavior (e.g., occupancy patterns) or operational actions (e.g., a manual change
over from summer to winter operation). These human actions are not always performed
predictably from day to day or year to year, making it difficult for the model to distinguish
between normal fluctuations in energy usage and conditions that indicate a problem in the
building’s operation, such as a fault.
In terms of data quality, the monthly utility billing data are manually curated; a human enters the
monthly utility totals into the billing system and checks the inputs for errors, thereby deriving a
mostly gap-free dataset. In contrast, the EBCS control point data and MDMS utility meter data
are part of automated data pipelines that record data without human interaction or error checking.
Not only is the data quality higher in the monthly utility billing system, but it also covers more
sites and a longer time period; specifically, it covers around 530 USAR sites over 6 years.
Longer-term data availability gives the model an opportunity to observe a site over multiple
years and allows a change in the site’s energy consumption from its “normal” consumption to be
detected. In contrast, even where EBCS and MDMS data are jointly available for a building, they
only cover more than a year in a few instances. Where there is only a year or less of data, the
model only observes a point in time once during training, making it harder for it to distinguish
normal from abnormal operations.

7.0 COST ASSESSMENT

At the onset of this project, the team proposed to develop and validate the expected life cycle
operational costs for incorporating ML into building systems data analysis structures. The data
required to run a traditional cost model based on the outcomes of energy savings and
maintenance cost reduction are described in Table 10.

Table 10. Inputs to a Traditional Cost Model for ML Technology Implementation

1. Installation costs Labor and material required to install ML on system, including
data preparation costs. Analytics will be targeted at the use cases.

2. Facility operational costs Reduction in energy required vs. baseline data. Examples include
reducing operating hours, fan speed, or space temperature.

3. ML system maintenance • Frequency of required maintenance on ML algorithms
• Labor per ML maintenance action

4. ML lifetime Estimate based on the effectiveness of ML algorithms during
demonstration.

5. Facility maintenance Estimate of avoided maintenance and downtime per ML action
identified.

This demonstration highlighted the fact that the installation costs and timeline can be much
greater than originally planned, in large part due to the data preparation costs. The general cost
model is described below. The specific calculation varies depending on the use case, but the
economic benefits component would relate back to one or more of the performance objectives
identified in Section 4.0, namely analysis effort, building energy use, and system maintenance.
Due to the constraints of the project, interventions could not be implemented during the
demonstration; therefore, assessments of operational cost savings and maintenance avoided
could not be performed.

7.1 GENERAL COST MODEL

The project team proposed a simple model that captures the economic value of a solution as the
difference in economic benefits and the solution cost:

 𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 − 𝑆𝑆𝑆𝑆 (1)

where
 𝐸𝐸𝐸𝐸 = net economic value of proposed solution ($),

 𝐸𝐸𝐸𝐸 = economic benefits that are derived as a result of a solution ($),
 𝑆𝑆𝑆𝑆 = cost of solution ($).

Each use case solution would have slight modifications to the calculation, with an overall
structure shown in Equation (1). Economic benefits could be calculated as an annual average or
projected over an expected lifetime, depending on the use case.

7.2 COST DRIVERS

For ML projects, labor is the largest, if not the only, component of the cost. DoD deployments
could include purchasing the ML capability through a software as a service provider. PNNL did
not purchase software for this project and relied on open-source Python libraries and staff labor
to execute the project.
During different phases of the project, the team discussed the challenges and findings with peers
in academia, other laboratories, and industry experts. The cost drivers for this project were
similar to those of others undertaking similar efforts. The largest cost, due to manpower is in the
data preparation and cleaning stages as shown in Figure 25.

Figure 25. Cost Breakdown for Demonstration Project by Major Task

A demonstration project of this type spends more effort in identifying appropriate tools, testing
methods and quantifying accuracy than a standard deployment would incur. The work
breakdown structure for the project consisted of seven major task areas:

• Task 1. Demonstration Plan Development

– 1.1 Write draft Demonstration Plan
– 1.2 Draft plan review by ESTCP committee
– 1.3 Comments incorporated & final plan submitted

• Task 2. Machine Learning Testbed Configuration
– 2.1 Development environment configuration

○ 2.1.1 Configure ML development software/libraries
○ 2.1.2 System configuration documentation
○ 2.1.3 Define codebase structure and development process
○ 2.1.4 ML life cycle management planning

– 2.2. Data Preparation

1: Demonstration
Plan Dev

2. ML Testbed
Configuration

& Data
Preparation

3. ML
Algorithm
Selection

4. Model
Testing and

Performance
Evaluation

5. Model
Deployment

6. Results
Reporting

7. PM &
Technology

Transfer

○ 2.2.1 Establish data pipeline
○ 2.2.2 Data documentation
○ 2.2.3 Exploratory data analysis and quality characterization
○ 2.2.4 Define datasets for each ML use case

• Task 3. Machine Learning Algorithm Selection
– 3.1 Define use cases
– 3.2 Identify ML methods to evaluate for each use case
– 3.3 Expert elicitation

• Task 4. Model Testing and Performance Evaluation
– 4.1 ML model development and testing

○ 4.1.1 Iterative testing
○ 4.1.2 Model validation

– 4.2 Performance evaluation
○ 4.2.1 Performance objective: analysis effort
○ 4.2.4 Cost assessment

• Task 5. Model Deployment
– 5.1 Configure deployment environment
– 5.2 Deploy ML tools

• Task 6. Results Reporting

– 6.1 White Papers
– 6.2 Final Technical Report
– 6.3 End of Project Presentation

• Task 7. Project Management and Technology Transfer

– 7.1 Quarterly Progress Reports
– 7.2 Annual In-Progress Reviews
– 7.3 Annual ESTCP SERDP Symposia
– 7.4 Outreach and Conference Presentations

7.3 COST ANALYSIS CONSIDERATIONS

The cost-benefit analysis for applying ML to building controls and utility metering data relies on
a number of factors. Meters and sensors themselves do not save energy; it is actions taken based
on the information provided that result in economic benefits. Applying advanced analytics and
ML to data can improve the recommendations and information provided to the user; resulting in
either autonomous changes or manual changes to systems. The DOE Federal Energy
Management Program has partnered with the National Laboratories over the years to provide
guidance on how to justify installing meters from a cost and benefit perspective (Parker et al.
2015). An expansion of the best practice developed for this project (see Appendix C) could be
beneficial for DoD as the data quality and connection of data points improves.

