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ABSTRACT 

Introduction and Objectives 
Thousands of U.S. Department of Defense (DoD) buildings have building automation systems 
(BASs) and/or advanced meters. Although these systems have a wealth of data, performance 
optimization requires time and expertise to review and act on that information. Machine learning 
(ML) can provide automated and actionable insights to controls operators. This demonstration 
implemented proven ML methods on the Army Reserve Enterprise Building Control System. 
Technology Description 
ML refers to algorithms that “learn” from data and improve their performance on a given task 
over time. In the buildings domain these tasks range from predicting future energy consumption, 
to identifying operational issues before faults occur, to optimizing control decisions. To learn, 
ML requires input data, which – for buildings – typically consists of instrument data such as 
energy consumption data and subsystem controls information such as set-point temperatures, and 
context data consisting of information such as the physical location of the building, the area of 
the building, and the weather. ML models use the relationships learned from the input data to 
make predictions with new, previously unseen, data. 
Performance and Cost Assessment 
The team was able to investigate and successfully implement the following ML use cases: 
labeling consumption data as anomalous or non-anomalous; baseline whole-building load 
prediction (unknown fault status); fault detection (validation not possible); and site prioritization 
for energy-related projects. Due to the constraints of the project, interventions were not able to 
be implemented during the demonstration; therefore, assessments of operational cost savings and 
maintenance avoided could not be performed.  
Implementation Issues 
Throughout the demonstration, the primary obstacle to successful use case investigation was a 
lack of access to complete, high-quality data. In general, ML algorithms require large volumes of 
input data to produce models that have high predictive accuracy. For many USAR buildings, 
however, the minimum required data were simply unavailable. 
Publications 
The project has been presented at two leading national building conferences1 and two additional 
publications to peer-reviewed journals2 are currently in preparation. 
  

 
1 American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Annual conference (June 
2021) presentation “Applying Machine Learning to Enhance Building Performance at US Army Reserve Centers”. 
National Institute of Building Sciences Building Innovation Conference (September 2021) presentation “Applying 
Artificial Intelligence to Buildings with Imperfect Data”. 
2 A paper describing the “Challenges to Applying ML to Existing Building Energy and Controls Data at Scale” and 
a paper describing “ML for Buildings: A Use Case Perspective” (both in Draft to be submitted). 



EXECUTIVE SUMMARY 

INTRODUCTION  

Thousands of U.S. Department of Defense (DoD) buildings have building automation systems 
(BASs) and/or advanced meters. These systems have the potential to enable significant 
reductions in energy use through identification of operational issues. Yet in many buildings, the 
systems are often not actively monitored or leveraged to improve operations. The building 
operators do not have time to sift through the BAS lists of alarms, alerts, and settings. The BASs 
do not prioritize the most important actions needed to be taken on a given day. In some cases, the 
way BASs are set up causes inefficient operations and premature failure of equipment. Advanced 
approaches to energy management can contribute significantly to meeting energy-reduction goals 
and reduce the mission impact of downtime associated with building system failure that could 
have otherwise been avoided. 
The U.S. Army Reserve (USAR) has an extensive source of operational information through its 
Enterprise Building Control System (EBCS), which integrates control system data and data from 
the Army’s Meter Data Management System (MDMS) into a common analytic platform. 
Although EBCS has a wealth of building and system-level data, optimization of performance 
normally requires a trained controls operator to review and act on that information. Machine 
learning (ML) methods can provide automated and actionable insights to controls operators.  
A team from Pacific Northwest National Laboratory (PNNL) with expertise in building controls, 
ML, and technology assessment executed this demonstration, and hosted by USAR from 2019-
2022.  

OBJECTIVES 

The goal of the demonstration documented in this report was to show that common, industry-
standard machine learning (ML) algorithms can be applied to USAR buildings data to automate 
the identification of operational issues and energy-savings opportunities. The demonstration 
aimed to investigate a variety of use cases, including prediction of baseline electricity demand, 
automated fault detection and diagnosis, and controls optimization methods. Further, the 
demonstration aimed to quantify cost savings associated with measures identified by the ML 
algorithms.  

TECHNOLOGY DESCRIPTION 

ML refers to algorithms that “learn” from data and improve their performance on a given task 
over time. In the buildings domain these tasks range from predicting future energy consumption, 
to identifying operational issues before faults occur, to optimizing control decisions. To learn, 
ML requires input data, which – for buildings – typically consists of instrument data such as 
energy consumption data and subsystem controls information such as set-point temperatures, and 
context data such as the physical location of the building, the area of the building, and the 
weather. ML models use the relationships learned from the input data to make predictions with 
new, previously unseen, data. 
Figure ES.1 illustrates how different ML technologies can be applied to buildings data to 
produce an optimized solution suite. The first step is to collect and process the input instrument 



data and context data. Data integration and preprocessing involves tasks such as making the 
data accessible in a format and location such that ML algorithms can easily access them and 
resolving any data quality concerns such as data gaps and noise. 
 
 

 
Figure ES.1. Overview of Machine Learning Methods for Buildings 

The ML models can then be trained using the processed input data to make predictions for 
various use cases. Some of the common use cases for ML in the operation of commercial 
buildings are (note that not all of these use cases were investigated in this demonstration): 
1. Baseline consumption modeling: Predict power consumption (under business-as-usual 

conditions/without optimization of controls) at the building level for a specified time period 
in future. 

2. Unsupervised fault/anomaly detection: Use a baseline consumption model to predict 
baseline consumption. Then compare the baseline prediction with real/measured 
consumption. If the deviation is more than a certain use-prescribed threshold, classify the 
performance as anomalous. 

3. Labeling consumption data as anomalous/non-anomalous: Use cluster analysis to 
segregate (training data only) into anomalous and non-anomalous. However this is only 
applied on training data for the purpose of autonomously labeling data as anomalous and 
non-anomalous (in the absence of expert opinion). Such labeled data are needed as an input 
for the use case below. 

4. Supervised fault/anomaly detection: Use data labeled as anomalous vs. non-anomalous 
(either labeled by an expert or by using the methodology in the above use case) as training 
data to train classification ML algorithms for fault detection. 

5. Baseline control-oriented modeling: Train regression ML models that predict energy use 
and indoor environment variables (e.g., temperature). The inputs are control knobs and 
exogenous variables. 



6. Model-based control optimization: Use models trained in the above use case to optimize 
control settings to achieve a prescribed objective (reduce energy/cost) over a prescribed 
period of time. Can be implemented as a lookup table. 

7. Model-free control optimization: Train control policies directly (without the aid of a model, 
hence different from model-based control optimization use case) to optimize them to achieve 
a prescribed objective (reduce energy/cost) over a prescribed period of time. Implementation 
on an actual building is outside the scope of the project; therefore, the model developed in 
above use case or a pre-existing simulation model can be used as a proxy to demonstrate the 
proof-of-concept. 

8. Transfer Learning: Transfer models learned on one “source” building to another “similar” 
“target” building. Both baseline consumption model and baseline control-oriented models 
can be examined for transferability. 

9. Supervised Fault Diagnosis: Use data labeled in two layers: (1) anomalous vs. (2) non-
anomalous. Anomalous data is labeled with the cause of the fault. Train classification ML 
algorithms on such data to diagnose (specify) the type of fault. Data can be generated from 
simulation models if field data required for the analysis are challenging to obtain. 

10. Predictive Maintenance: Analyze the health of the subsystems in a building using data from 
equipment and estimate probability of failure. 

PERFORMANCE ASSESSMENT 

Given the available data during the demonstration performance period, the team was able to 
investigate the following ML use cases: 

• labeling consumption data as anomalous or non-anomalous 
• baseline whole-building load prediction (unknown fault status) 
• fault detection (validation not possible) 
• site prioritization for energy-related projects. 
 
Models trained to label data as anomalous or non-anomalous and to predict baseline loads 
generally performed well. For the baseline energy consumption modeling use case, the project 
team tested a number of leading regression algorithms to test which would produce the highest 
accuracy results across all the buildings with sufficient input data. The regression scores of the 
different models for each of the buildings with sufficient data are shown in Figure ES.2. All the 
models exceeded the success criteria metrics for accuracy, but the random forest model was 
ultimately chosen for implementation in the demonstration deployment application due to its 
high accuracy across a range of inputs.  



 
Figure ES.2. Comparison of Model Performance (full set regression score) for All Buildings that 

Had Sufficient Data 

Baseline prediction is a precursor to fault detection, wherein a model is trained to predict demand 
patterns under normal operations; then, deviations in actual demand from predicted demand can 
be flagged and investigated as potential faults. As discussed further below in Implementation 
Issues, it was not possible to verify whether the baseline prediction models were trained on fault-
free data, which undermined the reliability of subsequent fault detection models. Finally, a 
separate random forest regression model was trained to prioritize USAR sites for energy-related 
projects. The model was used in a virtual Installation Energy and Water Plan (v-IEWP) 
performed by PNNL for USAR to identify sites at which energy conservation measures should 
be prioritized. 
Despite the deployment and data challenges, the demonstration accomplished the following 
tasks: 

• Successfully demonstrated anomaly detection, baseline modeling, and fault detection use cases 
(with caveats). 

• Created a Use Case Prioritization Matrix for evaluating which ML applications are appropriate 
for an end user given data availability, user priorities, and other key decision metrics. 

• Developed an extensible Python-based data integration platform that allows users to readily 
merge controls, meter, weather, and other data sources and feed integrated data into an ML 
modeling pipeline. 

• Documented opportunities and constraints that shape the ML solution space within the USAR 
context and recommendations for improvement to extend the scope of ML applications. 

• Produced a user-friendly demonstration web app (currently hosted on the PNNL network) that 
allows users to build their own baseline prediction models on USAR data and generate graphs 
and compare prediction to actual consumption. 



COST ASSESSMENT 

This demonstration highlighted the fact that the installation costs to integrate machine learning 
models into data and decision systems, and timeline can be much greater than originally planned, 
in large part due to the data preparation costs. The specific calculation varies depending on the 
use case, but the economic benefits component would relate back to one or more of the 
performance objectives, namely analysis effort, building energy use, and system maintenance. 
Due to the constraints of the project (discussed in the following Implementation Issues section), 
interventions could not be implemented during the demonstration; therefore, assessments of 
operational cost savings and maintenance avoided could not be performed.  

IMPLEMENTATION ISSUES 

Several challenges that were not well understood at the outset of the demonstration caused delays 
and created barriers to successful use case investigation and deployment of ML algorithms. 
Deployment: When the demonstration began, the USAR was planning to transition a number of 
Army Reserve Network (ARNet)-hosted systems to the Microsoft Azure cloud platform. Among 
the systems planned for transition was the Enterprise Building Control System (EBCS), which 
integrates control system data across dozens of USAR buildings into a common analytic 
platform. To date, however, that transition has not occurred; consequently, throughout the 
demonstration there has been uncertainty regarding the ultimate deployment environment and the 
cybersecurity requirements associated with deployment. Because of the ongoing uncertainty 
about deployment requirements, the ML tools developed during this demonstration were not 
deployed to EBCS directly but instead are hosted on the PNNL network. The team will continue 
to work with USAR after the demonstration concludes to plan a future EBCS deployment. 
Data: Throughout the demonstration, the primary obstacle to successful use case investigation 
was a lack of access to complete, high-quality data. In general, ML algorithms require large 
volumes of input data to produce models that have high predictive accuracy. For many USAR 
buildings, however, the minimum required data were simply unavailable. The most prominent 
example of data unavailability occurred in the Meter Data Management System from June 2018 
to September 2019, during which time almost no USAR meter data were recorded due to a 
networking connectivity issue. However, even when high-resolution utility meter and control 
systems data were available for a building, there was rarely a long enough period of temporal 
overlap between sources that the data could be integrated and used to train a baseline prediction 
model.  
An additional barrier to investigating fault detection use cases was the facility maintenance data 
provided by the Customer Support System (CSS), an enterprise system for tracking work orders 
at USAR sites. The CSS tickets did not provide sufficient detail to definitively identify fault 
causes or durations. Hence, it was not possible to build fault-free baseline prediction models or 
validate the predictions of fault detection models. When the fault status is unknown—i.e., we do 
not know when and if there are faults present in the training data—it precludes generating 
baseline models that are capable of positively identifying faults, although it does not eliminate 
the possibility of creating baseline models entirely. Baseline models can be generated for the 
buildings with sufficient data, but we cannot say whether they reflect the ideal fault-free 



operation of the building. We only know the models can predict the current operation, faults 
included. 
For example, if a building has a fault of a stuck open terminal damper, which has caused an 
increase in the total building energy consumption, that fault would be present in the training data 
for the baseline model, and the model’s baseline power prediction would include the higher 
energy consumption caused by the fault. Any faults in the available training data will be 
incorporated into the models’ whole-building consumption predictions. Because we do not have 
any information about the faults in the training data (or even know if they exist), we cannot teach 
the model anything about those faults or use the model to identify existing faults. 
Ultimately, only nine USAR buildings had adequate data for investigating ML use cases beyond 
data quality analysis and baseline prediction. Table ES.1 summarizes the data requirements and 
actual data availability associated with three ML use cases investigated during the 
demonstration. The table is an application of the Use Case Prioritization Matrix, which was 
developed for the demonstration. 
 

Table ES.1. ML Use Case Prioritization Matrix Applied to USAR Buildings Data 

Use Case 
Description 

Use Case 
Category 

Data 
Attribute Data Required Actual Data Available 

Labeling 
consumption 
data as 
anomalous or 
non-
anomalous 

Pre-
processing 
anomaly 
detection 

Measurements Utility use data (hourly or 
smaller resolution): 
• Gas consumption 
• Electricity consumption 
• Water consumption 
Outdoor environmental 
data (hourly or smaller 
resolution). 

Data requirements met. 

Data Volume No strict minimum 
requirement. 

Data requirements met. 

Data Quality Gaps are tolerable. Data requirements met. 
Baseline 
consumption 
modeling 

Fault 
detection, 
energy 
benchmarking 

Measurements Utility use data (hourly or 
smaller resolution): 
• Gas consumption 
• Electricity consumption 
• Water consumption 
Outdoor environmental 
data (hourly or smaller 
resolution). 

Outdoor environmental data 
available at hourly resolution 
from NOAA across all of 
CONUS.  
 
Where utility meter data is 
available, it is available at 
hourly or smaller intervals. 
Utility meter data are only 
available for a portion of the 
buildings that have control 
data. Many buildings with 
utility meters do not have 
control data available.  
 
Where utility meters are present 



Use Case 
Description 

Use Case 
Category 

Data 
Attribute Data Required Actual Data Available 

at buildings, electricity is the 
most common meter type. Gas 
and water utility meter data are 
not consistently available. 

Data Volume At least 1 year. Multiple 
years are preferred. 

At least 1 year of overlapping 
meter and controls data 
available for just 9 of ~70 
buildings. 
Multiple years not available. 

Data Quality Must be fault-free. 
Sparse gaps are tolerable (a 
few data points missing). 

Fault status unknown, not 
possible to say whether data are 
fault-free. 
Depends on building, but large 
gaps (a few hours up to a few 
months) are present. 

Unsupervised 
fault/anomaly 
detection 

Fault 
detection 

Measurements Step 1 (baseline 
consumption model 
training): fault-free data as 
required to train baseline 
consumption model. 

Step 1: Same data availability 
constraints as described in the 
baseline consumption modeling 
use case, fault status unknown. 

Step 2 (fault detection): 
consumption measurements 
for time period for which 
fault detection is to be 
performed (can be a real-
time stream). 

Step 2: N/A, cannot progress 
past Step 1 without fault-free 
data. 

Data Volume Step 1 (baseline 
consumption model 
training): At least 1 year. 
Multiple years is preferred. 

At least 1 year of overlapping 
meter and controls data 
available for just 9 of ~70 
buildings. 
Multiple years not available. 

Data Quality Step 1 (baseline 
consumption model 
training): must be fault-
free. 

Step 1: Fault status unknown, 
not possible to say whether data 
are fault-free. 

Step 2 (fault detection): can 
have faults. 
Both: Sparse gaps are 
tolerable (a few data points 
missing). 

Step 2: N/A, cannot progress 
past Step 1 without fault-free 
data. 

 
The initial results of this demonstration are promising, but long-term changes in data acquisition 
and storage would be needed to extend the applications of ML. These changes include the 
following: 



• Implement metadata or semantic models (e.g., standardize point categorization and mapping 
across all buildings in EBCS). 

• Assure that complete point histories are saved in long-term data storage, and restore points that 
go off-line as soon as possible to prevent large data gaps. 

• Assure that histories of the rule-based fault alarms are generated by EBCS and saved in long-
term data storage. 

• Improve maintenance recordkeeping to include specific detail about when faults occur and 
what specifically occurred (e.g., terminal damper stuck open). 

• Continue to prioritize EBCS integration in buildings with advanced meters. Connecting the 
metering data directly to the EBCS was shown to improve data quality. (Note that USAR is 
already doing this.) 

 
 
 
  



1.0 INTRODUCTION 

This section provides a general overview of this demonstration for the Environmental Security 
Technology Certification Program (ESTCP), including background on operations at Army 
Reserve facilities, legislative and policy drivers relating to the demonstration, objectives of the 
demonstration, and a discussion of activities planned at the outset of the demonstration that were 
not completed. 

1.1 BACKGROUND 

Thousands of U.S. Department of Defense (DoD) buildings have building automation systems 
(BASs) and/or advanced meters. These systems have the potential to enable significant 
reductions in energy use through identification of operational issues. Yet in many buildings, the 
systems are often not actively monitored or leveraged to improve operations. The building 
operators do not have time to sift through the BAS lists of alarms, alerts, and settings. The BASs 
do not prioritize the most important actions needed to be taken on a given day. In some cases, the 
way BASs are set up causes inefficient operations and premature failure of equipment. Advanced 
approaches to energy management can contribute significantly to meeting energy-reduction goals 
and reduce the mission impact of downtime associated with building system failure that could 
have otherwise been avoided. 
Like many DoD commands, the USAR can access whole-building meter data through the 
Army’s Meter Data Management System (MDMS), yet these data are largely underutilized for 
real-time energy management. At the inception of this project, the USAR was analyzing meter 
data quarterly for 364 buildings and identifying optimization measures using a rules-based 
approach. This process is very effective but requires highly skilled analysts to sift through the 
data and manually prioritize actions, which is time-consuming and expensive. 
The USAR has another extensive source of operational information through its Enterprise 
Building Control System (EBCS), which integrates control system data into a common analytic 
platform. At the end of calendar year (CY) 2019, 60 buildings across the U.S. were scheduled to 
be connected to the EBCS, enabling remote monitoring and control of building systems.  
Although the EBCS will have a wealth of building and system-level data, optimization of 
performance normally requires a trained controls operator to review and act on that information. 
Machine learning (ML) methods can provide automated and actionable insights to controls 
operators. Once fully operational and consistently trending data, the USAR EBCS will offer a 
prime platform for implementing ML methods that provide both diagnostic and predictive 
intelligence to building operators. Although EBCS was still under development during the 
demonstration performance period, the demonstration attempted to implement proven ML 
methods on the USAR enterprise system to automate the identification of operational issues and 
energy-savings opportunities through system optimization. 

