

PNNL-30351 **The Consortium for Advanced Sorghum Phenomics (CASP)** September 2020 G.C. Jansson U.S. DEPARTMENT OF Prepared for the U.S. Department of Energy ENERG under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: <u>reports@adonis.osti.gov</u>

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <<u>https://www.ntis.gov/about</u>> Online ordering: <u>http://www.ntis.gov</u>

The Consortium for Advanced Sorghum Phenomics (CASP)

September 2020

G.C. Jansson

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Final Scientific/Technical Report

Agency to which Report is Submitted:	Advanced Research Projects Agency - Energy
FOA Name:	TRANSPORTATION ENERGY RESOURCES FROM RENEWABLE AGRICULTURE
	(TERRA)
FOA Number:	DE-FOA-0001211
Report:	Research Performance Progress Report
Award:	
Prime Recipient:	Pacific Northwest National Laboratory (PNNL)
Project Title:	THE CONSORTIUM FOR ADVANCED SORGHUM PHENOMICS (CASP)
Principal Investigator Name,	Christer G. Jansson
Title, and Contact Info:	Director of Plant Sciences
	EMSL, PNNL
	christer.jansson@pnnl.gov
	509-371-6516
Prime Recipient DUNS Number:	78576738
Date of Report:	June 25. 2020
Reporting Period:	October 1, 2015 – December 14, 2018

Public Executive Summary

The goal of CASP was to accelerate breeding of biomass sorghum [*Sorghum bicolor* (L.) Moench] by identifying genotypes exhibiting high yield under well-watered, pre- or post-drought and/or salinitystress conditions. We did this by combining high-throughput, non-invasive drone phenotyping with genomics and molecular profiling. Field-based phenotyping utilized a multi-modal sensor suite of LiDAR, multispectral cameras, and thermal cameras mounted on a commercial drone to detect traits required for yield prediction and selection of drought and saline tolerant lines of sorghum. Traits of interest included plant height (PH), leaf area index (LAI), wet biomass (BMW), and biomass at 65% moisture (BM65) and were measured from emergence to harvest on a weekly basis over three growing seasons. The final output were measurements of traits on a plot-by-plot basis, identified by the plot ID used by the Proprietary data processing software enabled raw field data to be turned into plant traits and delivered to the PNNL and JGI within the same workday.

Field sites

The CASP field sites were located at the UC Kearny Agricultural Research & Extension (KARE) Center and Westside Research and Extension Center (WREC), CA. The lack of summer rainfall in this area offers an excellent opportunity for well-controlled field-based drought experiments.

BRT drone flying over one of the sorghum plots at the CASP field sites in CA.

Sorghum Accessions from the Sorghum Conversion Program (SCP) were selected based on race and working group information, pedigree, seed origins, and pre-evaluations under stress responses and represents most of the genetic diversity found within sorghum. Additional accessions were selected from Chromatin's biomass breeding program based on chemical composition screening. All SCP accessions will be acquired from the Germplasm Resources Information Network's (GRIN) seed bank. From this diverse set of preselected sorghum germplasm, we chose 648 sorghum genotypes that were planted in control, preand post-flowering drought nurseries on two different field and soil types in KARE and WREC for a total of 3,888 research plots. A salinity nursery was added to

the evaluations at WREC. Seeds of the 648 varieties were planted in a randomized complete block design in ten rows, 30 ft long with 30" row spacing, comparable to normal planting regimes for grain sorghum. The field trial was repeated for three seasons (2015 – 2018).

Image-based phenotyping by UAV

Drone data for PH, LAI, BMW, and BM65 were collected on every location once per week during the growing seasons. For the drought study, drone phenotyping yielded a total of more than 500,000 phenotypic observations for associations with genome-wide association studies (GWAS) and metabolite and protein phenotyping. Algorithms for analyzing data enable prediction of plant growth potential, even at the early stages of growth. The high accuracy and high precision of the drone data was demonstrated by ground phenotyping in a random-block design; R² by cross validation with ground-truthing = 0.89 - 0.98

Genotyping

Genotyping by sequencing (GBS) and GWAS based on drone data from the 648 genotypes yielded 213 high quality, reliable GWAS peaks for single-nucleotide polymorphisms (SNPs) associated with biomass

and/or drought tolerance traits. The large number of associations are due to the accuracy of the phenotyping over the entire growing seasons and provide a broader knowledge of the genetics underlying drought tolerance and biomass accumulation than any previous study. This validates the overall approach of the CASP project and provides numerous targets for breeding and more detailed studies. Significantly, the majority of the loci were significant on multiple dates and some were only significant early or late in the season.