8.0 TECHNOLOGY TRANSFER

There is potential to extend this demonstration from the USAR EBCS to similar systems
operated by other DoD commands, which have also deployed thousands of smart meters and
BCSs at their installations. The Army is also moving toward requiring connected control systems
at their installations, as required by Army Policy and the Army Climate Strategy (2022). The
methodologies, results, and lessons learned from this demonstration are documented and will be
made available across all DoD commands. PNNL disseminated the results of this effort through
this technical report, (pending) journal articles, and conference presentations.
The ML tools deployed and validated for the USAR could be deployed to other commands
immediately following completion of this effort. The National Guard would be a prime candidate
because of its similarity of building types and missions. These techniques also apply to larger
military installations, although additional ML algorithm training may be needed for larger, more
complex facilities.
The greatest challenge for an ML platform is to ensure cybersecurity by building a hardened
system. Within the Army, the G-6 organization controls hardware, software, and all connections
to the network requiring a Certificate of Networthiness (now moving to Risk Management
Framework). The USAR system, including the metering and building controls, has G-6 approval
and will continue to provide updated patches and requirements. Transitioning to other commands
within the Army (that have separate information technology groups) would move quickly
because of the work with USAR G-6. Transition to the Navy or Air Force would require a restart
of the approval process, which can add up to 1 year to the transition process.
Formal technology transfer activities includes the following:
1. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE)

Annual conference (June 2021) presentation “Applying Machine Learning to Enhance
Building Performance at US Army Reserve Centers”.7

2. National Institute of Building Sciences Building Innovation Conference (September 2021)
presentation “Applying Artificial Intelligence to Buildings with Imperfect Data”.8

3. Paper describing the “Challenges to Applying ML to Existing Building Energy and Controls
Data at Scale” (in Draft to be submitted).

4. Paper describing “ML for Buildings: A Use Case Perspective” (in Draft to be submitted).
The audience focus is on DoD and the document will be distributed through Headquarters
communication channels. Guidance for DoD when considering ML as a procured service (in
Appendix C).

7

ML for
USAR_ASHRAE_2021.

8

NIBS
Presentation_BI2021_

5. Progress and innovation highlighted as part of the Army Energy Managers Community of
Practice Webinar, chaired by Ms. Christine Ploschke, Acting Deputy Assistant Secretary of
the Army, in February 2022. Over 180 energy managers and public works staff from the
Army were in attendance.

6. Coordinated with the USAR EBCS technical team to share the code base and leverage the
work for other related efforts (e.g., Control Score algorithm deployment).

7. Open-source release of software framework to be used in future analytics deployments.
8. SERDP & ESTCP Symposia: including the poster sessions 2019, 2020 and 2021, and

Presenting at the Energy and Water session in 2020.
9. ESTCP In Progress Reviews in 2020, 2021 and 2022.
10. Final Technical Report.
11. Out-brief webinar with DoD Energy Managers after submission of the final deliverables.
Because the primary purpose of the tool deployment was to show what ML can accomplish when
applied to the USAR’s existing data and not to deliver a production-grade web application, the
demonstration application has been deployed on the PNNL network in an environment that
mirrors the EBCS deployment environment. This allows the functionality of the tool to be
demonstrated to users without incurring the monetary and time costs of deployment on the EBCS
system.
The mirrored environment of ARNet on PNNL’s network consists of a Windows Virtual
Machine (VM) that hosts a copy of the EBCS Microsoft SQL (MSSQL) database. The ML
demonstration application is hosted on another VM on PNNL’s network inside a Docker
container. Docker containers are a type of virtualized operating system that allow programs to be
neatly packaged with their dependencies and replicated on all types of systems (e.g., Windows or
Unix operating systems), thereby simplifying deployment. The "Dockerized” application can
easily be deployed on any VM with Docker installed on ARNet.
Another PNNL project developing an application called Control Score is also exploring ways to
deploy a Python-based application that uses EBCS data on ARNet. Our demonstration team
worked with the Control Score team to leverage our joint efforts and lower the development
effort for both teams. The two apps are implemented in the same web framework application,
although they are completely separated from each other. Both project teams and the USAR
benefited from this configuration due to the efficiencies of a single deployment effort. The
application architecture and mirrored computing environment are shown in Figure 26.

Figure 26. Application Architecture for Proof-of-Concept and Production Deployment

The demonstration deployment application has a live connection to the MSSQL database that
stores the EBCS control data and the utility meter data captured by MDMS meters. The
application allows meter data to be viewed in any time window for each building. It also trains
and stores a baseline prediction model for any selected building. The predicted consumption can
be viewed along with the actual consumption during any selected window of time. Figure 27
shows screenshots depicting both capabilities, with utility meter data displayed on top and
baseline model predictions compared to actual consumption displayed below.

Figure 27. Screenshots from the Deployment Application Demonstration

The open-source software framework (Item 7 in technology transfer list) builds upon and extends
existing tools for building and managing related computational environments.9 Simply put, a
computing environment is the active set of software tools and libraries that are used when
running a program. Traditionally these tools provide software package management and
deployment workflows for a single environment. Variations are created manually. In contrast,
fundamentally, the proposed framework compositionally relates multiple computational

9 https://github.com/pnnl/hydraconda and https://www.osti.gov/doecode/biblio/74986

https://github.com/pnnl/hydraconda
https://www.osti.gov/doecode/biblio/74986

environments, which provides a basis for programmatically building them for a variety of
scenarios. By enabling multiple related environments to be used by both software engineering-
oriented developers as well as data scientists in the same codebase, both systemized as well as
exploratory programs can be managed.
For example, data processing code can be systemized and centrally managed (as a unit), and
(multiple) exploratory codes (that depend on data processing) can be managed separately, all
while retaining the relationship between them. Furthermore, “finalized” analyses could be
deployed as (delivered) solutions.
The primary audiences for this framework are integrated analytics teams consisting of data
scientists as well as software engineers. The framework could be used for any analytics
development project. It could benefit future DoD/federal deployments by automating,
standardizing, and expediting development and solution delivery.

9.0 IMPLEMENTATION ISSUES

Several challenges that were not well understood at the outset of the demonstration caused delays
and created barriers to successful use case investigation and deployment of ML algorithms.

9.1 DATA QUALITY ISSUES

Data-driven approaches like ML are inherently reliant on the input data available. If sufficient
data are not available, it is not possible to implement them. Throughout this demonstration, a
variety of data quality issues were identified that posed challenges to achieving the originally
stated performance objectives. These issues included missing data, suspicious or invalid
readings, time stamp offsets, and reporting unit miscalibration.

Data Availability and Quality

Data availability was the biggest data challenge faced by the project by far. While there are
hundreds of USAR buildings with advanced meters incorporated into the Army Metering
Program’s MDMS, only a fraction of the buildings are also incorporated into EBCS. Meanwhile,
many of the buildings that are incorporated into EBCS do not have MDMS advanced utility
meters. Thus, the limited overlap of buildings with both EBCS and MDMS data restricted the
candidate buildings significantly prior to other data volume and quality considerations.
The use case prioritization matrix (Appendix C) describes the data quality requirements for the
use cases that were implemented in this project. Filtering out the buildings that do not meet these
data requirements further reduced the number of buildings available for the project. The down-
selection from all possible buildings in MDMS and EBCS to the buildings with adequate data for
ML is illustrated in Figure 28.