1.2 DRIVERS 

The following drivers relate to this demonstration and support the methods and goals:  

• Executive Orders (E.O.s): E.O. 13834 of May 17, 2018, Efficient Federal Operations (83 FR 
23771, revoked) was in effect during the start of the project and required agencies to achieve 



and maintain annual reductions in building energy use and implement energy efficiency 
measures that reduce costs. E.O. 14057 of December 8, 2021, Catalyzing Clean Energy 
Industries and Jobs Through Federal Sustainability (86 FR 70935), defines a Federal 
Sustainability Plan and sets out a range of goals to deliver an emissions reduction pathway, 
including through building efficiency. 

• Legislative Mandates: The Energy Policy Act of 2005 requires electric meters to be installed at 
the building level. The Energy Independence and Security Act of 2007 requires comprehensive 
energy and water evaluations, including an assessment of building retro commissioning 
opportunities. The Energy Act of 2020 added to the requirements for water metering, 
evaluations and efficiency.  

• DoD Policy: Strategic Sustainability Performance Plan – Inform decisions, optimize use, 
assure access, build resilience, drive innovation. The DoD Utilities Meter Policy (January 
2021) requires each Component to meter energy and water use to provide installations with the 
information necessary to improve resilience and mission assurance, increase utility systems 
reliability, and optimize resource use. 

• Service Policy: Army Directive 2020-03 – Installation security policy requiring that critical 
missions be supported with power and water for a minimum of 14 days in the event of service 
disruption. Reducing loads and equipment failure leads to increased reliability. Army Directive 
2014-10 specifies an advanced metering policy in accordance with the DoD Utilities Meter 
Policy, requiring the use of advanced meters to quantitatively determine how much energy and 
water the Army is using. The Army is currently targeting 60% coverage for electric, natural 
gas and water. The Army Climate Strategy, released in 2022 has a 50% reduction in net 
greenhouse gas pollution by 2030 and aims to get to zero emissions by 2050. Line of Effort 1.4 
requires all land holding commands to implement installation-wide building control systems 
by 2028.  

• Specifications: American Society of Heating, Refrigerating, and Air Conditioning Engineers 
(ASHRAE); Leadership in Energy and Environmental Design (LEED); Institute of Electrical 
and Electronics Engineers (IEEE); and International Code Council codes (International 
Mechanical Code, International Plumbing Code, International Energy Conservation Code, etc.) 
require building control systems (BCSs) and optimized operations.  

1.3 OBJECTIVE OF THE DEMONSTRATION 

The objective of this demonstration was to show that the application of ML methods to building 
data can automate the identification of operational issues, leading to cost and energy-savings 
opportunities. 
Pacific Northwest National Laboratory (PNNL), the directly funded performer of this 
demonstration, tested several different ML methods and applications of ML on buildings data. 
The initial demonstration plan was focused on using ML methods to automate tasks like fault 
detection and diagnosis (FDD) and controls optimization, which have traditionally required 
highly skilled building analysts to perform them. 
The findings from this demonstration create value for DoD in several ways: 



1. The methods validated and deployed on USAR building data in this demonstration could be 
leveraged to deliver cost and energy savings.  

2. The methods will be transferable to other DoD buildings for which the same or analogous 
data sources are available. At a minimum, this means that as additional USAR buildings are 
connected to EBCS, the ML models developed for this demonstration could be adapted and 
retrained to identify operational issues in those buildings as well. These algorithms could be 
extended further to data sources for other Components and services, provided that the 
appropriate input data were available. Technology transfer activities planned for this 
demonstration are described in Section 8.0. 

3. The demonstration will generate a record of the opportunities and constraints that shape the 
ML solution space within the USAR. ML methods present the possibility of automating 
operational issue identification at a large scale; however, the methods are only as good as 
their input data. Throughout the demonstration, the project team discovered significant 
limitations in the quality and availability of the EBCS and MDMS data sources. 

4. A key output of this demonstration is a thorough description of data quality and availability 
issues, in order to inform future deployments (see Section 9.0 for additional details). Results 
from this demonstration will help DoD understand the scope of what is possible given 
potential data limitations. This information could be used to inform future decisions about 
how and where to invest resources in data collection, storage, and communication 
technology; for example, whether to deploy new advanced meters or dedicate more resources 
to maintaining existing ones. It could also be considered in a future procurement process for 
building data analytics software that includes ML-based capabilities. 

DoD has an interest in supporting research into applied ML across a wide range of activities. It is 
currently investigating the use of ML in self-driving vehicles and drones, among other 
applications. This demonstration extended that research into the area of building systems and 
produced results that can be communicated throughout DoD to justify investment in further 
research and deployment of applied ML technologies. 

1.4 ACTIVITIES PLANNED BUT NOT COMPLETED 

At the outset of the demonstration, the team planned to perform several activities that ultimately 
could not be completed during the performance period. Various issues contributed to this 
outcome, most notably an overall lack of meter and controls data that delayed model 
development and led the team to request a 9-month no-cost extension for the demonstration. 
(Data quality and availability issues are discussed in greater depth in Section 9.0) Even with the 
extension, the team was not able to perform certain planned activities, which are described 
below. Nevertheless, PNNL has a multi-year support contract with the USAR and plans to 
continue with the joint deployment of Control Score and the ML models developed under this 
demonstration to EBCS after the ESTCP demonstration performance period ends. 
Implementation of recommended actions 
Once an operational issue is identified, the appropriate operations and maintenance staff must be 
notified of the issue and the recommended corrective measure. Examples of such measures 
include implementing building scheduling, optimizing equipment setpoints, restoring HOA 
(hand-off-auto) switches to auto mode, replacing miscalibrated sensors, and replacing faulty 



components such as stuck valves and dampers. Implementation of the recommended measures 
would result in additional cost savings derived from decreased building energy use and 
reductions in unscheduled system maintenance. 
As discussed further in Section 6.0, data quality issues limited the team’s ability to investigate 
fault detection use cases. In particular, facility maintenance tickets did not provide sufficient 
detail to definitively identify fault causes nor durations. Hence, it was not possible to build fault-
free baseline prediction models nor to validate the predictions of fault detection models. 
Consequently, the team is not currently able to make ML-based recommendations regarding 
corrective measures. This report includes a discussion of the data quality issues that limit the 
development of ML-based fault detection models and recommendations for long-term changes in 
data acquisition and storage would be needed to extend the applications of ML. 
Cost models 
The PNNL project team planned to develop models to quantify the costs and benefits of 
implementing ML algorithms for operational issue identification. The cost models, empirically 
informed by data generated by the demonstration itself, would be used to characterize costs and 
benefits at the level of an individual building as well as at scale for an entire portfolio of 
buildings. Marginal cost was expected to decrease with increasing scale. In addition, the 
demonstration planned to estimate the cost and energy savings resulting from the implementation 
of recommended measures. 
As noted above, the team is currently unable to make ML-based recommendations regarding 
corrective measures. As a result, no measures have yet been implemented at USAR facilities 
based on ML-modeled fault detection predictions and no empirical cost savings data have yet 
been collected. 
 
 



2.0 TECHNOLOGY DESCRIPTION 

The technology demonstrated in this project is machine learning (ML) applied to utility meter 
and automation controls data at USAR buildings across the country. 

2.1 TECHNOLOGY OVERVIEW 

Machine Learning Overview 

“Machine learning” refers to algorithms that learn representations of data. This representation 
can be used to perform tasks such as regression (the prediction of a continuous value), 
classification (the prediction of a category), and optimal strategy identification (the prediction of 
value and optimal policy). These methods have been applied to solve problems in image 
recognition, voice detection, visual analysis, and autonomous control and optimization. In a 
buildings context, ML tasks could include baseline energy use prediction (regression) and FDD 
(classification). ML can be applied at multiple scales, ranging from the entire building to 
subsystems (e.g., air handlers, boilers, chillers). 
ML is a mature technology with a diverse range of industrial, commercial, and research 
applications. ML algorithms are integral to the functionality of many services and products on 
the market today, including internet search engines, voice recognition technologies, and robotics. 
DoD is currently investigating the use of ML in self-driving vehicles and drones, among other 
applications. Research in this field of computer science has been ongoing for 70 years, although 
widespread industry adoption was generally hindered by limitations in computational capacity 
and data availability for algorithm development until the late 1990s. Today, the availability of 
highly parallel computing systems (e.g., graphics processing units [GPUs] and tensor co-
processors) reduces cost barriers and provides optimized tensor calculations to speed up deep 
neural network training. Similarly, the use of state-of-the-art sensing devices facilitates the 
deployment of cost-effective sensor networks able to capture data at unprecedented volumes and 
level of detail.  
Since Google announced a substantial reduction in the amount of energy used for cooling their 
data centers by using an ensemble of deep neural networks on a substantial amount of sensing 
points, there has been a growing interest in applying deep learning to building energy 
optimization. In particular, the application of deep reinforcement learning has shown promising 
results in this field (Li et al. 2017; Mocanu et al. 2018). Diverse ML approaches have also been 
used to detect and identify faults in building systems (Kim and Katipamula 2018). Automatic 
fault detection is a mature technology that facilitates the design of preventive maintenance plans. 

Machine Learning for Buildings 

Figure 1 illustrates how different ML technologies can be applied to buildings data to produce an 
optimized solution suite. The first step is to collect and process different types of instrument data 
such as energy consumption data and subsystem controls information such as set-point 
temperatures, and context data such as the physical location of the building, the area of the 
building, and the weather. Data integration and preprocessing involves tasks such as making the 
data accessible in a format and location such that ML algorithms can easily access them and 
resolving any data quality concerns such as data gaps and noise. 



 

 
Figure 1. Overview of Machine Learning Methods for Buildings 

An important next step is to separate the data into two categories: one corresponding to fault-free 
conditions and the other corresponding to known faults, with the underlying faults also known. 
Regression algorithms can then be applied to fault-free consumption data to establish baseline 
consumption values through load prediction models. A comparison of predicted baseline 
consumption with real-time measured consumption data can be used to detect anomalies or 
faults. For instance, if the measured consumption at a given time instance deviates significantly 
(based on an appropriate threshold) from the baseline consumption, that indicates that there 
might be a fault in the system. 
Once the presence of a fault is indicated, the next step is to diagnose the fault. This can be done 
by training classification algorithms on labeled faulty data. The training can be done off-line (on 
historical data), resulting in pre-trained fault diagnosis algorithms. These algorithms identify 
signatures for specific faults in the data. For example, a stuck variable air volume (VAV) damper 
is likely to exhibit a different response on measurements such as delivered air flow or indoor 
temperature than a miscalibrated thermostat. Such pre-trained fault diagnosis algorithms could 
then potentially be applied online to diagnose faults in real time.  
In addition to FDD, ML algorithms can also be used to optimize control decisions. Fault-free 
data can be used to build dynamic models that map outputs of interest (e.g., power consumption, 
energy cost, indoor temperatures) to control inputs. These models can be used to train algorithms 
that optimize the control inputs based on user/operator-specified criteria such as minimizing the 
cost of energy while maximizing occupant comfort. 
The project team planned to investigate solutions in all three areas—baseline prediction, FDD, 
and controls optimization—subject to the opportunities and constraints discussed in Section 9.0. 
As explained further in that section, limitations in data quality and availability meant the team 
was able to implement models for baseline prediction and anomaly detection, but not controls 
optimization. The open-source ML libraries used for this demonstration are industry standard, 
with scikit-learn, TensorFlow, and Keras all originating at Google. The demonstration applied 
existing algorithm implementations (i.e., ML libraries) to building data on the USAR EBCS 



platform; hence, no new ML algorithm development was required. See Appendix A:  for a more 
detailed discussion of ML methods. 

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY 

ML has proven to be very effective in many areas, such as speech recognition, natural language 
processing, and image classification. Recently, deep learning has emerged as one of the most 
popular and powerful concepts in ML. The buildings domain is not left untouched by the current 
wave of ML, especially deep learning. ML is well suited for the buildings domain, given the 
complexity of nonlinear operations and the increasing abundance of data. However, several 
challenges also exist when applying ML that are unique to the buildings domain. Some factors 
that have contributed to the popularity of ML methods in recent times are listed below under 
advantages and disadvantages along with explanations of how they apply to the buildings 
domain. 

• Advantages 
– Availability of data: Widespread deployment of both traditional and newly emerging, 

low-cost sensor technologies has led to the ubiquitous presence of data in several 
domains. Society has also entered the era of “big data.” The exponential growth of big 
data has enabled researchers to develop and train ML algorithms, which are powerful in 
revealing nonlinear and complex patterns. This has resulted in the ability to mine more 
and more useful and actionable information. The buildings domain has not been 
untouched by this trend. The increasing use of BASs to manage buildings, especially 
modern buildings, has resulted in much more available data that spans long time windows 
(e.g., multiple years). While data are certainly increasing in “breadth” (time window), 
they are still limited from a “depth” perspective; sensing is limited to measuring certain 
key quantities of interest, such as zone temperatures and building energy consumption. 
Hence, there is a need to develop ML methods that can navigate this data depth challenge 
in buildings. 

– Higher performance computation: Significant improvements in hardware affordability 
have accelerated the adoption of ML in various domains. Advances in hardware 
(i.e., central processing units [CPUs]) and new computational models (i.e., GPUs) have 
created a large opportunity for ML to handle a high degree of parallel operations and 
perform matrix multiplications efficiently. In particular, GPUs provide a parallel 
architecture that has been especially powerful when applied to the types of calculations 
needed for neural networks. CPUs have also made advances for better parallelization and 
more efficient matrix computations. However, these developments have not yet 
penetrated the buildings domain, and the computational infrastructure used within 
buildings is still quite limited. New computational models (e.g., cloud computing), which 
provide inexpensive access to high-performance computational resources using pay-per-
use business models, can potentially be leveraged. 

– Advanced algorithms: The advent of algorithms that are of higher performance and lower 
in computational resources makes it easier to test and develop advanced algorithms, 
because they are not limited by the hardware constraints of the past. These advances in 
learning algorithms have made training deep architectures feasible; it has been shown that 
such advanced ML models can provide performance that is superior or comparable to 



state-of-the-art methods. For example, deep learning algorithms have been shown to 
perform better than human experts in various fields (e.g., some learning algorithms have 
become world champions at a variety of games, from Chess to Go). These advanced 
algorithms appear to hold promise for improved performance in the buildings domain as 
well. 

– Software libraries: Deep ML algorithms can be very easily built and customized today 
using available software libraries such as TensorFlow, Caffe, Torch, and Theano. Various 
ML algorithms are made available as “black boxes” within these libraries. The advent of 
such software packages is unlocking new possibilities that were unimaginable a few years 
ago. These libraries allow powerful learning algorithms to be built with a few lines of 
code. The availability of these libraries also enables researchers to build, implement, and 
maintain ML systems for a variety of real-world domains. This is promising in the 
context of building systems, where such libraries can be used to build control applications 
in less time and with less effort on top of the cloud computing infrastructure discussed 
earlier. 

• Disadvantages 
Despite the recent successful applications of ML to the buildings domain, certain 
challenges and limitations remain as described below: 

– Data requirements: ML imposes strict requirements on data quality and quantity. For 
instance, data should be of high quality (with minimal gaps) and a sufficiently large 
amount of data should be available—at both temporal and spatial scales—so that the 
models trained on them are accurate. Data that are deficient in quality and quantity are 
likely to result in poor representations. Data quality, availability, and fault labeling are 
expected to be a challenge for this demonstration. To address these limitations, where 
feasible, unreliable or missing data were detected and corrected using methods described 
in Section 5.7. It is important to recognize, however, that calibration and connectivity 
issues pose challenges not only to this demonstration, but to system users in general. One 
key output of this demonstration is a thorough characterization of data quality and 
availability, as discussed in Section 9.0. 

– Scalability: A major limitation of ML is that models that were trained on one system are 
not easily generalizable to other systems, especially in the buildings domain. This creates 
a challenge with regard to scaling the ML algorithms to a large set of systems. For 
example, a model trained on one building can be quite inaccurate when applied to a 
different building. In recent years, transfer learning-where some attributes of a model 
learned on one system are re-used to build a model for a different but related system-has 
been proposed as a potential solution to address this problem. Without transfer learning, 
ML can require a large amount of training data to achieve satisfactory accuracy. 
Although transfer learning has been demonstrated to address the generalizability and 
scalability challenges of ML models in other domains, it has been investigated only to a 
limited extent for buildings. To address this limitation, in this project we attempted to use 
transfer learning between buildings of similar types. However, a full-fledged 
demonstration of transfer learning is beyond the scope of the project. 

– Rigorous feature selection requirement: A key benefit offered by deep learning, which 
has made it very popular in domains such as computer vision and computer games, is that 



it overcomes the need to identify input features rigorously. However, feature optimization 
is still an important requirement in literature related to ML for buildings. This can be 
attributed in part to the observation that the networks were not deep enough. 

– Lack of generalizability: There is a need to develop a generalized modeling framework 
that can work across buildings, which has not been attempted in this domain so far. In the 
absence of such a framework, the modeling problem for each building becomes a tedious 
exercise in which the appropriate architecture and parameters must be determined 
separately for each building, requiring time-consuming effort. Lack of standardization in 
BAS implementations across buildings plays a large role in this problem, because 
different systems are measured and trended at different buildings and a variety of 
inconsistent point naming and metadata conventions are used across the building 
automation industry (see Section 9.0 for further discussion). The lack of generalizability 
impedes the ability to use these models for large-scale investigations, such as those at the 
level of a distribution grid involving tens or thousands of buildings. In this project, we 
were able to use energy consumption data from multiple buildings to implement a generic 
baseline prediction ML model that represents the portfolio of buildings. However, a 
large-scale demonstration of a generic ML model for buildings at the subsystem controls 
level was beyond the scope of the project.  

2.3 DEMONSTRATION PLATFORM: EBCS 

In 2014, the Army Reserve Installation Management Directorate (ARIMD) started an initiative 
to implement an USAR-wide EBCS. The objective of the initiative is to connect existing 
building-level control systems to a common EBCS server on the Army Reserve Network 
(ARNet) to greatly expand the capability and impact of the building-level control systems. The 
EBCS Working Group was formed with representatives from Readiness Divisions, Mission 
Support Command, ARIMD, G-6, and PNNL spanning fiscal years 2014 through 2019.  
A “pilot” phase was conducted from May 2016 through August 2017, successfully connecting 40 
buildings across 3 regions and 16 states to the central EBCS server. The sites represented 8 
different controls vendors, and more than 28,000 data points were successfully integrated. A total 
of 141 controls optimization measures were identified, with potential savings estimated at $137K 
per year for all 40 buildings (Koehler et al. 2017). An additional 40 buildings were added to the 
EBCS during Phase 2, which began in October 2017 (see Figure 2). Additional phases for adding 
buildings to EBCS are currently under way. 



 
Figure 2. Reserve Centers on the Enterprise Building Control System 

The EBCS is available to USAR personnel with appropriate permission through the ARNet, 
including remote Virtual Private Network access. The primary user interface (see Figure 3) 
includes region- and site-level navigation, building-level graphics, system-level graphics, 
scheduling screens, and trend data viewers. In fiscal year (FY) 2019, the system, which is based 
on the Tridium Niagara Framework® platform, migrated to the N4 version, adding further 
analytic features and tools.  



 
Figure 3. Enterprise Building Control System Interface 

In the near term, the demonstration team plans to deliver the initial set of ML modeling tools for 
baseline prediction and anomaly detection to EBCS as part of a package deployment with the 
Control Score tool, which is also under development by PNNL. More discussion of this 
deployment is included in Section 8.0 on Technology Transfer. 
 