Metabolomics

A subset of 120 genotypes based on drone and GWAS data were selected for molecular phenotyping. A total of 3,800 samples (8 biological replicates for each genotype sampled from well-watered, pre-flowering drought, or post-flowering drought conditions) were collected and analyzed by GC-MS/LC-MS, a next-generation SPE-IMS-MS platform, and FTICR-MS, which yielded a data set of ~20,000 metabolite features, the lion's share of which are unknowns.

The data and leaf samples generated under CASP represent an unprecedented resource for sorghum research and breeding. The molecular profiling, in combination with GWAS, has the potential to provide mechanistic understanding for genes and pathways responsible for high biomass accumulation in sorghum on marginal land. This information can be utilized for identifying sorghum cultivars with desirable phenotypes solely based on genomic, protein and/or metabolite data.

Acknowledgements

We acknowledge ARPA-E for financially supporting the research, and for all team mebers at PNNL, JGI, BRT, KARE and WREC who participated in the work.

Table of Contents

Public Executive Summary	3
Acknowledgements	. 3
Accomplishments and Objectives	. 5
Project Activities	
Project Outputs	
Follow-On Funding	

Accomplishments and Objectives

Task	Key Milestones and Deliverables
1. T2M	Q1: Build value model.
	Actual Performance: (1/2016) Milestone was met.
	Q1: Form advisory board.
	Actual Performance: (1/2016) Milestone was met.
	Q2: Revise T2M plan and identify point of contact for T2M.
	Actual Performance: (4/2016) Milestone was met.
	Actual Performance: 4/2016) Milestone was met.
	Q3: Update Value model based on industry input
	Actual Performance: (7/2016) Milestone was met.
	Q4: T2M report update
	Actual Performance: (10/2016) Milestone was met.
	Q4: xpand value model.
	Actual Performance: (10/2016) Milestone was met.
	Q4: Create industry market value chain report on promising markets.
	Actual Performance: (10/2016) Milestone was met.
	Q5: Build Model for value of terminal biomass prediction.
	Actual Performance: (1/2017) Milestone was met.
	Q5: Submit industry engagement plan.
	Actual Performance: (1/2017) Milestone was met.
	Q6: Finalize service agreement with an industry partner (e.g. Syngenta) for proof-of-
	concept (PoC) project.
	Actual Performance: (4/2017) Milestone was met.
	Q6: Create initial T2M plan for identifying commercially relevant salt and/or drought
	tolerant inbred lines and public lines. Develop an initial plan for testing a path to
	market for these technologies.
	Actual Performance: (4/2017) Milestone was met.
	Q6: Create Initial 12M plan and path forward for commercialization of identified
	construction biomarkers for drought tolerance and/or biomass accumulation in
	Actual Performance: (4/2017) In progress
	O7: Deliver undated T2M Plan with refined nath to market based on discussions with
	industry advisors and technical learnings
	Actual Performance: (7/2017) Milestone was met
	0.7: Undate cost models in M1 7 and M1 8
	Actual Performance: (7/2017) In progress
	07. Progress against engagement plan approved by ARPA-F reported every other
	quarter.
	Actual Performance: (7/2017) Milestone was met.
	Q8: Update T2M Plan.
	Actual Performance: 10/2017) Milestone was met.
	Q8: Report on Proof-of-Concept project with industry partner.
	Actual Performance: 10/2017) Milestone was met.
	Q8: Update plan for commercialization of sorghum germplasm with improved
	drought resistance.
	Actual Performance: 10/2017) Milestone was met.
	Q8: Update plan for commercialization of molecular biomarkers for drought tolerance

Table 1. Key Milestones and Deliverables.