Figure 28. Buildings with Adequate Data for ML

Among the EBCS buildings for which sufficient data were available to meet the testing and
training requirements of ML model development, data quality varied widely from building to
building. Data quality problems derive from many sources, among them:

• Interruptions in network connectivity
– Routine networking issues
– Cybersecurity-related interruptions
– Power loss

• Data synchronization problems across the Army advanced metering infrastructure (AMI)
network

– Data transfer losses between advanced meter, Building Point of Connection (BPOC),
Enterprise Energy Data Reporting System (EEDRS)/ Utility Monitoring and Control
System (UMCS), MDMS gateway, and MDMS central server

– Data storage limitations of field devices
– Limited lookback windows for data queries
– Variation in data acquisition, formatting, and storage protocols by EEDRS/UMCS

software (e.g., JCI Metasys, Tridium Niagara N4)

• Miscalibration of measurement devices
– Meter multipliers
– Incorrect reporting units

• Interoperability constraints between devices using different communications protocols and
data formats.

While many of these problems presented challenges, consistent data availability was by far the
most significant. Even where buildings were incorporated into both the MDMS and EBCS
platforms, missing data in one or both sets of data often precluded using the building in this
project. The most prominent example of these challenges is a loss of all meter data from
approximately June 2018 to September 2019 due to a networking connectivity issue. Meter data
availability is visualized in Figure 29, in which each horizontal line represents a distinct meter
and white space represents a day of missing data. The outage affecting all MDMS meters can
clearly be seen in the left figure, and the continued data availability challenges are evident in
both figures as shown by the amount of white space present in the figures (perfect reporting
would result in a solid-colored rectangle).

Figure 29. Meter Data Availability in MDMS and EBCS

Up to a point, data quality problems can be mitigated by using preprocessing methods such as
interpolation for short gaps in time-series data and anomaly detection for erroneous readings.
Such processes are usually human-supervised to ensure that gaps are not so large that
interpolation would generate specious data, or that anomaly detection would filter out potentially
valid readings. There are limits to how many missing or bad readings can be allowed in a time
series before it becomes unusable from the standpoint of ML model training, however. The
specific determination depends on the quantity of data available, the use cases and ML
algorithms under consideration, and the distribution of bad data within the time series.

Data Integration

Data integration across sources introduced an additional challenge to the demonstration. Even
simple use cases typically require merging multiple sources; for example, the whole-building
load prediction models trained in this demonstration used outdoor air temperature data from
NOAA as an input feature. This required integrating utility metering data from MDMS with
temperature data from an external source. When using high-quality sources such as NOAA
historical weather data, data integration is a straightforward process; however, combining
multiple sources of poor-quality building data can render the integrated dataset unusable for ML
model development.
In particular, integrating multiple time series introduces the problem of non-overlapping
coverage. Figure 30 illustrates the problem of non-overlapping coverage for control points at
multiple EBCS buildings; colored regions indicate that a reading is available for a control point
at a particular time step, while white space indicates that no reading is available. There is only a
roughly three-month window in 2020 during which readings are available for all points at all
buildings.

Figure 30. Non-overlapping Coverage of Control Point Readings for Multiple EBCS Buildings

A useful feature of ML is the ability to extend a model’s predictive capabilities from one target
to another, assuming that the phenomena being modeled are sufficiently similar across prediction
tasks. It is more efficient to leverage a pre-trained model to make predictions about a new target
than to train an entirely new model from scratch. The extension of a pre-trained model from one
prediction task to another is known as transfer learning.
At the outset of the demonstration, the project team expected that transfer learning would allow
for the extension of controls-oriented models to many buildings; however, the control points
trended in EBCS differ substantially from building to building, which limits model transfer
between different buildings. Variation in point trending at different buildings occurs for a
number of reasons, including the following:

• There are many different building designs with a wide variety of HVAC and other energy-
consuming systems.

• Even in two buildings with identical systems, different points are chosen to be trended (i.e.,
their data recorded for long-term storage).

• Building owners have numerous competing interests, among which achieving energy
efficiency through automation is often a lower priority.

• Field controllers and automation systems are offered by a wide range of vendors, and many
rely on proprietary standards that are not interoperable with each other (this is particularly true
with pre-BACnet legacy systems).

• Only some systems and equipment are automated.

Unavailable Metadata and Inconsistent Point Naming Conventions

One of the largest data quality issues this project faced was a lack of available metadata for the
EBCS points. Metadata that describe what the point data represent (e.g., a space temperature
measurement or discharge pressure set point) and how they relate to other points in the building
(e.g., identifying all the points belonging to a single piece of equipment) are essential for many
of the use cases explored in this project. Without having these data formally documented, the
project team attempted to infer this information, to the extent possible, from the name of the
points. The robustness of this inference relies on how well the naming convention describes that
information and how rigorously the naming convention was followed.
Although a meter naming convention is specified in the U.S. Army Corp of Engineers (USACE)
Army Metering Program Guidance for Advanced Meters (USACE 2016), it is inconsistently
applied across meters at both the UMCS/EEDRS level as well as in MDMS. Efforts have been
made over time to update these names to conform with the current standard, but legacy issues
remain. Even with the convention in place, in some cases meter install contractors and
Directorate of Public Works (DPW) personnel implemented an alternative approach instead.
For the purposes of this demonstration, however, inconsistent meter naming was a relatively
minor issue when compared to the much greater challenge of inconsistent point naming
conventions for BCS point histories across different buildings in EBCS. There is usually only
one advanced meter per utility at each USAR building, meaning that manual resolution of meter
names is possible; however, BCS trend hundreds or thousands of points per building.
Investigation of EBCS data yielded a wide range of point naming conventions.
Inconsistent point naming conventions pose a major challenge to scaling ML models from one to
multiple buildings, and even to implementing models at a single building. The first issue is that
of interpretability. In a BCS, control points are associated with graphical models, accessible
through the BCS graphical user interface, which aid human building operators in interpreting the
physical system that the points represent. Figure 31 presents an example from EBCS.

Figure 31. Example Graphical Model of a Boiler System in EBCS

Conventional ML models cannot make use of this graphical context the way that human
operators do, however; instead, the point name needs to be linked to metadata that describe the
point unambiguously, i.e., a semantic model or metadata schema. In the absence of such
metadata, the model developer must interpret the meaning of point names and incorporate the
appropriate points into the model accordingly. With hundreds or thousands of points to review
per building, this is a time-consuming process, prone to errors of interpretation and judgment.
And because naming conventions are inconsistent between buildings, the interpretations applied
to a particular set of points at one building often do not apply to the next building.
An automated approach to the problem is to develop a set of syntactic rules for automatically
parsing point names (e.g., “all point names ending in ‘_sp’ refer to a control set point”) and
assigning semantic meaning to them. Inconsistent point naming conventions inhibit the
scalability of this approach, however; a set point at one building might be coded as “_sp” and at
another as “-set-point”. In some cases, these conventions can vary even among points within the
same building. For the model developer, this complexity leads to a disproportionate expenditure
of time on point name resolution, involving some ad hoc combination of syntactic parsing rules
and data modeling.
The USAR is far from alone in terms of point naming consistency issues. Among energy
management information system (EMIS) developers, it is a widely recognized problem
throughout the commercial buildings sector.
While there are a number of emerging standards for point ontologies (e.g., Project Haystack,
Brick, and ASHRAE Standard 223P), they have not been widely adopted throughout the building
industry. Creating the models is currently a manual process, which can be labor-intensive,
particularly for larger buildings with many points. This is especially true for existing buildings
that may lack drawings of the building and associated systems. There is active research being

conducted on data-driven approaches to automatically determine the point ontology, but the
accuracy of these methods varies significantly.