  



3.0 FACILITY/SITE DESCRIPTION 

Reserve Centers can range in size from as small as 20,000 ft2 to as large as 200,000 ft2. 
Generally, a Reserve Center encompasses between two and four buildings (see Figure 4), 
although several large sites have dozens of buildings. Although some sites have buildings with 
specialized functions, all sites have an administrative building, which includes an assembly hall, 
fitness room, and showers. A typical Reserve Center also has an organizational maintenance 
shop, an area maintenance support activity, or both. Often, sites include a storage building, 
heated storage building, or heated and cooled storage.  
Reserve Centers are unique in their operation in that most have limited staff during the work 
week and an influx of soldiers on training weekends. It is common to have a staff of three during 
the week and host 300 people on the weekend. These facilities also host special training events at 
any time and have increased usage during summer months. 

 
Figure 4. A Typical Army Reserve Center 

3.1 GENERAL FACILITY/SITE SELECTION CRITERIA 

The ML demonstration will be an integrated part of the EBCS system, connected to data sources 
as previously described. The actual ML tools currently reside on a secure test platform at PNNL 
until they are deployed on the EBCS. The actual buildings evaluated were based on data 
availability across all of the information systems. As of September 2019, advanced meters 
installed at most USAR buildings were not communicating with the Army MDMS server. USAR 
attempted to obtain missing data in early FY 2020 but was unable to due to the local storage 
limits on the devices. Due to this lack of metering data, initially only 10 Reserve Centers were 
included in the initial ML algorithm testing and selection phase. This sample size was feasible 
for the study, but not ideal. As of April 2020, meter communications began to be restored; 
however, data for most meters dating back to summer 2018 were irretrievably lost, meaning the 
demonstration required a no-cost extension while waiting for new data to accumulate in a 



sufficient quantity to support ML model development. (See Section 9.0 for a characterization of 
meter data loss in the MDMS and EBCS.)  

3.2 DEMONSTRATION FACILITY/SITE LOCATION AND OPERATIONS 

The USAR buildings in the dataset are located in different regions across the U.S. and have 
similar equipment types. Table 1 describes 10 initial demonstration buildings with size, regional, 
and climate context. 

Table 1. Characteristics of 10 Initial Demonstration Buildings 

Building City State 

U.S. 
Department 
of Energy 
Climate 

Zone 

Heating 
Degree 
Days 

Cooling 
Degree 
Days 

Floor 
Area (ft2) 

Building 1 Mountain 
View 

CA 3C 2,983 0 179,575 

Building 2 Rockville MD 4A 4,647 927 31,316 
Building 3 Schuylkill 

Haven 
PA 5A 5,395 551 23,129 

Building 4 Bellefonte PA 5A 5,577 559 26,662 
Building 5 Cranberry 

Township 
PA 5A 5,667 572 29,814 

Building 6 Seagoville TX 3A 2,161 2,424 60,158 
Building 7 Seagoville TX 3A 2,161 2,424 31,517 
Building 8 Seagoville TX 3A 2,161 2,424 27,013 
Building 9 Grand 

Prairie 
TX 3A 2,161 2,424 23,475 

Building 10 Grand 
Prairie 

TX 3A 2,161 2,424 44,618 

Figure 5 illustrates the most common types of equipment in EBCS-connected buildings at the 
outset of the demonstration; VAV units, air handling units, and hot water supply pumps were the 
most common points in the EBCS. Each “number of records” represents a single type of system 
in the building, and there could be several points associated with the control of that equipment.  
 



 
Figure 5. Equipment Types Present in a Set of 12 EBCS-connected Buildings 

3.3 SITE-RELATED PERMITS AND REGULATIONS 

Because this demonstration is occurring on existing systems, and only dealing with the data from 
the systems, no site-related permits are required. The EBCS has gone through the Risk 
Management Framework process and is approved for use on the ARNet. The programming 
language used for both the exploratory ML algorithm testing and the demonstration platform, 
Python, does not have explicit approval for use on the ARNet, although embedded versions (e.g., 
Python is embedded, or packaged, within geographic information system(GIS) platforms) do 
exist on the network.  

3.4 PROPERTY TRANSFER AND DECOMMISSIONING 

Because this demonstration is occurring on existing systems, and only dealing with the data from 
the systems, no property transfer is required. If USAR deems the demonstrated tool to be useful, 
a production-grade version of the application can be deployed on their network. Conducting the 
demonstration on the PNNL network allows  USAR to evaluate the tool without having to incur 
the cost of a full deployment. USAR will own a copy of the ML code if they choose to continue 
to use it. 
  



4.0 PERFORMANCE OBJECTIVES 

4.1 SUMMARY OF PERFORMANCE OBJECTIVES 

The performance objectives listed in Table 2 were designed to evaluate how well the ML 
methods identify opportunities for improving operational efficiency. The success of ML model 
performance is measured by the method’s ability to detect faults over the baseline, and estimated 
reductions in building energy use. 

Table 2. Performance Objectives 

Performance 
Objective Metric Data Requirements Success Measure 

Fault Detection Accuracy Whole-building meter data and EBCS 
data. 

Number of faults identified 
by ML compared to the 
baseline and manual 
evaluation 

Building 
Energy Use 

Energy use 
intensity 
(MMBtu/ft2) 

Whole-building meter data; building 
square footage; results from prior 
manual data evaluation tasks 

Percent reduction 
(estimated) compared to 
the baseline and manual 
evaluation 

The success of the demonstration relative to each of these performance objectives was dependent 
on the input data. As data exploration proceeded, the team discovered significant limitations in 
the quality and availability of the EBCS and MDMS data sources. Although it is not a formal 
performance objective, a key output of this demonstration is a thorough characterization of data 
quality and availability. 
Because of data limitations and the current pre-deployment stage of the demonstration, key 
inputs for evaluating performance relative to these metrics were not available at the time of this 
report. With respect to fault detection, ground-truth validation data were not available either 
through maintenance records or through EBCS because histories for the rule-based fault 
detection algorithms used on EBCS are not stored. The demonstration team instead explored an 
approach of using alarm points that are automatically recorded by the system as a proxy for rule-
based faults. The alarm points are generally rule-based and activate when a threshold is exceeded 
(e.g., a zone temperature is below the cooling set point). While the alarm proxy approach 
generated promising results (discussed further in Section 6.3), this unfortunately means that it 
was not possible to evaluate the success measure directly by comparing anomalies/faults detected 
by the ML model to those identified by the current approach in EBCS, nor to make ML-based 
recommendations regarding corrective measures. In the absence of specific recommendations, it 
is not possible to estimate savings from implementing corrective measures. 

4.2 PERFORMANCE OBJECTIVE DESCRIPTIONS 

The original performance objective descriptions from the Demonstration Plan are reproduced 
below for reference.  



Fault Detection 

Purpose: When equipment operates outside of intended parameters, it risks using excessive 
energy, shortening the equipment lifespan, and triggering component failures that can lead to 
shutdown operations. Fault detection algorithms can help facility energy managers detect when 
equipment is operating improperly and potentially avert such unwanted outcomes. Traditional 
fault detection algorithms are based on rule-based engineering calculations, and while they often 
perform well, they can sometimes lead to excessive alarms or overlook more complex system 
interactions. There is the potential for ML methods to supplement traditional rule-based methods 
by optimizing fault detection thresholds for more precise alarms, as well as by potentially 
detecting additional faults that are not explicitly accounted for in the existing FDD rule logic.  
Metric: The metric for this performance objective is accuracy of fault detection, which will be 
calculated by comparing the number of faults detected by ML methods to baseline and manual 
evaluation. In addition, the team will characterize faults detected by the ML algorithms beyond 
those captured using the baseline rule-based approach. 
Data: Input data for this performance objective are whole-building meter data from MDMS and 
building control system data from EBCS. 
Analytical Methodology: The algorithms will use whole-building meter data from MDMS to 
predict baseline energy use and detect usage anomalies. Those anomalies will be cross-
referenced with EBCS building controls data by the ML methods to identify operational 
signatures that correspond to faults. ML-flagged faults will be compared to rule-based alarms 
recorded by EBCS to calculate algorithm accuracy, and if no alarm exists, a potentially 
undiagnosed fault will be documented and investigated.3 
Success Criteria: Percent accuracy of ML methods relative to the baseline, as well as distribution 
of undiagnosed faults. 

Building Energy Use 

Purpose: Progressive reductions in building energy use are mandated by federal legislation as 
well as DoD and service policy (see Section 1.2). Reducing energy demand increases energy 
security and resilience, thereby ensuring a greater capacity for the military to meet mission 
needs. The ML algorithms tested in this demonstration will attempt to automate the process of 
identifying certain operational issues and corresponding corrective measures that result in energy 
and cost savings. 
Metric: The metric for this performance objective is building energy use intensity (EUI). It is 
calculated as the sum of energy used at a given building over a particular period of time divided 
by the total floor area of that building. It is usually reported as yearly MMBtu per gross square 
foot. 
Data: Whole-building meter data will be provided by the MDMS and may be additionally 
validated with monthly utility data when available. Building floor area data available from 
MDMS or EBCS will be used to normalize energy use and calculate the EUI metric. 

 
3 The term “potentially undiagnosed fault” implies that a fault occurred that was not captured by the existing rule-
based FDD logic. 



Analytical Methodology: Because it is unlikely that the demonstration team will have the 
opportunity to recommend ML-informed energy conservation measures (ECMs) and analyze 
post-implementation data during the demonstration period, savings from recommended ECMs 
will be estimated. Energy-savings estimates will be based on standard engineering calculations 
for estimating savings from operational improvements or equipment retrofits. PNNL has 
developed specific engineering calculations for USAR buildings based on prior work. Cost 
savings derived from energy savings will be calculated based on the general cost model 
described in Section 7.0. 
Success Criteria: Percent reduction (estimated) compared to baseline and manual methods. 
  



5.0 TEST DESIGN 

5.1 CONCEPTUAL TEST DESIGN 

Hypothesis 
The project team hypothesized that applying ML methods to building energy and control systems 
data could produce automated identification of operational issues, which can lead to energy and 
cost savings if the appropriate corrective measures are implemented. 

Use Case Selection 

ML encompasses a vast range of methods and potential use cases. The first phase of the process 
is to identify the relevant opportunities and constraints that shape the solution space. This step 
was critical to the success of the demonstration. Use cases were selected with consideration 
given to the following: 

• Sponsor priority: What are the highest-priority use cases from the USAR’s perspective? 

• Value: Which measures produce the highest value with respect to the performance objectives 
of the demonstration? 

• Data characterization 

– Availability: For which buildings are energy data, control system data, maintenance 
records, and other supporting data available? What is the time period spanned by the 
data? Which equipment/systems are represented in the data? What is the prevalence of 
faults/operational issues in the data? 

– Quality: Are there issues with data gaps and spikes, meter/sensor calibration, 
measurement accuracy and precision, or ground-truth validation that could compromise 
the analysis? 

• State of research: Which building energy systems have been previously studied and which ML 
methods have been applied? Of those, which are relevant to this demonstration given the 
opportunities and constraints identified above? 

Use case categories initially explored included the following: 

• Data Cleaning: Utility meter and control system time-series data are often noisy and 
incomplete, and significant effort may be required to pre-process such data for use by ML 
algorithms. The problem of poor-quality data itself can be addressed using various ML 
methods, however; in fact, commercial developers of ML-based analytics for building energy 
management information systems have reported that most of their effort is focused on data 
quality-related use cases. 

• Load Prediction: Accurate prediction of whole-building power consumption with business-as-
usual operations provides a baseline in comparison to which anomalies can be detected. 
Baseline load prediction is an important prerequisite for many fault detection algorithms. 

• Fault Detection: When equipment operates outside of intended parameters, it risks using 
excessive energy, shortening the equipment lifespan, and triggering component failures that 



can lead to shutdown operations. Fault detection algorithms can help facility energy managers 
detect when equipment is operating improperly and potentially avert such unwanted outcomes. 

• Controls Optimization: Advanced ML methods can assist building operators in identifying 
optimal control sequences that reduce energy use and cost. 

– Ultimately this use case was not feasible given the data quality issues. 

Algorithm Testing 

Once use cases were defined, the next step for the team was to proceed with algorithm 
investigation. This process was guided by the principle of simplicity: All other things being 
equal, a less complex model is preferable to a more complex model. If a heuristic provided 
adequate performance, there would be no need for an ML model; likewise, if a linear regression 
model performed similarly to a deep neural network, the linear model would be generally 
preferable (Zinkevich 2019). The more easily interpretable the model, the more likely its outputs 
are to gain acceptance by the end user. 
The general framework for ML algorithm development is an iterative process between training, 
testing, and validating. 

• Train: In training, most of a dataset is used to tune an algorithm for optimal performance. The 
performance is quantified through an appropriate loss function, which represents a metric that 
the ML algorithm is trying to optimize. For instance, in the problem of fault detection, an 
appropriate loss function could be the number of true positives. 

• Test: The optimized algorithm from the training phase is then evaluated on a separate test 
dataset. Results from the testing can then inform algorithm selection and configuration choices 
in training-test cycles. Even within the same algorithm, several parameters— called 
hyperparameters—need to be tuned to optimize performance. For instance, in the case of 
recurrent neural network (RNNs), the activation functions, the number of layers, and the 
number of nodes are the underlying parameters that need to be optimized.  

• Validation: After selecting the final model configuration in the test step, a third held-out 
dataset is used to evaluate model performance after initial testing. It is important that the 
dataset used for validation be non-overlapping with the training and test datasets. In other 
words, the ML algorithm should not have seen the validation dataset, in order to remove any 
potential bias. Often, the metric used to report the model performance is the same as the loss 
function used in the training and validation steps.  

The performance of each algorithm was evaluated with respect to one or more of the external 
validation metrics detailed in Section 6.0. Algorithm performance depends on proper model 
specification as well as adequate data quality and availability. Poorly performing algorithms 
were documented alongside well-performing algorithms. As noted in Section 1.3, there is value 
in studying unsuccessful cases, because they may lead to a deeper understanding of which 
methods are appropriate for which use cases, how performance may be affected by data 
limitations, and other considerations. 



5.2 BASELINE CHARACTERIZATION 

Unlike the typical demonstration project, this demonstration did not require an initial period of 
baseline data collection. As stated above, the objective of the demonstration was to apply ML 
methods to existing building data sources. Sufficient energy and control systems data already 
exist to characterize baseline performance for multiple buildings on the EBCS. Baseline data 
collection continues automatically because the MDMS and EBCS record meter readings and 
sensor values at regular intervals. For each building studied, the baseline collection period 
spanned the period from the earliest date for which building energy and control systems data are 
available to the last point at which data are available. Data sources are described in further detail 
in the following section. 

5.3 DATA MANAGEMENT 

Data management involves handling the sources of data, equipment calibration and data quality 
issues, and instrument data processing needs. 

Data Sources 

Data collection and storage are handled by a set of functionally related but distinct data 
management systems that are owned and maintained by stakeholders external to the project. The 
project team was granted access to each of the systems and implemented a data pipeline from the 
external sources to an internal development environment.  
Copies of external data sources are stored locally at PNNL. All project data were backed up 
automatically and routinely. 

U.S. Army Reserve Enterprise Building Control System 

The EBCS links buildings at USAR sites to a common analytic platform, allowing for remote 
monitoring and control of building systems. Using EBCS, an operator can view control system 
data for geographically distributed buildings from a single location (see Figure 6). In addition to 
real-time monitoring and control, EBCS is configured to record trend data for the hundreds or 
thousands of control system points in each building. Examples of control system points include 
valve and damper positions, supply and return air temperatures, and discharge fan speeds. Trends 
are recorded at varying intervals; some trends are configured to record values at pre-defined 
intervals, such as 1 hour or 15 minutes, while others record a value only when a state change is 
detected. These control system trends represent the core input data to the algorithms tested in this 
demonstration. 



 
Figure 6. Schematic of EBCS Network Architecture 

During the project, EBCS migrated from Tridium Niagara version 3.8 to version 4 (N4). At the 
end of CY 2019, 60 buildings across the U.S. were connected to the EBCS, enabling remote 
monitoring and control of the building systems. This migration process resulted in reporting gaps 
for buildings while they are migrated to N4. This and other data availability challenges are 
discussed in Section 9.1. 

U.S. Army Meter Data Management System 

The U.S. Army MDMS is an enterprise system for tracking the Army’s energy and water use at 
facilities on installations around the world. The Army has installed over ten thousand advanced 
meters to track whole-building electricity, natural gas, and water use at high-priority buildings. 
Meters are generally configured to report usage at 15-minute intervals. As a Component of the 
Army, the USAR maintains a subset of those advanced meters at the building level, which are of 
significance to this demonstration. The Army’s advanced meters report usage data to a central 
MDMS database server. The project team accesses that external MDMS database server to 
acquire energy use data for the buildings of interest in this demonstration. This demonstration 
used energy meter data as an input to the ML models, but not water data. Starting in FY 2019, 
the USAR began using the EBCS infrastructure to also transmit the MDMS meter data to the 
central Army MDMS server. So, the EBCS database also contains MDMS data.  

Customer Support System  

The USAR CSS is an enterprise system for tracking work orders at USAR sites. The CSS 
database contains information about orders for heating, cooling and air conditioning (HVAC) 



system installation, maintenance, and replacement at USAR sites. Orders are dated, and in some 
cases estimated and actual service costs are recorded, usually at the building level. At the onset 
of the project, this dataset was hoped to be used to validate the algorithms’ inferences about 
equipment faults and failures. 

NOAA NCEI Integrated Surface Database 

That National Oceanic and Atmospheric Administration’s (NOAA’s) National Centers for 
Environmental Information (NCEI) is the world’s largest provider of weather and climate data. 
The Integrated Surface Database (ISD) consists of global hourly and synoptic observations 
compiled from numerous sources into a single common ASCII format and common data model. 
The ISD includes more than 35,000 stations worldwide, and tracks parameters such as wind 
speed and direction, wind gust, temperature, dew point, cloud data, sea level pressure, altimeter 
setting, station pressure, present weather, visibility, and precipitation. For this demonstration, 
only the outdoor air temperature was considered as a model input. 
The ISD is publicly accessible at https://www.ncdc.noaa.gov/isd. For this demonstration, data 
were accessed via FTP at ftp://ftp.ncdc.noaa.gov/pub/data/noaa. 

Other Data Sources 

The project team accessed additional non-structured data sources, including various reports about 
comprehensive energy and water evaluations, security readiness assessments, and other related 
audits at USAR sites at the building level. These sources provided contextual information about 
building systems and operations that were used to inform use case selection and help the project 
team interpret data. 

Equipment Calibration and Data Quality Issues 

The PNNL project team did not have direct control over any data collection equipment for the 
data sources described in the previous section. All data sources are externally owned and 
maintained by the USAR, NOAA, and/or the Army. Whenever possible, the project team alerted 
the system owners (or parties responsible for sustainment/operation) of calibration, connectivity, 
and other data quality issues. 
Data quality and availability were a challenge for this demonstration. Section 9.1 discusses these 
issues in greater detail. Prior to the project getting under way, several major instrument data 
processing issues, discussed below, were known to the project team. Where feasible, unreliable 
or missing data were detected and corrected using methods described in Section 5.7. It is 
important to recognize, however, that calibration and connectivity issues posed challenges not 
only to this demonstration, but to system users in general. One key output of this demonstration 
is a thorough characterization of data quality and availability. 

Instrument Data Processing 

ML models do not generally take instrument readings, such as those reported by control points 
and building energy meters, as direct input. The characteristics of the data must match the 
requirements of the algorithm. Consequently, some processing of data in preparation for use by a 

https://www.ncdc.noaa.gov/isd
ftp://ftp.ncdc.noaa.gov/pub/data/noaa


given algorithm is typically necessary. Data processing may involve imposing logical structure, 
categorization, aggregation, or correction of bad or missing data. 
“Ideal” data (1) represent the actual process being measured, and (2) are sampled at a frequency 
high enough to capture relevant patterns. Deviations from this ideal can limit the number of 
applicable models and/or complicate their application. The following are examples of deviations 
present in “non-ideal” data that can be characterized statistically. 

• Noise: Data can appear to be volatile at short time scales yet exhibit smoothness at longer 
scales. This volatility can be taken as noise in the measurement if the characteristics of this 
volatility are the same (predictable) throughout the data. 

• Gaps: Data gaps can be flagged if the time difference between readings is not as expected. 
However, a data gap can be interpolated if it is not severe. The project team defined limits 
below which data interpolation was acceptable. If a gap in a trend at a particular building was 
large enough, all data for that building during that time period had to be excluded from the 
analysis. 

• Instrument drift: Instrument drift is a type of instrument calibration problem. Ideally, over long 
periods of time, instrument measurements should not drift from some central tendency. 

These problems were identified by inferring some expected characteristics and flagging 
deviations. There are various statistical approaches to doing this, depending on the nature of the 
data. In addition, energy managers and building analysts were consulted to define these 
expectations based on expert judgment. 

5.4 DESIGN AND LAYOUT OF SYSTEM COMPONENTS 

The system integrates building energy and controls data from multiple external sources, applies 
ML methods to the data to identify specific issues as defined by the use case selection process 
(see Section 6.1), and communicates the results to building operators and energy managers via 
the EBCS platform. The key components of the system in this demonstration are: 

• USAR buildings 
• physical sensors and meters 
• external database servers 
• a PNNL internal ML development environment 
• the EBCS platform 
• building operators and energy managers. 

5.5 OPERATIONAL TESTING 

Performance Objective Analysis Overview 

The performance objectives of the demonstration were: 

• fault detection 
• building energy use (MMBtu/ft2/yr). 

As discussed in Section 4.0, it was not possible to fully calculate these metrics due to data 
limitations. The project team initially planned to measure the metrics associated with these 



performance objectives before and after the period of implementation of the ML analytics tools, 
to determine the effect of the technology. The metrics were to be calculated individually for each 
building, and the results aggregated to get the mean and standard deviations for each metric 
across the dataset. Because insufficient data were derived from this demonstration, t-tests were 
not able to be conducted to determine the significance of performance changes across the 
population of buildings. As such, the determination of project success relies on the metrics 
described in Table 3 below.  

Model Predictive Accuracy 

Additional analysis was conducted to validate the accuracy of the ML models. While this 
analysis did not directly measure the improvement of performance objectives, the accuracy of the 
models informs the usefulness of their application to the performance objectives and allows for 
comparison to state-of-the-art models used across the industry.  
Three types of model validation were employed: (1) internal validation during model training, 
(2) external validation on a subset of historical data not used for model development, and 
(3) external validation on real data in a set of test buildings for which the technology has been 
deployed. The first two types of validation will require ground-truth data of building faults from 
a set-aside validation dataset. It was hoped these data would be available from work order logs, 
on-site confirmation with staff, and the results of the clustering algorithms used for data 
preparation. However, as discussed in Sections 6.1 and 9.1, this validation was not possible 
given the data quality issues present. 

Internal Validation  

The following techniques were employed to determine internal model validity and reduce 
overfitting: 

• k-fold cross-validation 
• bootstrap validation 
• recursive feature elimination. 
These are standard techniques used for ML model evaluation. 

External Validation  

For external validation using both historical and post-implementation data, the metrics described 
in Error! Reference source not found. below were calculated. These metrics focus on 
measuring how well the ML models estimate baseline energy consumption, predict the presence 
of faults, identify the correct fault type, and improve fault detection over the baseline. 
The baseline model accuracy was characterized by the adjusted r2 value of the model, also 
known as the coefficient of determination. This metric determines how well a model predicts its 
target compared to just taking the average of the target value and is often used to evaluate 
regression models. The baseline models were also evaluated using the CV(RMSE) metric 
(Coefficient of Variation of the Root Mean Square Error) and the NMBE metric (Normalized 
Mean Bias Error), which both measure the normalized deviation of the model from the target 
value.  



The baseline model accuracy metrics are defined as:  
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where 𝑟𝑟2��� = adjusted r2 value, 
 𝑟𝑟2 = regression score (r2) – un-adjusted, 
 𝑛𝑛 = sample size, and 
 𝑝𝑝 = number of explanatory variables in the model. 
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where 𝑦𝑦� = average value of the true series, 
 𝑦𝑦𝑖𝑖 = the true value of the 𝑖𝑖-th sample, 
 𝑦𝑦𝚤𝚤�  = the predicted value of the 𝑖𝑖-th sample, and 
 𝑛𝑛 = sample size. 
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where 𝑦𝑦� = average value of the true series, 
 𝑦𝑦𝑖𝑖 = the true value of the 𝑖𝑖-th sample, 
 𝑦𝑦𝚤𝚤�  = the predicted value of the 𝑖𝑖-th sample, and 
 𝑛𝑛 = sample size. 

 
The fault detection and model accuracies were to be measured using the ROC (receiver operating 
characteristic) curve, which compares the true positive (detection) rate of a model with its false 
positive (false alarm) rate. This metric is very commonly used to evaluate the predictive 
capability of ML models and is very useful for optimizing a model to meet specific goals (i.e., 
maximizing the true prediction rate or minimizing the false prediction rate). However, as 
discussed in Sections 6.1 and 9.1, it was not possible to assess the developed models with these 
metrics because they require ground-truth fault data, which were not available. 



Table 3. External Validation Metrics 

Objective Metric Success Criteria 
Baseline model 
accuracy 

Adjusted r2 value 
CV (RMSE) 
NMBE 

r2 > 0.7 
CV < 25% 
-0.5% < NMBE < 0.5% 

Fault detection 
model accuracy 

ROC curve (tradeoff of detection and 
false alarm rates) for identified faults 

ROC area under the curve (AUC) > 
0.9 

Fault detection 
model 
performance(a)  

Number of faults detected; number of data 
points required to detect fault as compared 
with previous methodology 

Statistically significant improvement 
in the number of correctly detected 
faults and a reduction in the number 
of data points required for detection 

Fault-
identification 
model accuracy 

(b) 

ROC curve for each fault type Average ROC AUC > 0.9 

(a) Ability of the model to detect that a fault has occurred. 
(b) Ability of the model to correctly identify the fault type. 

 

In addition to model accuracy, the project team initially planned to compare the performance of 
the ML models to the baseline methodology for fault detection (manual data inspection) by 
examining the number of detected faults and the number of data points required to detect the 
faults with both methods. As with the performance objectives, the average and standard 
deviations of these metrics were not able to be obtained due to insufficient data. 

5.6 DATA INTEGRATION PLATFORM 

The data for the project were collected from multiple sources and compiled in a single database 
on the PNNL network. As described in Section 5.3, the primary data sources for the project are 
NOAA temperature data, MDMS utility consumption data, and EBCS control point data.  
Each building integrated into EBCS can have thousands of individual points, depending on the 
control system present at the building, each with its own stored time-series history. These time 
series can record as often as every 5 seconds for multiple years. Given the volume of data 
involved, it was necessary to develop a programmatic way to interact with the data, because 
manually downloading and analyzing data at that scale are difficult. To that end, a data 
integration platform was created to query the databases programmatically (i.e., with the Python 
programming language). The basic functionality of the data integration platform is illustrated in 
Figure 7. 



 
Figure 7. Data Integration Platform Schematic 

Not only does this programmatic access allow the database to be queried without having to write 
raw SQL scripts, but it also allows the process to be highly repeatable and extensible to multiple 
buildings. The platform not only handles querying the database, but also brings the data into the 
Python programming environment so that they can be incorporated into ML models. 

PNNL Cybersecurity Posture 

PNNL has the Authority to Operate (ATO) to meet Federal Information System Management 
Act (FISMA) requirements and approval to operate information systems as approved by the 
Department of Energy’s (DOE’s) Pacific Northwest Site Office (PNSO). PNNL is approved to 
manage and operate moderate risk level systems—those that collect, process, or store Official 
Use Only (OUO)/ For Official Use Only (FOUO)/Personal Identifiable Information (PII) data. 
This includes Impact Level 4 Controlled Unclassified Information (CUI) data, as defined in 
DoDI 5200.48. 
PNNL is one of 10 DOE Office of Science Laboratories, which has been operated by Battelle for 
DOE since the Lab’s inception in 1965. PNNL has had a formal computer security program in 
place since the 1980s. DOE National Laboratories must maintain an ATO for each major 
information system they operate. The DOE ATO process is based on Federal Information 
Processing Standards (FIPS), FISMA, and National Institute of Standards and Technology 
(NIST) guidance for the security authorization of information systems. 
PNNL maintains a baseline security profile for any system managed or owned by PNNL, which 
is identified in the Site Security Plan and approved by DOE as part of the ATO process. PNNL’s 
minimum level of protection assumes OUO/FOUO/PII data are processed and or stored on the 
system. PNNL has implemented extensive system-wide tools for staff and system administrators 
to ensure security is part of their system’s life cycle. Example measures include a Public Key 
Infrastructure joined with DOE that is embedded in desktop products, continuous monitoring of 
all systems, regular proactive patching, malware signature updates, and mandatory annual 
operational security and security training for all staff and collaborators. 
Any software considered for deployment on the EBCS was subjected to operational testing on a 
PNNL virtual machine with appropriate Security Technical Implementation Guides applied to 



replicate the controls in the EBCS deployment environment. Cybersecurity concerns related to 
the technology transfer and application deployment are discussed in Section 9.2. 
During the demonstration, EBCS data were captured via file transfer by PNNL/Army staff via 
DoD SAFE (Secure Access File Exchange) and did not rely on a live connection to the ARNet. 
In accordance with the PNNL contract with USAR PNNL staff are authorized to have USAR 
computers and contractor access to the EBCS and MDMS. All performers are aware of the 
cybersecurity requirements and constraints on access to the Army servers. Future live 
connections between systems will be coordinated and implemented by USAR. 

5.7 DATA QUALITY ANALYSIS AND CLEANING 

As stated throughout this report, the quality of the input data has a direct impact on the output 
accuracy of a ML model. For this reason, an important part of every ML project workflow is an 
analysis of the input data quality and cleaning of the data prior to their being fed into a model for 
training.  
Before any analysis can be performed, data formats must be standardized. Different systems are 
responsible for recording the data from each source. These systems have different recording 
frequencies and temporal precisions. NOAA temperature data are stored at an hourly frequency 
with a minute precision (e.g., each value is recorded with a time stamp like “2019-03-18 12:30). 
The data from the MDMS and EBCS are recorded as often as every 5 seconds, with timestamps 
captured to a millisecond precision (e.g., each value is recorded with a time stamp like “2019-03-
18 12:30:00.047). In order to be combined, these time series have to be aligned to the same 
frequency and precision. Each time series is rounded to the nearest 15-minute increment. For 
some signals this means they are being up-sampled (e.g., the NOAA hourly temperature data are 
up-sampled to 15-minute increments using linear interpolation). For other signals it means they 
are being down-sampled (e.g., a discharge temperature point that records every 5 seconds is 
down-sampled so that only one sample in each 15-minute increment is kept). 
After standardizing the timestamps associated with the data, the NOAA temperature data and the 
EBCS control point data are ready to move to the next data processing step. However, additional 
data preparation is required for the MDMS meter data. The advanced meters in the Army’s 
Metering Program record the running total consumption of the meter at each 15-minute interval. 
As such, the interval usage must be calculated as the difference between adjacent 15-minute 
intervals.  
After these initial data-cleaning steps, data quality analysis (DQA) is an important next step in 
examining what is and what is not possible given the data available. The analysis primarily 
focuses on two areas: (1) identifying where data are or are not sufficient for ML and (2) 
identifying outliers/anomalous data. If too many data are missing from a time series in a given 
date range (i.e., a data gap is too large), it can preclude certain ML use cases that rely on large 
volumes of data to ensure a minimum level of model accuracy. Moreover, outliers in the training 
data can degrade the accuracy of a ML model, so they were removed prior to training. 

Data Quantity 

The most important factor in determining whether data are or are not sufficient for ML is how 
many data, if any, are missing from a given time series. Hence the first step of the DQA is to 



analyze the time series for missing data. Figure 8 shows the results of this analysis, which 
generates some statistics and visual representations of the data gaps. For the use cases 
investigated in this report, small gaps are acceptable, but large periods of missing data are not.  

 

 
Figure 8. Sample Output of Gap Statistics from MDMS  

  



After the amount of data present has been verified, the DQA generates various plots that show 
relationships between different features (temperature and temporal measurements) and the 
prediction target (whole-building energy consumption) as well the expected behavior of the 
prediction target. This portion of the DQA primarily informs feature selection (discussed further 
in Section 6.2) and provides context for the range of expected model predictions.  

 
Figure 9. An Example of a DQA Plot Showing the Relationship between Features and the 

Prediction Target 



 
Figure 10. An Example of a DQA Plot Showing the Daily Average Hourly Energy and Two 

Standard Deviations 

 

Outlier (Anomaly) Detection 

The second portion of the DQA addresses the identification of outliers (anomalous data) and 
their subsequent removal. Outliers can result from faulty measurements, calculation errors, or 
simply valid data that for some reason is well outside the normal expected range of values. No 
matter the reason for the outlier, they can cause ML prediction accuracy to degrade if they are 
present in the training data, so they are typically removed from the dataset prior to training. The 
outlier detection procedure of the DQA was incorporated into the data ingestion pipeline for each 
model, similar to the data-cleaning stage. Hence, before any model in the project was trained, it 
first went through the outlier detection step.  
The outlier detection method used for this project is itself an ML algorithm. Instead of relying on 
hard-coded thresholds (e.g., >95th percentile) as a means of excluding outliers, a clustering 
approach was used. Clustering is a type of unsupervised learning that groups samples into 
clusters that are similar based on some defined distance metric. The clustering algorithm used for 
this project was a Density Based Spatial Clustering of Applications with Noise, or DBSCAN 
(Ester et al. 1996) as implemented in scikit-learn.4 The DBSCAN algorithm has a few attributes 
that make it well suited for outlier identification. First, the total number of clusters does not need 
to be known beforehand in contrast to other clustering algorithms (e.g., K-means clustering). 
Second, because the clusters are defined based on the density of surrounding points, the clusters 
can be an arbitrary shape. Additionally, the DBSCAN algorithm can efficiently handle a large 
number of samples. All of this together makes DBSCAN well suited to be incorporated as the 
outlier detection method. Figure 11 provides an example showing clear outliers (identified with 
red dots) in both temperature and energy time series that were identified and removed. 

 
4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN 



 
Figure 11. Outlier Identification Illustrated with Hourly Energy and Temperature Plotted over 

Time and a Scatter Plot of the Same Hourly Energy Data as a Function of Temperature 



6.0 PERFORMANCE ASSESSMENT 

6.1 USE CASE SELECTION 

The range of possible ML use cases is dependent on what data are available to train the 
algorithms. Each ML use case has inherent data requirements that, if not met, preclude accurate 
and actionable results and may preclude the use case entirely. During this demonstration, data 
quality and availability issues presented a challenge to investigating even simple use cases. As 
illustrated in Figure 12, only nine USAR buildings had adequate data for investigating ML use 
cases beyond DQA and baseline prediction (using meter and weather data inputs only). 

 
Figure 12. Down-selection to Buildings with Adequate Data for ML 

The Use Case Prioritization Matrix, presented in Appendix C, provides a tool for evaluating 
which use cases are possible given the available data in the context of USAR. Table 4 presents 
the results of that evaluation for use cases that were initially proposed as part of this project. The 
background color of the Actual Data Available column indicates whether the requirements are 
met by the available data; green indicates that the data requirements are sufficiently met by the 
available data, yellow indicates they are partially met, and red indicates the requirements are not 
met. 
  



Table 4. ML Use Case Prioritization Matrix Applied to USAR Buildings Data 

Use Case 
Description 

Use Case 
Category 

Data 
Attribute Data Required Actual Data Available 

Labeling 
consumption 
data as 
anomalous or 
non-
anomalous 

Pre-
processing 
anomaly 
detection 

Measurements 

Utility use data (hourly or 
smaller resolution): 
• Gas consumption 
• Electricity consumption 
• Water consumption 
Outdoor environmental 
data (hourly or smaller 
resolution). 

Data requirements met. 

Data Volume No strict minimum 
requirement. 

Data requirements met. 

Data Quality Gaps are tolerable. Data requirements met. 

Baseline 
consumption 
modeling 

Fault 
detection, 
energy 
benchmarking 

Measurements 

Utility use data (hourly or 
smaller resolution): 
• Gas consumption 
• Electricity consumption 
• Water consumption 
Outdoor environmental 
data (hourly or smaller 
resolution). 

Outdoor environmental data 
available at hourly resolution 
from NOAA across all of 
CONUS.  
 
Where utility meter data is 
available, it is available at 
hourly or smaller intervals. 
Utility meter data are only 
available for a portion of the 
buildings that have control 
data. Many buildings with 
utility meters do not have 
control data available.  
 
Where utility meters are present 
at buildings, electricity is the 
most common meter type. Gas 
and Water utility meter data are 
not consistently available. 

Data Volume 

At least 1 year. Multiple 
years is preferred. 

At least 1 year of overlapping 
meter and controls data 
available for just 9 of ~70 
buildings. 
Multiple years not available. 

Data Quality 

Must be fault-free. 
Sparse gaps are tolerable (a 
few data points missing). 

Fault status unknown, not 
possible to say whether data are 
fault-free. 
Depends on building, but large 
gaps (a few hours up to a few 
months) are present. 



Use Case 
Description 

Use Case 
Category 

Data 
Attribute Data Required Actual Data Available 

Unsupervised 
fault/anomaly 
detection 

Fault 
detection 

Measurements 

Step 1 (baseline 
consumption model 
training): fault-free data as 
required to train baseline 
consumption model. 

Step 1: same data availability 
constraints as described in the 
baseline consumption modeling 
use case, fault status unknown. 

Step 2 (fault detection): 
consumption measurements 
for time period for which 
fault detection is to be 
performed (can be a real-
time stream). 

Step 2: N/A, cannot progress 
past Step 1 without fault-free 
data. 

Data Volume 

Step 1 (baseline 
consumption model 
training): At least 1 year. 
Multiple years is preferred. 

At least 1 year of overlapping 
meter and controls data 
available for just 9 of ~70 
buildings. 
Multiple years not available. 

Data Quality 

Step 1 (baseline 
consumption model 
training): must be fault-
free. 

Step 1: fault status unknown, 
not possible to say whether data 
are fault-free. 

Step 2 (fault detection): can 
have faults. 
Both: Sparse gaps are 
tolerable (a few data points 
missing). 

Step 2: N/A, cannot progress 
past Step 1 without fault-free 
data. 

The only use case that has actual data that meet the data requirements is the preprocessing step of 
identifying anomalous data. The DBSCAN clustering algorithm described in Section 5.7 was 
incorporated into the data pipeline as a data-cleaning step before training any of the additional 
ML algorithms. This use case was successfully demonstrated because the data requirements for 
the use case were met. 
The baseline consumption modeling use case adequately meets the data requirements for both 
the available measurements and the volume of data for a small subset of all the EBCS buildings, 
resulting in the “partially met” designation for those requirements. However, the data quality 
requirement is not met by the available data. Specifically, the fault status is unknown—i.e., we 
do not know when and if there are faults present in the training data. While this precludes 
generating baseline models that are capable of positively identifying faults, it does not eliminate 
the possibility of creating baseline models entirely. Baseline models can be generated for the 
buildings with sufficient data, but we cannot say whether they reflect the ideal fault-free 
operation of the building. We only know the models can predict the current operation, faults 
included. 
For example, if a building has a fault of a stuck open terminal damper, which has caused an 
increase in the total building energy consumption, that fault would be present in the training data 
for the baseline model, and the model’s baseline power prediction would include the higher 
energy consumption caused by the fault. Any faults in the available training data will be 



incorporated into the models’ whole-building consumption predictions. Because we do not have 
any information about the faults in the training data (or even know if they exist), we cannot teach 
the model anything about those faults or use the model to identify existing faults. 
As such, the baseline models are not able to identify existing faults in the buildings. This limits 
the models’ use in fault detection. Therefore, as shown in Table 4, the minimum data 
requirements are not met for this use case. However, given additional years of data (compared to 
the minimum length of time needed for training) the models would be able to detect new faults in 
the building that cause an increase in whole-building energy consumption.  

6.2 BASELINE PREDICTION 

Despite the data challenges described above, there was sufficient data for nine buildings to train 
ML models to predict the buildings’ baseline whole-building electrical consumption. Two 
fundamental steps in building those models are (1) selecting which type of model to use and (2) 
determining which input features (i.e., the input variables fed into the model) to select. Both 
steps are described below.  

ML Model Comparison 

Baseline energy consumption prediction is a regression task and many types of ML models are 
capable of regression. Although some types of models generally outperform others, it is very 
difficult to determine beforehand exactly which model type will perform the best for any given 
task on a specific dataset. Therefore, it is necessary to experiment with different model types and 
architectures to see which one ultimately should be used for the task at hand. To that end, we 
tested eight different types of ML models to see which would perform the best at predicting 
whole-building electricity consumption for each of the buildings that had sufficient data. Figure 
13 shows an example of several models’ predictions of baseline consumption compared to actual 
consumption. 

 
Figure 13. Several ML Model Predictions of Baseline Consumption 



Each model was implemented in the data integration platform (described in Section 5.6). We 
tracked all the ML model experimentation (including this preliminary model type selection 
experiment) with MLflow, a Python library designed to record and manage ML experiments.5 
These tools allowed us to explore which models performed best without the need to manually 
record or save the input features, model hyperparameters, or output results. Table 5 shows the 
types of models implemented, which family those models belong to, and which Python 
implementation was used for this project. 

Table 5. ML Model Types Implemented and Tested 

Model Type Model Family 

Python 
Implementation 

Used 
Ordinary least squares (OLS)  Linear regression scikit-learn (a) 
Support Vector Regressor (SRV) Support vector machines scikit-learn(a) 

Random Forest Classification and Regression Trees (CART) scikit-learn(a) 
Gradient Boosted Regression Tree 
(GBRT) 

Classification and Regression Trees (CART) scikit-learn(a) 

Adaptive Boosting (AdaBoost) Classification and Regression Trees (CART) scikit-learn(a) 
eXtreme Gradient Boosting (XGB)  Classification and Regression Trees (CART) XGBoost (b) 
Multi-layer Perceptron (MLP) Neural network scikit-learn(a) 
Fully connected neural network 
(FCNN) 

Neural network Keras (c)/ 
TensorFlow 

(a)  https://scikit-learn.org/stable/ 
(b)  https://scikit-learn.org/stable/ 
(c)  https://xgboost.readthedocs.io/en/stable/ 

Relative to many state-of-the-art ML problems, the input data for this project are relatively 
simple. The training datasets used for any given building never exceed a few hundred megabytes 
(MB). For comparison, one of the leading language models, OpenAI’s Generative Pre-Trained 
Tranformer-3 (GPT-3) was trained on 45 terabytes (TB)—roughly 1,000,000 times more data 
than in our case. The relatively small size of our dataset had a notable impact on which model 
performed best. More complex models, like the fully connected neural network (FCNN), were 
outperformed by simpler models. 
The Classification and Regression Trees (CART) family of algorithms is well suited for dealing 
with our relatively simple data. Random forest, Gradient Boosted Regression Tree, AdaBoost, 
and XGB (eXtreme Gradient Boosting) are four of the most commonly used and performant 
algorithms in this family and all showed excellent performance on this project. The scatter plot in  
Figure 14 illustrates predictions made by the random forest model compared to actual 
observations; the orange line represents perfect prediction. 

 
5 https://mlflow.org/ 



 
Figure 14. Actual Energy Usage Compared to Predictions by the Random Forest Model 

The models were all implemented into a single Python class that served as the ML pipeline for 
the project. The class standardized the inputs and outputs of model training, making it simple to 
switch between models during the experimentation phase, and assured that the models received 
the same inputs for evaluation. The scikit-learn models (see Table 5) and the XGB model all 
have more rigid architectures; although there are some hyperparameters to tune, they do not 
significantly affect the model architecture. In contrast, the FCNN (which is implemented with 
Keras/TensorFlow) is a custom model with manually defined layers. The model is implemented 
as a sequential model (a linear stack of neural network layers) that consists of three layers. The 
first two layers are dense layers (each neuron is connected to every neuron in the previous 
layer) with the same shape as the input features, using rectified linear units (ReLUs) and sigmoid 
activation, respectively. These layers are referred to as hidden layers. The last layer (output 
layer) is also a dense layer but only has a single output, using a linear activation. The model is 
compiled with an ADAM optimizer and uses mean squared error as the loss parameter. Figure 15 
illustrates the FCNN architecture employed for this project. 



 
Figure 15. Sample FCNN Architecture from Kim et al. (2022)  

Each model type performs slightly differently for each building on which it was trained. A 
varying amount of data is available at each site, which affects the overall performance. Each 
model type was trained and tested at each building using the same input features. Figure 16 
shows the full set regression score (r2) for each building, along with the model average r2 value 
for all the buildings. These results are also compared to the “naive” prediction, where the 
prediction is simply the value from the previous timestep. The naive prediction does quite well 
for a single timestep forecasting window; this is a common benchmark used to gauge the relative 
performance of the other models. 

 
Figure 16. Comparison of Model Performance (full set regression score) for All Buildings that Had 

Sufficient Data 



Table 6 presents the average r2 values show in Figure 16 along with the model accuracy metrics 
described in Section 5.5, averaged across all buildings for each model. These results show that 
all the models met the success criteria for baseline prediction described in Table 3. 

Table 6. Average Baseline Model Performance Accuracy Metrics for All Buildings by Model Type 

Model Average Full Set r2 
Average 

Adjusted r2 
Average 

CV(RMSE) 
Average 
NMBE 

OLS 0.887  0.887  11.1% 0.0% 
SVR 0.894  0.894  10.7% 0.6% 
Random Forest 0.978  0.977  4.8% 0.0% 
GBRT 0.914  0.914  9.6% 0.0% 
AdaBoost 0.832  0.839  13.5% -3.6% 
XGB 0.953  0.953  6.9% 0.1% 
MLP 0.883  0.887  9.7% -0.1% 
FCNN 0.919  0.921  8.9% -0.2% 
Naive prediction 0.871  0.887  11.1% 0.0% 

Note that there are many different types of commercial buildings with a variety of operational 
profiles. The buildings analyzed in this dataset have well-defined schedules and occupancy so 
there is fairly minimal hour-to-hour variability in energy consumption except during startup and 
setback. Figure 17 illustrates an average hourly electricity use profile for a representative Army 
Reserve training center in the month of June. 
 

 
Figure 17. Representative hourly electricity use profile for an Army Reserve training Center in the 

month of June. 

Naïve prediction uses the model Q_t = Q_t-1; as such, accuracy is a function of temporal 
variability. When the naïve model performs well it means that there is relatively little change 
between timesteps. This would be expected for a building with well-defined profiles, with large 
changes limited to a few hours a day during startup and setback. The research team recognizes 



the simple predictive models could be less accurate with more diverse commercial building 
energy consumption profiles. 

Input Feature Selection 

Input features are what an ML model uses to predict a corresponding output (in our case, whole-
building electrical consumption). Input feature selection is just as important as model type 
selection for a given task. The process of selecting which input features to use and which, if any, 
transformations to apply to the features is generally referred to as feature engineering. Poorly 
selected input features can significantly reduce the performance of an otherwise well-performing 
model, so robust feature engineering is a critical step in the model development process.  
As with model selection, it is difficult to determine exactly which combination of features will 
produce the best performing results beforehand, so feature engineering typically involves varying 
the input features and evaluating how the changes affect the model’s accuracy.  
All the features are scaled with scikit-learn’s Robust Scaler6 prior to model training. Each feature 
is scaled independently. The Scaler subtracts the median and scales the values to the interquartile 
range (e.g., the 25th and 75th quantile). The input features can have very different scales (e.g., 
the month range is in [1-12] while recorded electricity consumption could be over 10,000 kWh) 
which some models are not well suited to handling without hurting performance. Some models 
also expect the features to be centered around zero or are built with assumptions about their 
variance. The Robust Scaler accommodates these requirements. 
Additional transformations are applied to the time-based features before the centering and 
scaling of the Robust Scaler. The weekday/weekend feature is transformed using a method 
known as one-hot encoding. The day-of-the-week value is an integer that is in [1-7]; one-hot 
encoding transforms these values into a binary feature with 0 corresponding to a weekend and 1 
corresponding to a weekday. The other time-based features (month, day-of-the-year, hour, 
minute) are transformed into two component columns through cyclical encoding. These features 
are inherently cyclical, always restarting at the beginning of the sequence after reaching the end. 
Cyclical encoding transforms the raw values into sine and cosine components representing the 
progress through the cycle. This allows the model to recognize that the 23rd hour (11:00 pm-
11:59 pm) is next to the 0th hour (12:00 am-12:59 am). Without this encoding, the model 
interprets the two endpoints as far apart in the feature space. Figure 18 illustrates how the 
encoding transforms the raw hour feature into the two cyclical component features. The month, 
day-of-the-year, and minute features are transformed in the same manner. In the figure, the 
panels show the raw hour value (left), cyclically encoded hour values (center), and visualization 
of cyclical relationship of encoded hour feature (right).  

 
6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html 



 
Figure 18. Effect of Cyclically Encoded Time Features 

The project started with a baseline set of input features: electricity consumption during the 
previous time stamp (Q_t-1), outdoor air temperature (OA temp), the hour of the day, the month, 
and if the day was a weekday or weekend (wk_day). These were the features used in the model 
selection described above. With these simple inputs, all of the baseline models were able to 
achieve accuracy that exceeded the success criteria defined at the beginning of the project. 
Figure 19 shows the relative importance of each of these features on the random forest model. 
Not surprisingly, the consumption value of the previous stamp is by far the most important 
feature. It is in effect incorporating the naive prediction (itself a good predictor, as discussed in 
the ML Model Comparison section) into the model. 

 
Figure 19. Relative Importance of the Baseline Features for the Random Forest Model 

While the baseline features described above produced accurate models, we were interested in 
investigating different combinations of features to achieve as many of the following outcomes as 
possible: 
1. Improve model performance.  
2. Obtain performant models without using NOAA temperature data as an input feature. 



(Obtaining outside air temperature data from NOAA requires an open network connection to 
the internet, and the team was unsure if the deployment environment on the USAR’s network 
would allow that connection.) 

3. Obtain performant models without using the previous timestep consumption value as an input 
feature. 

Including the previous timestep value as an input to the model limits the model’s utility in 
predicting faults. Faults are unlikely to affect the energy consumption for only a single timestep. 
By including the previous timestep as an input, any change in energy consumption caused by a 
fault would be incorporated into the next prediction, essentially calibrating the model to predict 
the change in consumption caused by the fault. 
To investigate the above objectives, the team ran each model type on each building for each 
different feature set included in the investigation. In addition to removing the OA Temp and 
previous timestep features, the team investigated whether model performance could be increased 
by including data from temperature sensors within the building. To that end, any point with the 
sub-string “temp” in the point name (referred to as the Building Temps features) were included 
as features. That led to training eight separate instances of each model type, each with a different 
input feature set. The model accuracy of each feature set and model type is shown in Table 7 and 
compared to the naive prediction results. Each feature set iteration varies the input features, but 
all iterations keep the time-based features (month, hour, and weekday). All the model types were 
investigated to see if the different combinations of features would lead to a different type of 
model, beating out the random forest model. While all the CART models performed well, the 
Random Forest regressor still performed best.  

Table 7. Average Baseline r2 score for All Buildings by Model Type and Input Feature 

 Model Type 

Features Used OLS SVR 
Random 
Forest GBRT AdaBoost XGB MLP FCNN 

Model 0, Naive Prediction 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 
Model 1, Q_t-1, OA Temp 0.89 0.89 0.98 0.91 0.83 0.95 0.88 0.92 
Model 2, Q_t-1, NO OA 
Temp 0.89 0.89 0.97 0.91 0.84 0.95 0.88 0.91 

Model 3, NO Q_t-1, OA 
Temp 0.36 0.56 0.85 0.58 0.43 0.72 0.58 0.62 

Model 4, NO Q_t-1, NO 
OA Temp 0.36 0.50 0.58 0.53 0.47 0.58 0.52 0.56 

Model 5, Building Temps, 
Q_t-1, OA Temp 0.90 0.73 0.98 0.93 0.87 0.97 0.28 0.71 

Model 6, Building Temps, 
Q_t-1, NO OA Temp 0.90 0.73 0.98 0.93 0.87 0.97 0.08 0.78 

Model 7, Building Temps, 
NO Q_t-1, OA Temp 0.72 0.61 0.97 0.83 0.75 0.96 -0.04 0.73 

Model 8, Building Temps, 
NO Q_t-1, NO OA Temp 0.72 0.61 0.97 0.83 0.74 0.96 0.11 0.54 



 
Figure 20 breaks the results further into the test and training set accuracy metrics for just the 
random forest model. The difference in accuracy between these two datasets shows how well the 
model will perform on unseen data. A model that is overfitted on the training data will have a 
high predictive accuracy for the training set, but poor accuracy for the test set. As the figure 
shows, the baseline features (Model 1) produce a model that is highly accurate and performs well 
on unseen data. Removing the OA Temp feature (Model 2) has little impact on the test or 
training accuracy. Consistent with the results shown in Figure 19, the Q_t-1 feature is has the 
biggest effect on the model prediction. If that feature is removed from the baseline set of 
features, the accuracy decreases significantly (Model 3 and Model 4). Removing the Q_t-1 
feature but keeping the OA Temp feature results in a training set that still beats the naive 
prediction (Model 3). However, upon reviewing the test set, the model is clearly overfitted and 
does not perform well on new data, as shown by the large difference between train and test set 
accuracy. Removing both the Q_t-1 and OA Temp features results in a model that performs 
poorly on both the test and training datasets. 
On the other hand, adding in the indoor building temperature point features makes the model 
much more resilient to the removal of the OA Temp and Q_t-1 features (Models 5-8). 
Impressively, when the building temperatures are included but the OA Temp and Q_t-1 features 
are not (Model 8), the overall regression score is comparable to the score generated by the model 
using the baseline input feature configuration. It does appear that there may be some overfitting, 
but the model still performs well on unseen data. This is encouraging, because it suggests that 
even in the absence of NOAA outside air temperature or knowledge of the previous timestep, the 
model can achieve a high level of predictive accuracy. 

 
Figure 20. Average Test and Training Set r2 Score for the Random Forest Model for Different 

Input Features 

The increased robustness of the model comes at the expense of additional training time, however. 
When using the baseline features (OA Temp and Q_t-1) the average training time for the random 
forest model was 17 seconds. When the baseline features were removed and the building 
temperature points were included, the average training time increased to 130 seconds, primarily 



due to the increase in data volume. Although each building had a different number of 
temperature points available, in each case including those points dramatically increased the 
amount of data in the input feature set. Improved performance and training time requirements are 
common trade-offs in ML model development. 
Ultimately, the random forest model selected for use in the demonstration deployment included 
the Building Temps features but excluded NOAA outdoor air temperature and the previous 
timestep value. This model only incorporates input features from the EBCS database and does 
not require a live connection to the external internet, thereby simplifying the deployment from a 
cybersecurity standpoint. Not requiring knowledge of the previous timestep value also increases 
the robustness of the model for potential fault detection; as noted above, if the previous timestep 
(Q_t-1) is included as an input feature, any change in energy consumption caused by a fault 
would be incorporated into the prediction of the following timestep (Q_t), thereby essentially 
calibrating the model to predict the change in consumption caused by the fault. 

6.3 FAULT DETECTION 

As discussed in Section 6.1, the team was not able to fully implement the fault detection use case 
because the data requirements were not completely met; without any knowledge of the fault 
status of the training data, we were not able to train a model to positively identify faults. 
However, the baseline models can be used to identify periods of energy consumption that might 
include faults. A baseline model trained on data that may or may not have faults present could 
still be able to identify new (i.e., not present in the training data) faults that cause a change in 
whole-building energy consumption. However, without the known fault data for validation, we 
have no way to definitively say whether a deviation in actual consumption from the predicted 
consumption was due to a fault in the building or some other factor. 

Fault Detection Data Requirements 

The data requirements for the fault detection use case (described in Section 6.1) include high-
resolution fault data that would identify all faults in the building. These data would need to be at 
the same resolution as the input features and output consumption value, meaning they would 
need to have hourly resolution or finer. Currently, no USAR data source meets those 
requirements for this project.  
The project team originally hypothesized that ground-truth maintenance ticket data, available 
from the USAR CSS, could be used to identify faults. While these data are not recorded at an 
hourly level, they do identify a date for each maintenance ticket. These data were insufficient for 
fault detection, however, due to imprecise or vague fault descriptions and unreliable timestamps 
(see the expanded discussion in Section 9.1).  
In the absence of ground-truth fault data, traditional rule-based fault detection algorithms could 
be used as a proxy. The EBCS platform does include some fault detection algorithms that would 
be useful for validation; however, the histories of those analytics are not recorded.  
As a last option, the EBCS does record the time-series data for threshold-based alarm points in 
each building's BAS. These alarm points are generally rule-based and generate an alarm when a 
certain threshold is exceeded. There can also be a temporal component to the logic (e.g., the 
threshold must be exceeded for at least 5 minutes). Although the alarm data cannot definitively 



substitute for ground-truth fault validation, they can be used as a weak proxy to provide some 
insight into the performance of the baseline model as a fault detector.  
Figure 21 illustrates the relative reliability of each of the data sources described above. 
Ultimately, the project team only had access to the least reliable data source for fault validation.  
 