and/or biomass accumulation in sorghum.
Actual Performance: 10/2017) Milestone was met.
Q8: Build value model for Biomarker Assays.
Actual Performance: 10/2017) Milestone was met.
Q9: Demonstrate continuing external market interest for 2018.
Actual Performance: (1/2018) Milestone was met.
Q9: Progress against engagement plan reported.
Q10: Deliver analyses estimating the value of hybrid development progress and
update options for commercial
implementation. The value of future salt and drought tolerant hybrid pipeline will be
assessed based on potential new
markets for salt tolerant bioenergy, forage, and grain hybrids worldwide.
Actual Performance: (4/2018) In progress.
Q11: Deliver updated T2M Plan with refined path to market based on discussions
with industry advisors and technical learnings.
Actual Performance: (10/2018) No longer applicable. The original tech-to-market
plan targeting plant breeders has changed since the acquisition of Blue River by John
Deere.
Q11: Identify specific field trials for PoC project with an industry partner (e.g.
Syngenta)
Actual Performance: (10/2018) No longer applicable.
Q11: Deliver analyses estimating the value of hybrid development progress and
update options for commercial implementation. The value of future salt and drought
tolerant hybrid pipeline will be assessed based on potential new markets for salt
tolerant bioenergy, forage, and grain hybrids worldwide.
Actual Performance: (10/2018) Chromatin is currently evaluating their field
experiments and correlating with drone data.
011: Deliver schedule and next steps post-project for commercializing salt and
drought tolerant products.
Actual Performance: (10/2018) No longer applicable.
011: Create plan and path forward for commercialization of identified molecular
biomarkers for high-salinity tolerance and/or biomass accumulation in sorghum
(Riomarker-S)
Actual Performance: (10/2018) The salinity field trial at WREC was sampled and
metabolite analyses are ongoing
011: Recommendation for development of assay protocols and metrics for
Biomarker-D and/or Biomarker-S applications in sorghum breeding
Actual Performance: (10/2018) Metabolite features correlating with biomass
accumulation and draught stress have been obtained
012: nort on PoC project with industry partner
Actual Performance: (2/2019) No longer applicable
012: Commercialization of sorghum germplasm with improved drought and salt
tolerance
Actual Performance: (2/2019) KARE and WREC are working with statisticians to
develop a stress index ranking based on regression analyses of high-throughout
nhenotynic data collected on weekly basis from drone fly-byes
Ω
drought tolerant products
Actual Performance: (2/2019) No longer applicable
012: Commercialization of deliverables from molecular phenotyping
Actual Derformance: (2/2010) No longer applicable
O12: Build value model for Biomarker Applications
Actual Porformance: (2/2010) No longer applicable
Actual Fertormance: (2/2019) NO longer applicable.

2. Sensor Platform	Q1: Build UAS system capable of collecting, storing, & transmitting field phenotypic
	data.
	Actual Performance: (1/2016) Milestone was met.
	Q1: Provide ARPA-e with updated sensor calibration protocol.
	Actual Performance: (1/2016) Milestone was met.
	Q2: Identification of target phenotypes and sensors.
	Actual Performance: (4/2016) Milestone was met.
	Q3: None
	Q4: None.
	Q5: Demonstrate data capture rate of 1x/day, 2x/week in the field with 70%
	reliability.
	Actual Performance: (1/2017) Milestone was met.
	Q5: Autonomously fly using GPS waypoints, covering at least one field per day (>2
	acre, ~900 plots) and two fields per week.
	Actual Performance: (1/2017) Milestone was met.
	Q5: LiDAR and multispectral imaging achieves target spatial resolutions for year 1
	(see Robotics and Sensing Workbook).
	Actual Performance: (1/2017) Milestone was met.
	Q5: For 10 consecutive measurements on five different targets, achieve multispectral
	reflectance repeatability and LiDAR repeatability at target metric (see Robotics and
	Sensing Workbook).
	Actual Performance: (1/2017) Milestone was met.
	Q5: Georeferenced data is sufficiently accurate to extract plot-level phenotypes
	(RMSE < 0.3 m horizontal positional accuracy).
	Actual Performance: (1/2017) Milestone was met.
	Q5: Provide ARPA-E with updated sensor calibration protocol.
	Actual Performance: (1/2017) Milestone was met.
	Q6: Integrate thermal camera into UAS system (mechanical, electrical, firmware
	integration) and characterize water stress accuracy using ground-truthing.
	Actual Performance: (4/2017) Milestone was met.
	Q6: ARPA-E approval of updated Robotics and Breeding workbook containing target
	phenotypes and associated sensors.
	Actual Performance: (4/2017) Milestone was met.
	Q7: None.
	Q8: Integrate thermal camera in to UAS system and characterize water stress
	accuracy using ground truthing.
	Actual Performance: (10/2017) Milestone was met.
	Q8: Autonomously fly throughout the season, demonstrating coverage at least once
	per week of target field (>2 acre).
	Actual Performance: (10/2017) Milestone was met.
	Q8: Collect UAS data at two corn breeding locations in Midwest with industry partner.
	Actual Performance: (10/2017) Milestone was met.
	Q8: ARPA-E approval of the sensor suite and target phenotypes for the next
	generation design of the UAS system.
	Actual Performance: (10/2017) No changes to sensor suite.
	Q8: Provide ARPA-E with updated sensor calibration protocol.
	Actual Performance: (10/2017) No changes to sensor calibration protocols.
	Q9: Demonstrate data capture rate of 2x/day, 2x/week at a vehicle speed of at least
	1.5m/s with 85% reliability. Collect data at a second sorghum site at Chromatin near
	Lubbock, TX with 85% reliability, in addition to KARE and WREC.
	Actual Performance: (1/2018) Milestone was met.
	Q9: Thermal, LiDAR, and multispectral imaging achieves target spatial resolutions for
	year 2.

