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Summary 

Operational since 1992, the Atmospheric Radiation Measurement (ARM) Southern Great Plains 
(SGP) site in Oklahoma, USA, has become a reference research site for meteorological studies. 
Because of an open data policy the ARM data are used by researchers all over the world. In this 
report, we review the long-term climatology of the atmospheric boundary layer, the SGP 
instrumentation, the site and some site-specific atmospheric conditions, which potentially affect 
wind turbines in the region. Because the atmospheric boundary layer is bounded and influenced 
by the land surface, observations of surface radiation components and heat fluxes are crucial to 
understanding land–atmosphere interactions. The entrainment of air, updrafts, downdrafts, and 
boundary layer height characteristics is needed for understanding the structure and growth of 
the atmospheric boundary layer. Therefore, measurements from both ground surface in situ and 
remote-sensing observations at the SGP site provide an overall climatology and their 
interactions from ground surface up to the boundary layer. Measurements from a 60 m 
meteorological tower, surface flux stations, disdrometers, soil temperature and moisture flux 
plates, coherent Doppler lidar, Raman lidar, radiosondes, and satellite data at the SGP central 
facility were analyzed. All the measurements were generally made within a few square 
kilometers of each other at the central facility.  

This report focuses on data from January 2010 to June 2020 at the SGP central facility. The 
various sections describe the ARM SGP site and surrounding wind turbines; in situ and remote-
sensing instrumentation used in the report; mathematical equations to analyze fluxes, 
turbulence, and other boundary layer parameters; a climatological analysis of surface winds, 
fluxes and thermodynamic parameters for several years; an analysis of observed winds in the 
framework of Monin-Obukhov Similarity Theory (MOST); an analysis of the boundary layer 
winds and direction from a Doppler lidar; multi-year turbulence estimates through the boundary 
layer from a Doppler lidar; atmospheric boundary layer water vapor and relative humidity 
profiles from Raman lidar; cloud base height and boundary layer height from multiple sensors 
and satellite data; and finally site-specific atmospheric conditions, such as nocturnal low-level 
jets. 

Diurnal, seasonal, and yearly variations of surface, subsurface and boundary layer quantities, 
such as wind speed, direction, temperature, atmospheric stability, soil temperature, and various 
atmospheric fluxes at the SGP site, showed distinct trends useful for focused modeling studies. 
The applicability of surface similarity theory to ARM SGP data was also evaluated, which 
showed that, compared to southerly flows, northerly flows are aligned with MOST estimates. 
Boundary layer winds and direction profiles for several years from a Doppler lidar showed a 
consistent presence of a nocturnal low-level jet and predominant southerly wind directions 
through the boundary layer at the SGP site. The interannual variability at the SGP site is low 
(<3.5 percent), and has a mean annual wind speed of approximately 7 m s-1 at 100 m AGL. 
Boundary layer turbulence and moisture transport from Doppler and Raman lidars are 
evaluated, which provides evidence of increased water vapor mass flux into the great plains 
during nocturnal low-level jets. The moisture flux from nocturnal low-level jets is observed to be 
at its maximum during summer periods. A novel machine learning algorithm is implemented to 
accurately estimate the planetary boundary layer height, providing further insights into the 
growth and destruction of the convective boundary layer height during various seasons and 
land–atmosphere conditions. The high frequency of low-level clouds during winter, spring, and 
fall seasons is validated using the multi-sensor array and satellite estimates of cloud top height. 
Satellite vegetative fraction data provide insight into seasonal surface roughness and vegetation 
variability around the SGP site. 
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The analyses contained in this report provide a great deal of new information about atmospheric 
conditions at the SGP site. It is expected to aid future field campaigns around the SGP site and 
associated modeling studies. In addition, perspectives from ARM instrument mentors, 
translators, and the experience gained will inform the configuration and analysis of data for 
future analyses at the SGP site. 

The SGP site staff captured a photo of a spectacular "shelf" cloud on May 13, 2005, during the 
area's annual severe storm season (Figure S.1). This storm was reported to drop nickel-sized 
hail and carry winds up to 75 mph.  

 

Figure S.1. Spectacular "shelf" cloud image captured at the SGP site. Visible in the foreground 
is the ARM user facility's 60-meter tower and Radiometer Calibration Facility. 
(Image courtesy of the U.S. Department of Energy ARM user facility.) 
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Acronyms and Abbreviations 

AGL above ground level 

ARM atmospheric radiation measurement  

AWAKEN American wake experiment 

CBH cloud base height 

CBL convective boundary layer 

DJF December, January, February 

DLWSTATS Doppler lidar vertical velocity (W) statistics 

DLWIND Doppler lidar wind speed 

DOE U.S. Department of Energy 

EBBR energy balance Bowen ratio 

IAV interannual variability 

IEC International Electrotechnical Commission 

JJA June, July, August 

Lidar light detection and ranging 

LES large-eddy simulation 

LLJ low-level jet 

LHF latent heat flux 

MAM March, April, May 

MCS mesoscale convective system 

MF momentum flux 

MODIS moderate resolution imaging spectroradiometer 

MOST Monin–Obukhov similarity theory 

PBL planetary boundary layer 

PBLH planetary boundary layer height 

PECAN Plains Elevated Convection at Night 

PPI planned position indicator 

RF Random Forest 

RH relative humidity 

RHI range height indicator 

RMS root mean square 

RMSE root mean square error 

SGP Southern Great Plains 

SHF sensible heat flux 

SNR signal-to-noise ratio 

SMOS Surface Meteorological Observation System 

SON September, October, November 
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TKE turbulence kinetic energy 

TI turbulence intensity 

UTC Coordinated Universal Time 

VAP value-added product 

VC vegetation cover 

WRF weather research forecasting 
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1.0 Introduction 

The objective of Atmospheric Radiation Measurement (ARM) User Facility and U.S. Department 
of Energy (DOE) Office of Science is to engage the research community to aid in understanding 
critical processes associated with aerosol, boundary layer, clouds, and precipitation using long-
term observational data sets. As a source of high-quality, long-term atmospheric 
measurements, the ARM Southern Great Plains (SGP) site in Oklahoma, USA, is a huge 
resource to the research community. The ARM data are predominantly used to study aerosol 
and cloud processes in the atmosphere. A recent triennial review of the ARM program 
highlighted the need for collaboration with a broader user base beyond the DOE Office of 
Biological and Environmental Research and the Atmospheric System Research program. 
Because of the recent growth of wind farms around the SGP site, the ARM data set is an 
invaluable asset for wind farm developers in the region and elsewhere. The long-term archive 
provides profiles of wind and other thermodynamic parameters essential for accurately 
assessing the annual energy production of a wind farm. The data also provide key information 
for studying the impact of local conditions, such as low-level jet, nocturnal convection initiation, 
mesoscale convective storms, down bursts, etc., on wind farms and for validating microscale 
and mesoscale models. 

Oklahoma ranks third in U.S. for installed wind capacity, providing over 8,000 MW of electricity, 
which represents more than $15 billion in capital investment (AWEA 2019). In 2019, the state 
generated approximately 35 percent of its electricity from wind energy, the third highest in the 
country, and provided enough electricity to power the equivalent of 2.6 million average U.S. 
homes. Although the landscape and topographic flows around the SGP site are relatively simple 
compared to complex terrain sites, wind forecasting at the SGP has other challenges (Yang et 
al. 2006; Gibbs et al. 2011; Berg et al. 2015; Berg and Lamb 2016). Very few studies have 
focused on wind power forecasting and the effect of wind farm microclimate on the surrounding 
region (Wharton et al. 2013). The upcoming American Wake Experiment (AWAKEN), funded by 
the DOE, is focused on studying the dynamics of wind farm/turbine wakes. This multi-
institutional field campaign is expected to begin in 2022 near the SGP. This report provides a 
multi-year assessment of the atmospheric boundary layer at the SGP site to aid future field 
campaigns and modeling studies conducted around the SGP site. 

The ARM SGP site has one central facility (C1) and several extended/satellite measurement 
locations (Mather and Voyles 2013). The four cornerstone satellite measurement locations (E32, 
E37, E39, and E41) used in this study are shown in Figure 1. The satellite measurement 
locations are approximately 50 miles from the central facility.  Instruments ranging from in situ 
sensors, such as eddy covariance flux systems, to advanced remote-sensing systems, such as 
scanning Ka-band Doppler radar, Raman lidar, and ceilometers, have been deployed and 
operational for more than 20 years. The first scanning coherent Doppler lidar was acquired in 
2010 and was deployed at C1 on October 15, 2010. Since then, four other scanning Doppler 
lidars were deployed in all the satellite sites around the SGP site in May 2016. Measurements 
from Doppler lidars have been instrumental in understanding various boundary layer processes, 
especially updrafts and downdrafts during convective conditions, and the vertical structure of the 
vertical velocity, winds, and direction from the land surface up to the boundary layer (Mather 
and Voyles 2013; Berg et al. 2017; Geerts et al. 2017; Lareau et al. 2018). Raman lidars have 
been operational at the SGP site since 1996. Raman lidars provide accurate height- and time-
resolved measurements of water vapor mixing ratio, temperature, aerosol, and cloud optical 
properties with good vertical and temporal resolution. Ground-based thermodynamic profiles are 
essential for improving the skill of weather forecasting models (Lareau 2019; Liu 2019). There is 
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a shortage of humidity and temperature measurements to accurately characterize mesoscale 
processes, which is needed to better understand the water and energy cycles (Newsom et al. 
2019). Data from satellites above the SGP site (for example, from the Moderate Resolution 
Imaging Spectroradiometer), have also been used to explain the spatial variability of key surface 
and cloud properties (Wang and Zhao 2017). In this report, measurements from several in situ 
sensors, Doppler lidars, Raman lidars, radiosondes, and satellite data centered around the SGP 
central measurement facility (C1) are used to study the long-term evolution of the atmospheric 
boundary layer. Key atmospheric variables, such as surface fluxes, atmospheric stability, 
surface radiation, winds and direction from ground surface to top of the boundary layer, 
boundary layer height, eddy dissipation rate, vertical velocity variance profiles, water vapor 
mixing ratio, and temperature profiles were evaluated. Yearly, seasonal, and diurnal profiles of 
various atmospheric profiles provide a holistic view of long-term variability at the SGP site. This 
will provide appropriate information for future field campaign organizers to target certain 
atmospheric features specific to the SGP site, such as the nocturnal low-level jet, nocturnal 
convection initiation, and to understand the seasonal and diurnal variability of planetary 
boundary layer heights, turbulence, atmospheric stability, etc. These profiles will also provide 
the necessary boundary and initial conditions required for developing idealized simulations 
around the SGP site. 

Data from the ARM SGP site are publicly available for download and near real-time visualization 
using the ARM Data Discovery tool (https://adc.arm.gov/discovery/). All the data have been 
quality controlled and are available in standard NetCDF formats, which can now be read by 
many standard processing software (such as MATLAB, Python, IDL etc). NetCDF data sets also 
contains the metadata for each site along with the nearest flux tower, meteorological station, 
and ceilometer measurements, and some value-added products (VAPs), which have similar 
products and supporting information that would aid in filtering the data. We have also made 
available relevant MATLAB codes used in this analysis to read and process ARM data sets on 
GitHub (see Appendix B for more details). 

This report is organized as follows:  Section 2 provides details about the ARM SGP site; Section 
3 provides details about the instrument data being used in this analysis; and mathematical 
expressions of certain atmospheric parameters are introduced in Section 4. A multi-year 
assessment of atmospheric boundary layer at the SGP site is provided in Section 5, site-specific 
atmospheric conditions are discussed in Section 6, and perspectives and conclusions are 
provided in Section 7. 
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2.0 ARM SGP Site 

The SGP site was the first field measurement site established by DOE's ARM program in 1992. 
It is considered the largest and most extensive climate research field site in the world. Scientists 
are using measurements obtained at the SGP site to improve the understanding and 
representation of the atmospheric boundary layer, clouds, and aerosols, as well as their 
interactions, in climate and Earth system models. 

2.1 Site Layout 

The site has a relatively homogeneous terrain and experiences a wide variety of cloud types 
and surface flux properties. This area also experiences widespread seasonal variation in 
temperature and humidity. Surrounding federal and state research centers in Oklahoma also 
provide a good opportunity to collaborate and make use of the large network of weather and 
climate research instrumentation at the SGP site. As shown in Figure 1 the central facility 
provides a variety of atmospheric variables from a suite of remote-sensing and surface 
measurements. 

 

Figure 1.  (Left) ARM Southern Great Plains central facility (C1) measurement site aerial view 
and sample set of instrument locations, and (right) the location of the central facility 
(C1) and extended facilities (E32, E37, E39, and E41). 

2.2 Wind Farms Near the SGP Site 

Although the ARM data sets are predominantly used for studying aerosol and cloud interaction, 
the surrounding wind farms near the SGP site makes it an interesting location at which to study 
wind farm interactions and the modification of the atmospheric boundary layer caused by wind 
farm wakes (Newsom and Krishnamurthy 2020). Figure 2 shows the locations of all the wind 
turbines surrounding the SGP site, and Table 1 shows the approximate wind directions, 
distances from the nearest wind turbine to the lidar locations, and wind turbine characteristics 
within each wind direction sector. Except for lidars at E37 and E39, the other three Doppler 
lidars in the SGP network are within reasonable distances to be affected by surrounding wind 
farm wakes. 
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Figure 2. Wind farms surrounding the ARM SGP central facility and other satellite sites 
(approximate locations in yellow star). The filled circles represent surrounding wind 
turbines in the area. The name of each wind farm (number of turbines), starting year 
of production, and total wind farm wattage are also provided for each wind farm. 

Table 1. Wind direction sectors, distance, and turbine characteristics affecting measurements 
at the SGP site. No information is provided when the nearest wind farm is at least 20 
km away from the measurement site. 

Site 

Wind 
Direction 
Sectors 

(degrees) 

Approximate Distance 
of the Nearest Wind 
Turbine to the Site 

(m) 

Common 
Wind 

Turbine 
Height 

(m) 

Rotor 
Diameter 

(m) 
Type of 
Turbine 

Built 
Year 

C1 67 - 93 6700 90 116 GE 2.5 MW 2017 

112 - 196 3500 80 116 GE 2.3 MW 2017 

243 - 270 4600 80 82.5 GE 1.68 MW 2012 

E32 45 - 60 11500 80 108 Siemens 2.3 MW 2016 

E37 -- > 20000 -- -- -- -- 

E39 -- > 20000 -- -- -- -- 

E41 205 - 255 2500 87 126 Vestas V126-3.3 2016 

295 - 15 5000 80 108 Siemens 2.3 MW 2015 
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3.0 Instrumentation 

Wind velocity, temperature, relative humidity, and turbulence are key parameters that are 
measured during a wind resource assessment campaign. At the SGP site, a variety of 
instruments provide a long-term archive of atmospheric parameters from the subsurface to the 
stratosphere. Measurements from 2010 to 2020 are analyzed in this report, depending on 
instrument and data availability. Below, a short summary of instruments used in this report, their 
expected accuracy and availability, is also provided. 