Limited Detail in Maintenance Logs

To implement effective fault diagnosis and predictive maintenance models, detailed maintenance
histories are required. This is a basic requirement of supervised ML tasks—for the model to
predict a target outcome, it must be trained on data that include both predictive features and
observed outcomes. Empirical observations of the target are required to validate the accuracy of
the model predictions. If target data are missing or are not sufficiently detailed and precise, it is
not possible to build a model to predict that target. In the case of fault diagnosis, a high degree of
specificity is necessary for the diagnosis to be useful.
The project team reviewed maintenance data from the USAR CSS, the enterprise system for
tracking work orders at USAR sites. After the review, the team concluded that the information
contained in CSS was not sufficiently detailed to support the development of useful ML models
for fault diagnosis and predictive maintenance. Table 11 presents a sample of maintenance data
contained in CSS.

Table 11. Example Data from CSS

Summary
Actual
Cost Priority Request Status Created

Work
Complete

No hot water in
building

 $2,032.98 Routine Closed 9/8/2017 5/10/2017

HVAC Boiler -
Building 8001

 $1,750.00 Emergency Closed 1/16/2018 1/19/2018

HVAC - Mini split $276.00 Routine Closed 2/23/2018 5/31/2018
Bay heaters -
Inoperable

 $1,620.00 Routine Approved for
Closure

11/28/2018 3/1/2019

hot water pump $1,667.61 Urgent Approved for
Closure

1/22/2019 3/25/2019

As the table illustrates, the CSS ticket summary generally provides a brief description of the
equipment in need of maintenance or replacement, but no additional detail. To be useful for fault
diagnosis or predictive maintenance, more detail is required about the specific component(s) in
the equipment that experienced the fault, the fault itself, what corrective actions were taken, and
the times that events occurred. In CSS, this information is generally unavailable. Timestamps are
included to document when the ticket was created and when work was completed, but they are
not necessarily reliable indicators of the actual timing of events; for example, in the first row of
Table 11, the ticket created date is 9/8/2017, while the work completed date is 5/10/2017,
roughly four months earlier. This suggests that the ticket was created retrospectively for
recordkeeping and accounting purposes, rather than to track maintenance events as they
occurred. More broadly, it implies that CSS was not designed with the intent of providing data
inputs to ML models in mind, but for other purposes that are important to the USAR. This point
bears further discussion, because it applies to other systems in this demonstration as well.

Misalignment of System Functional Design and ML Objectives

At the outset of the demonstration, the project team expected to encounter challenges with data
quality and availability based on prior analyses of MDMS data. Data integration across multiple
disparate sources was another anticipated challenge. One lesson learned since, however, is that it
is critical to understand how the functional design of a system can drive what and how data are
captured by the system and ultimately how useful they are for the purposes of ML modeling. In
the case of MDMS, this is straightforward; the system was designed for the purpose of capturing
energy and water use data at Army buildings and making that data available to energy managers
for analysis and further action. The functional design of the system aligns closely with the
objectives of this demonstration, and accordingly the data captured by the system were useful for
developing baseline prediction and fault detection models. In the case of CSS, however, the
functional design never anticipated that the system would be used to provide inputs to fault
diagnosis or predictive maintenance models, and accordingly the data do not support those use
cases.
EBCS represents a more complicated case. EBCS provides a standardized Niagara-based
platform connecting USAR BCSs throughout the nation. Collecting standardized building
operation data to support advanced applications such as ML models is a key EBCS function.
Historical data stored at the EBCS server level heavily rely on the connectivity to the integrated
BCSs. In the EBCS functional design, point histories are required to be temporarily saved at the
local integration controller for up to 14 calendar days; however, in practice, the Tridium Niagara
N4 software on which EBCS runs periodically stops recording point histories, and recording
must be manually reinitiated (see Figure 30). If the connection is lost beyond the 2 weeks when
data are temporarily stored at the local integration controller, building operation data gaps occur.
During the course of this ESTCP project, the EBCS program experienced some extended
disconnectivity attributed to a lack of timely responses to broken integration controllers and a
system upgrade from Niagara AX to Niagara N4. Further, as discussed above, some inconsistent
point naming conventions were implemented across buildings that affect ML model scalability.
The data reliability, accuracy, and consistency gaps exposed by this demonstration will inform
the USAR EBCS program. The USAR EBCS program is addressing these data gaps to optimize
the EBCS’s intended data applications.

9.2 CYBERSECURITY ISSUES

When the demonstration began, USAR was planning to transition a number of ARNet-hosted
systems to the Microsoft Azure cloud platform. Among the systems planned for transition was
EBCS. To date, however, that transition has not occurred; consequently, throughout the
demonstration there has been uncertainty regarding the ultimate deployment environment and the
cybersecurity requirements associated with deployment. Because of the ongoing uncertainty
about deployment requirements, the ML tools developed during this demonstration were not
deployed to EBCS directly but instead are hosted on the PNNL network. The team will continue
to work with USAR after the demonstration concludes to plan a future EBCS deployment.
Cybersecurity is a central pillar of the DoD’s information systems, and ARNet has strict
cybersecurity requirements. These requirements present challenges to deploying a new
application on the network. Some of these challenges are described below. Although the project
team is actively working to address these obstacles, they prevented a deployment of the

application on the ARNet. Section 8.0 describes the demonstration deployment on PNNL’s
network.
USAR requires any IT system to be approved through an application process before being
granted an ATO on their network. The ML application developed in this project is written in the
Python programming language, but there is no current ATO for the Python programming
language.
Access to ARNet is also tightly controlled. A DoD Common Access Card (CAC) is required to
access any system on the network. While the project team included several team members with
CACs and an embedded staff member, the primary data scientists and software developers do not
have CACs, which complicates development on a USAR system.
The “Dockerized” ML application can be easily deployed in a wide range of systems, but it is not
an isolated application; it requires a connection to the EBCS database hosted on the same
network. The connection needs to be allowed through the various firewalls in place between the
machine hosting the database and the one hosting the application. Without access to the
deployment environment and close collaboration with the system operators, this configuration is
extremely difficult to establish remotely.
The Army routes its network traffic through a proxy server, which implements aggressive packet
inspection. The particular configuration of the proxy server complicates programmatic access to
external sources, such as the NOAA weather data FTP site or even the Python repositories,
necessary for the ML application to be installed and function properly. Through initial testing,
the project team found that many of the external sources do not allow a programmatic connection
because of the packet inspection feature.

10.0 REFERENCES

Army Directive 2014-10, Advanced Metering of Utilities, June 2014.
Army Directive 2020-03, Installation Energy and Water Resilience Policy, March 2020.
Deng, L. (2012). The MNIST database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine, 29(6), 141–142.
http://yann.lecun.com/exdb/mnist/

DoD Utilities Meter Policy. January 2021.
Department of the Army, Office of the Assistant Secretary of the Army for Installations, Energy

and Environment. February 2022. United States Army Climate Strategy. Washington, DC.
E.O. 13834 of May 17, 2018, Efficient Federal Operations. 83 FR 23771.
E.O. 14057. of Dec 8, 2021, Catalyzing Clean Energy Industries and Jobs Through Federal

Sustainability. 86 FR 70935.
Energy Act of 2020, Public Law 116-260, December 2020.
Energy Policy Act of 2005, Public Law 109-58, August 2005.
Energy Independence and Security Act of 2007, Public Law 110-140, December 2007.
Ester, M., H. P. Kriegel, J. Sander, and X. Xu. 1996. “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise” Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI
Press, pp. 226–231.

Kim, Jeeyung & Jin, Mengtian & Homma, Youkow & Sim, Alex & Kroeger, Wilko & Wu,
Kesheng. (2022). Extract Dynamic Information To Improve Time Series Modeling: a Case
Study with Scientific Workflow. 10.48550/arXiv.2205.09703.

Kim W. and S. Katipamula. 2018. “A Review of Fault Detection and Diagnostics Methods for
Building Systems.” Science and Technology for the Built Environment 24(1):3–21.
doi: 10.1080/23744731.2017.1318008.

Koehler T.M., J.K. Goddard, W.D. Chvala, C.J. Anderson, and X. Duan. 2017. Implementation
of the U.S. Army Reserve Enterprise Building Control System (EBCS) Initiative – Pilot
Phase. PNNL-27154, Pacific Northwest National Laboratory, Richland, WA.

Li C., Z. Ding, D. Zhao, J. Yi, and G. Zhang. 2017. “Building Energy Consumption Prediction:
An Extreme Deep Learning Approach.” Energies 10(10):1525.

Mocanu E., D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, and J.G.
Slootweg. 2018. “On-line Building Energy Optimization using Deep Reinforcement
Learning.” IEEE Transactions on Smart Grid 10(4):3698–3708.
doi: 10.1109/TSG.2018.2834219

Office of the Assistant Secretary of Defense, Utilities Meter Policy, January 2021
Office of the Under Secretary of Defense for Intelligence and Security. DoD Instruction 5200.48

Controlled Unclassified Information (CUI). March 2020

http://yann.lecun.com/exdb/mnist/
https://www.tandfonline.com/doi/full/10.1080/23744731.2017.1318008
https://ieeexplore.ieee.org/document/8356086/

Parker, Steven A., Hunt, W. D., McMordie Stoughton, Kate, Boyd, Brian K., Fowler, Kimberly
M., Koehler, Theresa M., Sandusky, William F., Sullivan, Greg P., and Pugh, Ray. 2015.
Metering Best Practices: A Guide to Achieving Utility Resource Efficiency, Release 3.0.
United States. https://doi.org/10.2172/1178500.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al.
“Scikit-learn: Machine Learning in Python.” Journal of Machine Learning Research 12
(2011): 2825–2830.

U.S. Army Corps of Engineers (USACE) - Engineering and Support Center, Huntsville Utility
Monitoring and Control System Mandatory Center of Expertise (UMCS-MCX), Army
Metering Program Guidance for Advance Meters, Revision 8, 26 May 2016

Zinkevich, M. 2019. Rules of Machine Learning. Google. Available:
https://developers.google.com/machine-learning/guides/rules-of-ml.

https://doi.org/10.2172/1178500
https://developers.google.com/machine-learning/guides/rules-of-ml

APPENDIX A: POINTS OF CONTACT

Point of
Contact Organization Phone & E-mail Role in Project

Paul Wirt ARIMD 703-806-6757
paul.g.wirt.civ@mail.mil

Chief, Sustainment and Resiliency
Division

Emily
Wendel

PNNL 206-528-3011
emily.wendel@pnnl.gov

Principal Investigator

Ben Ford PNNL 206-528-3212
benjamin.ford@pnnl.gov

Project Manager

Bill Chvala PNNL 509-372-4558
william.chvala@pnnl.gov

Senior Adviser

APPENDIX B: MACHINE LEARNING METHODS

This appendix presents an overview of several key methodological concepts involved in Machine
Learning (ML).

B.1 Regression
Regression is an instance of supervised ML that can be used to predict a continuous value. A
classic example of regression is to predict the prices of a house given the features of the house
such as size, cost, and location. The prediction is performed based on training labeled data such
as a database of house prices as a function of size, cost, and location. Several classification
algorithms have been developed over previous years, such as linear regression, tree-based
regression, support vector regression, and random forest regression. Of particular interest are
more advanced algorithms that have recently gained popularity, referred to as deep learning
algorithms. In this category, recurrent neural networks (RNNs) are one of the most popular deep
learning regression algorithms that have been successfully applied to problems such a language
modeling and prediction, speech recognition, and language translation. In the context of Figure 1
of the main report, regression is applied to the problem of predicting baseline prediction, as
described in Section 2.1-546169424.388.

B.2 Classification
Classification is an instance of supervised ML in which a training set of correctly identified
observations is available. Classification in particular identifies which categories (sub-
populations) a new observation belongs to, based on a training set of data observations
containing observations (or instances) whose category membership is known. A classic example
of classification is to take an image and label it as belonging to a particular type (e.g., a dog
image or a cat image) based on training that was performed on a set of pre-labeled images
(training set). In the context of Figure 1 of the main report, classification is applied in two
places—fault detection and fault —as described in Section 2.1. Several different classification
algorithms have been developed over the last few years and successfully applied to problems
such as image classification. Examples include decision trees, rule-based learning, discriminant
analysis, principal component analysis, support vector machines, and multi-layer perceptron.

B.3 Recurrent Neural Networks
RNNs would be an appropriate choice for development of the baseline prediction engine in
Figure 1 of the main report, because they are especially suitable to address prediction and
classification problems in which the inputs are expressed as time series. In particular, they appear
to be promising in the context of modeling a complex dynamic system such as a building
because of their superior ability to capture nonlinear and dynamic dependencies compared to
other ML methods. Their structure is such that information that belongs to a time stamp is fed
back to the neural network, and thus this information is accounted for when updating the weights
of the neural network (Goodfellow et al. 2016). This makes the model learn about the temporal
dependence between the inputs and the outputs (see Figure B.1).

Figure B.1. Diagram of a Recurrent Neural Network

B.4 Model Predictive Control
Model predictive control (MPC) is a form of control in which control action at the current time is
obtained by solving a finite time horizon, open-loop, optimal control problem, using the current
state of the plant as the initial state. The optimization yields an optimal sequence of inputs and
the first element in the sequence is applied to the plant while the rest are discarded. This
procedure is repeated for each time instance (Figure B.2). An important advantage of this control
methodology, which renders it very useful, is its ability to explicitly account for hard constraints
on controls and states. Therefore, MPC has been widely applied in the petrochemical and related
industries where satisfaction of constraints is very important because the most efficient operating
points typically lie within or close to the intersection of such constraints. In the context of Figure
1 of the main report, MPC can be applied to the problem of optimizing control decisions, as
described in Section 2.1.

Figure B.2. General Scheme of MPC

B.5 Deep Reinforcement Learning
Reinforcement learning is a category of ML where the agent learns through trial and error. This
experience-driven nature, combined with recent advancements in deep neural networks, formed a
new branch in deep learning science, which has shown promising results in areas that were
intractable before (Arulkumaran et al. 2017). DeepMind’s AlphaGo Zero uses deep
reinforcement learning (DRL) to reach superhuman performance without any human knowledge
(Silver et al. 2017). In robotics (Kalashnikov et al. 2018), autonomous driving (El Sallab et al.
2017), and team-playing strategic gaming (OpenAI 2018), DRL agents and bots achieved
promising results, where the environment is only partially observable, the tasks last over a long
time horizon, and state and action spaces are highly dimensional. The deep neural network in

DRL is used to learn the environmental states and value of performing a set of control action at
each state. Once trained, DRL could be used to suggest control actions that lead to optimal
outcomes (see Figures B.3 and B.4). In the context of Figure 1 of the main report, DRL can be
applied to the problem of optimizing control decisions (as an alternative to MPC), as described in
Section 2.1.

Figure B.3. General Architecture of DRL

Figure B.4. Process Flow for a DRL Model

B.6 References
Arulkumaran K., M.P. Deisenroth, M. Brundage, and A.A. Bharath. 2017. “A Brief Survey of
Deep Reinforcement Learning.” arXiv preprint arXiv:1708.05866.
El Sallab A., M. Abdou, E. Perot, and S. Yogamani, S. April 2017. “Deep Reinforcement
Learning framework for Autonomous Driving.” IS&T Electronic Imaging, Autonomous Vehicles
and Machines 2017, AVM-023, 70-76. arXiv:1704.02532.
Goodfellow I., Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep Learning (Vol. 1).
Cambridge: MIT Press.
Kalashnikov D., A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M.
Kalakrishnan, V. Vanhoucke, and S. Levine. 2018. “QT-Opt: Scalable Deep Reinforcement
Learning for Vision-based Robotic Manipulation.” 2nd Conference on Robot Learning (CoRL
2018), Zurich, Switzerland. arXiv:1806.10293.
OpenAI. 2018. OpenAI Five, June 25, 2018. https://blog.openai.com/openai-five/.
Silver D., J. Schrittwieser, K. Ioannis Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M.
Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D.
Hassabis. 2017. “Mastering the Game of Go without Human Knowledge.” Nature 550:354–359.

https://arxiv.org/abs/1708.05866
https://arxiv.org/abs/1704.02532
https://arxiv.org/abs/1806.10293
https://blog.openai.com/openai-five/
https://www.nature.com/articles/nature24270#auth-1
https://www.nature.com/articles/nature24270#auth-2
https://www.nature.com/articles/nature24270#auth-4
https://www.nature.com/articles/nature24270#auth-5
https://www.nature.com/articles/nature24270#auth-6

C.1 Use Case Prioritization and Machine Learning for Buildings

In this appendix, we describe some common use cases for machine learning (ML) in the
operation of commercial buildings.
1. Baseline consumption modeling: Predict power consumption (under business-as-usual

conditions/without optimization of controls) at the building level for a specified time period
in future.

2. Unsupervised fault/anomaly detection: Use a baseline consumption model to predict
baseline consumption. Then compare the baseline prediction with real/measured
consumption. If the deviation is more than a certain use-prescribed threshold, classify the
performance as anomalous.

3. Labeling consumption data as anomalous/non anomalous: Use cluster analysis to
segregate (training data only) into anomalous and non-anomalous. However this is only
applied on training data for the purpose of autonomously labeling data as anomalous and
non-anomalous (in the absence of expert opinion). Such labeled data are needed as an input
for the use case below.

4. Supervised fault/anomaly detection: Use data labeled as anomalous vs. non-anomalous
(either labeled by an expert) or by using the methodology in the above use case) as training
data to train classification ML algorithms for fault detection.

5. Baseline control-oriented modeling: Train regression ML models that predict energy use
and indoor environment variables (e.g., temperature). The inputs are control knobs and
exogenous variables.

6. Model-based control optimization: Use models trained in the above use case to optimize
control settings to achieve a prescribed objective (reduce energy/cost) over a prescribed
period of time. Can be implemented as a lookup table.

7. Model-free control optimization: Train control policies directly (without the aid of a model,
hence different from the model-based control optimization use case) to optimize them to
achieve a prescribed objective (reduce energy/cost) over a prescribed period of time.
Implementation on an actual building is outside the scope of the project; therefore, the model
developed in above use case or a pre-existing simulation model can be used as a proxy to
demonstrate the proof-of-concept.

8. Transfer Learning: Transfer models learned on one “source” building to another “similar”
“target” building. Both baseline consumption model and baseline control-oriented models
can be examined for transferability.

9. Supervised Fault Diagnosis: Use data labeled in two layers: (1) anomalous vs. (2) non-
anomalous. Anomalous data is labeled with the cause of the fault. Train classification ML
algorithms on such data to diagnose (specify) the type of fault. Data can be generated from
simulation models if field data required for the analysis are challenging to obtain.

10. Predictive Maintenance: Analyze the health of the subsystems in a building using data from
equipment and estimate probability of failure.

The availability of high-resolution datasets from buildings within an enterprise provides a unique
opportunity to the owners/operators of the enterprise to potentially leverage them to satisfy

several applications/use cases such as the ones described previously. However, due time and
resource constraints, it is often not feasible to address all use cases at once. The owner/operator
might need to down-select a few of the use cases or might want to adopt a stage gated approach
where a few use cases are initially targeted, and more are brought on later, depending on
resource availability.
To assist the owners/operators in making well-informed decisions about how to best allocate
their resources, it is important to develop a framework that allows relative ranking or
prioritization of use cases. Some of the key aspects to consider per use case are enumerated
below:
1. Data needs expressed in terms of required measurements or sensor outputs, data volume and

quality of data.
2. Availability of the required data.
3. Any prerequisites such as pre-trained models.
4. Candidate ML algorithms.
5. Difficulty of implementation gauged in terms of data preparation and processing effort, and

ML algorithm installation and testing effort.
A comparison of the use cases across the above aspects can help in assigning a priority level per
use case. The priority assignment can either be qualitative such as high/medium/low or
quantitative such as a numeric score (1, 2, 3, etc.). We do not claim that the aspects listed above
constitute a complete list that an organization should consider, but only represents some of the
most common aspects to be considered when setting initial priorities. The priorities can be
further refined based on additional criteria that might be more specific to stakeholders, such as
limitations on available computing infrastructure, relative popularity of certain use cases or
classes of ML algorithms (for instance deep learning might be considered more “exciting” than
linear regression), “pain points” based on the experience of operating the buildings so far, etc.
The use case prioritization matrix for the EBCS and MDMS datasets using this framework is
shown in Tables C.1 and C.2.

Table C.1. Data Needs for ML Use Cases

Use Case
Description

Use Case
Category

Data Needs

Measurements
Data

Volume Data Quality
Baseline
consumption
modeling

Fault
detection,
energy bench-
marking

Energy use data (hourly or
smaller resolution):
Gas consumption
Electricity consumption
Water consumption
Outdoor environmental Data
(hourly or smaller resolution)

At least 1
year.
Multiple
years is
preferred

Should be fault-free.
Sparse gaps are
tolerable (a few data
points missing).

Unsupervised
fault
/anomaly
detection

Fault
detection

M-2A: All measurements
needed for baseline
consumption modeling
M-2B: Consumption
measurements for time period

At least 1
year.
Multiple
years is
preferred

Data M-2A should
be fault-free.
Data M-2B can have
faults.
Sparse gaps are

Use Case
Description

Use Case
Category

Data Needs

Measurements
Data

Volume Data Quality
for which fault detection needs
to be performed (can be a real-
time stream).

tolerable
(a few data points
missing).

Labeling
consumption
data as
anomalous/
non-
anomalous

Fault
detection

Energy use data (hourly or
smaller resolution):
Gas consumption
Electricity consumption
Water consumption

At least 1
year.
Multiple
years is
preferred

Data should contain
faults but not all of
the data should be
faulty.
Sparse gaps are
tolerable
(a few data points
missing).

Supervised
fault/anomaly
detection

Fault
detection

Energy use data and outdoor
environmental time-
series data; these
measurements should be
flagged as faulty/non-faulty
(either by data owner or using
the labeling technique above)

At least 1
year.
Multiple
years is
preferred

Data should contain
faults but not all of
the data should be
faulty.
Sparse gaps are
tolerable
(a few data points
missing).

Baseline
control-
oriented
modeling

Control
optimization

Control knobs: set-point
temperatures etc.
Exogenous variables: outdoor
environmental data, occupant
data or suitable proxies.
Performance data: energy use
data, indoor environmental data

At least 1
year.
Multiple
years is
preferred

Should be fault-free.
Sparse gaps are
tolerable (a few data
points missing).

Model-based
control
optimization

Control
optimization

Exogenous variables in
baseline control-oriented
modeling, for time-window for
which control optimization
needs to be performed.
Utility rates for time-window
for which control optimization
needs to be performed

At least
24
hours,
multiple
days
spanning
multiple
seasons

Should not have any
gaps.

Model-free
control
optimization

Control
optimization

Exogenous variables in
baseline control-oriented
modeling, for time-window for
which control optimization
needs to be performed.
Utility rates for time-window
for which control optimization
needs to be performed

At least 1
year.
Multiple
years is
preferred

Should not have any
gaps.

Transfer
learning

Energy
bench-
marking,
Control
optimization

Source building: same
measurements in the baseline
consumption modeling (if
transferring baseline
consumption model) or as in

At least 1
year.
Multiple
years is
preferred

Should be fault-free.
Sparse gaps are
tolerable (a few data
points missing).

Use Case
Description

Use Case
Category

Data Needs

Measurements
Data

Volume Data Quality
baseline control-oriented
modeling (if transferring
control-oriented model).
Target building: same
measurements as for source
building but for a smaller time
period (required for
validating the effectiveness of
the transfer).

Supervised
fault diagnosis

Fault
diagnosis

Energy use data (hourly or
smaller resolution): gas,
electricity, water consumption;
outdoor environmental data
(hourly or smaller resolution);
indoor environmental data;
equipment operational data.
Fault labels: for each time
stamp, information on whether
there was a fault and if so what
was the fault

At least 1
year.
Multiple
years is
preferred

Data should contain
faults but not all of
the data should be
faulty.

Predictive
maintenance

Predictive
O&M

Equipment operational data
which also contains data
corresponding to equipment
breakdown

Multiple
years of
data,
preferably
containing
equipment
lifetime

Sparse gaps are
okay.

Table C.2. Part B of the Use Case Prioritization Framework: ML Implementation

Use Case
Description Prerequisites

Candidate ML
Algorithms

Difficulty of Implementation
Data

Preparation
and

Processing
ML Implementation

and Testing
Baseline
consumption
modeling

None Start with: linear
regression, linear
SVR, random forest;
if needed: RNN

Easy:
Normalization

Easy: linear regression,
SVR,
random forest can be
implemented using
Scikit-Learn; RNN: can
be implemented using
Keras/TensorFlow.

Unsupervised
Fault
/anomaly
detection

Trained
baseline
consumption
model;
threshold for
flagging data as
anomalous

Algorithms used for
training baseline
consumption models

Same as for
baseline
consumption
modeling

Same as for baseline
consumption modeling.

Labeling
consumption
data as
Anomalous/non-
anomalous

None Clustering
algorithms: k Mean-
s/hierarchical

Easy:
normalization

Easy: Scikit-learn

Supervised
Fault-
/anomaly
detection

None Binary classification
techniques: logistic
regression, linear
SVM, stochastic
gradient descent

Difficult:
Involves
obtaining
labeled fault
data

Easy: Scikit-learn

Baseline
control- oriented
modeling

None Time-series
regression
approaches: LSTM,
LSTM-CNN
combined
architectures, Linear
regression, SVR,
random forests.

Obtaining
occupant data
might be
difficult,
proxies might
be needed

Moderate:
TensorFlow/Keras;
hyperparameter
optimization will be
needed.

Model-based
control
optimization

Baseline
control-
oriented model
developed;
Comfort
constraints
specified

Model predictive
control (would need
black box
optimization
solvers); implement
them as lookup
tables.

Easy Difficult: black box
optimization solvers
have computational
complexity issues and
can have poor
convergence behaviors.
Trial and error with
different types of
solvers and different
parameters settings will
be needed.

 A simulation Reinforcement Easy Moderate; can be

Use Case
Description Prerequisites

Candidate ML
Algorithms

Difficulty of Implementation
Data

Preparation
and

Processing
ML Implementation

and Testing
Model-free
control
optimization

model of the
building (can
be the same
model as in
baseline
control-
oriented
modeling) or
access to the
actual building
control knobs

learning implemented in
OpenAIGym.

Transfer
Learning

None Direct transfer; off-
line schemes
such as inductive
transfer, on-line
techniques such as
Generalized Online
Transfer Learning
(GOTL).

Easy Moderate to difficult
depending on off-line
vs. online transfer
learning.

Supervised
Fault Diagnosis

None Classification
techniques: linear
SVM, stochastic
gradient descent,
random forest
classification

Difficult:
involves
obtaining
labeled fault
data

Easy: Scikit-learn

Predictive
Maintenance

None

Stochastic
techniques, e.g., Hid-
den Markov Models

Difficult:
involves
equipment
life cycle data

Easy: Scikit-learn

C.2 DOD Best Practice for Applying ML to Building Systems

Modern buildings produce a constant stream of data from their building automation systems
(BASs) and advanced metering infrastructure (AMI). The U.S. Department of Defense (DoD)
has tens of thousands of buildings generating an ever-growing amount of data. This torrent of
information quickly becomes too overwhelming for manual interpretation and evaluation. ML
offers one data-driven approach for producing meaningful, actionable insights from the data.
Given enough data, ML can be an extremely powerful tool that can save building operators and
managers valuable time and energy. Some examples of how ML models could be used in
improving building operations include:

• Identifying sites that are consuming more energy than their peers after accounting for
differences in budling size, climate, usage type, and other unique factors.

• Predicting the amount of energy a building will consume in the future.

• Alerting operators to operational issues, even before an alarm is generated.
However, ML is not magic and not able to solve every problem. This document provides a brief
overview of ML and provides some basic considerations before undertaking an ML project.

Machine Learning Primer
ML is often thought to be a complex and intimidating topic. While it certainly can be, especially
in cutting-edge applications, it also can be approachable for people of all skill levels and
backgrounds. Linear regression is the simplest form of ML. If you have every used Microsoft
Excel to fit a trendline to data on a graph, you have done some ML! Even complex models and
applications use the same basic approach and principles that Excel uses when calculating the
linear regression trendline. At the most basic level, ML simply fits a model to the available data
with the least amount of error possible.
ML is a diverse field with a variety of common applications and many algorithms to accomplish
different goals. Only a portion of the algorithms, or model types, are applicable to facility
operation and optimization. Appendix B: Machine Learning Methods contains a brief overview
of some of those ML methods.

Considerations for Machine Learning Projects
There are many public resources for ML best practices. For example, Wujek et al. (2016)
provides a good overview of general best practices in any ML project and Google offers a
number of ML resources, including a guide featuring 43 rules of ML projects (Zinkevich 2022).
Training an ML model is the easiest part of an ML project! Most of the work in a successful
project is spent on gathering sufficient data and creating the infrastructure to ingest the input data
and serve the model predictions. The following sections offer some additional considerations.

Problem Definition and Use Case Selection
The first step in any project is defining the problem that you are attempting to solve. Are you
attempting to predict a continuous value, classify a sample into one of a few categories, or group

similar samples together? Each of these problems has different models that work best for that use
case.
The final demonstration report (Ford et al 2022) provides an overview of the common use cases
for ML in the operation of commercial buildings. It also provides a Use Case Prioritization
Matrix (UCPM), which can be used to set expectations for what ML use cases are and are not
possible given the available data. While ML can be incredibly powerful, it is not a perfect fit for
every application. Depending on the project constraints, there could be a better option than a ML
model.

Data Availability and Preparation
Data are the cornerstone on which all ML projects are built. Without good input data, the model
predictions will be useless. In practice, getting good input data is the most difficult part of any
ML project and is the main determining factor for use case possibility. The UCPM describes the
minimum data requirements needed for the common ML use cases for buildings.
At a minimum, input data sources must be aligned with the intended ML project objectives; that
is, data structure and content need to be adequate for the needs of the model. For example,
monthly energy use data would be unusable by a model designed to predict hourly energy use.
Even with good alignment of input data sources and ML project objectives, data almost always
require at least some preparation prior to being fed into an ML model. Aside from simply having
access to the required data, care must be taken to assure the data are properly cleaned and in a
suitable format. This is usually a non-trivial effort, and can even involve a separate data-cleaning
ML model.

Model Selection, Training, and Evaluation
While there is no single “correct” model for a given project, some model types perform better
than others. The UCPM provides some guidance on what type of model to use for different use
cases, but in general, the only way to determine which model performs best on the available data
is to test different models! In the DoD ESTCP ML Demonstration project, we found that random
forest regressors performed the best for predicting the future energy consumption of a building.
Use of the appropriate evaluation metrics calculated on “held-out” data is best way to determine
which model will work best for a specific project.

Going Further
This short document does not even begin to scratch the surface of ML. A great next step would
be to read the full ESTCP final report (Ford et al 2022), which goes into much greater detail
about the accomplishments and challenges of a real-world ML project using the U.S. Army
Reserve’s (USAR’s) Enterprise Building Control System (EBCS) in conjunction with the Army
Meter Program’s Meter Data Management System (MDMS).

References
Ford, Ben, E. Wendel, T. Yoder, V. Chandan. 2022. Final Report: Optimizing Facility
Operations by Applying Machine Learning to the Army Reserve. EW19-5300, Environmental
Security Technology Certification Program, Washington, DC.

Wujek, Brett, P. Hall, and F. Günes. 2016. “Best Practices for Machine Learning Applications.”
SAS2360-2016, SAS Institute Inc., Cary, NC.
Zinkevich, M. 2019. Rules of Machine Learning. Google. Available:
https://developers.google.com/machine-learning/guides/rules-of-ml.

https://developers.google.com/machine-learning/guides/rules-of-ml

	ABSTRACT
	EXECUTIVE SUMMARY
	Introduction
	Objectives
	Technology Description
	Performance Assessment
	Cost Assessment
	Implementation Issues

	1.0 INTRODUCTION
	1.1 Background
	1.2 Drivers
	1.3 Objective of the Demonstration
	1.4 Activities Planned but not Completed

	2.0 TECHNOLOGY DESCRIPTION
	2.1 Technology Overview
	Machine Learning Overview
	Machine Learning for Buildings

	2.2 Advantages and Limitations of the Technology
	2.3 Demonstration Platform: EBCS

	3.0 FACILITY/SITE DESCRIPTION
	3.1 General Facility/Site Selection Criteria
	3.2 Demonstration Facility/Site Location and Operations
	3.3 Site-Related Permits and Regulations
	3.4 Property Transfer and Decommissioning

	4.0 PERFORMANCE OBJECTIVES
	4.1 Summary of Performance Objectives
	4.2 Performance Objective Descriptions
	Fault Detection
	Building Energy Use

	5.0 TEST DESIGN
	5.1 Conceptual Test Design
	Use Case Selection
	Algorithm Testing

	5.2 Baseline Characterization
	5.3 Data Management
	Data Sources
	U.S. Army Reserve Enterprise Building Control System
	U.S. Army Meter Data Management System
	Customer Support System
	NOAA NCEI Integrated Surface Database
	Other Data Sources

	Equipment Calibration and Data Quality Issues
	Instrument Data Processing

	5.4 Design and Layout of System Components
	5.5 Operational Testing
	Performance Objective Analysis Overview
	Model Predictive Accuracy
	Internal Validation
	External Validation

	5.6 Data Integration Platform
	PNNL Cybersecurity Posture

	5.7 Data Quality Analysis and Cleaning
	Data Quantity
	Outlier (Anomaly) Detection

	6.0 PERFORMANCE ASSESSMENT
	6.1 Use Case Selection
	6.2 Baseline Prediction
	ML Model Comparison
	Input Feature Selection

	6.3 Fault Detection
	Fault Detection Data Requirements
	Fault Detection Performance

	6.4 Site Prioritization
	Prediction Task Complexity

	7.0 COST ASSESSMENT
	7.1 General Cost Model
	7.2 Cost Drivers
	7.3 Cost Analysis Considerations

	8.0 TECHNOLOGY TRANSFER
	9.0 IMPLEMENTATION ISSUES
	9.1 Data Quality Issues
	Data Availability and Quality
	Data Integration
	Unavailable Metadata and Inconsistent Point Naming Conventions
	Limited Detail in Maintenance Logs
	Misalignment of System Functional Design and ML Objectives

	9.2 Cybersecurity Issues

	10.0 REFERENCES
	Appendix A: Points of Contact
	Appendix B: Machine Learning Methods
	C.1 Use Case Prioritization and Machine Learning for Buildings
	C.2 DOD Best Practice for Applying ML to Building Systems