	Actual Performance: (1/2018) Milestone was met.
	Q9: Achieve canopy temperature measurement repeatability for 10 consecutive
	measurements.
	Actual Performance: (1/2018) Milestone was met.
	Q10: None.
	Q11: Collect data at a second sorghum site at Chromatin near Lubbock, TX, with 85%
	reliability (in addition to KARE and WREC sites near Fresno, CA). Reliability is defined
	as 8.5 out of 10 collection days result in all sensors producing
	usable data.
	Actual Performance: (10/2018) Milestone was met.
	011: Performer Input: No longer applicable, please see Milestone 1.9.
	Collect UAS data at two corn (maize) breeding locations in the Midwest in
	nartnershin with Syngenta or other industry nartner
	Actual Performance: (10/2018) No longer applicable
	012: Collect LIAS data at two corp (maize) breeding locations in the Midwest in
	partnership with Suprents or other industry partner
	Actual Performance: (2/2010) No longer applicable
2 Data Analytics	
5. Data Analytics	Q1. None.
	Q2. None
	Q3. None.
	Q4. Demonstrate data transfer from OAS to field office to server.
	Actual Performance: (1/2017) Milestone was met.
	Us: Demonstrate image data is extracted from the correct plot (requires both
	airborne and ground-based plot map to be accurate) with 95% reliability.
	Actual Performance: (1/2017) Milestone was met.
	Q5: Yearly rank sensors and data streams, cost benefit analysis of each
	sensor/phenotype (e.g. pareto optimization front).
	Actual Performance: (1/2017) Milestone was met.
	Q5: Validate that high-throughput height and leaf area measurement accuracies are
	equivalent to those of current best practices in field-based (not high-throughput)
	phenotyping [R2 > 0.95 and RMSE < 10% for plot-average height and LAI].
	Actual Performance: (1/2017) Milestone was met.
	Q5: Achieve correlation of terminal harvest biomass equivalent to current research
	methods (R2 > 0.95, Gitelson et al 2003 GRL).
	Actual Performance: (1/2017) Milestone was met.
	Q5: Prediction of heights and leaf area distributions of 3D canopy structure at target
	metric (see Robotics and Sensing workbook).
	Actual Performance: (1/2017) In progress.
	Q5: Predict terminal biomass yield of individual lines from early season field data
	(first half of growing season); Validate algorithms using field data that
	match current state of the art growth models.
	Actual Performance: (1/2017) In progress.
	Q5: Process and store genomics data. All bioinformatics/genomics code targeted for
	efficient parallelization and cloud based options.
	Actual Performance: (1/2017) Milestone was met.
	Q6: Update the genomics strategy and goals for the project in the broader TFRRA
	effort.
	Actual Performance: (4/2017) In progress.
	07: Determine population structure, and relevant GWAS/GS algorithms for selected
	sorghum.
	Actual Performance: (7/2017) Milestone was met.
	08. Validate stand count and early plot quality in field corp
	contrained count and carry plot quality in field collin.