3.1 Surface Instruments 

A variety of surface-based instruments are deployed at the SGP C1 site to measure standard 
meteorological parameters (such as wind speed, temperature, relative humidity, etc.). The 
surface meteorological observation system (SMOS) provides 10-minute average surface wind 
speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and 
precipitation at approximately 3 m above ground level (AGL) (Ritsche 2008). Surface 
measurements from the energy balance Bowen ratio (EBBR) and eddy-correlation (ECOR) flux 
stations were used to calculate atmospheric fluxes (Cook and Sullivan 2020). Fluxes were 
calculated using a 30-minute average mean estimate of winds and temperature from the EBBR 
sensors. Precipitation measurements from either laser disdrometer data or an optical rain 
gauge, depending on their availability, was used in the analysis below (Bartholomew 2016). Soil 
moisture and temperature were measured from flux plates at 5, 10, 20, 50, and 75 cm below the 
surface (Cook 2016). The 60 m meteorological tower at the SGP site has measurements of 
winds (from sonic anemometers) at 4 m and 25 m AGL, and temperature and RH at 4 m, 25 m, 
and 60 m AGL. A collage of all surface instruments at the SGP site is shown in Figure 3. 

Because of the lack of instrument availability during certain years and time periods, multiple 
instruments were used to create the multi-year database. Appropriate quality control 
procedures, as recommended by the instrument mentors, was performed prior to merging 
multiple data sources. Although the uncertainty of each instrument is different, this is not 
expected to make a difference to the overall assessment of the climatology at the SGP site. All 
the data sets were averaged or interpolated to 15-minute increments. The data availability 
varied each year, and only instruments with data availability greater than 70 percent for any 
given year were chosen for use in this analysis.  Limited surface-based instruments are 
deployed at the extended facilities. 
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Figure 3. Suite of subsurface and surface measurements at the SGP central facility. (a) 60 m 
meteorological tower, (b) soil temperature and moisture flux measurements, (c) 
disdrometer, (d) energy balance Bowen ratio (EBBR) station, (e) surface 
meteorological observation system (SMOS), and (f) eddy-correlation (ECOR) flux 
station. (Images courtesy of the U.S. Department of Energy ARM user facility.) 

3.2 Doppler Lidars 

Doppler lidars provide range-resolved measurements of attenuated backscatter, signal-to-noise 
ratio, and radial velocity (Pearson et al. 2010; Newsom and Krishnamurthy 2020). At the SGP 
C1, the Doppler lidar is placed on top of a shipping container, as shown in Figure 4. The ARM 
Doppler lidars are operated on a fixed scan schedule consisting of vertical stares and plan 
position indicator (PPI) scans. The lidars predominantly stare vertically up and perform 
occasional PPI scans. The PPI scans are performed once every 10 or 15 minutes (depending 
on the site) and take approximately 40 seconds to complete one cycle. The vertical stares 
provide measurements of clear-air vertical velocity profiles in the lower troposphere with a 
temporal resolution of about 1 second and a height resolution of 30 m. Several VAPs are 
provided as a standard output from the Doppler lidars (Newsom et al. 2015; Newsom et al. 
2019)— horizontal wind speed, wind direction, vertical velocity variance, vertical velocity 
skewness, vertical velocity kurtosis, cloud base height, cloud fraction, and cloud base vertical 
velocity (to name a few). Raw lidar measurements and associated VAPs from the SGP C1 lidar 
for 2010 to 2020 are currently available.  At the satellite sites (E32, E37, E39 and E41), lidar 
measurements from 2016 to 2020 are currently available. 

Doppler lidars are frequently used in the wind energy industry for wind resource assessment, 
wind turbine control, and continued site assessment. The accuracy of average lidar-derived 
wind speed and direction measurements has been thoroughly validated in various field 
campaigns and consultant reports, with an uncertainty less than 2 percent (Krishnamurthy et al. 
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2013; Lundquist et al. 2015; Lundquist et al. 2017; Vassallo et al. 2021). Lidars are also 
included in the latest edition of International Electrotechnical Commission (IEC) Standard IEC 
61400-12-1 (2017) as one of the standard instruments for power curve assessment and can be 
used as a stand-alone device. Because lidars provide vertical profiles of winds through the 
rotor-swept area, they are an attractive and cheaper alternative for deployment in challenging 
locations (offshore/complex terrain). 

 

Figure 4. ARM Doppler lidar (inset) installed at the SGP central facility. (Image courtesy of the 
U.S. Department of Energy ARM user facility.) 

Figure 5 shows the yearly average data availability from 2012 to 2019 from the Doppler lidar 
wind (DLWIND) VAP at the SGP central facility. The data availability is the percentage of 
measurements with valid wind speed and direction retrieval and signal-to-noise ratio (SNR) > 
0.008 (Newsom et al. 2015). As shown in Figure 5, lidar availability is variable over the course 
of the period (2012 to 2019), and the lidars observe ~1 km at least 50 percent of the time at the 
SGP C1 site. 
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Figure 5. Yearly Doppler lidar range availability from 2012 to 2019 from filtered wind profile 
VAP estimates at the SGP C1. 

3.3 Raman Lidars 

The ARM program has operated a Raman lidar (RL) at the SGP central facility since 1996 
(Goldsmith et al. 1998; Turner and Goldsmith 1999; Newsom et al. 2009; Newsom et al. 2013; 
Turner at al. 2016). This system operates at a wavelength of 355 nm, with a pulse energy of 300 
mJ, and a pulse repetition frequency of 30 Hz. The design incorporates several detection 
channels for sensing Raman backscattered radiation from atmospheric N2, O2, and H2O, as well 
as elastic backscatter from aerosol. Figure 6 shows the location of the RL at the SGP C1, where 
it is installed on top of a shipping container. 

Processing the signals from the various detection channels enables retrieval of several 
quantities, including water vapor mixing ratio (q), temperature, and various cloud and aerosol 
optical properties, such as extinction and depolarization ratio. For this study we are interested in 
the RL water vapor measurement, which is derived from the ratio of the water vapor channel 
backscatter at 408 nm to the nitrogen channel backscatter at 387 nm. The raw ratio is then 
corrected for range-dependent effects, such as two-way molecular attenuation and geometrical 
overlap, as described by Newsom et al. (2020). The corrected ratio profile is then calibrated 
using simultaneous radiosonde measurements. 

The water vapor channel at 408 nm is quite sensitive to solar radiation. The result is that 
measurement error increases and the range performance degrades somewhat during the 
daytime. At night the RL can make valid water vapor mixing ratio measurements up to a 
distance of, and in some cases exceeding, 10 km. During the day, the maximum range reduces 
to about 4 to 6 km, and sometime lower depending on conditions. 
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Figure 6. Raman lidar installed on top of a shipping container at the SGP central facility in 
2007. (Image courtesy of the U.S. Department of Energy ARM user facility.) 

3.4 Radiosondes 

Radiosondes provide in situ vertical profiles of wind speed, direction, temperature, RH, and 
pressure of the atmosphere. At the SGP C1 site, radiosondes are launched four times daily, 
nominally at 0530, 1130, 1730, and 2330 UTC each day. During select field campaigns, 
additional radiosonde data sets are made available (generally once every 3 hours). In addition 
to standard parameters, radiosonde VAPs also provide three different estimates of boundary 
layer height. An evaluation of the various boundary layer height estimates is provided by 
Sivaraman et al. (2013). Figure 7 shows the radiosonde launch pad at the SGP C1 site. In this 
report, the radiosonde data are used to train the boundary layer height random forest model 
(see Section 4.4). 
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Figure 7. New generation radiosondes released on October 12, 2013, at the SGP site. (Image 
courtesy of the U.S. Department of Energy ARM user facility.) 

3.5 Satellite Products 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data products have been 
widely used to understand the spatial variability of cloud fraction, cloud top and base height, and 
vegetation index fraction estimates. Compared to Geostationary Satellite (GOES), sun-
synchronous satellites measurements (e.g., MODIS) have several additional spectral bands that 
are highly sensitive to cloud, air, and surface properties, thereby enabling comprehensive 
surface and atmospheric parameters at a global scale. In contrast to GOES, MODIS satellites 
do not provide a continuous time series of data at a given location. A comparison of MODIS 
cloud fraction estimates with in situ ground sensors at the SGP site at around noon revealed 
that monthly averaged MODIS satellite estimates exhibit a very good correlation (97 percent) 
with a root mean square error (RMSE) of less than 3 percent (Wang and Zhao 2016). Therefore, 
a monthly averaged estimate of cloud properties can represent the SGP site reasonably well. 
High-resolution vegetative index fraction (horizontal grid resolution of 500 m) estimates provide 
insight into the spatial variability of surface roughness during various seasons at the SGP site. 
Satellite measurements are key for understanding spatial variability at a given site.  In this 
report, MODIS data for 20 years (from 1999 to 2019) are evaluated. 
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4.0 Mathematical Preliminaries and Algorithms 

Here, we provide some mathematical relations related to turbulence and other boundary layer 
parameters, which are used in following sections. 

4.1 Surface Fluxes and Atmospheric Stability 

We define the wind vectors as U = (u,v,w), such that u (longitudinal component) is in the mean 
wind direction, v (transverse component) is perpendicular to the mean wind direction, and w is 
the vertical direction (positive upwards). Wind velocity fluctuations (𝑢′, 𝑣′, 𝑤′) are estimated by 
subtracting the instantaneous velocity by a 30-minute average of individual velocity 
components.  

The turbulence kinetic energy (TKE) is then defined as 

𝑇𝐾𝐸 =  
1

2
(〈𝑢′2〉 + 〈 𝑣′2〉 + 〈 𝑤′2〉)             (1) 

In wind energy, a more frequently used statistic is turbulence intensity (TI), which is defined as 

TI =  
𝜎𝑢

𝑢 
               (2) 

where 𝜎𝑢 =  √〈𝑢′2〉 is the standard deviation of the horizontal wind speed u. 

In similarity theory, one of the key scaling parameters of the atmospheric boundary layer is 
friction velocity. Here, surface friction velocity is given by 

𝑢∗ =  [(𝑢′𝑤′̅̅ ̅̅ ̅̅ )2 +  (𝑣′𝑤′̅̅ ̅̅ ̅̅ )2]
1

4              (3) 

Vertical kinematic heat flux (𝑤′𝜃 
′) is used to scale turbulence due to buoyant production. With 

these parameters—vertical heat flux and surface friction velocity—a length scale (L) can be 
defined (Obukhov 1946), and is given by 

𝐿 =  
𝜃𝑣
̅̅ ̅𝑢∗

3

𝑘𝑔(𝑤′𝜃𝑣
′

)
              (4) 

where 

θv  =  mean virtual potential temperature, 
u∗  = surface friction velocity,  
g  =  acceleration of gravity,  
k ≈ 0.4 = the von Kármán constant, and  

(𝑤′𝜃𝑣
′ ) =  kinematic virtual heat flux evaluated at the surface.   

The combination of (g/θv) is sometimes defined as the buoyancy parameter, and the length 
scale is generally referred to as the Obukhov length scale. The Obukhov length scale provides 
the height above the surface where the buoyancy production dominates over shear production. 
This length scale, along with the height of measurement z, provides a measure of atmospheric 
stability in flat terrain conditions, (z/L). The various stability classes were defined as ranges of L, 
as shown in Table 2 below.  
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Table 2. Stability classification based on L thresholds. 

Stratification L 

Very stable 10 < L < 50 

Stable 50 < L < 200 

Near-neutral stable 200 < L < 500 

Neutral |L| > 500 

Near-neutral unstable -500 < L < -200 

Unstable -200 < L < -100 

Very unstable -100 < L < -50 

Within the surface layer, 𝑢∗ and (𝑤′𝜃𝑣
′ ) are assumed to be constant, suggesting that fluxes can 

be estimated from measurements at a given height. Within the surface layer one can estimate 
the Obukhov length from sonic anemometers without much sacrifice to the accuracy of the 
estimate (Cheynet et al. 2018). 

The latent heat flux (Q), sensible heat flux (H), and momentum flux (𝜏) are defined as 

𝐻 =  𝜌𝐶𝑝𝑤′𝜃′̅̅ ̅̅ ̅̅                (5) 

𝑄 =  𝜌𝐿𝑣𝑤′𝑞′̅̅ ̅̅ ̅̅               (6) 

       and 

𝜏 =  −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ =  𝜌𝑢∗
2               (7) 

where 
 𝜌  = density of air,  

𝐶𝑝 = specific heat of air at constant pressure,  

𝐿𝑣 = latent heat of vaporization of water,  
𝜃  = potential temperature, and  

𝑞 = specific humidity. 

 𝜏 assumes that the wind is along the longitudinal axis (x-axis). Another important scaling 
parameter is the mixed layer or boundary layer height which is defined in Section 4.4. 

4.2 Similarity Functions 

Accurate characterization of the near-surface wind speed profile is key for wind power 
applications. Surface measurements are generally extrapolated using Monin–Obukhov similarity 
theory (MOST) to either hub height or the top of the rotor layer. Various similarity function 
formulations have been proposed based on empirical fits to available data (Businger et al. 1971; 
Dyer 1974 Nieuwstadt 1984; Högström 1988; Beljaars and Holtstag 1991; Foken 2006; Kelly 
and Gryning 2010). These similarity relationships have been mostly valid for flat terrain 
conditions, while in complex terrain sites, the applicability of MOST can be questionable 
(Fernando et al. 2015). The widely used flux-profile relations for wind shear and the temperature 
gradient (Businger et al. 1971) are based on observations from the 1968 KANSAS experiment 
(Izumi 1971). The universal function of momentum (𝜑𝑚 or nondimensional wind shear) is given 
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as a function of the dimensionless stability parameter (𝑧 𝐿⁄ , or ζ), based on Businger et al. 

(1971) and Dyer (1974), hereafter BD74:  

𝜑𝑚(ζ) =  (1 − 15ζ)−1/4 ,          − 2 < ζ < 0              (8) 

 

𝜑𝑚(ζ) =  (1 + 4.7ζ) ,                 0 < ζ < 1             (9) 

There have been many variations of these equations, under stable atmospheric conditions 
(Högström 1988; Beljaars and Holtslag 1991; Foken 2006). Flux observations in the very stable 
regime are subject to issues related to sampling and exhibit large variability (Nieuwstadt 1984). 
Therefore, it is difficult to empirically establish which function is most suitable at a given site. 
Many similarity theory formulations in the literature have been observed to collapse under 
unstable conditions (Högström 1988). 

The Beljaars and Holtslag 1991 (hereafter BH91) universal form of 𝜑𝑚 under stable conditions, 
which were derived from the Cabauw data in The Netherlands, is given as 

𝜑𝑚(ζ) =  −𝑎 ζ − 𝑏 (ζ −  
𝑐

𝑑
) 𝑒−𝑑ζ +

𝑏𝑐

𝑑
          (10)  

with a = 1, b = 2/3, c = 5, and d = 0.35. For unstable conditions, BH91 and BD74 formulations 
are similar. Hence, BD74 equations are used as a standard for all unstable conditions. For 
stable conditions, formulations shown in Equations (8) and (10) are used as estimates from 
BH91 and BD74, respectively. 

The validity of above surface layer similarity functions at the SGP central facility is shown in 
Section 5.1. The dimensionless wind shear from the tower measurements can be calculated 
using the following expression: 

𝜑𝑚(ζ) =  
𝑘𝑧

𝑢∗

𝜕𝑈̅

𝜕𝑧
             (11) 

Here we analyze the dimensionless wind shear using surface-layer values for 𝑢∗ and 𝐿 at 25 m 

AGL. The horizontal wind speed vertical gradient (𝜕𝑈̅ 𝜕𝑧⁄ ) is calculated using the 4 m and 25 m 
level measurements from the 60 m meteorological tower. Surface roughness height (zo) was 
calculated, under neutral conditions (i.e., |L| > 500), as follows: 

 𝑧𝑜 = 𝑧 𝑒−(𝑘𝑈(𝑧)/𝑢∗)            (12) 

where, k is the Von Kármán constant (= 0.4), z is the measurement height, and U(z) is the mean 
wind speed at height z. 