 
Figure 21. Hierarchy of Fault Validation Data Sources 

Fault Detection Performance 

The fault detection use case employed the baseline prediction model from the previous use case. 
The basic idea behind using the model as a fault detector is to compare the actual consumption 
values to the predicted values from the baseline model. Provided that the model was trained on 
sufficient fault-free data, a large deviation from the predicted values would indicate the presence 
of a fault in the actual dataset.  
As described in the previous section, we do not have the necessary data to validate performance 
beyond a qualitative analysis. In the absence of those data, we are using the total number of 
alarms as a proxy for the fault data. To assess how the model might perform as fault detector we 
can compare the model accuracy to the number of alarms at different points in the dataset. A 
negative correlation between the regression score and number of alarms (i.e., the regression score 
is lower when there are more alarms) would indicate the model correctly identified a fault.  
The model accuracy metrics are evaluated over the entire dataset at once. While this is useful for 
assessing how well the model performs overall, it does not provide information about how that 
performance varies over time. To use the baseline model as a potential fault detector, it is 
necessary to identify specific time windows during which the accuracy of the model decreases. 
To do this, we calculated the regression score of the predictions (compared to the actual values) 
over a rolling 24-hour window. The score during the rolling window assesses the model accuracy 
in every 24-hour period in the dataset, allowing us to see what period had the biggest deviation 
between actual consumption and the predicted values. Because the model can accurately predict 
consumption over the entire time period, large differences in the predicted and actual values in a 
24-period indicate atypical consumption in the actual building. 
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Another 24-hour rolling window was used to count the total number of alarms in each 24-hour 
period; that count could then be compared to the rolling regression score at each time step. 
Because no metadata were available for the points in EBCS that allowed for easy disambiguation 
of specific alarm points, the names of each point were searched for the sub-string “alarm” and 
any point containing that string was classified as an alarm point.  
While an increase in alarms does not definitively prove there was a fault, it does provide some 
indication that something was happening with the building operation that caused the alarm 
thresholds to be exceeded. This can provide some idea of how well the model would perform as a 
fault detector if validated fault data were available to evaluate the model. For the buildings tested 
there was no correlation between the rolling regression score and the number of alarms, but there 
were a few large spikes in alarms that could indicate, along with increased energy usage over 
expected, that there was a fault. Figure 22 shows one of the most striking examples of this where 
the model’s regression score reached a 6-month low point at the same time as a 6-month high in 
the number of alarms. This is a strong indicator of something happening in the building operation 
causing a deviation from predicted consumption, potentially a fault. 

 
Figure 22. Potential Fault Indicated by a Low Regression Score at the Same Time as a Large 

Number of Alarms 

The alarm proxy evaluation could not be used at every building. The total number of alarm 
points varied by building, with some containing hundreds of alarm points and others containing 
only a few. This further reduced the number of buildings that could be evaluated, because each 
building needed to have sufficient data for baseline modeling as well as a sufficient number of 
alarms points trended and alarming during the same period. Figure 23 presents an example of a 
building with only two alarm points that alarmed a total of four total times during the evaluation 
period. Given these limited data, even the alarm proxy evaluation was insufficient for assessing 
the baseline model’s fault detection potential.  



 
Figure 23. Example of a Building with Sufficient Data for a Baseline Model but Few Alarm Points 

That said, Figure 22 suggests that combining traditional rule-based FDD and ML prediction 
could enhance fault detection. Given sufficient rule-based alarms data, the accuracy of a baseline 
prediction model could be correlated with the incidence of rule-based alarms and thus could offer 
an additional confirmatory signal indicating that there are performance issues to investigate at 
the building. Because traditional alarms can be so numerous, they are sometimes ignored by 
building operators; however, an additional whole-building prediction signal that deviates 
substantially from the observed energy consumption could help operators prioritize which alarms 
to investigate. 

6.4 SITE PRIORITIZATION 

Given the data quality and availability challenges present in the EBCS control data and MDMS 
utility data, the project team explored additional opportunities to apply ML to USAR data that 
could result in actionable results. To that end, an ML model was created to aid in site 
prioritization for energy-related projects. The model identifies sites that are consuming more 
energy annually than their peer USAR sites after accounting for differences such as building area 
and climate. The model was used in a virtual Installation Energy and Water Plan (v-IEWP) 
performed by PNNL for the USAR to identify sites where energy conservation measures should 
be prioritized. 
The expected annual site energy was predicted using a random forest regression model and then 
compared to actual site energy use. The annual energy usage data comes from utility billing data 
that records monthly total utility consumption for each site. The model does not use MDMS 
utility meter data or EBCS building control data. 
For input features, the regression model uses annual weather data at each site along with other 
site information to predict the total energy consumption for the year. The site information 
includes building types, areas, vintage, and the different utilities present at the site (e.g., 



electricity alone, or electricity and natural gas). The annual heating and cooling degree days are 
calculated for each site as well as a similar metric for the site’s enthalpy. Table 8Table 8 lists the 
features used, along with a brief description.  

Table 8. Input Features Used in the Expected Annual Site Energy Model 

Feature Description 
HDD Heating Degree Day (65° base temperature) 
CDD Cooling Degree Day (65° base temperature) 
Enthalpy_dd Enthalpy Degree Day (28 Btu/lb base enthalpy) 
elec Does the site have electrical consumption? (True/False) 
gas Does the site have natural gas consumption? (True/False) 
propane Does the site have propane consumption? (True/False) 
fuel_oil Does the site have fuel oil consumption? (True/False) 
vintage  Weighted average vintage based on square footage 
total_area Total Building Area 
num_shop Number of “shop” buildings present at site 
num_storage Number of “storage” buildings present at site 
num_training_center Number of “training centers” buildings present at site 
perc_shop Percentage of the total building area that are “shop” buildings 
perc_storage Percentage of the total building area that are “storage” buildings 
perc_training_center Percentage of the total building area that are “training center” buildings 
latitude  Site latitude 
longitude Site longitude 

 
The model was trained on historical data from FYs 2015–2019 for all the sites across the 63rd, 
81st, 88th, and 99th Readiness Divisions. This analysis is similar to normalizing energy usage 
for either heating or cooling degree days, but is more robust because it takes into account 
additional information on the site. Table 9 presents the performance metrics of the model, which 
show a high prediction accuracy.  

Table 9. Performance Metrics of the Expected Annual Site Energy Model 

Full Set r2 Score Adjusted r2 Score CV(RMSE) NMBE 
0.948 0.948 25.93% 0.22% 

 
Next, the input features from the most recent fiscal year available (FY 2020) were used to predict 
the expected total energy for each site in that year. The percent difference between the expected 
energy values and the actual values was then calculated to identify the sites that are using much 
more or less energy than expected of a typical USAR site with similar characteristics. Figure 24 
plots the percent difference for each site in the region against the site’s total annual energy 
consumption. The sites that have higher than expected energy usage (>25% percent difference) 
are labeled in the figure. These sites should be prioritized and investigated to identify the cause 
of the excess energy usage. 



 
Figure 24. Site Annual Consumption Compared vs. Model Prediction Error 

Prediction Task Complexity 

Data-driven tasks, like ML, are inherently constrained by the available input data for the task. 
There is a general correlation between the task complexity and amount of data required to 
complete the task, i.e., the more difficult the task, the more data are required. 
Two important aspects of data availability for any given ML task are the granularity of data and 
the coverage of the prediction space. The granularity of data describes the level of detail 
provided by a dataset. For time-series data, the resolution would be the temporal resolution, or 
the time interval, at which the data were recorded (e.g., 15-minute, hourly, annually, etc.). 
Coverage of the prediction space refers to the portion of the possible model predictions covered 
by the data. For a dataset to have good coverage it must contain samples of each distinct model 
output. An example of a dataset with excellent coverage is the Modified National Institute of 
Standards and Technology (MNIST) database (Deng 2012), containing 70,000 images of 
handwritten digits (0-9) because it has many examples of each base-10 number. 
These two qualities of a dataset dictate what is and is not possible with the dataset; the 
complexity and range of outputs directly depends on the input data available for training. For 
example, the MNIST dataset is perfect for recognizing handwritten numbers, but could not be 
used to train a model to recognize letters or words because it contains no letters. 
It may be counterintuitive that aggregated monthly utility consumption data could produce a 
more actionable models than much more granular (e.g., 15-minute or hourly) building controls 
and advanced utility meter data. However, the difference in available data and prediction task 



difficulty can combine to enable a model trained on less granular data to produce a more useful 
prediction.  
To illustrate this point, consider an analogy of an image classifier that is attempting to identify 
dogs, cats, and horses (good, bad, and average performing buildings in our case). For the image 
classifier, thousands of 128x128 pixel images containing dogs, cats, and horses (analogous to 
annual utility usage in this example) can train a much better identification model than dozens of 
100-megapixel (~12,000 x 9,000 pixels) cat images (analogous to 15-minute utility interval 
data). The three orders of magnitude increase in data resolution would not help the model 
identify dogs or horses from cats because it has only seen cats. Similarly, the 15-minute interval 
data, which are 8,760 times higher resolution than annual data, are ultimately less effective at 
separating poorly performing buildings because the data are only available for a small subset of 
all the buildings. 
Predicting total annual energy consumption at an entire site is a much simpler task than 
predicting 15-minute or hourly energy consumption at a single building. Total annual energy 
consumption is more stable than hourly or sub-hourly interval energy consumption and is 
unlikely to change drastically from year to year absent major changes or malfunctions in the 
buildings’ operation. In contrast, 15-minute and hourly energy consumption is highly dependent 
on occupant behavior (e.g., occupancy patterns) or operational actions (e.g., a manual change 
over from summer to winter operation). These human actions are not always performed 
predictably from day to day or year to year, making it difficult for the model to distinguish 
between normal fluctuations in energy usage and conditions that indicate a problem in the 
building’s operation, such as a fault. 
In terms of data quality, the monthly utility billing data are manually curated; a human enters the 
monthly utility totals into the billing system and checks the inputs for errors, thereby deriving a 
mostly gap-free dataset. In contrast, the EBCS control point data and MDMS utility meter data 
are part of automated data pipelines that record data without human interaction or error checking. 
Not only is the data quality higher in the monthly utility billing system, but it also covers more 
sites and a longer time period; specifically, it covers around 530 USAR sites over 6 years.  
Longer-term data availability gives the model an opportunity to observe a site over multiple 
years and allows a change in the site’s energy consumption from its “normal” consumption to be 
detected. In contrast, even where EBCS and MDMS data are jointly available for a building, they 
only cover more than a year in a few instances. Where there is only a year or less of data, the 
model only observes a point in time once during training, making it harder for it to distinguish 
normal from abnormal operations. 

 



7.0 COST ASSESSMENT 

At the onset of this project, the team proposed to develop and validate the expected life cycle 
operational costs for incorporating ML into building systems data analysis structures. The data 
required to run a traditional cost model based on the outcomes of energy savings and 
maintenance cost reduction are described in Table 10. 

Table 10. Inputs to a Traditional Cost Model for ML Technology Implementation 

1. Installation costs Labor and material required to install ML on system, including 
data preparation costs. Analytics will be targeted at the use cases. 

2. Facility operational costs Reduction in energy required vs. baseline data. Examples include 
reducing operating hours, fan speed, or space temperature. 

3. ML system maintenance • Frequency of required maintenance on ML algorithms 
• Labor per ML maintenance action 

4. ML lifetime  Estimate based on the effectiveness of ML algorithms during 
demonstration. 

5. Facility maintenance Estimate of avoided maintenance and downtime per ML action 
identified. 

This demonstration highlighted the fact that the installation costs and timeline can be much 
greater than originally planned, in large part due to the data preparation costs. The general cost 
model is described below. The specific calculation varies depending on the use case, but the 
economic benefits component would relate back to one or more of the performance objectives 
identified in Section 4.0, namely analysis effort, building energy use, and system maintenance. 
Due to the constraints of the project, interventions could not be implemented during the 
demonstration; therefore, assessments of operational cost savings and maintenance avoided 
could not be performed.  

7.1 GENERAL COST MODEL 

The project team proposed a simple model that captures the economic value of a solution as the 
difference in economic benefits and the solution cost: 

 𝐸𝐸𝐸𝐸 =  𝐸𝐸𝐸𝐸 − 𝑆𝑆𝑆𝑆 (1) 
 
where 
 𝐸𝐸𝐸𝐸 = net economic value of proposed solution ($), 

 𝐸𝐸𝐸𝐸 = economic benefits that are derived as a result of a solution ($), 
 𝑆𝑆𝑆𝑆 = cost of solution ($). 

Each use case solution would have slight modifications to the calculation, with an overall 
structure shown in Equation (1). Economic benefits could be calculated as an annual average or 
projected over an expected lifetime, depending on the use case. 



7.2 COST DRIVERS 

For ML projects, labor is the largest, if not the only, component of the cost. DoD deployments 
could include purchasing the ML capability through a software as a service provider. PNNL did 
not purchase software for this project and relied on open-source Python libraries and staff labor 
to execute the project.  
During different phases of the project, the team discussed the challenges and findings with peers 
in academia, other laboratories, and industry experts. The cost drivers for this project were 
similar to those of others undertaking similar efforts. The largest cost, due to manpower is in the 
data preparation and cleaning stages as shown in Figure 25. 

 
Figure 25. Cost Breakdown for Demonstration Project by Major Task 

A demonstration project of this type spends more effort in identifying appropriate tools, testing 
methods and quantifying accuracy than a standard deployment would incur. The work 
breakdown structure for the project consisted of seven major task areas:  

• Task 1. Demonstration Plan Development 

– 1.1 Write draft Demonstration Plan 
– 1.2 Draft plan review by ESTCP committee 
– 1.3 Comments incorporated & final plan submitted 

• Task 2. Machine Learning Testbed Configuration 
– 2.1 Development environment configuration 

○ 2.1.1 Configure ML development software/libraries 
○ 2.1.2 System configuration documentation 
○ 2.1.3 Define codebase structure and development process 
○ 2.1.4 ML life cycle management planning 

– 2.2. Data Preparation 
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○ 2.2.1 Establish data pipeline 
○ 2.2.2 Data documentation 
○ 2.2.3 Exploratory data analysis and quality characterization 
○ 2.2.4 Define datasets for each ML use case 

• Task 3. Machine Learning Algorithm Selection 
– 3.1 Define use cases 
– 3.2 Identify ML methods to evaluate for each use case 
– 3.3 Expert elicitation 

• Task 4. Model Testing and Performance Evaluation 
– 4.1 ML model development and testing 

○ 4.1.1 Iterative testing 
○ 4.1.2 Model validation 

– 4.2 Performance evaluation 
○ 4.2.1 Performance objective: analysis effort 
○ 4.2.4 Cost assessment 

• Task 5. Model Deployment 
– 5.1 Configure deployment environment 
– 5.2 Deploy ML tools 

• Task 6. Results Reporting  

– 6.1 White Papers 
– 6.2 Final Technical Report  
– 6.3 End of Project Presentation 

• Task 7. Project Management and Technology Transfer 

– 7.1 Quarterly Progress Reports 
– 7.2 Annual In-Progress Reviews 
– 7.3 Annual ESTCP SERDP Symposia 
– 7.4 Outreach and Conference Presentations 

7.3 COST ANALYSIS CONSIDERATIONS 

The cost-benefit analysis for applying ML to building controls and utility metering data relies on 
a number of factors. Meters and sensors themselves do not save energy; it is actions taken based 
on the information provided that result in economic benefits. Applying advanced analytics and 
ML to data can improve the recommendations and information provided to the user; resulting in 
either autonomous changes or manual changes to systems. The DOE Federal Energy 
Management Program has partnered with the National Laboratories over the years to provide 
guidance on how to justify installing meters from a cost and benefit perspective (Parker et al. 
2015). An expansion of the best practice developed for this project (see Appendix C) could be 
beneficial for DoD as the data quality and connection of data points improves.  



8.0 TECHNOLOGY TRANSFER  

There is potential to extend this demonstration from the USAR EBCS to similar systems 
operated by other DoD commands, which have also deployed thousands of smart meters and 
BCSs at their installations. The Army is also moving toward requiring connected control systems 
at their installations, as required by Army Policy and the Army Climate Strategy (2022). The 
methodologies, results, and lessons learned from this demonstration are documented and will be 
made available across all DoD commands. PNNL disseminated the results of this effort through 
this technical report, (pending) journal articles, and conference presentations. 
The ML tools deployed and validated for the USAR could be deployed to other commands 
immediately following completion of this effort. The National Guard would be a prime candidate 
because of its similarity of building types and missions. These techniques also apply to larger 
military installations, although additional ML algorithm training may be needed for larger, more 
complex facilities. 
The greatest challenge for an ML platform is to ensure cybersecurity by building a hardened 
system. Within the Army, the G-6 organization controls hardware, software, and all connections 
to the network requiring a Certificate of Networthiness (now moving to Risk Management 
Framework). The USAR system, including the metering and building controls, has G-6 approval 
and will continue to provide updated patches and requirements. Transitioning to other commands 
within the Army (that have separate information technology groups) would move quickly 
because of the work with USAR G-6. Transition to the Navy or Air Force would require a restart 
of the approval process, which can add up to 1 year to the transition process. 
Formal technology transfer activities includes the following: 
1. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) 

Annual conference (June 2021) presentation “Applying Machine Learning to Enhance 
Building Performance at US Army Reserve Centers”.7 

2. National Institute of Building Sciences Building Innovation Conference (September 2021) 
presentation “Applying Artificial Intelligence to Buildings with Imperfect Data”.8 

3. Paper describing the “Challenges to Applying ML to Existing Building Energy and Controls 
Data at Scale” (in Draft to be submitted). 

4. Paper describing “ML for Buildings: A Use Case Perspective” (in Draft to be submitted). 
The audience focus is on DoD and the document will be distributed through Headquarters 
communication channels. Guidance for DoD when considering ML as a procured service (in 
Appendix C). 
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5. Progress and innovation highlighted as part of the Army Energy Managers Community of 
Practice Webinar, chaired by Ms. Christine Ploschke, Acting Deputy Assistant Secretary of 
the Army, in February 2022. Over 180 energy managers and public works staff from the 
Army were in attendance.  

6. Coordinated with the USAR EBCS technical team to share the code base and leverage the 
work for other related efforts (e.g., Control Score algorithm deployment). 

7. Open-source release of software framework to be used in future analytics deployments.  
8. SERDP & ESTCP Symposia: including the poster sessions 2019, 2020 and 2021, and 

Presenting at the Energy and Water session in 2020. 
9. ESTCP In Progress Reviews in 2020, 2021 and 2022. 
10. Final Technical Report. 
11. Out-brief webinar with DoD Energy Managers after submission of the final deliverables. 
Because the primary purpose of the tool deployment was to show what ML can accomplish when 
applied to the USAR’s existing data and not to deliver a production-grade web application, the 
demonstration application has been deployed on the PNNL network in an environment that 
mirrors the EBCS deployment environment. This allows the functionality of the tool to be 
demonstrated to users without incurring the monetary and time costs of deployment on the EBCS 
system. 
The mirrored environment of ARNet on PNNL’s network consists of a Windows Virtual 
Machine (VM) that hosts a copy of the EBCS Microsoft SQL (MSSQL) database. The ML 
demonstration application is hosted on another VM on PNNL’s network inside a Docker 
container. Docker containers are a type of virtualized operating system that allow programs to be 
neatly packaged with their dependencies and replicated on all types of systems (e.g., Windows or 
Unix operating systems), thereby simplifying deployment. The "Dockerized” application can 
easily be deployed on any VM with Docker installed on ARNet. 
Another PNNL project developing an application called Control Score is also exploring ways to 
deploy a Python-based application that uses EBCS data on ARNet. Our demonstration team 
worked with the Control Score team to leverage our joint efforts and lower the development 
effort for both teams. The two apps are implemented in the same web framework application, 
although they are completely separated from each other. Both project teams and the USAR 
benefited from this configuration due to the efficiencies of a single deployment effort. The 
application architecture and mirrored computing environment are shown in Figure 26. 



 
Figure 26. Application Architecture for Proof-of-Concept and Production Deployment 

The demonstration deployment application has a live connection to the MSSQL database that 
stores the EBCS control data and the utility meter data captured by MDMS meters. The 
application allows meter data to be viewed in any time window for each building. It also trains 
and stores a baseline prediction model for any selected building. The predicted consumption can 
be viewed along with the actual consumption during any selected window of time. Figure 27 
shows screenshots depicting both capabilities, with utility meter data displayed on top and 
baseline model predictions compared to actual consumption displayed below. 



 

 
Figure 27. Screenshots from the Deployment Application Demonstration 

The open-source software framework (Item 7 in technology transfer list) builds upon and extends 
existing tools for building and managing related computational environments.9 Simply put, a 
computing environment is the active set of software tools and libraries that are used when 
running a program. Traditionally these tools provide software package management and 
deployment workflows for a single environment. Variations are created manually. In contrast, 
fundamentally, the proposed framework compositionally relates multiple computational 

 
9 https://github.com/pnnl/hydraconda and https://www.osti.gov/doecode/biblio/74986 
 

https://github.com/pnnl/hydraconda
https://www.osti.gov/doecode/biblio/74986


environments, which provides a basis for programmatically building them for a variety of 
scenarios. By enabling multiple related environments to be used by both software engineering-
oriented developers as well as data scientists in the same codebase, both systemized as well as 
exploratory programs can be managed. 
For example, data processing code can be systemized and centrally managed (as a unit), and 
(multiple) exploratory codes (that depend on data processing) can be managed separately, all 
while retaining the relationship between them. Furthermore, “finalized” analyses could be 
deployed as (delivered) solutions. 
The primary audiences for this framework are integrated analytics teams consisting of data 
scientists as well as software engineers. The framework could be used for any analytics 
development project. It could benefit future DoD/federal deployments by automating, 
standardizing, and expediting development and solution delivery. 
  



9.0 IMPLEMENTATION ISSUES 

Several challenges that were not well understood at the outset of the demonstration caused delays 
and created barriers to successful use case investigation and deployment of ML algorithms. 

9.1 DATA QUALITY ISSUES 

Data-driven approaches like ML are inherently reliant on the input data available. If sufficient 
data are not available, it is not possible to implement them. Throughout this demonstration, a 
variety of data quality issues were identified that posed challenges to achieving the originally 
stated performance objectives. These issues included missing data, suspicious or invalid 
readings, time stamp offsets, and reporting unit miscalibration.  

Data Availability and Quality 

Data availability was the biggest data challenge faced by the project by far. While there are 
hundreds of USAR buildings with advanced meters incorporated into the Army Metering 
Program’s MDMS, only a fraction of the buildings are also incorporated into EBCS. Meanwhile, 
many of the buildings that are incorporated into EBCS do not have MDMS advanced utility 
meters. Thus, the limited overlap of buildings with both EBCS and MDMS data restricted the 
candidate buildings significantly prior to other data volume and quality considerations.  
The use case prioritization matrix (Appendix C) describes the data quality requirements for the 
use cases that were implemented in this project. Filtering out the buildings that do not meet these 
data requirements further reduced the number of buildings available for the project. The down-
selection from all possible buildings in MDMS and EBCS to the buildings with adequate data for 
ML is illustrated in Figure 28. 

 
Figure 28. Buildings with Adequate Data for ML 



Among the EBCS buildings for which sufficient data were available to meet the testing and 
training requirements of ML model development, data quality varied widely from building to 
building. Data quality problems derive from many sources, among them: 

• Interruptions in network connectivity 
– Routine networking issues  
– Cybersecurity-related interruptions 
– Power loss 

• Data synchronization problems across the Army advanced metering infrastructure (AMI) 
network 

– Data transfer losses between advanced meter, Building Point of Connection (BPOC), 
Enterprise Energy Data Reporting System (EEDRS)/ Utility Monitoring and Control 
System (UMCS), MDMS gateway, and MDMS central server 

– Data storage limitations of field devices 
– Limited lookback windows for data queries 
– Variation in data acquisition, formatting, and storage protocols by EEDRS/UMCS 

software (e.g., JCI Metasys, Tridium Niagara N4) 

• Miscalibration of measurement devices 
– Meter multipliers 
– Incorrect reporting units 

• Interoperability constraints between devices using different communications protocols and 
data formats. 

While many of these problems presented challenges, consistent data availability was by far the 
most significant. Even where buildings were incorporated into both the MDMS and EBCS 
platforms, missing data in one or both sets of data often precluded using the building in this 
project. The most prominent example of these challenges is a loss of all meter data from 
approximately June 2018 to September 2019 due to a networking connectivity issue. Meter data 
availability is visualized in Figure 29, in which each horizontal line represents a distinct meter 
and white space represents a day of missing data. The outage affecting all MDMS meters can 
clearly be seen in the left figure, and the continued data availability challenges are evident in 
both figures as shown by the amount of white space present in the figures (perfect reporting 
would result in a solid-colored rectangle). 



  
Figure 29. Meter Data Availability in MDMS and EBCS 

Up to a point, data quality problems can be mitigated by using preprocessing methods such as 
interpolation for short gaps in time-series data and anomaly detection for erroneous readings. 
Such processes are usually human-supervised to ensure that gaps are not so large that 
interpolation would generate specious data, or that anomaly detection would filter out potentially 
valid readings. There are limits to how many missing or bad readings can be allowed in a time 
series before it becomes unusable from the standpoint of ML model training, however. The 
specific determination depends on the quantity of data available, the use cases and ML 
algorithms under consideration, and the distribution of bad data within the time series. 

Data Integration 

Data integration across sources introduced an additional challenge to the demonstration. Even 
simple use cases typically require merging multiple sources; for example, the whole-building 
load prediction models trained in this demonstration used outdoor air temperature data from 
NOAA as an input feature. This required integrating utility metering data from MDMS with 
temperature data from an external source. When using high-quality sources such as NOAA 
historical weather data, data integration is a straightforward process; however, combining 
multiple sources of poor-quality building data can render the integrated dataset unusable for ML 
model development. 
In particular, integrating multiple time series introduces the problem of non-overlapping 
coverage. Figure 30 illustrates the problem of non-overlapping coverage for control points at 
multiple EBCS buildings; colored regions indicate that a reading is available for a control point 
at a particular time step, while white space indicates that no reading is available. There is only a 
roughly three-month window in 2020 during which readings are available for all points at all 
buildings. 



 
Figure 30. Non-overlapping Coverage of Control Point Readings for Multiple EBCS Buildings 

A useful feature of ML is the ability to extend a model’s predictive capabilities from one target 
to another, assuming that the phenomena being modeled are sufficiently similar across prediction 
tasks. It is more efficient to leverage a pre-trained model to make predictions about a new target 
than to train an entirely new model from scratch. The extension of a pre-trained model from one 
prediction task to another is known as transfer learning.  
At the outset of the demonstration, the project team expected that transfer learning would allow 
for the extension of controls-oriented models to many buildings; however, the control points 
trended in EBCS differ substantially from building to building, which limits model transfer 
between different buildings. Variation in point trending at different buildings occurs for a 
number of reasons, including the following: 

• There are many different building designs with a wide variety of HVAC and other energy-
consuming systems. 

• Even in two buildings with identical systems, different points are chosen to be trended (i.e., 
their data recorded for long-term storage). 

• Building owners have numerous competing interests, among which achieving energy 
efficiency through automation is often a lower priority. 

• Field controllers and automation systems are offered by a wide range of vendors, and many 
rely on proprietary standards that are not interoperable with each other (this is particularly true 
with pre-BACnet legacy systems). 

• Only some systems and equipment are automated. 



Unavailable Metadata and Inconsistent Point Naming Conventions 

One of the largest data quality issues this project faced was a lack of available metadata for the 
EBCS points. Metadata that describe what the point data represent (e.g., a space temperature 
measurement or discharge pressure set point) and how they relate to other points in the building 
(e.g., identifying all the points belonging to a single piece of equipment) are essential for many 
of the use cases explored in this project. Without having these data formally documented, the 
project team attempted to infer this information, to the extent possible, from the name of the 
points. The robustness of this inference relies on how well the naming convention describes that 
information and how rigorously the naming convention was followed. 
Although a meter naming convention is specified in the U.S. Army Corp of Engineers (USACE) 
Army Metering Program Guidance for Advanced Meters (USACE 2016), it is inconsistently 
applied across meters at both the UMCS/EEDRS level as well as in MDMS. Efforts have been 
made over time to update these names to conform with the current standard, but legacy issues 
remain. Even with the convention in place, in some cases meter install contractors and 
Directorate of Public Works (DPW) personnel implemented an alternative approach instead.  
For the purposes of this demonstration, however, inconsistent meter naming was a relatively 
minor issue when compared to the much greater challenge of inconsistent point naming 
conventions for BCS point histories across different buildings in EBCS. There is usually only 
one advanced meter per utility at each USAR building, meaning that manual resolution of meter 
names is possible; however, BCS trend hundreds or thousands of points per building. 
Investigation of EBCS data yielded a wide range of point naming conventions. 
Inconsistent point naming conventions pose a major challenge to scaling ML models from one to 
multiple buildings, and even to implementing models at a single building. The first issue is that 
of interpretability. In a BCS, control points are associated with graphical models, accessible 
through the BCS graphical user interface, which aid human building operators in interpreting the 
physical system that the points represent. Figure 31 presents an example from EBCS. 



 
Figure 31. Example Graphical Model of a Boiler System in EBCS 

Conventional ML models cannot make use of this graphical context the way that human 
operators do, however; instead, the point name needs to be linked to metadata that describe the 
point unambiguously, i.e., a semantic model or metadata schema. In the absence of such 
metadata, the model developer must interpret the meaning of point names and incorporate the 
appropriate points into the model accordingly. With hundreds or thousands of points to review 
per building, this is a time-consuming process, prone to errors of interpretation and judgment. 
And because naming conventions are inconsistent between buildings, the interpretations applied 
to a particular set of points at one building often do not apply to the next building. 
An automated approach to the problem is to develop a set of syntactic rules for automatically 
parsing point names (e.g., “all point names ending in ‘_sp’ refer to a control set point”) and 
assigning semantic meaning to them. Inconsistent point naming conventions inhibit the 
scalability of this approach, however; a set point at one building might be coded as “_sp” and at 
another as “-set-point”. In some cases, these conventions can vary even among points within the 
same building. For the model developer, this complexity leads to a disproportionate expenditure 
of time on point name resolution, involving some ad hoc combination of syntactic parsing rules 
and data modeling. 
The USAR is far from alone in terms of point naming consistency issues. Among energy 
management information system (EMIS) developers, it is a widely recognized problem 
throughout the commercial buildings sector.  
While there are a number of emerging standards for point ontologies (e.g., Project Haystack, 
Brick, and ASHRAE Standard 223P), they have not been widely adopted throughout the building 
industry. Creating the models is currently a manual process, which can be labor-intensive, 
particularly for larger buildings with many points. This is especially true for existing buildings 
that may lack drawings of the building and associated systems. There is active research being 



conducted on data-driven approaches to automatically determine the point ontology, but the 
accuracy of these methods varies significantly.  

Limited Detail in Maintenance Logs 

To implement effective fault diagnosis and predictive maintenance models, detailed maintenance 
histories are required. This is a basic requirement of supervised ML tasks—for the model to 
predict a target outcome, it must be trained on data that include both predictive features and 
observed outcomes. Empirical observations of the target are required to validate the accuracy of 
the model predictions. If target data are missing or are not sufficiently detailed and precise, it is 
not possible to build a model to predict that target. In the case of fault diagnosis, a high degree of 
specificity is necessary for the diagnosis to be useful.  
The project team reviewed maintenance data from the USAR CSS, the enterprise system for 
tracking work orders at USAR sites. After the review, the team concluded that the information 
contained in CSS was not sufficiently detailed to support the development of useful ML models 
for fault diagnosis and predictive maintenance. Table 11 presents a sample of maintenance data 
contained in CSS. 

Table 11. Example Data from CSS 

Summary 
Actual 
Cost Priority Request Status Created 

Work 
Complete 

No hot water in 
building 

 $2,032.98  Routine Closed 9/8/2017 5/10/2017 

HVAC Boiler - 
Building 8001 

 $1,750.00  Emergency Closed 1/16/2018 1/19/2018 

HVAC - Mini split  $276.00  Routine Closed 2/23/2018 5/31/2018 
Bay heaters - 
Inoperable 

 $1,620.00  Routine Approved for 
Closure 

11/28/2018 3/1/2019 

hot water pump  $1,667.61  Urgent Approved for 
Closure 

1/22/2019 3/25/2019 

As the table illustrates, the CSS ticket summary generally provides a brief description of the 
equipment in need of maintenance or replacement, but no additional detail. To be useful for fault 
diagnosis or predictive maintenance, more detail is required about the specific component(s) in 
the equipment that experienced the fault, the fault itself, what corrective actions were taken, and 
the times that events occurred. In CSS, this information is generally unavailable. Timestamps are 
included to document when the ticket was created and when work was completed, but they are 
not necessarily reliable indicators of the actual timing of events; for example, in the first row of 
Table 11, the ticket created date is 9/8/2017, while the work completed date is 5/10/2017, 
roughly four months earlier. This suggests that the ticket was created retrospectively for 
recordkeeping and accounting purposes, rather than to track maintenance events as they 
occurred. More broadly, it implies that CSS was not designed with the intent of providing data 
inputs to ML models in mind, but for other purposes that are important to the USAR. This point 
bears further discussion, because it applies to other systems in this demonstration as well. 



Misalignment of System Functional Design and ML Objectives 

At the outset of the demonstration, the project team expected to encounter challenges with data 
quality and availability based on prior analyses of MDMS data. Data integration across multiple 
disparate sources was another anticipated challenge. One lesson learned since, however, is that it 
is critical to understand how the functional design of a system can drive what and how data are 
captured by the system and ultimately how useful they are for the purposes of ML modeling. In 
the case of MDMS, this is straightforward; the system was designed for the purpose of capturing 
energy and water use data at Army buildings and making that data available to energy managers 
for analysis and further action. The functional design of the system aligns closely with the 
objectives of this demonstration, and accordingly the data captured by the system were useful for 
developing baseline prediction and fault detection models. In the case of CSS, however, the 
functional design never anticipated that the system would be used to provide inputs to fault 
diagnosis or predictive maintenance models, and accordingly the data do not support those use 
cases.  
EBCS represents a more complicated case. EBCS provides a standardized Niagara-based 
platform connecting USAR BCSs throughout the nation. Collecting standardized building 
operation data to support advanced applications such as ML models is a key EBCS function. 
Historical data stored at the EBCS server level heavily rely on the connectivity to the integrated 
BCSs. In the EBCS functional design, point histories are required to be temporarily saved at the 
local integration controller for up to 14 calendar days; however, in practice, the Tridium Niagara 
N4 software on which EBCS runs periodically stops recording point histories, and recording 
must be manually reinitiated (see Figure 30). If the connection is lost beyond the 2 weeks when 
data are temporarily stored at the local integration controller, building operation data gaps occur. 
During the course of this ESTCP project, the EBCS program experienced some extended 
disconnectivity attributed to a lack of timely responses to broken integration controllers and a 
system upgrade from Niagara AX to Niagara N4. Further, as discussed above, some inconsistent 
point naming conventions were implemented across buildings that affect ML model scalability. 
The data reliability, accuracy, and consistency gaps exposed by this demonstration will inform 
the USAR EBCS program. The USAR EBCS program is addressing these data gaps to optimize 
the EBCS’s intended data applications.  

9.2 CYBERSECURITY ISSUES 

When the demonstration began, USAR was planning to transition a number of ARNet-hosted 
systems to the Microsoft Azure cloud platform. Among the systems planned for transition was 
EBCS. To date, however, that transition has not occurred; consequently, throughout the 
demonstration there has been uncertainty regarding the ultimate deployment environment and the 
cybersecurity requirements associated with deployment. Because of the ongoing uncertainty 
about deployment requirements, the ML tools developed during this demonstration were not 
deployed to EBCS directly but instead are hosted on the PNNL network. The team will continue 
to work with USAR after the demonstration concludes to plan a future EBCS deployment. 
Cybersecurity is a central pillar of the DoD’s information systems, and ARNet has strict 
cybersecurity requirements. These requirements present challenges to deploying a new 
application on the network. Some of these challenges are described below. Although the project 
team is actively working to address these obstacles, they prevented a deployment of the 



application on the ARNet. Section 8.0 describes the demonstration deployment on PNNL’s 
network. 
USAR requires any IT system to be approved through an application process before being 
granted an ATO on their network. The ML application developed in this project is written in the 
Python programming language, but there is no current ATO for the Python programming 
language. 
Access to ARNet is also tightly controlled. A DoD Common Access Card (CAC) is required to 
access any system on the network. While the project team included several team members with 
CACs and an embedded staff member, the primary data scientists and software developers do not 
have CACs, which complicates development on a USAR system.  
The “Dockerized” ML application can be easily deployed in a wide range of systems, but it is not 
an isolated application; it requires a connection to the EBCS database hosted on the same 
network. The connection needs to be allowed through the various firewalls in place between the 
machine hosting the database and the one hosting the application. Without access to the 
deployment environment and close collaboration with the system operators, this configuration is 
extremely difficult to establish remotely. 
The Army routes its network traffic through a proxy server, which implements aggressive packet 
inspection. The particular configuration of the proxy server complicates programmatic access to 
external sources, such as the NOAA weather data FTP site or even the Python repositories, 
necessary for the ML application to be installed and function properly. Through initial testing, 
the project team found that many of the external sources do not allow a programmatic connection 
because of the packet inspection feature. 
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APPENDIX B: MACHINE LEARNING METHODS 

This appendix presents an overview of several key methodological concepts involved in Machine 
Learning (ML). 

B.1 Regression 
Regression is an instance of supervised ML that can be used to predict a continuous value. A 
classic example of regression is to predict the prices of a house given the features of the house 
such as size, cost, and location. The prediction is performed based on training labeled data such 
as a database of house prices as a function of size, cost, and location. Several classification 
algorithms have been developed over previous years, such as linear regression, tree-based 
regression, support vector regression, and random forest regression. Of particular interest are 
more advanced algorithms that have recently gained popularity, referred to as deep learning 
algorithms. In this category, recurrent neural networks (RNNs) are one of the most popular deep 
learning regression algorithms that have been successfully applied to problems such a language 
modeling and prediction, speech recognition, and language translation. In the context of Figure 1 
of the main report, regression is applied to the problem of predicting baseline prediction, as 
described in Section 2.1-546169424.388.  

B.2 Classification  
Classification is an instance of supervised ML in which a training set of correctly identified 
observations is available. Classification in particular identifies which categories (sub-
populations) a new observation belongs to, based on a training set of data observations 
containing observations (or instances) whose category membership is known. A classic example 
of classification is to take an image and label it as belonging to a particular type (e.g., a dog 
image or a cat image) based on training that was performed on a set of pre-labeled images 
(training set). In the context of Figure 1 of the main report, classification is applied in two 
places—fault detection and fault —as described in Section 2.1. Several different classification 
algorithms have been developed over the last few years and successfully applied to problems 
such as image classification. Examples include decision trees, rule-based learning, discriminant 
analysis, principal component analysis, support vector machines, and multi-layer perceptron.  

B.3 Recurrent Neural Networks 
RNNs would be an appropriate choice for development of the baseline prediction engine in 
Figure 1 of the main report, because they are especially suitable to address prediction and 
classification problems in which the inputs are expressed as time series. In particular, they appear 
to be promising in the context of modeling a complex dynamic system such as a building 
because of their superior ability to capture nonlinear and dynamic dependencies compared to 
other ML methods. Their structure is such that information that belongs to a time stamp is fed 
back to the neural network, and thus this information is accounted for when updating the weights 
of the neural network (Goodfellow et al. 2016). This makes the model learn about the temporal 
dependence between the inputs and the outputs (see Figure B.1). 



 
Figure B.1. Diagram of a Recurrent Neural Network 

B.4 Model Predictive Control 
Model predictive control (MPC) is a form of control in which control action at the current time is 
obtained by solving a finite time horizon, open-loop, optimal control problem, using the current 
state of the plant as the initial state. The optimization yields an optimal sequence of inputs and 
the first element in the sequence is applied to the plant while the rest are discarded. This 
procedure is repeated for each time instance (Figure B.2). An important advantage of this control 
methodology, which renders it very useful, is its ability to explicitly account for hard constraints 
on controls and states. Therefore, MPC has been widely applied in the petrochemical and related 
industries where satisfaction of constraints is very important because the most efficient operating 
points typically lie within or close to the intersection of such constraints. In the context of Figure 
1 of the main report, MPC can be applied to the problem of optimizing control decisions, as 
described in Section 2.1. 

 
 

Figure B.2. General Scheme of MPC 

B.5 Deep Reinforcement Learning 
Reinforcement learning is a category of ML where the agent learns through trial and error. This 
experience-driven nature, combined with recent advancements in deep neural networks, formed a 
new branch in deep learning science, which has shown promising results in areas that were 
intractable before (Arulkumaran et al. 2017). DeepMind’s AlphaGo Zero uses deep 
reinforcement learning (DRL) to reach superhuman performance without any human knowledge 
(Silver et al. 2017). In robotics (Kalashnikov et al. 2018), autonomous driving (El Sallab et al. 
2017), and team-playing strategic gaming (OpenAI 2018), DRL agents and bots achieved 
promising results, where the environment is only partially observable, the tasks last over a long 
time horizon, and state and action spaces are highly dimensional. The deep neural network in 



DRL is used to learn the environmental states and value of performing a set of control action at 
each state. Once trained, DRL could be used to suggest control actions that lead to optimal 
outcomes (see Figures B.3 and B.4). In the context of Figure 1 of the main report, DRL can be 
applied to the problem of optimizing control decisions (as an alternative to MPC), as described in 
Section 2.1. 

 
Figure B.3. General Architecture of DRL 

 
Figure B.4. Process Flow for a DRL Model 
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C.1  Use Case Prioritization and Machine Learning for Buildings 

In this appendix, we describe some common use cases for machine learning (ML) in the 
operation of commercial buildings. 
1. Baseline consumption modeling: Predict power consumption (under business-as-usual 

conditions/without optimization of controls) at the building level for a specified time period 
in future. 

2. Unsupervised fault/anomaly detection: Use a baseline consumption model to predict 
baseline consumption. Then compare the baseline prediction with real/measured 
consumption. If the deviation is more than a certain use-prescribed threshold, classify the 
performance as anomalous. 

3. Labeling consumption data as anomalous/non anomalous: Use cluster analysis to 
segregate (training data only) into anomalous and non-anomalous. However this is only 
applied on training data for the purpose of autonomously labeling data as anomalous and 
non-anomalous (in the absence of expert opinion). Such labeled data are needed as an input 
for the use case below. 

4. Supervised fault/anomaly detection: Use data labeled as anomalous vs. non-anomalous 
(either labeled by an expert) or by using the methodology in the above use case) as training 
data to train classification ML algorithms for fault detection. 

5. Baseline control-oriented modeling: Train regression ML models that predict energy use 
and indoor environment variables (e.g., temperature). The inputs are control knobs and 
exogenous variables. 

6. Model-based control optimization: Use models trained in the above use case to optimize 
control settings to achieve a prescribed objective (reduce energy/cost) over a prescribed 
period of time. Can be implemented as a lookup table. 

7. Model-free control optimization: Train control policies directly (without the aid of a model, 
hence different from the model-based control optimization use case) to optimize them to 
achieve a prescribed objective (reduce energy/cost) over a prescribed period of time. 
Implementation on an actual building is outside the scope of the project; therefore, the model 
developed in above use case or a pre-existing simulation model can be used as a proxy to 
demonstrate the proof-of-concept. 

8. Transfer Learning: Transfer models learned on one “source” building to another “similar” 
“target” building. Both baseline consumption model and baseline control-oriented models 
can be examined for transferability. 

9. Supervised Fault Diagnosis: Use data labeled in two layers: (1) anomalous vs. (2) non-
anomalous. Anomalous data is labeled with the cause of the fault. Train classification ML 
algorithms on such data to diagnose (specify) the type of fault. Data can be generated from 
simulation models if field data required for the analysis are challenging to obtain. 

10. Predictive Maintenance: Analyze the health of the subsystems in a building using data from 
equipment and estimate probability of failure. 

The availability of high-resolution datasets from buildings within an enterprise provides a unique 
opportunity to the owners/operators of the enterprise to potentially leverage them to satisfy 



several applications/use cases such as the ones described previously. However, due time and 
resource constraints, it is often not feasible to address all use cases at once. The owner/operator 
might need to down-select a few of the use cases or might want to adopt a stage gated approach 
where a few use cases are initially targeted, and more are brought on later, depending on 
resource availability. 
To assist the owners/operators in making well-informed decisions about how to best allocate 
their resources, it is important to develop a framework that allows relative ranking or 
prioritization of use cases. Some of the key aspects to consider per use case are enumerated 
below: 
1. Data needs expressed in terms of required measurements or sensor outputs, data volume and 

quality of data. 
2. Availability of the required data. 
3. Any prerequisites such as pre-trained models. 
4. Candidate ML algorithms. 
5. Difficulty of implementation gauged in terms of data preparation and processing effort, and 

ML algorithm installation and testing effort. 
A comparison of the use cases across the above aspects can help in assigning a priority level per 
use case. The priority assignment can either be qualitative such as high/medium/low or 
quantitative such as a numeric score (1, 2, 3, etc.). We do not claim that the aspects listed above 
constitute a complete list that an organization should consider, but only represents some of the 
most common aspects to be considered when setting initial priorities. The priorities can be 
further refined based on additional criteria that might be more specific to stakeholders, such as 
limitations on available computing infrastructure, relative popularity of certain use cases or 
classes of ML algorithms (for instance deep learning might be considered more “exciting” than 
linear regression), “pain points” based on the experience of operating the buildings so far, etc. 
The use case prioritization matrix for the EBCS and MDMS datasets using this framework is 
shown in Tables C.1 and C.2. 

Table C.1. Data Needs for ML Use Cases 

Use Case 
Description 

Use Case 
Category 

Data Needs 

Measurements 
Data 

Volume Data Quality 
Baseline 
consumption 
modeling 

Fault 
detection, 
energy bench-
marking 

Energy use data (hourly or 
smaller resolution): 
Gas consumption 
Electricity consumption 
Water consumption 
Outdoor environmental Data 
(hourly or smaller resolution) 

At least 1 
year. 
Multiple 
years is 
preferred 

Should be fault-free. 
Sparse gaps are 
tolerable (a few data 
points missing). 

Unsupervised 
fault  
/anomaly 
detection 

Fault 
detection 

M-2A: All measurements 
needed for baseline 
consumption modeling 
M-2B: Consumption 
measurements for time period 

At least 1 
year. 
Multiple 
years is 
preferred 

Data M-2A should 
be fault-free. 
Data M-2B can have 
faults. 
Sparse gaps are 



Use Case 
Description 

Use Case 
Category 

Data Needs 

Measurements 
Data 

Volume Data Quality 
for which fault detection needs 
to be performed (can be a real-
time stream). 

tolerable 
(a few data points 
missing). 

Labeling 
consumption 
data as 
anomalous/ 
non- 
anomalous 

Fault 
detection 

Energy use data (hourly or 
smaller resolution): 
Gas consumption 
Electricity consumption 
Water consumption 

At least 1 
year. 
Multiple 
years is 
preferred 

Data should contain 
faults but not all of 
the data should be 
faulty. 
Sparse gaps are 
tolerable 
(a few data points 
missing). 

Supervised 
fault/anomaly 
detection 

Fault 
detection 

Energy use data and outdoor 
environmental time- 
series data; these 
measurements should be 
flagged as faulty/non-faulty 
(either by data owner or using 
the labeling technique above) 

At least 1 
year. 
Multiple 
years is 
preferred 

Data should contain 
faults but not all of 
the data should be 
faulty. 
Sparse gaps are 
tolerable 
(a few data points 
missing). 

Baseline 
control-
oriented 
modeling 

Control 
optimization 

Control knobs: set-point 
temperatures etc.  
Exogenous variables: outdoor 
environmental data, occupant 
data or suitable proxies. 
Performance data: energy use 
data, indoor environmental data 

At least 1 
year. 
Multiple 
years is 
preferred 

Should be fault-free. 
Sparse gaps are 
tolerable (a few data 
points missing). 

Model-based 
control 
optimization 

Control 
optimization 

Exogenous variables in 
baseline control-oriented 
modeling, for time-window for 
which control optimization 
needs to be performed. 
Utility rates for time-window 
for which control optimization 
needs to be performed 

At least 
24 
hours, 
multiple 
days 
spanning 
multiple 
seasons 

Should not have any 
gaps. 

Model-free 
control 
optimization 

Control 
optimization 

Exogenous variables in 
baseline control-oriented 
modeling, for time-window for 
which control optimization 
needs to be performed. 
Utility rates for time-window 
for which control optimization 
needs to be performed 

At least 1 
year. 
Multiple 
years is 
preferred 

Should not have any 
gaps. 

Transfer 
learning 

Energy 
bench- 
marking, 
Control 
optimization 

Source building: same 
measurements in the baseline 
consumption modeling (if 
transferring baseline 
consumption model) or as in 

At least 1 
year. 
Multiple 
years is 
preferred 

Should be fault-free. 
Sparse gaps are 
tolerable (a few data 
points missing). 



Use Case 
Description 

Use Case 
Category 

Data Needs 

Measurements 
Data 

Volume Data Quality 
baseline control-oriented 
modeling (if transferring 
control-oriented model). 
Target building: same 
measurements as for source 
building but for a smaller time 
period (required for 
validating the effectiveness of 
the transfer). 

Supervised 
fault diagnosis 

Fault 
diagnosis 

Energy use data (hourly or 
smaller resolution): gas, 
electricity, water consumption; 
outdoor environmental data 
(hourly or smaller resolution); 
indoor environmental data; 
equipment operational data. 
Fault labels: for each time 
stamp, information on whether 
there was a fault and if so what 
was the fault 

At least 1 
year. 
Multiple 
years is 
preferred 

Data should contain 
faults but not all of 
the data should be 
faulty. 

Predictive 
maintenance 

Predictive 
O&M 

Equipment operational data 
which also contains data 
corresponding to equipment 
breakdown 

Multiple 
years of 
data, 
preferably 
containing 
equipment 
lifetime 

Sparse gaps are 
okay. 

 
  



Table C.2. Part B of the Use Case Prioritization Framework: ML Implementation 

Use Case 
Description Prerequisites 

Candidate ML 
Algorithms 

Difficulty of Implementation 
Data 

Preparation 
and 

Processing 
ML Implementation 

and Testing 
Baseline 
consumption 
modeling 

None Start with: linear 
regression, linear 
SVR, random forest; 
if needed: RNN 

Easy: 
Normalization 

Easy: linear regression, 
SVR, 
random forest can be 
implemented using 
Scikit-Learn; RNN: can 
be implemented using 
Keras/TensorFlow. 

Unsupervised 
Fault 
/anomaly 
detection 

Trained 
baseline 
consumption 
model; 
threshold for 
flagging data as 
anomalous 

Algorithms used for 
training baseline 
consumption models 

Same as for 
baseline 
consumption 
modeling 

Same as for baseline 
consumption modeling. 

Labeling 
consumption 
data as 
Anomalous/non- 
anomalous 

None Clustering 
algorithms: k Mean- 
s/hierarchical 

Easy: 
normalization 

Easy: Scikit-learn 

Supervised 
Fault- 
/anomaly 
detection 

None Binary classification 
techniques: logistic 
regression, linear 
SVM, stochastic 
gradient descent 

Difficult: 
Involves 
obtaining 
labeled fault 
data 

Easy: Scikit-learn 

Baseline 
control- oriented 
modeling 

None Time-series 
regression 
approaches: LSTM, 
LSTM-CNN 
combined 
architectures, Linear 
regression, SVR, 
random forests. 

Obtaining 
occupant data 
might be 
difficult, 
proxies might 
be needed 

Moderate: 
TensorFlow/Keras; 
hyperparameter 
optimization will be 
needed. 

Model-based 
control 
optimization 

Baseline 
control- 
oriented model 
developed; 
Comfort 
constraints 
specified 

Model predictive 
control (would need 
black box 
optimization 
solvers); implement 
them as lookup 
tables. 

Easy Difficult: black box 
optimization solvers 
have computational 
complexity issues and 
can have poor 
convergence behaviors. 
Trial and error with 
different types of 
solvers and different 
parameters settings will 
be needed. 

 A simulation Reinforcement Easy Moderate; can be 



Use Case 
Description Prerequisites 

Candidate ML 
Algorithms 

Difficulty of Implementation 
Data 

Preparation 
and 

Processing 
ML Implementation 

and Testing 
Model-free 
control 
optimization 

model of the 
building (can 
be the same 
model as in 
baseline 
control-
oriented 
modeling) or 
access to the 
actual building 
control knobs 

learning implemented in 
OpenAIGym. 

Transfer 
Learning 

None Direct transfer; off-
line schemes 
such as inductive 
transfer, on-line 
techniques such as 
Generalized Online 
Transfer Learning 
(GOTL). 

Easy Moderate to difficult 
depending on off-line 
vs. online transfer 
learning. 

Supervised 
Fault Diagnosis 

None Classification 
techniques: linear 
SVM, stochastic 
gradient descent, 
random forest 
classification 

Difficult: 
involves 
obtaining 
labeled fault 
data 

Easy: Scikit-learn 

Predictive 
Maintenance 

 
None 

Stochastic 
techniques, e.g., Hid- 
den Markov Models 

Difficult: 
involves 
equipment 
life cycle data 

Easy: Scikit-learn 

 
 
  



C.2  DOD Best Practice for Applying ML to Building Systems 

Modern buildings produce a constant stream of data from their building automation systems 
(BASs) and advanced metering infrastructure (AMI). The U.S. Department of Defense (DoD) 
has tens of thousands of buildings generating an ever-growing amount of data. This torrent of 
information quickly becomes too overwhelming for manual interpretation and evaluation. ML 
offers one data-driven approach for producing meaningful, actionable insights from the data.  
Given enough data, ML can be an extremely powerful tool that can save building operators and 
managers valuable time and energy. Some examples of how ML models could be used in 
improving building operations include: 

• Identifying sites that are consuming more energy than their peers after accounting for 
differences in budling size, climate, usage type, and other unique factors.  

• Predicting the amount of energy a building will consume in the future.  

• Alerting operators to operational issues, even before an alarm is generated.  
However, ML is not magic and not able to solve every problem. This document provides a brief 
overview of ML and provides some basic considerations before undertaking an ML project. 

Machine Learning Primer 
ML is often thought to be a complex and intimidating topic. While it certainly can be, especially 
in cutting-edge applications, it also can be approachable for people of all skill levels and 
backgrounds. Linear regression is the simplest form of ML. If you have every used Microsoft 
Excel to fit a trendline to data on a graph, you have done some ML! Even complex models and 
applications use the same basic approach and principles that Excel uses when calculating the 
linear regression trendline. At the most basic level, ML simply fits a model to the available data 
with the least amount of error possible. 
ML is a diverse field with a variety of common applications and many algorithms to accomplish 
different goals. Only a portion of the algorithms, or model types, are applicable to facility 
operation and optimization. Appendix B: Machine Learning Methods contains a brief overview 
of some of those ML methods. 

Considerations for Machine Learning Projects 
There are many public resources for ML best practices. For example, Wujek et al. (2016) 
provides a good overview of general best practices in any ML project and Google offers a 
number of ML resources, including a guide featuring 43 rules of ML projects (Zinkevich 2022).  
Training an ML model is the easiest part of an ML project! Most of the work in a successful 
project is spent on gathering sufficient data and creating the infrastructure to ingest the input data 
and serve the model predictions. The following sections offer some additional considerations. 

Problem Definition and Use Case Selection 
The first step in any project is defining the problem that you are attempting to solve. Are you 
attempting to predict a continuous value, classify a sample into one of a few categories, or group 



similar samples together? Each of these problems has different models that work best for that use 
case.  
The final demonstration report (Ford et al 2022) provides an overview of the common use cases 
for ML in the operation of commercial buildings. It also provides a Use Case Prioritization 
Matrix (UCPM), which can be used to set expectations for what ML use cases are and are not 
possible given the available data. While ML can be incredibly powerful, it is not a perfect fit for 
every application. Depending on the project constraints, there could be a better option than a ML 
model. 

Data Availability and Preparation 
Data are the cornerstone on which all ML projects are built. Without good input data, the model 
predictions will be useless. In practice, getting good input data is the most difficult part of any 
ML project and is the main determining factor for use case possibility. The UCPM describes the 
minimum data requirements needed for the common ML use cases for buildings.  
At a minimum, input data sources must be aligned with the intended ML project objectives; that 
is, data structure and content need to be adequate for the needs of the model. For example, 
monthly energy use data would be unusable by a model designed to predict hourly energy use. 
Even with good alignment of input data sources and ML project objectives, data almost always 
require at least some preparation prior to being fed into an ML model. Aside from simply having 
access to the required data, care must be taken to assure the data are properly cleaned and in a 
suitable format. This is usually a non-trivial effort, and can even involve a separate data-cleaning 
ML model. 

Model Selection, Training, and Evaluation 
While there is no single “correct” model for a given project, some model types perform better 
than others. The UCPM provides some guidance on what type of model to use for different use 
cases, but in general, the only way to determine which model performs best on the available data 
is to test different models! In the DoD ESTCP ML Demonstration project, we found that random 
forest regressors performed the best for predicting the future energy consumption of a building. 
Use of the appropriate evaluation metrics calculated on “held-out” data is best way to determine 
which model will work best for a specific project. 

Going Further 
This short document does not even begin to scratch the surface of ML. A great next step would 
be to read the full ESTCP final report (Ford et al 2022), which goes into much greater detail 
about the accomplishments and challenges of a real-world ML project using the U.S. Army 
Reserve’s (USAR’s) Enterprise Building Control System (EBCS) in conjunction with the Army 
Meter Program’s Meter Data Management System (MDMS). 
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