Actual Performance: (10/2017) Milestone was met
Ω_{8} : Discover >100 new alleles and genetic markers linked to biomass levels or other
kay nhanotynes
Actual Performance: (10/2017) Milestone was met
Og: Process 1 week's data within 48 hours within target accuracy metrics
Actual Performance: (1/2018) Milestone was met
Q: Voarly rank concorr and data streams, cost honofit analysis of each
concer/nhonetune
Actual Performances (1/2018) Milestone was mot
Actual Performance: (1/2016) Milestone was mer.
Q9: Drought tolerance metrics: validate canopy temperature and lear water potential
Actual Derfermennen (1/2018) in programs
Actual Performance: (1/2018) III progress.
Q9: Achieve >= 10% improvement in accuracy (Rivise) of terminal narvest biomass
compared to year 1.
Actual Performance: (1/2018) In progress.
Q9: Demonstrate >= 10% improvement in predictive accuracy compared to year 1. Actual Performance: (1/2018) In progress.
Q9: Create GS model to predict performance from genotype and select lines for
future crosses. Identify at least one marker useful for breeding decisions for each
phenotype.
Actual Performance: (1/2018) In progress.
Q9: Repeat GWAS analysis with each year of field data to identify the most robust
genetic associations and genetic associations influenced by annual environmental
variation.
Actual Performance: (1/2018) In progress.
Q10: None.
Q11: Drought tolerance metrics: validate that canopy temperature measurements
and leaf water potential estimates from UAS have correlations of R2 > 0.80
(equivalent or better than current research). These phenotypes are new to
commercial field-based phenotyping and thus have no current best practice metric.
Actual Performance: (10/2018) We have validated that the canopy temperature
measurements are well correlated to field measurements. Due to a change in
priorities of Syngenta, our industry partner at the time, the thermal imaging in
general and particularly the leaf water potential calibration was deemed lower
priority.
Q11: Validate lodging as a trait in field corn (see Robotics and Breeding workbook for quantitative metrics).
Actual Performance: (10/2018) In July 2017 exploratory data was collected at a corn
field in Stanwood, IA that had experiencedlodging due to a weather event. However
due to the inherent time lag in scouting the lodged field and deploying the
team to the site most of the field had started recovering from the lodging event. The
data was planned to be used to explore how to model lodging as a trait. Due to the
change in focus after the Deere acquisition and decision not to
continue with a Syngenta BoC project in 2018, the milestone is no longer applicable
Continue with a syngenta FOC project in 2018, the innestone is no longer applicable. O(11): Achieve > 10% improvement in accuracy (RMCE) of terminal baryest biomass
Q11: Achieve 2 10% improvement in accuracy (Rivise) of terminal harvest biomass
Compared to year 1. Biomass will bevalldated as described in the Robotics and
Breeding Workbook.
Actual Performance: (10/2018) IVIIIestone was met.
Q11: Demonstrate \geq 10% improvement in predictive accuracy compared to year 1.
Actual Performance: (10/2018) Due to a change in priorities of Syngenta, our industry
partner at the time, we have not investigated predicting terminal biomass from early
season field data.

	Q11: Create GS model to predict performance from genotype and select lines for
	future crosses. Identify at least one marker useful for breeding decisions for each
	phenotype.
	Actual Performance: (10/2018) This milestone has been delayed due to the fact that
	the postdoc working on this left for an industry position and it took 8 months to hire
	a replacement.
	Q12: Develop algorithms to estimate select phenotypes.
	Actual Performance: (2/2019) We have validated that the canopy temperature
	measurements are well correlated to field measurements. Due to a change in
	priorities of Syngenta, our industry partner at the time, the thermal imaging in
	general and particularly the leaf water potential calibration was deemed lower
	priority.
	Q12: Demonstrate \geq 10% improvement in predictive accuracy compared to year 1.
	Actual Performance: (2/2019) Milestone was met.
	Q12: Create GS model to predict performance from genotype and select lines for
	future crosses. Identify at least one marker useful for breeding decisions for each
	phenotype.
	Actual Performance: (2/2019) This milestone has been delayed due to the fact that
	the postdoc working on this left for an industryposition and it took 8 months to hire a
	replacement.
	Q12: Identify robust genetic associations and environmentally variable genetic
	associations.
	Actual Performance: (2/2019) Milestone was met.
4. Germplasm	Q1: Increase proposed germplasm for use.
Development	Actual Performance: (1/2016) Milestone was met.
	Q1: Identify and begin preparation of screening sites at Westside and Kearney REC
	Centers.
	Actual Performance: (1/2016) Milestone was met
	Q1: Send photoperiod sensitive sorghum lines to Winter Nursery in Puerto Rico for
	seed increase.
	Actual Performance: (1/2016) Milestone was met
	Q1: Select sorghum lines for field sampling.
	Actual Performance: (1/2016) Milestone was met
	Q2: Participate in TERRA program genetics coordination plan to determine the
	sorghum germplasm to characterize.
	Actual Performance: (4/2016) Milestone was met.
	Q3: Identify and begin preparation of screening sites at Westside and Kearney REC
	Centers.
	Actual Performance: (7/2016) Milestone was met.
	Q3: Planting of screening nurseries for initial screening and evaluation of selected
	germplasm sources for pre- and post-flowering.
	Actual Performance: (7/2016) Millestone was met.
	Q3: Genotype reference sorgnum lines and relevant accessions.
	Actual Performance: (7/2016) Millestone on track to be completed (was completed in
	August).
	Q4: SNP proming of > 1,000 sorgnum lines by APERI GBS of other metrics agreed by
	the rentra genetics coordinating committee (not including lines genotyped by other
	Carriers.
	lines to be sent out for genotyping)
	04: Metabolite and protein profiles from sorghum lines during pon-stressed
	conditions and during drought acclimation.
	Q4: Metabolite and protein profiles from sorghum lines during non-stressed conditions and during drought acclimation.