4.3 Remote-Sensing Turbulence 

Surface heating generates thermal plumes and turbulence induced by wind shear generates 
horizontal convective rolls (in the absence of surface heat fluxes) in a continental convective 
boundary layer (CBL). These plumes lead to mixing of heat, momentum, aerosols, and moisture 
through the top of the boundary layer (Lenschow and Stephens 1980). Vertical velocity variance 
profiles are key to understanding the updraft and downdraft mechanisms. Also, as shown by 
Taylor (1922, 1935), the vertical size of a plume growing due to homogeneous turbulent motion 
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is proportional to 𝜎𝑤
2 . We can therefore also use 𝜎𝑤

2  as an indicator of vertical mixing (except for 
gravity waves during stable stratification). 

The observed radial velocity from the ARM Doppler lidars can be expressed as 

𝑢̃𝑟 = 𝑢𝑟 + 𝑢𝑛            (13)  

where 𝑢𝑟 is the true atmospheric radial velocity, and 𝑢𝑛 is the instrumental noise in the 
measurements. We assume that the noise is zero-mean Gaussian random variable. If the noise 
is uncorrelated with radial velocity, then the observed variance is given by 

𝜎𝑢̃𝑟

2 = 𝜎𝑢𝑟
2 + 𝜎𝑢𝑛

2             (14) 

where 𝜎𝑢𝑟
2  is the true atmospheric variance, and 𝜎𝑛

2 is the variance of the noise. The noise 

generally increases with increasing range and decreasing SNR. Further details about 
calculating the vertical velocity variance accounting for the instrumental noise are provided by 
Newsom and Krishnamurthy (2020). The ARM Doppler lidars are typically staring vertically 
upward for prolonged durations since 2012 at the SGP; therefore, range- and time-resolved 
vertical velocity statistics (such as variance, skewness, and kurtosis) can be estimated 
(Newsom et al. 2019). Currently a VAP—Doppler Lidar W velocity Statistics (DLWSTATS) —
provides these estimates from ARM Doppler lidars at the SGP. 

Turbulence within the boundary layer can also be characterized by estimating the eddy 
dissipation rate. Within the boundary layer, as turbulence decays with altitude, the height at 
which either TKE or eddy dissipation rate or vertical velocity variance are near zero can be 
approximated as the boundary layer height (Vakkari et al. 2015). Traditional techniques that rely 
on vertical velocity variance profiles to estimate the top of the boundary layer height (Tucker et 
al. 2009) fail during nocturnal conditions because vertical velocity variance estimates are very 
low through the boundary layer. Therefore, eddy dissipation rate estimates could be useful in 
accurately predicting nocturnal boundary layer heights. In case of homogeneous and isotropic 
turbulence, the eddy dissipation rate estimates from vertical velocity stares can be calculated by 
detecting the inertial subrange from the lidar velocity spectra (Champagne et al. 1978; O’Connor 
et al. 2010): 

𝜀 =  
𝛼

𝜅
(2𝜋/𝑈)2/3 ⟨𝑓5/3 [𝜑(𝑓𝑐𝑢𝑡) −  𝜑(𝑓𝑛𝑜𝑖𝑠𝑒)]⟩           (15) 

where, 
𝛼 = ¾,  

 𝜅 = 0.54,  
𝑈 = mean wind speed, 

𝜑 = energy spectrum within the inertial subrange,  
𝜑𝑛𝑜𝑖𝑠𝑒 = Mean white noise spectrum (Hildebrand and Sekhon 1974), 

𝑓𝑐𝑢𝑡  = high-frequency cutoff spectral index, 
𝑓𝑛𝑜𝑖𝑠𝑒  = noise frequency index, and 

<>  = denotes the mean. 

4.4 Boundary Layer Height Using Machine Learning 

Measuring the growth of the planetary boundary layer (PBL) height is crucial for understanding 
the turbulent transfer of air mass between the boundary layer and free atmosphere, which in 
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turn strongly influences the winds, temperature, and moisture within the atmospheric boundary 
layer. During daytime, the air within the PBL is well mixed because of convection, due to surface 
heating and the weakening of turbulence at the top of the PBL (entrainment zone). Modern 
remote-sensing instruments can provide continuous estimates of boundary layer dynamics. 
Doppler lidars, when staring vertically upward, measure the vertical velocities through the PBL. 
Generally, the convective PBL height from a Doppler lidar can then be estimated by applying a 
cutoff threshold to the vertical velocity variance estimates (Lenschow et al. 1980; Lenschow et 
al. 2000; Tucker et al. 2009; Lenschow et al. 2012; Berg et al. 2017). A vertical velocity variance 
threshold of 0.04 m2s-2 is often used in the literature (Tucker et al. 2009). Doppler lidar 
estimates of PBL height, using a constant threshold for vertical velocity variance, have shown 
considerable error when compared to radiosonde estimates of PBL height (Emeis et al. 2008; 
Lenschow et al. 2012; Schween et al. 2014; Krishnamurthy et al. 2021). 

Near-surface fluxes, such as latent heat flux, and other surface and subsurface properties, such 
as soil temperature, soil moisture, surface potential temperature, surface humidity, etc., have 
been shown to influence the PBL height (Santanello Jr et al. 2005). A multi-year analysis using 
radiosonde data over Europe, showed that the boundary layer height was also closely 
correlated with surface RH and air temperature (Zhang et al. 2013). Machine learning models, 
such as Random Forest, Artificial Neural Networks, have gained significant attention for 
understanding and classifying various atmospheric phenomena (McGovern et al. 2017; Gagne II 
et al. 2019; Vassallo et al. 2019, Vassallo et al. 2020a, Vassallo et al. 2020b). In this study, a 
Random Forest (RF) algorithm was used to estimate planetary boundary layer heights (PBLHs).  

RF regression (Breiman 2001) is an ensemble method that is made up of a population of 
decision or decorrelated trees. Figure 8 provides a graphical illustration of the RF bootstrapping 
process. Bootstrap aggregation (bagging) is used so that each tree can randomly sample from 
the data set, while only a random subset of the list of input parameters/data is given to each 
individual tree. The premise behind RF is to improve the variance reduction of bagging by 
reducing the correlation between the trees, without increasing the variance. The trees can be 
truncated to add further diversification. After construction, the population’s individual predictions 
are averaged to give a final prediction of the target variable. Ideally, this process results in a 
diversified and decorrelated set of trees whose predictive errors cancel out, producing a more 
robust final prediction. An advantage of RFs is their ability to determine the importance of all 
input features for the predictive process. This is done by calculating the mean decrease in 
variance that is achieved during a given split in each decision tree. The decrease in variance for 
each input feature (or input variable) can be averaged over the entire forest, providing an 
approximation of the feature’s importance for the prediction (feature importance estimates sum 
to 100 percent to ease interpretability). However, if two input variables are highly correlated (as 
is expected when testing atmospheric forcing), it is highly unlikely that the reported importance 
values will accurately represent each variable’s significance (Breiman 2001). 
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Figure 8. Graphical representation of a standard random forest algorithm (recreated from 
online sources and observed sample trees from current RF model). 

Here, we use a series of 15 surface parameters (from mean winds to fluxes) and several other 
derived parameters from a Doppler lidar (such as SNR, backscatter, eddy dissipation rate, low-
level jet height, etc.) as input for the RF model. Boundary layer height estimates from 
intermittent radiosondes released every 6 hours at the SGP site were used to train the RF 
algorithm. In this report, when estimating the PBL height of any given year (say 2016), data from 
at least 3 years (say 2015, 2017, and 2018) were used in training. Because Doppler lidar data 
were only available from 2012, we used the RF algorithm to estimate the PBL height from 2012 
to 2019. Hyperparameters (i.e., parameters whose values are used to control the learning 
process in a machine learning model) for the RF algorithm, such as learn rate, number of trees, 
and tree splits, were calculated based on a Bayesian optimization approach, which minimizes 
the model mean square error by varying the chosen hyperparameters (Snoek et al. 2012). 
Further details are provided by Krishnamurthy et al. (2021). A sample time series of boundary 
layer height estimate from the RF algorithm is provided in Figure 9 below. Compared to 
estimates from the lidar vertical velocity variance threshold, the machine learning estimates of 
boundary layer height closely match the radiosonde observations. 



PNNL-30832 

Mathematical Preliminaries and Algorithms 17 
 

 

Figure 9. Vertical velocity variance on June 8, 2019, at the SGP C1 site with boundary layer 
height estimates from the lidar thresholding technique (orange dotted line, Tucker et 
al. 2009), random forest model (black dotted line), and radiosondes (filled circles, 
Sivaraman et al. 2013). Cloud base height estimates from the lidar are also shown 
(filled squares). 
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5.0 Atmospheric Boundary Layer at the SGP 

In this section, a detailed analysis of the data collected at the SGP site from January 2010 to 
May 2020 is provided. Specifically, we analyze data from surface measurements, Doppler 
lidars, RLs, and satellite products over the SGP site. The long-term variability of atmospheric 
mean and turbulent parameters (such as winds, temperature, TKE, TI, etc.) from ground surface 
to the top of the boundary layer are discussed. They provide a holistic view of various 
atmospheric conditions at the SGP site, which would aid in model development and future 
campaigns to be conducted around the SGP site. 

5.1 Subsurface and Surface Layer 

The surface and subsurface soil layer measurements are key for understanding land–
atmosphere interactions. Land–atmosphere interactions drive Earth’s surface water and energy 
budgets. They can alter clouds and precipitation in a region, affect the growth of the PBLH, and 
influence the persistence of extremes such as droughts. Therefore, a thorough knowledge of the 
land–atmosphere properties is key in predicting the local climate. 

A study of the local climate using almost a decade of data surface-layer variables from 2010 to 
2019 shows that there is a strong diurnal behavior at the SGP site. To develop this climatology, 
all mean measurements were averaged or interpolated to 15 minutes. Surface fluxes were 
calculated using a 30-minute mean averaging interval. Figure 10 shows hourly averaged 
estimates of air temperature, friction velocity, TKE, moisture flux, and heat flux at 10 m AGL 
from 2010 to 2019. At the SGP site, solar noon during central standard time occurs 
approximately at 18:00 hours UTC. The trends in the surface fluxes are similar, with a peak 
observed at approximately 20:00 hours UTC (~15:00 hours local time). A temporal delay of an 
hour is observed between the peak heat flux and TKE estimates, indicating that a gradual 
increase in vertical mixing results in higher turbulence within the CBL. Hourly averaged 
temperature measurements indicate the daytime peak is observed at 22:00 hours UTC (~17:00 
hours local time) with a gradual reduction over night and a minimum just before sunrise at 12:00 
hours UTC (~05:00 hours local time). Nocturnal conditions show that the stationarity assumption 
can be valid within the surface layer because of near constant friction velocity and other fluxes. 
Friction velocity is a key velocity scaling parameter in similarity theory. At the SGP site a 
constant mean 𝑢∗ is observed during nocturnal conditions (Figure 10b).  

Using a similarity theory derived wind profile (Dyer 1974 and others) as an input to theoretical 
atmospheric boundary layer models commonly used in wind energy (Jackson and Hunt 1975; 
Hunt et al. 1988) can cause issues due to the improper treatment of gravity wave propagation 
outside the stable boundary layer and large velocity perturbation errors near the surface. 
Modifications to this theory by Weng (1997), assume a constant friction velocity independent of 
atmospheric stability, which also has been shown to cause large errors in estimating certain 
atmospheric conditions. Recent studies have also suggested that 𝑢∗ reduces with increasing 
atmospheric stability, at least in complex terrain (Argaín et al. 2009). Figure 11 shows 
dependence of friction velocity with normalized Obukhov length scale in stably stratified 
atmospheric conditions. Significant scatter is observed for any given stability value, for which 
the friction velocity varies by two orders of magnitude. Overall, the friction velocity is observed to 
reduce with increasing atmospheric stability, suggesting that using a constant 𝑢∗ for modeling 
studies in flat terrain conditions can lead to erroneous results, and supporting the conclusions of 
Argaín et al. (2009). Therefore, for future boundary layer modeling studies, varying the friction 
velocity as function of stability is recommended even in flat terrain conditions, such as those of 
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the Southern Great Plains, for accurate wind resource assessment.  It is particularly important 
for idealized simulations over a longer time frame, for example a diurnal case. 

 

Figure 10. Hourly averaged (UTC time) surface (a) air temperature, (b) friction velocity (u*) and 
turbulence kinetic energy (TKE), and (c) moisture and heat flux at 10 m AGL from 
2010 to 2019 at the SGP C1 site. 
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Figure 11. Friction velocity vs atmospheric stability (z/L) at the SGP C1 site for stable 
stratification. 

The SGP site experiences significant seasonal variability with regard to winds, temperature, and 
turbulence. We have classified the SGP data into four distinct seasons: DJF for winter, MAM for 
spring, JJA for summer, and SON for fall conditions. Figure 12 shows hourly averaged near-
surface air temperature and TKE observed during the four seasons from 2010 to 2019. The 
average daily maximum air temperature in summer is ~ 34oC and in winter ~16oC. Spring and 
fall have similar temperature variability with a daytime peak near 25oC. A strong diurnal 
variability is observed during all seasons, with approximately a 6oC difference between the 
daytime peak and nighttime low. Interesting seasonal TKE trends are observed at the SGP site. 
Summer months show primarily high convective turbulence due to increased solar irradiance, as 
expected, but lower nocturnal turbulence compared to other seasons. During spring, daytime 
highs in TKE could be due to multiple sources (e.g., surface connected convective turbulence, 
cloud-driven top-down turbulence, and intermittent turbulence). During winter and spring, higher 
nocturnal turbulence is observed than during other months. One reason for low TKE during 
summer months could be the presence of a low-level jet (LLJ), which increases the stratification 
below the LLJ, thereby resulting in differential warm air advection, stratified turbulence, and 
development of very stable atmospheric conditions (Bonin et al. 2015). This is observed, 
especially in the residual layer, where our measurements are taken. 



PNNL-30832 

Atmospheric Boundary Layer at the SGP 21 
 

 

Figure 12. Seasonal hourly averaged surface air temperature and, TKE for four seasons—
DJF, MAM, JJA and SON—from 2010 to 2019 at the SGP C1 site. 
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Figure 13. Turbulence intensity versus average wind speed at 25 m AGL from 2012 to 2019 at 
the SGP C1 site. The dashed lines show IEC curves for various input turbulence 
intensity estimates defined in IEC 61400-1. 

TI is a key parameter for assessing wind turbine loads. Figure 13 shows the average TI at 25 m 
AGL from 2012 to 2019. The three classes of IEC 61400-1 TI curves are also shown, and are 
defined as 

𝑇𝐼 =  𝑇𝐼𝐼𝐸𝐶 [0.75𝑈(𝑧) + 𝑏] 𝑈(𝑧)⁄            (16)  

where TIIEC is a reference TI (= 0.16, 0.14, and 0.12 for turbine classes A, B, and C, 
respectively) and b is a constant (= 0.56 ms-1). In accordance with the IEC standard, the 90 
percent confidence interval from the observed TI should be below the curve of the selected 
turbine within the operating range of the wind turbine. As illustrated, the TI at the SGP site in the 
range of interest (0 to 15 ms-1) is observed to be consistently higher than two wind turbine 
classes (B & C) and lower than Class A wind turbines. Because the mean TI estimates were 
made at 25 m AGL, it can be assumed that TI estimates at typical hub heights (80 to 90 m) 
would be lower because of the wind shear observed at the SGP site during both daytime and 
nighttime conditions (see Figure 23). Generally, higher TI results in higher uncertainty in wind 
turbine power curves. 

The atmospheric stability at the SGP site was classified using the Obukhov length scale values 
listed in Table 2. Figure 14 shows atmospheric stability as a function of months, time of the day, 
average wind speed, and southerly/northerly wind direction regimes. Higher percentages of 
unstable conditions are observed during summer months (45 percent) compared to winter 



PNNL-30832 

Atmospheric Boundary Layer at the SGP 23 
 

months (25 percent) (Figure 14a). Stable atmospheric conditions are observed in near equal 
proportions during all seasons, varying between 45 percent, during spring and fall, and 35 
percent, during summer and winter months. It is interesting to note that neutral atmospheric 
conditions are seldom observed at the SGP site and occur less than 10 percent of the time. 
Diurnal variability in atmospheric stability observations is distinctly observed at the SGP site. 
Daytime unstable conditions are observed more than 65 percent of the time, and nighttime 
stable conditions are observed ~80 percent of the time (Figure 14b). Nocturnal stable conditions 
are predominantly observed during southerly winds, because of the presence of a LLJ creating 
a stable atmospheric boundary layer below the nose of the LLJ. A marginally larger percentage 
of northerly winds is observed to be unstable during daytime conditions compared to similar 
time periods during southerly winds (Figure 14d and e). Neutral and near-neutral unstable 
conditions increase in percentage with increasing wind speeds (Figure 14c); at ≈15 m s−1 more 
than 60  percent of the data are near-neutral. Figure 15 shows distributions of atmospheric 
stability as a function of surface wind direction from 2012 to 2019.  Southwesterly wind 
directions (200 to 250 degrees) are observed to be more unstable than other wind directions. 
One of the reasons for this could be the presence of a wind farm, since 2011, southwest of SGP 
C1 (see Table 1). The increased vertical mixing due to wind farm wakes could create more 
unstable conditions downwind of the wind farm. The predictions made for wind farm wake 
recovery distances range between 2 and 14 km (Barthelmie et al. 2004). At the SGP site, the 
distance from the wind farm to C1 is approximately 30 rotor diameters (or 4.5 km). Therefore, 
the plausibility of the wind farm affecting the stability around the SGP site in certain wind 
directions cannot be ignored, but further research on this subject is a topic of future work. Since 
2016, several other wind farms have been built around the SGP site and a thorough analysis of 
every wind farm’s effect on measurements at the SGP site should be evaluated. 
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Figure 14. Atmospheric stability classification from 2012 to 2019 (a) monthly averaged, (b) 
hourly averaged, (c) wind speed bins, and (d) and (e) hourly averaged for southerly 
and northerly wind direction sectors, respectively at the SGP C1 site. 
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Figure 15. Atmospheric stability as a function of wind direction from 2012 to 2019 at the SGP 
C1 site. 

The MOST (Obukhov 1946; Monin and Obukhov 1954) is the most widely used theory of 
atmospheric turbulence within the surface layer. MOST is also used in large-eddy simulations 
(LESs) as a surface boundary condition to estimate scalar fluxes and shear stress based on the 
gradients between the first grid point above surface and surface. Many of the similarity functions 
were developed using data from a flat terrain site (KANSAS, Cabau, Riso, etc.). Therefore, it 
behooves us to test the two well-known similarity theories, BD74 and BH91, relative to the data 
set at the SGP site. The SGP site features flat terrain and a predominant southerly wind 
direction. Figure 16 shows the nondimensional wind shear (ϕm) as a function of atmospheric 
stability (ζ). Wind speed gradient (∂U/∂z) was estimated using the measurements at 25 m and 4 
m AGL and atmospheric stability estimated at 25 m AGL was used for the analysis. Estimates 
with friction velocity less than 0.1 ms-1 and surface wind speeds less than 3 ms-1 were removed 
from the analysis, because they considerably reduce the scatter in φm estimates. Both the BD74 
and BH91 nondimensional wind shear estimates are also shown. BD74 formulations are 
observed to overestimate under stable conditions, while BH91 similarity functions tend toward 
the observational mean. In near-neutral conditions (ζ ~ 0) and unstable conditions (ζ < 0), there 
is no difference between the formulations, and both are observed to underestimate the 
observed nondimensional shear by approximately 0.5.  
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Figure 16. Dimensionless wind shear φm as a function of dimensionless stability z/L from 2010 
to 2014. Data with u* < 0.1 and U < 3 m/s were filtered. The average of all data 

points is given by 𝜙̅m. 

Based on our observations, we found that at the near-neutral limit the nondimensional shear 
(ϕm) is 1.29. This neutral limit value as per MOST should be unity. Possible explanations for 
higher ϕm could be the uncertainty in the tower measurements and the violation of the constant 
flux layer assumption at the SGP site (not shown). Moreover, we used k = 0.40 in our analyses, 
but values of k = 0.4 ± 0.04 have been reported in the literature (Högström 1996; Foken 2006). 
Businger et al. (1971) obtained a von Kármán constant of 0.35, based on the finding that ϕm = 
1.15 when using k = 0.4. Figure 17 shows the average nondimensional wind shear estimates for 
southerly and northerly wind directions. In stable atmospheric conditions, wind shear in 
southerly wind directions is larger than that in northerly wind directions. There is not much 
difference in ϕm during near-neutral and unstable conditions. The BH91 formulations are 
observed to better fit northerly wind directions during stable conditions. Therefore, the effect of 
either the nocturnal LLJ and/or wind farm wakes suggest that MOST assumptions may not be 
always valid under stable conditions at the SGP site. A modest mismatch between similarity 
models and observations in near-neutral and unstable conditions could allude to prior 
arguments about instrument uncertainty, violation of the constant flux layer at the SGP site, and 
the appropriate von Kármán constant. 

 



PNNL-30832 

Atmospheric Boundary Layer at the SGP 27 
 

 

Figure 17. Same as Figure 16, but for the southerly and northerly wind direction regimes. 

Because of surface heterogeneity at the SGP site, a wind profile continually encounters 
changes in surface roughness. A step change in surface roughness can lead to the formation of 
an internal boundary layer, changing shear stresses and turbulent response to such a change. 
Surface roughness length (zo) is therefore an important parameter in boundary layer 
meteorology that is highly correlated to surface properties, and it varies as a function of space 
and time. At the SGP site, because of the presence of farmland, surface roughness varies every 
season and as a function of wind direction. Figure 18a shows surface roughness as a function 
of wind direction at the SGP 60 m meteorological tower during near-neutral conditions. 
Measurements show an increase in surface roughness east to southeast (~80 – 120 degrees), 
due to either local terrain variability (a dip of ~20 m observed ~2 km away) or maintenance 
buildings at SGP C1. Other small peaks are observed at ~ 30 degrees and ~270 degrees, which 
could correspond to variability in the type of crops or other structures at those locations. The 
average surface roughness in other wind directions is generally below 0.02 m (typical flat terrain 
site zo is 0.03). As mentioned earlier, the surface roughness is expected to change monthly due 
to the crop production in the neighboring regions. Figure 18b shows surface roughness 
averaged over each month from 2003 to 2014. Surface roughness is observed to be at least two 
to three times greater in spring and summer months compared to winter months. At the SGP C1 
the effects of two types of crops, grassland/pasture and winter wheat, are observed. Although 
the type of crop grown each season at the SGP site is not available, a generic trend related to 
the effect of crops on surface roughness could be analyzed. Winter wheat accounts for more 
than 70 percent of total U.S. wheat production and is a prominent crop in the Great Plains 
region. Winter wheat is planted in the fall and harvested around May; a very different growing 
cycle than summer crops or grasses. Near-surface air is cooler and moister over Oklahoma’s 
winter wheat belt than over nearby grassland. Double‐cropping occurs intermittently, when 
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winter wheat is harvested in spring and, another crop, such as soy or wheat, is planted 
afterwards and harvested in fall (Bagley et al. 2017). But from the cumulative surface roughness 
estimates, a distinctive seasonal effect is observed. 

 

Figure 18. Average surface roughness (zo) in near-neutral conditions (|L| > 500) at the SGP C1 
site versus (a) wind direction and (b) monthly at 25 m AGL from 2003 to 2014. 

Because of the presence of a variety of crops at the SGP site, soil moisture and soil 
temperature can play a crucial role in altering the surrounding boundary layer, such as boundary 
layer height, latent heat fluxes, etc. Figure 19 shows the diurnal and seasonal variability of soil 
temperature and soil moisture profiles from 5 cm to 75 cm below ground level at the SGP site. 
Strong diurnal variations are observed in soil temperature near the surface, with peaks 
observed between 23:00 and 01:00 UTC hours (~18:00 – 20:00 hours local time) and troughs 
after sunrise at 15:00 hours UTC (~10:00 hours local time). A similar trend is observed at depth 
below the surface, but with somewhat smaller variability. On a seasonal basis (Figure 19b), soil 
temperature during summer months is the highest at approximately 30oC. Soil temperature at 
the SGP site is generally lower than the peak air temperature during summer time, but well 
correlated (Figure 12). Near-uniform heating is observed through the depth of measurements in 
various seasons. On the other hand, no soil moisture (or volumetric content) diurnal trends are 
observed at any given surface depth. Although soil moisture might not vary diurnally, there is 
strong seasonal variability near the surface. Soil integrates past rainfall events and other 
weather anomalies (e.g., heat waves). It has been shown that soil memory extends the impact 
of climate and weather events and can aid in improving the predictability of weather systems 
(Santanello Jr et al. 2018). Near-surface peak soil moisture content at the SGP site is observed 
during the months of January, February, and March. The soil moisture content at depth below 
20 cm is observed to be less variable, and exhibits higher volumetric content.  
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Figure 19. (a), (c) Hourly and (b), (d) monthly averaged soil temperature from 2012 to 2019 
and soil specific water content profiles from 2012 to 2015 at the SGP C1 site. 

Figure 20 shows the average temperature difference between surface soil temperature and air 
temperature at 4 m AGL from 2015 to 2019. Positive nighttime temperature difference is 
observed (i.e., the soil is warmer than the surrounding winds) and maximum difference of 
approximately 4oC is observed at 10:00 hours UTC (~05:00 hours local time). Daytime the 
surrounding winds are warmer than the surface and the difference reaches up to 3oC around 
17:00 hours UTC (~12:00 hours local time). During sunrise transition time periods, a drastic 
change in the temperature difference is observed, as the soil layer warms up rapidly because of 
incoming solar radiance. On a monthly time scale, the lowest soil and air temperature difference 
is observed during summer and the maximum temperature difference during winter months. But 
overall, a net positive difference is observed; i.e., the soil temperature is warmer than the air 
temperature at the SGP site. The effect of various land-surface parameters on the near-surface 
and boundary layer winds is a topic of research at the SGP site (Santanello Jr et al. 2005; Fast 
et al. 2019). 
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Figure 20. Difference between soil temperature and air temperature (a) hourly and (b) monthly 
from 2015 to 2019 at the SGP C1 site. 

Figure 21 shows monthly and hourly averaged precipitation rate measurements at the SGP C1 
from 2012 to 2019. The monthly peak precipitation rate occurs during spring, mostly in the 
month of May, with a median rain rate of 0.12 mm/hr. The maximum rain rate observed between 
2012 to 2019 was ~91 mm/hr (3.6 in./hour) on 24 June 2018 at 07:00 hours UTC (~02:00 hours 
local time). Nighttime showers are more frequent at the SGP site, as shown in Figure 21b. One 
of the reasons for the increased frequency of showers at nighttime is the mesoscale convective 
systems (MCSs). A field experiment—the Plains Elevated Convection at Night (PECAN)—was 
designed at the SGP site to study such nocturnal precipitation maximums (Geerts et al. 2017). 
The PECAN study results support the conclusion that MCSs cause nocturnal precipitation at the 
SGP site. The primary sources of rainfall were divided into four different sources: (a) mountain-
initiated precipitation, (b) plains-initiated precipitation, (c) precipitation advecting over the border 
of the radar domain, and (d) episodes in which different initiation categories were merged 
together (Weckwerth and Romatschke 2019). 

Figure 22 shows the hourly averaged longwave (L up and L down), shortwave (K up and K 
down), and net radiation observed from the EBBR data at the SGP site from 2012 to 2019. Net 
radiation (Q) is defined as 

𝑄 =  (𝐾 ↓  −𝐾 ↑) +  (𝐿 ↓  −𝐿 ↑)           (17) 

Incoming shortwave radiation is generally a combination of direct solar energy and diffused or 
scattered solar radiation, while outgoing shortwave radiation is a function of reflected, albedo, 
and downwelling shortwave radiation. Incoming longwave terrestrial radiation is the radiation 
emitted by the atmosphere and is generally determined by air temperature, while outgoing 
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longwave radiation is the radiation emitted by the Earth and is determined by surface 
temperature. The net radiation is also a function of the sensible heat flux, latent heat flux, and 
ground heat flux (i.e., the energy used to change temperature of subsurface). Therefore, the 
temperature patterns at a location are affected by spatial and temporal imbalances in radiation 
and energy fluxes, the heat capacity and reflectivity of Earth’s surface, and type of work the 
energy supports (either sensible or latent heat flux). At the SGP site, peak outgoing shortwave 
radiation is observed at 18:00 hours UTC (~12:00 hours local time). A temporal delay is 
observed between the peak convective activity (at 20:00 hours UTC in Figure 12) at the SGP 
site and shortwave radiation (at 18:00 hours UTC in Figure 22). Peak net radiation is observed 
during summertime and lower net radiation is observed during winter months (not shown). 

  

Figure 21. (a) Monthly and (b) hourly median precipitation rate from 2012 to 2019 at the SGP 
C1 site. 
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Figure 22. Hourly averaged longwave (L), shortwave (K) and Net (Q) radiation from 2012 to 
2019 at the SGP C1 site. 

5.2 Boundary Layer Horizontal Wind Profiles 

Winds within the atmospheric boundary layer are generally variable, gusty, and are influenced 
by the surrounding topography, land-surface features, friction, local pressure difference, and 
other large-scale synoptic flows. Current state-of-the-art mesoscale models show the highest 
error within the first few hundred meters of the boundary layer in both flat and complex terrain 
sites (Zhang et al. 2013; Jiménez and Dudhia 2013; Krishnamurthy et al. 2013; Wharton et al. 
2013). Wind profilers (such as Doppler lidars) have been instrumental in characterizing the 
atmospheric boundary layer and can continuously monitor the wind variability. In this section, 
the yearly, diurnal, and seasonal variability of the atmospheric boundary layer, as measured by 
a Doppler lidar at the SGP C1, are presented. Figure 23 shows hourly averaged horizontal wind 
speed contours and wind direction vectors for each year from 2014 to 2019. As mentioned 
earlier, Doppler lidars at the SGP site are programmed to measure a wind profile once every 15 
minutes (Newsom et al. 2019; Newsom and Krishnamurthy 2020). These data sets are 
averaged to create an hourly vertical profile. The data availability during all the years was 
similar, with the exception of 2016, during which 15 percent less data were measured compared 
to other years (see Figure 5). Nocturnal wind direction at the SGP is predominantly southerly at 
lower heights, and veers westerly at ~1 km AGL. A nocturnal LLJ is observed during all years, 
but the intensity of the jet varies considerably each year. The timing and the height of the peak 
jet velocity is also observed to shift by a few hours and few hundred meters each year, 
respectively. The nocturnal LLJ is observed to span from approximately 03:00 to 14:00 hours 
UTC (~22:00 to 09:00 hours local time). The height of the LLJ nose is observed to be generally 
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below 600 m AGL. In Figure 23, winds during 2014 are observed to be of highest intensity with 
peak hourly averaged winds greater than 15 ms-1 at approximately 08:00 hours UTC (~02:00 
hours local time). Daytime wind directions are predominantly south to southwesterly and winds 
are less variable with height. 

 

Figure 23. Hourly averaged wind speed (𝑈̅) and direction from (a) 2014, (b) 2015, (c) 2016, (d) 

2017, (e) 2018, and (f) 2019 at the SGP central facility. Colored contours of 𝑈̅ for 
every 1 ms-1 are displayed and the arrows depict mean wind direction. Data 
availability below 5 percent is not shown. Apart from year 2016 (subplot c), which 
had 15 percent less data availability compared to other years, all other years had a 
minimum data availability greater than 95 percent at the lowest range-gate of 90 m. 

Figure 24 shows hourly averaged seasonal winds and direction for winter (DJF), spring (MAM), 
summer (JJA), and fall (SON) from 2013 to 2019. The mean structure of the wind profile for 
each season is different, but a nocturnal LLJ is observed in every season. Winds are highest 
during spring and winter months, with peak of the nocturnal jet (>14 ms-1) between 600 m to 800 
m AGL. Lowest winds are observed during summer, but a well-defined LLJ peak is observed. 
Daytime winds are stratified during winter months, while summer months featured near constant 
winds through the boundary layer. 
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Figure 24. Hourly averaged wind speed (𝑈̅) and direction seasonal variability from 2013 to 

2019 at the SGP central facility. Colored contours of 𝑈̅ for every 1 ms-1 are 
displayed and the arrows represent mean wind direction. Measurements at higher 
altitudes are irregular due to reduced data availability. 

The hourly, daily, monthly, and annual variability of wind speed is shown in Figure 25. The 
interannual variability is low; 90 m hourly wind speeds exceed 20 m s−1 on occasions. While 
wind speeds tend to have a relatively stable multi-year mean and variance, the effects of 
interannual variability (IAV) may skew any single year's wind speed distribution. IAV is typically 
calculated as  

𝐼𝐴𝑉 = 100 
𝜎𝑈̅

𝑈̅
⁄             (18) 

where 𝑈̅ is the mean of a representative period's annual wind speeds and 𝜎𝑈̅ is the standard 
deviation of annual wind speeds over the entire representative period, thus making IAV a 
percentage of the period's overall mean wind speed (Pryor et al. 2018). IAV values of 6 percent 
are used as a representative estimate by the wind energy industry (Brower 2012). The IAV at 
the SGP site from 2012 and 2019 is approximately 3.37 percent. Therefore, future annual mean 
winds at the SGP can be reasonably expected to be similar. An important note about the 
frequency of data used for this analysis: the Doppler lidar measures a wind profile once every 
15 minutes, therefore the gustiness of the winds at the SGP site are not accounted for in the 
IAV analysis. But wind gustiness is not expected to have a large impact on the IAV estimates 
provided above (a shorter analysis of IAV using tower data is provided in Section 6.3). 

The abundant use of machine learning algorithms for forecasting in the wind energy sector is 
primarily due to the gap in the applicability of commonly used numerical models or techniques 
for short-term forecasting. Numerical models (such as weather research forecasting [WRF]) do 
not accurately predict small-scale atmospheric variability in surface wind speeds and are 
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generally used for 6+ hour forecasts because of their high computational costs. A simple 
persistence model (where 𝑈𝑡+𝑛 =  𝑈𝑡; U is the streamwise wind speed, t is the timestep, and n is 
the number of timesteps ahead to be forecasted) is generally used for ultra-short-term 
forecasting (<30 minutes), because its accuracy reduces for larger time steps. Therefore, 
machine learning models can fill the gap (between 30 minutes to 6 hours ahead) between in-
expensive persistence models and numerical models. Machine learning algorithms can be 
applied to historical data to learn various trends at the SGP site and test the efficacy of short-
term forecasting (Vassallo et al. 2021). Further research on the applicability of machine learning 
algorithms for ultra/short-term wind forecasting at the SGP site is warranted (mainly because of 
the low IAV).  

 

Figure 25. Time series of hourly, daily, monthly, and yearly averaged windspeeds (𝑈̅) at 90 m 
AGL from 2013 to 2019 at the SGP central facility. 

Figure 26 shows the wind rose at 90 m (typical hub height at the SGP) and 500 m AGL. 
Because the Doppler lidar measures a wind profile once every 15 minutes, the gustiness of the 
winds is not observed in this wind rose. Wind and direction measurements every 15 minutes are 
hourly averaged. Each spoke of the wind rose provides a percentage of winds in the sector 
displayed, and cumulatively all spokes add up to 100 percent. Bimodal distribution of wind 
directions is observed at the SGP site, predominantly from southerly and northerly wind 
directions. The predominant wind direction at 90 m is ~170 degrees (southerly) and at 500 m it 
is ~210 degrees (south southwesterly). Overall, southerly winds are observed ~36 percent of 
the time at the SGP site. Northerly winds are less frequent, approximately 25 percent of the 
time, and the speed of the winds is also observed to be low. At 500 m AGL, the winds are 
stronger and have a higher frequency of average winds greater than 25 ms-1 from southerly 
wind directions. 
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Figure 26. Average wind rose at (a) 90 m and (b) 500 m AGL from 2013 to 2019 at the SGP 
central facility. 

For field campaign planning and certain modeling studies, it is important to understand the 
orientation of the winds each month and/or season. Figure 27 shows monthly averaged wind 
roses from 2013 to 2019 at 90 m AGL. Summer months (JJA) predominantly feature southerly 
wind speeds that are less intense than those during other seasons. July and August also show 
an increased distribution of easterly winds. Southerly and northerly wind directions are 
predominant during winter months (DJF), but are skewed toward northerly wind directions. 
Westerly winds are seldom observed at the SGP site —less than 10 percent of the time for any 
given month. Typically, westerly, or easterly wind directions are transient in nature. Therefore, 
when designing a field campaign to analyze wind farm wakes it is advisable to orient the 
instruments in either northerly or southerly wind directions to accurately capture the downwind 
wakes. For modeling studies, it would be beneficial to see the impact of southerly wind 
directions and the impact of LLJ on wind turbine loads and annual estimated production.   
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Figure 27. Monthly averaged (January to December [a to l]) wind rose at 90 m AGL from 2013 
to 2019 at the SGP central facility. 
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The Weibull distribution is commonly used in wind energy to characterize mean wind speed 
frequencies per sector. It is defined as 

      𝑓(𝑥) =  
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒𝑥𝑝[−(𝑥 𝛽⁄ )𝛼]           (19)  

where f(x) is the frequency of a variable x (in our case wind speed), and 𝛼 and 𝛽 are the shape 
and scale parameters of the distribution, respectively. For wind energy studies, power density 

(1 2⁄ 𝜌𝑈3̅̅ ̅̅ ̅̅ , where 𝜌 is the air density and 𝑈 is the mean wind speed) can be expressed using 

Weibull parameters by 1 2⁄ 𝜌𝛽3𝛤(1 + 3/𝛼), where 𝛤 is the Euler gamma function. Figure 28a 
shows the all-sector mean wind speed histogram with Weibull fit parameters at 90 m AGL from 
2013 to 2019. The Weibull parameters, calculated using a maximum likelihood estimator, 
represent the frequency distribution of the time-series data accurately. On a yearly basis, only 
small variations in 𝛼 and 𝛽 parameters are observed. Therefore, the average power density of a 
wind turbine at the SGP central facility would be approximately 460.5 Wm-2. Figure 28b shows a 
bimodal wind direction distribution observed at the SGP site from 2013 to 2019. As discussed 
earlier, the winds are predominantly southerly within a secondary peak along northerly wind 
directions. Easterly winds are also observed for a short time period. Westerly wind directions 
are seldom observed at the SGP site, as indicated by the clear dip in the histogram from 
approximately 250 degrees to 280 degrees. Therefore, wind farms to the west-southwest of the 
SGP C1 are expected to marginally impact the long-term measurements at the SGP site in 
these wind directions. 

 

Figure 28. Wind speed and direction distribution at 90 m AGL from 2013 to 2019 at the SGP 
central facility. 

 

5.3 Boundary Layer Turbulence 

Turbulence is a key process within the atmospheric boundary layer, which controls the vertical 
exchange of momentum, heat, and moisture. In a CBL, vertical velocity variance has been 
shown to accurately depict the extent of the turbulent atmospheric boundary layer (Berg et al. 
2017). Height-resolved measurements of clear-air vertical velocity variance, skewness, and 
kurtosis are useful in understanding turbulent mixing in the atmospheric boundary layer, 
convective initiation, and cloud life cycles. Figure 29 shows the hourly averaged vertical velocity 
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variance from 2014 to 2019. Peak convective activity is observed at approximately 20:00 hours 
UTC (~14:00 hours local time) and the maximum variance is observed below approximately 500 
m AGL. The vertical velocity variance profile is observed to first increase with height and then 
decrease to the top of the boundary layer. At the SGP site, the scaled vertical velocity variance 
profile (𝑤 𝑤∗⁄ , where 𝑤 is the vertical velocity and 𝑤∗ is the convective velocity scale) is 
expected to peak at ~1/3 𝑧 𝑧𝑖⁄ , (where 𝑧𝑖 is the boundary layer height and z is the height AGL) 
(Berg et al. 2017; Krishnamurthy et al. 2021). The strength of the vertical velocity variance 
varies each year but the height of peak variance is generally between 300 and 400 m AGL.  

The top of the boundary layer can be classified when the turbulence is near zero. The Doppler 
lidar signal strength is a function of aerosol loading in the atmosphere, which generally reduces 
with height. Therefore, when the aerosol loading above the boundary layer height is acceptable 
for a good return, the lidar provides accurate measurements above the boundary layer height 
(for example during transition time periods). Nocturnal vertical velocity variance estimates are 
extremely low to detect any turbulence levels at the SGP site; therefore, TKE or dissipation rate 
profiles can be used to detect the level of turbulence. 

A few system issues have been reported previously (Berg et al. 2017). In data prior to 2015, the 
lidar system at the SGP C1 observed meandering of vertical velocity variance with height (see 
Figure 29a, year 2014). The true reason for this meandering was not provided by the vendor 
(Halo Photonics), and after maintenance in 2015 the system showed realistic velocity variance 
profiles. Several techniques were used to filter out the meandering (such as local meander 
min/max fits, interpolation techniques etc.,), but because of the lack of knowledge about the true 
vertical velocity variance behavior during these times, the lidar mentors are unsure of the 
accuracy of these various techniques. Although the lidar shows meandering with height, the 
structure of the vertical velocity variance profiles is observed to be representative of other years. 
These vertical velocity variance measurements can still be used to reasonably estimate the 
turbulence and boundary layer heights (using machine learning algorithms, discussed later). 
The lowest vertical velocity variance was observed in year 2019, compared to the rest of the 
years (i.e., from 2012 to 2020). The reason for this behavior is still under investigation, because 
no indication of improper system behavior or a large-scale atmospheric phenomenon at the 
SGP site has been identified that might explain the low variance estimates. 
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Figure 29. Hourly averaged vertical velocity variance (𝜎̅𝑤
2 ) from 2014 to 2019 (a-f) at the SGP 

central facility. Colored contours of 𝜎̅𝑤
2  for every 0.1 m2s-2 are displayed. Data 

availability below 5 percent are not displayed. Apart from year 2016 (subplot c), 
which had 15 percent less data availability compared to other years, all other years 
had a minimum data availability greater than 95 percent at the lowest range-gate of 
90 m. 

Figure 30 shows hourly averaged vertical velocity variance estimates for the four seasons 
observed at the SGP site (i.e., DJF, MAM, JJA, and SON) from January 2016 to May 2020. 
Data sets prior to 2015 were not used because of the meandering artifact mentioned above. 
The largest vertical velocity variance or turbulence is observed during summer times when peak 
vertical velocity variances of greater than 2 m2s-2 at approximately 500 m AGL are observed. 
The lowest daytime vertical velocity variance is observed during winter convective time periods 
when peak vertical velocity variances below 1 m2s-2 at approximately 300 m AGL are observed. 
Similar convective turbulence levels are observed in fall and spring, with moderately higher 
vertical velocity intensities during spring seasons. During spring and summer months, nocturnal 
convection initiation events (Reif and Bluestein 2017) occur, which increase the vertical velocity 
variance during certain time periods. Generally, increased storm activity is observed during 
spring and summer months. As shown previously, increase precipitation is also observed during 
spring/summer months; therefore, higher vertical velocity variance during nighttime conditions 
could be due to nocturnal elevated convection events at the SGP site (Weckwerth and 
Romatschke 2019). During summer months, the LLJ is also observed to substantially increase 



PNNL-30832 

Atmospheric Boundary Layer at the SGP 41 
 

mixing below the LLJ height. Figure 31 shows the average horizontal wind speed and vertical 
velocity variance profiles from 20 to 27 June 2018. A period of consistent LLJ was observed 
from 20 to 27 June 2018, which shows higher mixing (aka higher vertical velocity variance) near 
the surface and up to ~400 m AGL. When the LLJ is well-defined and consistent, enhanced 
mixing is observed near the surface. Overall, nocturnal turbulence at the SGP site is complex 
and is a topic of future research. The lidar data availability is also observed to be a function of 
seasons; winter seasons show low aerosol loading and summer months show high aerosol 
concentration at the SGP site. Figure 32 shows vertical velocity variance wind roses at 90 m 
and 500 m AGL from 2012 to 2019. One notable observation at 500 m is that several instances 
of high vertical velocity variance are observed from southerly wind directions. Predominantly 
lower vertical velocity variance estimates are associated with nocturnal conditions. 

 

Figure 30. Hourly averaged vertical velocity variance (𝜎̅𝑤
2 ) estimates for (a) DJF, (b) MAM, (c) 

JJA, and (d) SON seasonal variability from January 2016 to May 2020 at the SGP 

central facility. Colored contours of 𝜎̅𝑤′
2  for every 0.1 ms-1 are displayed. Data 

availability below 5 percent are not displayed. 

Figure 33 shows hourly averaged vertical eddy dissipation rate estimates at 100 m AGL from 
January 2013 to May 2020 for each of the four seasons (DJF, MAM, JJA, and SON). The 
dissipation rate estimated using the spectral slope algorithm (see section 4.3) generally 
underpredicts the dissipation rate estimated from a sonic anemometer during nocturnal 
conditions (Wilzack et al. 2019). Structure function methods accounting for the volume-
averaging effects of the lidar tend to provide better dissipation rate estimates than sonic 
anemometers (Frehlich et al. 2006; Krishnamurthy et al. 2011; Bodini et al. 2019). At the SGP 
site, we see a maximum average dissipation rate of 5x10-4 m2s-3 during peak convective periods 
at 100 m AGL. During nocturnal conditions, a near constant dissipation rate is observed at 100 
m AGL, and it is generally below 1 x10-4 m2s-3. On a seasonal basis, higher dissipation rates are 
observed during summer and fall than during spring and winter. Yearly dissipation rate 
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variability is observed but overall similar trends are observed all years, expect for years 2018 
and 2019 when significantly lower dissipation rates are observed. This is consistent with prior 
observations of vertical velocity variance in 2019, which also were lower compared to other 
years. Further investigation is required to assess whether the cause is either lidar system 
degradation (since summer 2018) or any large-scale atmospheric phenomenon causing lower 
turbulence levels at the SGP site. 

 

Figure 31. (a) Average horizontal wind speed and (b) average vertical velocity variance from 
20 June to 27 June, 2018 at the SGP central facility. 
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Figure 32. Average vertical velocity variance rose at (a) 105 m and (b) 500 m AGL from 2012 
to 2019 at the SGP central facility. 

 

Figure 33. Hourly averaged eddy dissipation rate from vertical stares from January 2013 to 
May 2020 at 100 m AGL for seasons (a) DJF, (b) MAM, (c) JJA, and (d) SON at the 
SGP central facility. 
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5.4 Boundary Layer Water Vapor and Relative Humidity 

In this section we examine the climatology of the water vapor column at the SGP central facility 
as observed by the RL from January 2016 through June 2020. This includes an analysis of the 
water vapor mixing ratio, RH, and horizontal water vapor mass flux.  

Figure 34 through Figure 37 display the mean diurnal variation in water vapor mixing ratio (q) 
and RH from the RL for each season. Also shown is the mean water vapor mixing ratio and RH 
at 10 m AGL from a nearly collocated surface meteorological station (approximately 200 m east-
southeast of the RL). Figure 34 shows that there is very little diurnal variation in q during the 
winter months (DJF); typical values are in the range of 3 to 4 g kg-1 with a slight increase during 
the daytime. The diurnal variability and the median q increase as the weather warms. The 
daytime PBL is clearly identifiable in spring (Figure 35), summer (Figure 36), and fall (Figure 
37), and shallower in winter (Figure 34). Surface q measurements generally indicate less 
variation than that observed by the RL in the boundary layer above the surface. Figure 36 
suggests that in summer q gradually decreases with the development of the nocturnal boundary 
layer. After sunrise, q increases with the buildup of the CBL. This results in a local minimum in 
the surface q at or shortly after sunrise (this minimum is seen in all seasons). The RL 
measurements clearly show a similar minimum lagging the one seen at the surface.  

We note that the mixing ratio is a direct measurement of the RL, which is determined by the 
calibration of the water vapor-to-nitrogen SNR, as described in Section 3.3. The radiosonde 
provides direct measurements of RH, pressure, and temperature. As mentioned in Section 3.3, 
radiosondes are typically launched four times daily at the SGP central facility (nominally at 
05:30, 11:30, 17:30 and 23:30 UTC daily). Temperature and pressure profiles from the 
radiosonde are linearly interpolated to the sampling intervals of the RL q profiles, and then used 
to convert q to RH. Because the frequency of radiosonde launches is not sufficient to capture 
rapidly changing conditions, it is likely that use of the interpolated radiosonde data may 
introduce artifacts, particularly during the morning and evening transition periods. 
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Figure 34. Diurnal mean (a) water vapor mixing ratio and (b) RH as observed by the Raman 
lidar at the SGP central facility for December, January, and February (DJF), 2016 
through 2020. Panel (c) shows the diurnal mean mixing ratio (black) and RH (red) 
from the met station at 10 m AGL. Sunrise (~13:30 UTC) and sunset (~23:10 UTC) 
times are indicated by the dashed vertical lines in each panel. 
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Figure 35. Diurnal mean (a) water vapor mixing ratio and (b) RH as observed by the Raman 
lidar at the SGP central facility for March, April, and May (MAM), 2016 through 
2020. Panel (c) shows the diurnal mean mixing ratio (black) and RH (red) from the 
met station at 10 m AGL. Sunrise (~11:50 UTC) and sunset (~01:00 UTC) times are 
indicated by the dashed vertical lines in each panel. 
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Figure 36. Diurnal mean (a) water vapor mixing ratio and (b) RH as observed by the Raman 
lidar at the SGP central facility for June, July, and August (JJA), 2016 through 2020. 
Panel (c) shows the diurnal mean mixing ratio (black) and RH (red) from the met 
station at 10 m AGL. Sunrise (~11:20 UTC) and sunset (~01:45 UTC) times are 
indicated by the dashed vertical lines in each panel.  
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Figure 37. Diurnal mean (a) water vapor mixing ratio and (b) RH as observed by the Raman 
lidar at the SGP central facility for September, October, and November (SON), 2016 
through 2020. Panel (c) shows the diurnal mean mixing ratio (black) and RH (red) 
from the met station at 10 m AGL. Sunrise (~12:30 UTC) and sunset (~23:10 UTC) 
times are indicated by the dashed vertical lines in each panel. 

In addition to water vapor, it is also important to understand the directional source of water 
vapor. For this study, we examined horizontal moisture mass flux as computed from the product 
of the water vapor density from the RL with the horizontal wind speed measurement from a 
collocated Doppler lidar. This quantity represents the mass of water vapor passing through a 
unit area per unit time (i.e., it has units of mass per area per time). 

Figure 38 through Figure 41 show the median water vapor mass flux as a function of time of day 
during each of the four seasons. Also shown is the median wind direction over the same 
averaging period. During winter, Figure 38 indicates the most significant source of water vapor 
is from the west and northwest (mostly above 1 km AGL) during nighttime. In spring the 
moisture transport increases overall, with higher values above 1 km AGL coming mostly from 
the southwest quadrant. This is also similar to the fall periods. Figure 40 clearly shows a large 
spike in the water vapor flux associated with the nocturnal LLJ) during summer. The largest 
values appear to occur between the surface and the nose of the LLJ. In fall, the most significant 
source of water vapor is observed from the east. 
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Figure 38. Diurnal mean (a) water vapor mass flux and (b) wind direction as observed by the 
Raman and Doppler lidars at the SGP central facility for DJF, 2016 through 2020. 
The dotted lines indicate sunset (~23:10 UTC) and sunrise (~13:30 UTC). 
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Figure 39. Diurnal mean (a) water vapor mass flux and (b) wind direction as observed by the 
Raman and Doppler lidars at the SGP central facility for MAM, 2016 through 2020. 
The dotted lines indicate sunrise (~11:50 UTC) and sunset (~01:00 UTC). 
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Figure 40. Diurnal mean (a) water vapor mass flux and (b) wind direction as observed by the 
Raman and Doppler lidars at the SGP central facility for JJA, 2016 through 2020. 
The dotted lines indicate sunrise (~11:20 UTC) and sunset (~01:45 UTC). 
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Figure 41. Diurnal mean (a) water vapor mass flux and (b) wind direction as observed by the 
Raman and Doppler lidars at the SGP central facility for SON, 2016 through 2020. 
The dotted lines indicate sunrise (~12:30 UTC) and sunset (~23:10 UTC). 

Figure 42 shows the median surface water vapor flux as a function of wind direction. As 
indicated, all seasons show a maximum for wind directions from the south. There is some 
indication of a bimodal structure during the fall, with a weak maximum occurring in the northerly 
direction. In these plots we observed that the percentage of mass flux coming the from the 
southern quadrant (centered on south) was 47 percent in the winter, 52 percent in the spring, 67 
percent in the summer, and 66 percent in the fall. This compares to 25 percent if the 
distributions were uniform. As shown in Figure 24, the nocturnal LLJ at the SGP site is generally 
observed from the south during all seasons and is the primary source of water vapor coming 
into the great plains (Berg et al. 2015). 
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Figure 42. Median water vapor mass flux as a function of wind direction at 10 m AGL for (a) 
DJF, (b) MAM, (c) JJA, and (d) SON at the SGP central facility. Statistics were 
computed using data from January 2016 to June 2020. 

With regard to field campaign planning and modeling studies at the SGP site, boundary layer 
profiles from Doppler lidars and RLs provide insight into some key aspects:  

1. LLJ is observed to increase the water vapor flux into the SGP site. LLJ variability from year 
to year can increase (decrease) the moisture intake from the Gulf of Mexico to the Southern 
Great Plains, thereby affecting the local climate significantly (see Section 5.4).  

2. With regard to nearby and future wind farms, the impact of LLJ on wind turbines should be 
assessed. Because the mean LLJ height is below 500 m AGL, increased wind shear below 
a LLJ can increase fatigue and dynamic equivalent loads. Further analysis of LLJ height 
seasonal variability and distribution is provided in Section 6.1. 

3. Low-altitude wind directions are predominantly southerly during most of the years, with little 
variability from year to year. Winds are observed to veer southwesterly at higher altitudes. 
Accounting for this is essential during campaign designing, especially when designing lidar 
and radar scan patterns. 

4. Daytime winds are observed to be uniform with minimal wind shear, except during winter. 
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5. Seasonal variability is high at the SGP site; winter and spring feature high winds through 
and above the boundary layer and summer features the lowest winds. Although summer 
winds are lower, they are observed to be within Region 2 (operational mode of the wind 
turbine during which the turbine captures as much power as possible from the wind) of a 
wind turbine power curve, where the turbine controller maximizes power output. The effect 
of seasonal winds on wind turbine loads, wakes, and annual energy production needs to be 
further studied near the SGP site. 

5.5 Cloud Base and Boundary Layer Height 

Cloud base height can be retrieved from a Doppler lidars when staring vertically up (Newsom et 
al. 2015). A thorough validation of the algorithm with measurements from a ceilometer was 
performed by Newsom et al. (2015). Figure 43 shows distribution of cloud base height from 
2012 to 2019 at the SGP C1. Predominantly low-level clouds below 500 m AGL are observed at 
the SGP site. Sunny Lim et al.’s (2019) climatological analysis showed that the SGP site 
encounters a high frequency of low-level clouds and cirrus clouds. Formally, a cloud forms when 
the humid air becomes saturated and water vapor condensation occurs by either cooling air to 
its dew-point (temperature decreases) or by adding enough moisture to reach saturation (dew-
point increases). Fog in general can be considered to be a stratus cloud at or near the ground or 
ocean surface ("a cloud when it is low or touching the surface"). Several instances of fog or mist 
or haze are observed periodically at the SGP site, especially in the early morning. Fog, mist, 
and haze are the terms generally used to describe low visibility caused by water droplets or/and 
dry particles suspended in the air. In terms of visibility, fog reduces it to less than 1 km (the 
international definition of fog), mist reduces visibility to between 1 km and 2 km, while haze can 
reduce visibility to between 2 km and 5 km (Fernando et al. 2021). The Doppler lidar signal 
attenuates rapidly through a fog layer due to increased scattering. The droplets in the fog or the 
rain absorb or scatter the near infrared laser. The severity depends on the water content 
percentage, or droplet size distribution. Visibility is inversely proportional to the lidar range and 
extinction coefficient (Stoelinga and Warner 1999). The radial velocity measurements within the 
fog/cloud layer are generally not considered reliable from a Doppler lidar because of the effects 
of hygroscopic growth on the laser signal, and a possible double peak in Doppler spectra of 
wind and droplet concentration sometimes observed during conditions with higher precipitable 
water. Therefore, measurements affected by fog/within a cloud were removed from this 
analysis. Although Doppler lidars at the SGP site can measure up to 10 km, we have limited our 
analysis to clouds below 4 km AGL. 
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Figure 43. Cloud base height distributions as observed from a Doppler lidar from 2012 to 2019 
at the SGP central facility. 

A seasonal distribution of cloud base height is provided in Figure 44. A lognormal distribution 
was fit to the cloud base height data to represent a skewed distribution. Winter (DJF) and spring 
(MAM) months show the highest low-level cloud probability at the SGP site. A temperature 
inversion layer often occurs immediately above a cloud layer that cools radiatively and thereby 
strengthens the capping temperature inversion. Therefore, the cloud height can be considered 
to be a proxy for inversion height, but not always (Shin and Park 2020). During summer months 
(JJA), clear sky conditions are generally observed at the SGP site and the cloud distribution 
peaks at 1500 m AGL. Similar cloud height distributions are observed during spring and fall 
seasons, with highest distributions above 500 m and below 1000 m AGL.  

Cloud height measurements from lidars (either Raman, Doppler, or ceilometer) at the SGP site 
are an instantaneous snapshot in space, as we observe a passing cloud at a given location. 
Measurements at a single location do not accurately depict the spatial distribution of clouds 
within the area. Satellites provide a holistic view of cloud layers over a given region. Even 
though most satellites are not geostationary, they can still provide information about the spatial 
variability of cloud layers within a domain, which is extremely helpful when evaluating model 
results. MODIS is a key instrument deployed onboard the Terra and Aqua satellites. Both 
satellites pass any given location on Earth’s surface at least once every 2 days. In this report, 
20 years of monthly cloud top minimum and cloud fractions from MODIS satellites were 
analyzed. MODIS data sets are available at high spatial resolution (1 km2), these data sets are 
used in cloud fraction calculations. At the SGP site, 1-degree resolution pixels are statistically 
grouped into four seasons (DJF, MAM, JJA, SON). 
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Figure 45 shows the seasonal distributions of the monthly averaged cloud fraction and cloud top 
height from a 1o pixel over the SGP site. As mentioned earlier, a long-term comparison of 
monthly averaged MODIS and cloud base height estimates from a fish-eye camera showed very 
good correlations (>98 percent) and RMSE below 3 percent (Wang and Zhao 2017). Satellite 
measurements also confirm that low-level clouds (average height below 500 m) are 
predominantly observed at the SGP site in all the seasons, except summer when the mean 
cloud level height is above 500 m. The cloud fraction estimates at the SGP site indicate lesser 
cloud fractions during summer and fall and higher during winter and spring. On an average, 
clouds cool the surface by reflecting the shortwave radiation. Therefore, seasons that have a 
larger cloud fraction, i.e., winter and spring, will experience relatively low surface-driven 
convection at the SGP site. This is confirmed in the seasonally averaged Doppler lidar vertical 
profiles of vertical velocity variance, shown in Figure 30, where low vertical velocity variance 
during these seasons is seen. 

 

Figure 44. Hourly averaged cloud base height distributions over four seasons: (a) DJF, (b) 
MAM, (c) JJA, and (d) SON from 2012 to 2019 at the SGP central facility. 
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Figure 45. Box plot seasonal distribution of (a) cloud fraction and (b) cloud top minimum 
altitude from 1o resolution pixel over the ARM SGP site. The statistics are 
developed using 20 years of MODIS monthly averaged data. The center line within 
the box indicates the median value of the distribution, the box represents the first 
and third quartile of the distribution, the error bars represent the minimum and 
maximum values in the distribution, and the markers indicate outliers not used in the 
calculation of the median value.  

We also examined the statistics of 10 sec cloud base height (CBH) estimates from the RL 
during the period from January 2016 to June 2020. Figure 46 shows the median CBH as a 
function of the time of day for the four seasons. Generally, CBHs are lowest in the winter and 
spring seasons. There is very little diurnal variability during the winter, when CBHs are generally 
between 500 to 900 m AGL. During spring, CBHs are smallest during the pre- and post-dawn 
hours. However, an odd local maximum occurs right at sunrise. During the late morning and 
afternoon, the CBHs increase with time as a result of cumulus forming near the top of the 
developing CBL. The summertime sees the largest variation in CBH throughout the course of a 
day, with values ranging from about 1.7 to 4.2 km. As in the spring, the largest CBHs occur near 
sunset, and the smallest values occur just before solar noon. 
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Figure 46. Median diurnal CBH from RL for four seasons (a) DJF, (b) SON, (c) JJA, and (d) 
MAM from 2016 to 2020 at the SGP central facility. The dotted lines indicate sunset 
and sunrise for each season. 

Figure 47 shows distributions of CBH for each of the four seasons derived from RL. The winter 
distribution is strongly peaked below 1 km AGL. In contrast, the summer distribution is much 
broader, with a slight dip around 3 km AGL that suggests a bimodal distribution. In a convective 
boundary layer at the SGP, cloud bases are near the lifting condensation level.  The lowest 
mode is due in large part to shallow cumulus forming near the top of the convective boundary 
layer (Sengupta et al., 2004, Zhang and Klein 2010). The spring and fall distributions are similar 
to one another. Both exhibit a strong fall-off at about 1 km AGL, as does the winter distribution. 
These observations correlate well with both satellite and Doppler lidar estimates shown earlier. 
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Figure 47. Distributions of cloud base height estimates from the Raman lidar during the period 
from January 2016 to June 2020 at the SGP central facility. 

Boundary layer height estimates are essential for improving the skill of climate, weather, and air 
quality models. They play a crucial role in our understanding of near-surface turbulent mixing, 
entrainment, and genesis of shallow cumulus clouds. Although Doppler lidars provide 
reasonable estimates of connective boundary layer heights, a low bias is generally observed 
compared to radiosonde estimates. During nocturnal conditions, lidars do not provide reliable 
boundary layer height estimates. The top of the boundary layer is generally determined when 
the turbulent fluxes are near zero (Deardorff 1979; Fedorovich and Mironov 1995). For a 
Doppler lidar, the top of the CBL height coincides with the top of the boundary layer when the 
vertical velocity variance is near zero. As is observed in Figure 48, the top of the CBL height 
estimated by the RF model coincides with the minimum vertical velocity variance from the 
Doppler lidars.  
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Figure 48. Hourly averaged RF-estimated boundary layer heights from 2016 to 2019, overlaid 
on vertical velocity variance estimates (shown in Figure 29) at the SGP central 
facility. 

Figure 49 provides a multi-year comparison of boundary layer height at the SGP C1 from 2016 
to 2019. Over the years, an approximately 15 percent variability in peak CBL height is observed. 
Compared to the rest of the years, the lowest boundary layer heights were observed in year 
2019, which follows with the lowest turbulence levels observed during 2019. The highest 
boundary layer heights were observed in year 2017, followed by 2016. High vertical velocity 
estimates are also observed for years 2016 and 2017 (shown in Figure 29 and Figure 48). The 
variability in boundary layer height is also linked to surface properties, such as soil temperature, 
soil, and land-air interaction effects. At the SGP site, lower soil temperatures result in lower 
boundary layer heights (Krishnamurthy et al. 2021). High correlations are observed between 
boundary layer height and other surface parameters such as RH, surface air temperature, 
Obukhov length, and TKE. 
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Figure 49. Hourly averaged PBLH from RF algorithm from 2015 to 2019 at the SGP central 
facility. 

On a seasonal basis, the boundary layer heights vary significantly. Figure 50 shows the diurnal 
variability of boundary layer heights estimated from an RF algorithm for each season (DJF, 
MAM, JJA, and SON). Peak average CBL heights vary from 1200 m AGL in winter to 
approximately 2000 m AGL during summer seasons. During summertime, a deep boundary 
layer is observed, primarily due to high solar irradiance, increase in soil temperature, and 
related surface fluxes. The transitional boundary layer is seldom picked up by atmospheric 
models (WRF or LES), so the steep transitions during summertime are generally not modeled 
accurately (Krishnamurthy et al. 2021). Average nocturnal boundary layer heights at the SGP 
site are observed to be near constant across multiple seasons. An average nocturnal boundary 
layer depth of approximately 600 m is normally capped by the presence of the nocturnal LLJ at 
the SGP site. During winter and spring months, the LLJ is observed to be higher in altitude 
compared to other seasons (see Figure 24). Figure 51 shows maximum daily boundary layer 
heights for each season at the SGP site. As expected, the maximum daily boundary layer 
heights are observed during summertime with a median boundary layer height of ~ 2200 m 
AGL. During spring and fall, the median daily maximum boundary layer height is ~ 2000 m AGL. 
The lowest daily maximum PBLHs were observed during winter periods, which featured with a 
median value of approximately 1500 m AGL. The seasonal cycle of the PBLH provides insight 
into the turbulence exchange of heat, momentum, and moisture. The cloud type and coverage 
that affect the radiation budget are also determined by the depth of the PBL (Wood 2012). This 
can be clearly observed when looking at seasonal averaged cloud top altitude from satellite 
measurements (seen in Figure 45b) and maximum daily boundary layer heights for the same 
seasons observed in Figure 51. 

As mentioned earlier, the RF algorithm is built using a multitude of surface and lidar-derived 
meteorological parameters. The marginal effect of each input parameter on the estimated PBLH 
can be analyzed using the RF framework (Friedman et al. 2001). The partial dependence of 
PBLH on RH and soil temperature is shown in Figure 52. Large values of partial dependence 
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indicate strong dependence of PBLH on the input parameter, whereas small ranges show 
weaker dependence. The higher dependence of PBLH on extreme soil temperatures and low 
RH correlates well with previous observations during summer and winter time conditions. 
Further analysis of PBLH partial dependence on various surface parameters is provided by 
Krishnamurthy et al. (2020). 

 

Figure 50. Hourly averaged boundary layer height over four seasons at the SGP central facility 
from 2015 to 2019 at the central facility. 
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Figure 51. Daily maximum boundary layer height averaged from 2015 to 2019 for each season 
at the SGP central facility. The red horizontal line indicates the median value, the 
blue box represents the 25th and 75th percentile levels, and the + signs indicate 
possible outliers not used to calculate the median value. 
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Figure 52. Partial dependence between PBL height, RH, and soil temperature using RF 
regression. 
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6.0 Site-specific Atmospheric Conditions 

6.1 Nocturnal Low-level Jet 

Nocturnal LLJs are commonly observed in the Southern Great Plains. Nocturnal LLJs are 
mostly generated by inertial oscillations, which are initiated by a drop in eddy viscosity at sunset 
due to development of a stable boundary layer and radiative cooling of the ground surface (e.g., 
Parish et al. 1988; Zhong et al. 1996; Parish and Oolman 2010). A Great Plains nocturnal LLJ 
climatology by Bonner (1968) indicated that the average altitude of LLJ wind maxima was 
approximately 800 m AGL, using approximately a 2-year radiosonde data set around the Great 
Plains. Using better time- and height-resolved data, Whiteman et al. (1997) estimated that half 
of the SGP site’s nocturnal LLJ wind maxima are located below 500 m. Berg et al. (2015) also 
provided an assessment of the SGP LLJs using radiosonde data and provided model results 
showing that LLJs are key for effective moisture intake into the Great Plains from Gulf of Mexico 
leading to deep convection. Bonin et al. (2015) classified the stability of the nocturnal LLJ using 
vertical velocity variance estimates within the LLJ. Several modeling studies were conducted to 
analyze the impact of the LLJ on the Great Plains (some recent studies: Berg et al. 2015, Smith 
et al. 2018). In studies thus far, sophisticated models (such as the WRF model) have 
consistently under-predicted the magnitude and height of the LLJ near the Great Plains (Berg et 
al. 2015; Wharton et al. 2013; Smith et al. 2018). There are several reasons for this under-
prediction; for example, improper land-surface coupling in the models could result in significant 
differences. Zhong et al. (1996) showed that soil moisture changes in the Great Plains affected 
jet amplitudes; drier soils lead to stronger nocturnal LLJs. Drier soils also lead to higher 
boundary layer height estimates at the SGP site (Krishnamurthy et al. 2021). Therefore, a 
thorough study of the evolution, sustenance, and dissipation of nocturnal LLJs at the SGP site is 
warranted. 

To determine the height and strength of the LLJ, several criteria are available in the literature 
(Blackadar 1957; Bonner 1968; Whiteman et al. 1997). In this work, we determine the height of 
the LLJ when the wind speed maximum reduces by at least 2 ms-1 on either side of the 
maximum (Blackadar 1957). Doppler lidar wind profile data from May 2011 to May 2020 
(approximately 9 years’ worth) were used in this analysis. Because lidar wind profiles are 
available every hour, a daily median LLJ height per day is chosen and is limited to nighttime 
conditions (i.e., 5 to 13 hours UTC or ~00:00 to ~08:00 hours local time). Any observation below 
200 m, above 3 km, and at jet wind speeds greater than 40 ms-1 was omitted, because of 
possible errors in lidar processing. Ignoring measurements below 200 m could potentially bias 
the LLJ height estimates high during certain seasons (JJA), but because no LLJ observations 
have been documented below 200 m at the SGP site, any potential bias is expected to be low. 
Omitting periods when the lidar data were unavailable or filtered, a total of 2550 observations of 
LLJ were identified from May 2011 to May 2020. Figure 53 shows the daily median LLJ height 
distribution for four seasons (DJF, MAM, JJA, SON) from May 2011 to May 2020. In summer, 
the median height of LLJ is observed to be predominantly below 600 m AGL and very few LLJs 
above 1 km are observed. In winter, the lowest percentage of LLJs were observed at the SGP 
site; the majority of daily median LLJ heights were below 500 m AGL and up to a maximum 
height of 2800 m. In spring and summer, the highest percentages of LLJ were observed at the 
SGP site, both totaling to approximately 60 percent of the LLJ observations. Spring, summer 
and fall show similar distributions, except for larger distribution of daily median LLJ heights 
observed in spring. In winter, fewer LLJs was observed, predominantly below 500 m AGL. 
Figure 54 shows the daily maximum LLJ wind speed for all four seasons from May 2011 to May 
2020. Winter and spring observe higher maximum LLJ wind speed distributions than other 
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seasons. Several instances of LLJ wind speed maximums exceeding 30 ms-1 are observed 
during both spring and winter seasons. In summer, lower maximum wind speeds are observed, 
which is consistent with seasonal average wind speeds observed by Doppler lidar (Figure 24). 

 

Figure 53. Daily median low-level jet height distributions at the SGP central facility from May 
2011 to May 2020 for (a) DJF, (b) MAM, (c) JJA, and ( d) SON. 

Because the nocturnal LLJ at the SGP site is generally below 600 m AGL, it significantly 
influences the winds near the surface. The atmosphere is generally weakly stable during an 
LLJ, which is expected to cause the most damaging fatigue loads on a wind turbine. Gutirez et 
al. (2016) evaluated the effect of LLJ on wind turbine power and loads and observed that when 
the wind turbine experiences negative wind shear (i.e., the jet height is at the bottom edge of the 
wind turbine) the effect of LLJ is minimal. When the wind shear is positive (i.e., the jet height is 
above the tip of the turbine), the impact on the turbines (with respect of loads) is expected to be 
higher. From simulation studies, it is observed that when the LLJ is located at hub height, the 
root mean square rotor aerodynamic loads increase by two times, when the winds increase from 
8 to 16 m/s (Zhang et al. 2019). Even though the wind turbines are pitched at higher winds, the 
wind shear across the rotor-swept area is expected to cause significant loading. Most damaging 
fatigue loads occur within the weakly stable range, which results in intense vertical mixing, with 
the gradient Richardson number between + 0.01 and +0.05. 
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Figure 54. Daily maximum low-level jet wind speed distributions at the SGP central facility from 
May 2011 to May 2020 for (a) DJF, (b) MAM, (c) JJA, and (d) SON. 

6.2 Spatial Variability 

Analogous to cloud properties, surface green vegetation fractions in the form of fraction of 
photosynthetically active radiation at 500 m horizontal grid resolution are key to providing 
guidance for crop management and modeling the exchange of momentum, energy, and mass 
between the PBL and land surface. Vegetation cover (VC) defines the percentage of soil that is 
covered by green vegetation. Figure 55 shows the temporal variability in VC at the 1o domain for 
2018 (the SGP site is at the center of the domain). At the SGP site, it can be observed that the 
VC in winter is a factor of 2 lower than it is in summer. The primary reason for this variability is 
the different crops grown in each season around the SGP site. Winter wheat is grown in small 
sections around the SGP site, but primarily summer crops are more frequently observed. 
Increase in pastureland during summertime also results in higher VC around the SGP site. A 
steep gradient in VC is observed in spring and fall over the SGP site. This gradient in VC also 
results in a gradient in surface roughness length (see Figure 18b). Therefore, it is indeed 
interesting to observe a near-linear relationship between VC from satellites and surface 
roughness length measurements at the SGP site (Yu et al. 2018). This change in roughness 
causes changes in wind profiles within the surface layer and is key to understanding the surface 
energy budget at the SGP site. The changes in VC also are sensitive to surface albedo (Berg et 
al. 2020). A spatial analysis of the VC using satellite data would provide further details about the 
land–atmosphere feedback processes. Figure 56 shows the spatial variability in VC over the 
SGP site at a resolution of 1 degree for a given day in January (winter) and June (summer) of 
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2018. The VC maps on both winter and summer days show clear east-west gradients. The VC 
gradients are a result of variations in agriculture practices around the SGP site (Berg et al. 
2020). 

 

Figure 55. Temporal variation in vegetation cover (%) from Fraction of Photosynthetically 
Active Radiation using MODIS satellite observations for the year 2018. The 
observations at an interval of ~8 days are compiled over 1x1 deg domain with the 
SGP C1 site at the center.   

 

 

Figure 56. Spatial distribution of vegetation cover (%) from Fraction of Photosynthetically 
Active Radiation using MODIS satellite observation for (a) a day in the first week of 
January and (b) a day in last week of June 2018 (right panel). The VC>100 filled 
values are from water, rocks, or other non-vegetated reflected pixels. The SGP site 
is shown in the middle of map by a black star enclosed in a square. 
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As observed in Figure 56, west of the SGP site, a larger percentage of the area is observed to 
be covered in vegetation compared to the area east of the SGP C1. Land-air interaction effects 
are prominent at the SPG site because of to the heterogeneous surface. Soil moisture, soil 
temperature and air temperature variability across the SGP site have been shown to affect the 
height of the LLJ (Zhong et al. 1996), the boundary layer height (Krishnamurthy et al. 2021), and 
other boundary layer processes (Berg et al. 2020). Figure 57 shows monthly averaged soil 
moisture, soil temperature, and soil-air temperature differences at the four satellite sites shown 
in Figure 1 from 2014 to 2019. These are roughly 40 to 50 km from the SGP C1 and are located 
in corners of the VC satellite image shown in Figure 56. Significant variability is observed 
among the sites, especially in air-land temperature difference. At Site E39 (southeast of the 
SGP C1), the highest monthly averaged soil temperature and highest air-soil temperature 
gradient are observed. The effect of soil temperature is also known to affect boundary layer 
height estimates. Figure 58 shows the hourly averaged RF-estimated PBLH for 2019 at three 
satellite sites (E32, E37, and E39) and the central facility. It should be noted that the RF model 
built at SGP C1 was used at these extended facilities. Typically, RF models are site specific, 
therefore the accuracy of the PBLH estimates at other satellite sites needs to be evaluated 
using a reference (such as radiosondes).  Local surface and lidar measurements from the given 
site were used as input features in the model estimation. The central facility shows the lowest 
convective PBLH compared to the rest of the satellite sites, and the E39 shows the highest 
PBLH. This corresponds to previous findings that the increase in soil temperature results in 
higher PBLH. Although multiple drivers affect the growth and development of PBLH, local 
surface parameters such as RH, soil temperature, and TKE seem to provide the bulk of the 
effect on convective PBLH (Krishnamurthy et al. 2021). The terrain height difference between all 
the three sites is within 50 m. Nocturnal conditions on the other hand do not seem to vary 
considerably across multiple sites and this lack of variation is probably due to the presence of 
the LLJ at the SGP site. Site E41 was not used in this analysis, because lidar data were not 
available for more than 6 months due to a system failure. 
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Figure 57. Spatial variability at four satellite ARM sites (E32, E37, E39, and E41) showing 
monthly averaged (a) soil moisture, (b) soil temperature, and (c) soil-air temperature 
difference from 2014 to 2019. 

 

 



PNNL-30832 

Site-specific Atmospheric Conditions 71 
 

 

Figure 58. Hourly averaged random forest estimated PBLH in 2019 at E32, E37, E39, and C1. 

6.3 Possible Effect of Wind Farms at the SGP Site 

The growing presence of wind farms around the SGP site, mean the central facility site can no 
longer be considered devoid of wind farm wake effects. However, no concrete evidence of these 
effects is observed based on the data available in the literature, mainly due to the distance of 
wind farms from the central facility. A more in-depth analysis of wind data related to pre- and 
post-wind farm construction is needed to isolate effects due to climate change, IAV, and wind 
farms, etc. Some preliminary thoughts about how the IAV of wind speed at the SGP site has 
varied over the years, the effects of the internal boundary layer developed by a wind farm, and 
how wind farms can affect the local microclimate are presented below. 

Based on the tower measurements from 2003 to 2014 at 25 m AGL the IAV of wind speed (IAV 
= 100(σU/U) where U is the annual mean wind speed and σU is the standard deviation of annual 
wind speed) at the SGP C1 site was 3.19 percent. Regions with IAV less than 6 percent are 
preferred for wind farm development, because of the reduced interannual wind uncertainty 
(Brower 2012), i.e., the winds are reasonably predictable from year to year. Estimates at hub 
height are generally used for IAV calculations. Therefore, further analysis was performed using 
the available data from 2012 to 2019 measured by a Doppler lidar at 90 m AGL. Based on wind 
farm development at the SGP site, shown in Table 1, time periods prior to 2016 were 
considered “pre-wind farm” and post 2016 was considered “post-wind farm”. Pre-wind farm IAV 
at the SGP site was 1.85 percent, while post-wind farm IAV was 4.48 percent. This increase in 



PNNL-30832 

Site-specific Atmospheric Conditions 72 
 

IAV could be attributed to the presence of wind farms built south of the SGP site but could also 
be due to the small sample size used in estimating the IAV. Generally, IAV is calculated based 
on a larger sample, say 10 to 20 years of data. Therefore, a longer data set at hub height is 
needed to evaluate the true impact of wind farms on the Southern Great Plain’s climatology.  In 
addition, an analysis at SGP C1 using the Doppler lidar wind speed profiles showed that under 
stable atmospheric conditions, hub-height wind speeds greater than 6 ms-1 to 10 ms-1 (range 
based on the operating power curve of the GE turbines) and select wind directions (primarily 
from the three turbines south of SGP C1 within 4 km), the maximum reduction in wind speed at 
hub-height and above was less than 2%.  More analysis is indeed needed and would benefit the 
research community in understanding long-term impacts of wind farms at SGP C1 data. 

Although wind speed deficits are theorized to recover over 20–25 km downwind of the wind 
farms, the temperature and RH of the waked atmosphere for a large wind farm are expected to 
be prolonged further when the inversion height is below the hub height and the atmosphere is 
stably stratified (Siedersleben et al. 2018). The cumulative wake of the entire wind farm can 
reach up to 50 km downstream (Lundquist et al. 2018). Immersed boundary layer LES models 
of large wind farms show that the growth internal boundary layer by a wind farm affects the 
formation of stratocumulus clouds downwind of the wind farm (Sharma et al. 2018). Increased 
vertical entrainment during periods of stratocumulus-topped boundary layers tends to 
destabilize the cloud layer, resulting in the destruction of the cloud layer. Based on a quick study 
of cloud base heights and winds from Doppler lidars (at C1 and E39), some evidence alluded to 
stratocumulus cloud variability at these sites. Bands of stratocumulus clouds do exist at the 
SGP site, but no direct evidence of either destruction of stratocumulus clouds or wind farm wake 
deficits were observed at the SGP site using the Doppler lidar CBH data.  This could be due to 
the size and orientation of the wind farms south of the SGP site (single row of wind turbines and 
not a deep array), but further investigation is needed. Other satellite sites, such as E32 and E41 
can expect higher influences due to the proximity, orientation, and size of surrounding wind 
farms. 

The phenomenon of wind turbine microclimate occurs as a result of changes—in local 
temperature, moisture, and CO2 levels—due to vertical mixing, turbulence, and wakes created 
by the wind turbines. Because an increasing number of wind turbines are being built on 
farmlands surrounding the SGP site, it is imperative to assess the long-term effects of wind 
farms on crops. Given the correlation between climate change and crop yield, as recent studies 
have found (Schlenker et al. 2005; Schlenker et al. 2009), it is important to understand the 
implications of wind turbine microclimate on local farming communities. The potential crop yield 
variability, due to the microclimate, could have a vast impact on the micro and macroeconomics 
of local counties and the country throughout the lifetime of a wind farm. Therefore, 
interdisciplinary research, delving into both the physical and social aspects of crop yield 
variability, is necessary. This would aid in developing optimal strategies for better application of 
our knowledge for the benefit of wind and agricultural communities, locally and internationally. 
Ultimately, the goal of energy independence requires a balanced ecosystem, sine qua non of 
science serving society. 

Wind turbine land lease agreements can pay landowners up to $6,000 per year per megawatt 
installed. The capacities of modern generation wind turbines range from 2 MW to 5 MW, so a 
farmer can earn up to $30,000 per turbine per year. Thus, wind farming has quickly become 
quite valuable, especially for larger farms that can host several hundred wind turbines. As of 
today, U.S. wind farms are paying a total of more than $250 million dollars to property owners 
across the country, and this number is poised to grow over the coming years (AWEA 2017 
annual report). Most wind farm projects require at least 60 acres of land per megawatt 
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produced, but only a small percentage (about less than 5 percent) of this land will be used for 
the placement of wind turbines and other supporting infrastructure (such as a substation, 
maintenance facilities, and storage offices, etc.). The total acreage depends on the wind turbine 
spacing to account for wind turbine wakes, which can span up to 15 times the rotor diameter for 
a single turbine. The cumulative wake of the entire wind farm can reach up to 50 km 
downstream (Lundquist et al. 2018). This creation of atmospheric instability can have a positive 
or a negative impact on crop production. 

Results show that wind farms significantly affect near-surface air temperature and humidity as 
well as surface sensible and latent heat fluxes (Roy et al. 2004; Rajewski et al. 2013). Given 
that climate affects crop efficiency (Schlenker et al. 2005; Deschênes et al. 2007; Schlenker et 
al. 2009; Deschênes et al. 2012; Fisher et al. 2012) and wind farms create microclimate around 
the crops, evidently wind farms in turn may affect crop yield. Recent field studies looked at local 
small-scale impacts (Rajewski et al. 2013) of increased vertical mixing and CO2 concentration 
levels on crops, but no conclusions were drawn about the crop yield. A recent study conducted 
by the National Aeronautics and Space Administration (Deryng et al. 2016), shows that 
increased CO2 concentration levels can both help and hurt crops. The increased concentration 
levels boost crop yield by increasing the rate of photosynthesis, but they reduce the amount of 
water crops lose through transpiration (reduced water efficiency). Therefore, microclimates 
created by wind farms could possibly improve the vertical mixing close to the surface and, in 
turn, improve crop yield. This could have a different impact depending on the type of crop 
downwind of the wind turbine/farm and geographic location. For example, wine makers in New 
York and California currently use large fans to reduce the impact of frost on grape yield by 
entraining the warm air from above. But the inherent uncertainty in wind production from year to 
year could create variability in crop yield and could have a compounding effect over the lifetime 
of the wind farm (~25 years). This could affect the local revenue earned by farmers, trade, food 
supply and prices, state or federal policies on tax credits, etc. There is also a risk of farmers 
reducing their yield because of revenue gained from leasing their sites to wind farms, resulting 
in serious implications to climate change (albedo effects). Therefore, in addition to 
understanding the variability in annual yield due to microclimates, it is very important to address 
the interplay between science and policy due to crop yield variability in wind turbines adjacent to 
farms. A more detailed study of the possible positive/negative effects of wind farms on crops at 
the SGP site is necessary. 
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7.0 Perspectives and Future Work 

The SGP site provides long-term, high-quality meteorological data for over two decades (since 
1992) in southern Oklahoma, USA. Atmospheric scientists have used the data effectively to 
unravel several mysteries related to complex land-air interaction effects, mesoscale processes, 
convective systems, and aerosol and cloud dynamics. However, the data are far from being 
exploited in various other research domains. Wind energy studies have seldom compared 
microscale model results and field observations. The diurnal, seasonal, and annual variability 
can aptly be evaluated using the long-term data. Microscale models are frequently used in wind 
energy studies to assess the wind resource and annual energy production at a given site. In the 
same vein, very few studies have been conducted to evaluate reanalysis products such as 
Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North 
American Regional Reanalysis (NARR) (Kennedy et al. 2011). These reanalysis data are 
generally used as input conditions for many mesoscale and microscale models and would affect 
the outcome of the numerical simulations in the region being studied. The array of Doppler radar 
and lidar data at the SGP site can characterize both the boundary layer and mesoscale 
processes, such as MCSs and nocturnal convection initiation. The transfer of energy from such 
large mesoscale systems to the surface can be quantified using the SGP in situ and remote-
sensing data.  

Since early 2015, an LES study (LES ARM Symbiotic Simulation and Observation workflow, 
LASSO) is being performed for select case studies around the SGP site. Currently, the focus is 
only on using LES to improve our understanding of shallow clouds. A more thorough analysis of 
using LES using ARM observations for wind energy applications is warranted. This would 
provide context and self-consistent representation of the atmosphere surrounding the SGP 
observatory. Because the SGP data are being used for validating other models, the effect of 
nearby wind farms on the SGP data has still not been explored. As a part of future work, the 
authors request the modeling teams to possibly study the effect of turbines on the SGP data. 
Especially on remote-sensing instruments, which provide spatially averaged measurements, 
wind turbine wake signatures are averaged out and sometimes not clearly detectable in the 
processed signal at SGP C1. High-fidelity LESs can provide an uncertainty map for remote-
sensing instruments based on downwind distances from the wind farm at the SGP site. 
Particularly, how far does the internal boundary layer developed by the wind farm affect remote-
sensing measurements? In addition, analysis of using LES data to characterize vertical mixing 
within a wind farm and the transport of soil moisture/RH downwind of a wind farm can be 
especially interesting to understand crop yield variability around wind farms. Targeted field 
campaigns, such as AWAKEN, can help provide answers to some of the above questions at the 
SGP site. 
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Appendix A – Instrument List 

Table A.1 presents a detailed list of the instruments, atmospheric radiation measurement data 
stream identification numbers needed to easily redo the analysis, the parameters, and the time 
period used in the analysis. Because some data streams had limited data, either due to 
instrument availability or failure, similar data available from other instruments were used in the 
analysis. Therefore, a near continuous data set from 2000 to 2020 was created, depending on 
the parameter and site. 

Table A.1. SGP Instrument list, data stream, and parameters used for the analysis. 

Instrument 

ARM Data 

Stream Parameters 

Time 
Period 

Used in the 
Analysis Comments 

60-m Met Tower spgco2flx4mC1.b1 

 

Surface wind 
speed, wind 
direction, air 
temperature, 
relative 
humidity 

2000 – 2019 The data were clean 
and had small data 
gaps. 

60-m Met Tower spgco2flx25mC1.b1 Turbulence 
kinetic 
energy, 
latent heat 
flux, sensible 
heat flux, 
Obukhov 
length, 
friction 
velocity, 
vertical 
velocity 
variance 

2000 – 2019 The data were clean 
and had small data 
gaps. Depending on 
data availability, 
either the EBBR heat 
flux or the flux tower 
heat flux estimates 
were picked. 
Preference was 
given to the met 
tower. 

EBBR sgpebbrE13.00 Latent heat 
flux and 
sensible heat 
flux 

2000 – 2019 Depending on data 
availability, either the 
EBBR heat flux or 
the flux tower heat 
flux estimates were 
picked. Preference 
was given to the met 
tower. 

SEBS/SIRS sgpbeflux1longC1.c1 Longwave 
radiation, 
shortwave 
radiation, 

normal 
radiation 

2000 – 2019 Best estimate 
surface radiative flux 
from multiple 
instruments. 

SWATS/STAMP sgpstampE13.b1 

sgpswatsE13.b1 

Soil 
temperature, 
soil moisture 

2012 – 2019 STAMP replaced 
SWATS in 2015. The 
data since 2015 are 
observed to have 
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Instrument 

ARM Data 

Stream Parameters 

Time 
Period 

Used in the 
Analysis Comments 

higher diurnal 
variations in soil 
moisture than prior to 
2015. Therefore, soil 
moisture data past 
2015 are not used in 
the analysis. 

Doppler lidar sgpdlfptC1.b1 

sgpdlfptE32.b1 

sgpdlfptE37.b1 

sgpdlfptE39.b1 

sgpdlfptE41.b1 

Signal-to-
noise ratio, 
attenuated 
backscatter, 
eddy 
dissipation 
rate 

2011 – 2020 Some gaps in data 
exist, due to system 
maintenance or 
failure. 

Doppler lidar sgpdlprofwstats4newsC1.c1 

sgpdlprofwstats4newsE32.c1 

sgpdlprofwstats4newsE37.c1 

sgpdlprofwstats4newsE39.c1 

sgpdlprofwstats4newsE41.c1 

Vertical 
velocity 
variance 
profile, cloud 
base height 

2011 – 2020 Some gaps in data 
exist, due to system 
maintenance or 
failure. 

Doppler lidar sgpdlprofwind4newsC1.c1 Horizontal 
wind speed 
profile, 
horizontal 
wind 
direction 
profile 

2011 – 2020 Some gaps in data 
exist, due to system 
maintenance or 
failure. 

Raman lidar sgprlproffex1thorC1.c0 

sgp10rlproftemp2newsC1.c0 

Relative 
humidity, 
water vapor 
mixing ratio, 
back-
scattering 
coefficient, 
lidar ratio, 
scattering 
coefficient 

2016 – 2020 Some gaps in data 
exist, due to system 
maintenance or 
failure. 

Radiosondes sgppblhtsonde1mcfarlC1.c1 Boundary 
layer height 
estimates, 
inversion 
height, wind 
profiles, 
temperature, 
and relative 
humidity 
profiles 

2011 – 2019 Boundary layer 
height estimates from 
Liu and Liang (2010) 
are used in the 
Random Forest 
algorithm. 

EEBR = Energy Balance Bowen Ratio; SEBS/SIRS = Surface Energy Balance System/Surface Infrared Radiation 
Station; SWATS/STAMP = Soil Water and Temperature System/Soil Temperature and Moisture Profile. 
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Appendix B – Code and Plot Repository 

A commercial software, MATLAB, was used for a major portion of this analysis. For the ease of 
redoing some of the analysis in this report, a repository of MATLAB codes used to read the 
raw/processed data from the instruments listed in Table A.1 is provided in GitHub. The 
repository of codes can be found in https://github.com/rkpnnl/ARM.git. 

The lidar mentors also maintain a webpage for near real-time observations from the lidar (both 
Raman and Doppler lidar) at all the SGP measurement sites. Near real-time data visualization 
from vertical velocity variance, skewness, kurtosis, wind speed, and wind direction for the 
Doppler lidar are provided. Retrievals of aerosol backscatter, extinction, linear depolarization 
ratio, scattering ratio, and lidar ratio from the Raman lidar are provided. The quick looks can be 
accessed here: https://engineering.arm.gov/~newsom/. 

Time-height cross-section plots from multi-year Doppler lidar data are also available and can be 
accessed here: https://engineering.arm.gov/~raghuvaidhya/. This includes data availability, wind 
distributions, wind profiles, and vertical velocity statistics at sites C1, E32, E37, E39, and E41 
from 2012 to 2019. In the future, near real-time estimates of boundary layer height using the 
Random Forest algorithm described in the report will also be provided. 

 

 

https://github.com/rkpnnl/ARM.git
https://engineering.arm.gov/~newsom/
https://engineering.arm.gov/~raghuvaidhya/
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