Actual Performance: (10/2016) Metabolite profiles obtained. Due to the reduced
award size, we decided not to pursue protein profiling.
Q5: 1st Harvest yield and plant data, process for quality parameters and
characterization, and perform initial statistical analyses.
Actual Performance: (1/2017) Milestone was met.
Q5: Bag, bulk, and store seed of PS lines if necessary.
Actual Performance: (1/2017) Milestone was met.
Q5: SNP profiling of > 1.000 sorghum lines by APEK1 GBS or other metrics agreed by
the TERRA genetics coordinating committee (not including lines genotyped by other
teams).
Actual Performance: (1/2017) Milestone was met.
Q6: Based on initial phenotypic screening, planting of second year of both drought
and salt tolerant screening nurseries.
Actual Performance: (4/2017) In progress.
Q6: Identify commercial hybrid from Chromatin to add to screening nurseries for
drought and salinity testing. Additionally, identify known cultivars as baseline for
drought and salinity tolerance. Performed in Y2 and Y3.
Actual Performance: (4/2017) Milestone met.
Q6: Identification of > 5 metabolite and/or protein biomarkers from drought-stress
field trials that correlate with drought tolerance and/or terminal biomass yield
(r>0.7).
Actual Performance: (4/2017) In progress.
Q7: Based on initial phenotypic screening, planting of second year of both drought
and salt tolerant screening nurseries.
Actual Performance: (7/2017) Milestone met.
Q7: Identification of > 5 metabolite and/or protein biomarkers from drought-stress
field trials that correlate with drought tolerance and/or terminal biomass yield
(r>0.7).
Actual Performance: (7/2017) In progress.
Q8: Establish nurseries to screen for salinity tolerance.
Actual Performance: (10/2017) Milestone met.
Q8: Identify drought tolerant cultivars with less than 40% reduction in biomass yield
compared with irrigated (control) treatments.
Actual Performance: (10/2017) Milestone met.
Q8: Harvest nurseries at Chromatin, KARE, and WREC.
Actual Performance: (10/2017) Milestone met.
Q8: Isolate RNA from lines that we will propose to sequence through the JGI CSP.
Actual Performance: (10/2017) In progress.
Q8: Validation of biomarker results (r>0.7).
Actual Performance: (10/2017) In progress.
Q9: Identify commercial hybrids from Chromatin to add to screening nurseries for
drought and salinity testing.
Actual Performance: (1/2018) In progress.
Q9: Metabolite and protein profiles from sorghum lines during non-stressed
conditions and during acclimation to salinity stress.
Actual Performance: (1/2018) Sampling at Westside could not be managed due to
logistic reasons and lack of manpower. (Sampling at KARE required all available
resources).
Q10: Identify commercial hybrids from Chromatin to add to screening nurseries for
drought and salinity testing.
Actual Performance: (4/2018) In progress.
Q11: Establish nurseries to screen for salinity tolerance
Actual Performance: (10/2018) Milestone was met.

O11: Harvest nurseries at Chromatin (TX), KARE (CA) and WREC (CA)
Actual Performance: (10/2018) Nurseries at KARF and WRFC will be harvest
completely by the first week of November. Foragesamples from the Evotic parents
which are photoperiod sensitive have been harvested weighed dried and weighed
again and dried samples are being shinned to Chromatin for NRI analyses for
compositional characteristics related tobioenergy production
O11: Metabolite and protein profiles from sorghum lines during pon-stressed
conditions and during acclimation to calinity stross
Actual Derformences (10/2019) Milestone was met
Actual Performance: (10/2018) Milestone was met.
Q11: Identification of 25 metabolite and/or protein biomarkers from salt-stress field
trials that correlate with high-salinity tolerance and/or terminal biomass yield (r>0.7).
Actual Performance: (10/2018) In progress.
Q11: Validation of biomarker results (r>0.7).
Actual Performance: (10/2018) In progress.
Q11: Validation of biomarker results for drought and/or salt-stress treatments (r>0.8)
as part of a protocol for biomarker-assisted breeding.
Actual Performance: (10/2018) Eight leaf replicates from 120 Sorghum genotypes
(~4,000 leaf samples) were harvested at two time points (pre-and post-flowering
drought) from KARE drought nurseries in 2017. All 4,000 leaf samples were
lyophilized ground and cataloged for various downstream analysis. A subset of 40
high-priority genotypes were identified based on the drone-derived wet-biomass
(BWET) values from well-watered controls (BWETWW) and pre-flowering
droughtexposed plants.
Q12: Identify drought tolerant cultivars
Actual Performance: (2/2019) Milestone was met.
Q12: Identify saline tolerant cultivars.
Actual Performance: (2/2019) In progress.
Q12: Metabolite and protein profiles from sorghum lines during non-stressed
conditions and during acclimation to salinity stress.
Actual Performance: (2/2019) Samples have beemn collected and are stored in the
freezers. However, no funding remains for analyses.
012: Untargeted metabolite and protein profiling of field samples from different
developmental stages under non-stressed and drought conditions
Actual Performance: $(2/2019)$ We processed and analyzed ~ 4 000 samples from the
2017 field trial Spearman Bank correlations between 11 579 metabolite features and
drope data for biomass accumulation revealed 40 bighly correlated features (a>0.7 or
anone data for biomass accumulation revealed 40 mgmy correlated reatures (p -0.7 or < 0.7); all but one are unknown
~ 0.7 , an but one are unknown. 0.12: Validation of biomarkor results (r>0.7)
Actual Derformance (2/2010) No longer analisable
Actual Performance: (2/2019) No longer applicable.
Q12: validation of biomarker results for drought and/or salt-stress treatments (r>0.8)
as part of a protocol for biomarkerassisted breeding.
Actual Performance: (2/2019) No longer applicable.

Project Activities

The goal of CASP was to accelerate breeding of biomass sorghum [*Sorghum bicolor* (L.) Moench] by identifying genotypes exhibiting high yield under well-watered, pre- or post-drought and/or salinity-stress conditions. We did this by combining high-throughput, non-invasive drone phenotyping with genomics and molecular profiling. Genotyping by sequencing (GBS) and GWAS based on drone data from the 648 genotypes yielded 213 high quality, reliable GWAS peaks for single-nucleotide

polymorphisms (SNPs) associated with biomass and/or drought tolerance traits. A subset of 120 genotypes based on drone and GWAS data were selected for molecular phenotyping, which yielded data sets of around 12,000 metabolite. The molecular profiling, in combination with GWAS, has the potential to provide mechanistic understanding for genes and pathways responsible for high biomass accumulation in sorghum on marginal land. This information can be utilized for identifying sorghum cultivars with desirable phenotypes solely based on genomic, protein and/or metabolite data.

Project Outputs

Publications

- Handakumbura P.P. et al. Plant iTRAQ-based proteomics. (2017) Curr. Protocols Plant Biol. 2, 158-172, <u>https://doi.org/10.1002/cppb.20052</u>
- Spindel, J. E. et al. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. (2018) BMC Genomics 19, <u>https://doi.org/10.1186/s12864-018-5055-5.</u>
- Photosynthesis in Sorghum by Combining C₃ and C₄ Metabolism. (2019) *In* Oxygen Production and Reduction in Artificial and Natural Systems. Ruban, A.V. Ed. Chapter 19, pp 397-412. World Scientific Publishers, <u>https://www.worldscientific.com/doi/abs/10.1142/9789813276925_0019</u>

Status Reports

Quarterly reports to ARPA-E.

Follow-On Funding

N/A

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov