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Summary 
The overall goal of the Mesoscale-to-Microscale Coupling (MMC) project is to improve coupling 
between mesoscale and microscale simulations via improved guidance and new strategies for 
setting up simulations and the development of new tools that can be used across the 
community. Including the mesoscale forcing is critical to modeling the full energy transfer across 
scales in the atmosphere. The project-specific objectives include: 

• Apply rigorous verification and validation (V&V) techniques to the new modeling tools that
are developed as part of the project to ensure the accuracy of our codes and results and
develop estimates of the relative uncertainty.

• Improve computational performance of the coupled MMC models through the development
of methods that can be used to reduce turbulence spin-up time and hence the size of
computational domains.

• Improve representation of the surface layer in microscale models to enhance simulations of
hub-height wind speed.

• Develop guidance for the community describing the best ways to couple mesoscale and
microscale models, including specific spatial scales at which the handoff to the microscale
model should occur.

• Prepare documentation and a suite of software tools that can be used across the
community.

• Transition MMC research to the offshore environment.

Major progress was made in each of these areas during FY19. Two coordinating initiatives 
position the team for making important contributions that can be easily transitioned to industry 
use. The first of these initiatives is building an MMC-specific Phenomena Identification and 
Ranking Table (PIRT) that allows us to identify the most important areas for research. The PIRT 
identified that offshore wind issues are important, but not yet modeled or validated well at this 
time. Specific phenomena to pursue include low-level jets, land-sea breezes, weather fronts, 
tropical cyclones, Nor’easters, thermal pooling and terrain-gap flows, icing and precipitation, 
surface energy and momentum exchange, air-water-wave interactions, and roughness and 
canopy effects. The second major initiative was to compile and archive MMC code in a GitHub 
repository that forms the basis of the code and toolset that is being transitioned to industry. This 
repository includes assessment tools in the form of Jupyter notebooks written in Python that 
enable reproducible comparisons of multiple techniques. It also includes a common base of the 
Weather Research and Forecasting (WRF) model that is our mesoscale solver. This MMC 
version is based on WRF v4.1, includes MMC-specific upgrades and additions, and is 
accompanied by a “setups” repository. These major initiatives enable all of the objectives listed 
above. 

Progress has been made on the mesoscale modeling side of the project in terms of advancing a 
fully three-dimensional version of the planetary boundary layer (3D PBL) scheme for WRF that 
began during the second Weather Forecast Improvement Project (WFIP 2) project. The scheme 
does not assume horizontal homogeneity as do the current PBL schemes, which is critical as 
mesoscale modeling proceeds to finer scales. During FY19, the team ported the 3D PBL code 
to WRF v4.0.3 and thoroughly tested it, implemented and tested a substepping scheme, 
implemented prognostic turbulence kinetic energy (TKE) computation, and advanced the ways 
that the surface boundary conditions are handled by the scheme. The team also made progress 
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on machine-learning surface layer schemes for WRF to replace the traditional Monin-Obukov 
Similarity Theory (MOST) approach. Both random forests and artificial neural networks can be 
trained to predict friction velocity, temperature scale, and moisture scale, even improving on 
MOST for flat-terrain sites different than those on which the models were initially trained. 

Major efforts were put into rigorous, systematic comparisons of multiple techniques in two major 
areas in FY19. The first major area was in the coupling techniques themselves. Coupling 
configurations that were tested include WRF to WRF-Large-Eddy Simulation (WRF-LES), WRF 
to the Simulator fOr Wind Farm Applications (SOWFA) in a few configurations, WRF to Nalu-
Wind, and Observations to SOWFA. This comparison will be completed in FY20. Additional 
coupling work includes: 
1. Development of the “profile assimilation technique” and further examined and documented

best practices for the “budget component approach.”
2. Study of the effect of complex terrain in creating turbulence in the microscale domain when

mesoscale inflow that lacks resolved turbulence is applied as inflow.
3. Advanced methods to handle atmospheric gravity waves within the microscale domain.
4. Examination of the effect of the activation or deactivation of the atmospheric physical

process parameterizations within the microscale domain that may impact the formation of
turbulence and other phenomena of importance to wind energy.

The second major area of intercomparison was in initiating turbulence at the microscale that is 
not resolved at the mesoscale. Methods include stochastic perturbations in the thermal field, 
stochastic perturbations in the momentum field, and generating turbulence using synthetic 
methods, such as the Mann or TurbSim methods. The intercomparison has been greatly 
facilitated by the common assessment tools, and this work will be completed and published in 
FY20. 

At the microscale, the team compared Nalu-Wind to several other microscale solvers, following 
up on the team’s previously published work (Mirocha et al. 2018). Nalu-Wind’s predictions of the 
wind speed profile were generally found to be as consistent with the observed wind speeds as 
the results of the previously tested microscale solvers, but some potential areas for 
improvement were also identified. Further evaluation of Nalu-Wind for simulation of atmospheric 
boundary layers is planned using both canonical flow configurations and coupled runs with 
realistic forcing derived from mesoscale simulations.  

Team members also constructed a “lidar simulator” within the WRF model that allows direct 
comparison of MMC simulations to scanning lidar data, allowing a more complete picture of the 
turbulence field than available from point observations. Analysis showed that the orientation and 
size of both simulated and observed spatial structures resulting were found to be similar.  

To quantify the uncertainty in the MMC simulations, the team took a parametric approach to 
analyzing the effect of choice of parameters, focusing on the WRF model in FY19. An ensemble 
of several dozen coupled WRF/WRF-LES simulations of a convective boundary layer observed 
during the WFIP 2 campaign was performed, varying key parameters of a common turbulent 
kinetic energy-based subgrid-scale (SGS) closure. Parameter sensitivity was evaluated 
considering different LES grid resolutions, observation locations, and sensitivity analysis 
methods. The robustness of these findings for onshore cases will be assessed by performing 
additional case studies. 



Summary iv

To assure that the MMC efforts remain relevant to the wind industry, the team held three 
webinars with industry, both to present our most recent advances and to solicit feedback from 
industrial partners on their needs and where they see the most useful advances. In addition, 
MMC formed an industrial advisory panel, including six members that represent wind-plant 
developers, turbine manufacturers, and wind power forecasters. This panel is helping to plan an 
industry workshop to be held in 2020. 

Finally, the team began the pivot toward studying MMC processes for the offshore environment 
during FY19. As stated above, the PIRT analysis identified the offshore environment as ripe for 
advance. As the team winds up the onshore efforts, the members are also beginning the 
process of identifying appropriate data, constructing machine-learning models of the offshore 
surface layer, testing fully coupled simulations for an offshore case, and using actuator disk 
codes to simulate turbines in both WRF-LES and Nalu-Wind. This planned initial case study will 
further inform where to focus resources to make the most important progress. 

The MMC team continues to work collaboratively and has determined strategies to work through 
the remaining issues required to optimally provide coupled model simulations, including for the 
offshore environment. These simulations and advances in technologies will provide the wind 
industry new tools that can be used in the planning, design, layout, and optimization of wind 
plants, thus facilitating deploying higher capacities of wind generation. 
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Acronyms and Abbreviations 
ABL atmospheric boundary layer 
AMS American Meteorological Society 
ANN Artificial neural networks 
AR aspect ratio 
CBWES Columbia Basin Wind Energy Study 
CPC Cell Perturbation Case 
CVFEM control volume finite element method 
DAP Data Archive and Portal 
DOE Department of Energy 
DRM dynamic reconstruction model 
EBVC edge-based vertex-centered 
ERF Energy Research and Forecasting (model) 
ESIG Energy Systems Integration Group 
GFS Global Forecasting System 
GLM generalized linear model 
HFM High-Fidelity Modeling 
IEC International Electrotechnical Commission 
LANL Los Alamos National Laboratory 
LBC lateral boundary conditions 
LES large-eddy simulation 
LLNL Lawrence Livermore National Laboratory 
LOS line of sight 
MMC Mesoscale-to-Microscale Coupling 
MOST Monin-Obukov Similarity Theory 
MY Mellor-Yamada 
MYNN Mellor-Yamada-Nakanishi-Niino 
NARR North American Regional Reanalysis 
NCAR National Center for Atmospheric Research 
NREL National Renewable Energy Laboratory 
NTC Nonturbulent Case 
PAT profile assimilation technique 
PBL planetary boundary layer 
PDF Probability density functions 
PIRT Phenomena Identification and Ranking Table 
PNNL Pacific Northwest National Laboratory 
POD proper orthogonal decomposition 
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PPI plan position indicator 
RF random forecast 
RMSE root-mean-square errors 
RRTMG Rapid Radiative Transfer Model for GCM [general circulation model] 
RSFS resolvable subfilter-scale 
RWP Radar Wind Profiler 
SCPM stochastic cell perturbation method 
SGS subgrid scale 
SOWFA Simulator fOr Wind Farm Applications 
SWiFT Scaled Wind Farm Technology 
TC Turbulent Case 
TI turbulence intensity 
TKE turbulent kinetic energy 
TTU Texas Tech University 
UQ uncertainty quantification 
V&V verification and validation 
WRF Weather Research and Forecasting 
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1.0 Introduction 
1.1 Purpose of the Mesoscale-to-Microscale Coupling Project 

The overall goal of the Mesoscale-to-Microscale Coupling (MMC) project is to improve coupling 
between mesoscale and microscale simulations via improved guidance and new strategies for 
setting up simulations and the development of new tools that can be used across the 
community. While significant progress was made during Phase 1, there remain a number of 
open science questions that are being addressed during Phase 2. This second phase will 
culminate in producing well-validated tools with the uncertainty quantified as well as validation 
cases that will be useful to industry. The project-specific objectives include: 

• Apply rigorous verification and validation (V&V) techniques to the new modeling tools that
are developed as part of the project to ensure the accuracy of our codes and results and
develop estimates of the relative uncertainty.

• Improve computational performance of the coupled MMC models through the development
of methods that can be used to reduce turbulence spin-up time and hence the size of
computational domains.

• Improve representation of the surface layer in microscale models to enhance simulations of
hub-height wind speed.

• Develop guidance for the community describing the best ways to couple mesoscale and
microscale models, including specific spatial scales at which the handoff to the microscale
model should occur.

• Prepare documentation and a suite of software tools that can be used across the
community.

• Transition MMC research to the offshore environment.

As it is designed, the project addresses the significant technology barrier associated with the 
application of coupled modeling systems. Existing systems are complicated to evaluate and 
use; hence, the primary goal of this project is to help break down that barrier by providing 
guidance related to best practices, revised software tools, and evaluation data sets that can be 
used by the community. The technology maturation plan is straightforward and consists of 
documentation and tools described below that can be distributed to the community.  

Realizing these objectives will enable simulation of the full suite of mesoscale and microscale 
flow characteristics affecting turbine and wind-plant uncertainties and performance, thereby 
allowing for substantive improvements in wind-plant design, operation, and performance 
projections. Figure 1.1 diagrams the MMC approach to the project and demonstrates the 
integration between the objectives. The work is grounded in data from field sites and 
experiments and culminates in new documentation, guidelines for best-practice model use, 
software tools, and data sets for testing.  
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Figure 1.1. Diagram of the MMC project approach of using case studies to address the 
challenges of mesoscale-to-microscale wind-plant simulation challenges. 

1.2 Motivation for Coupled Modeling 

Coupling mesoscale (grid spacing on the order of kilometers) and microscale (grid spacing on 
the order of meters to tens of meters) models is an important step forward for the wind power 
industry. Appropriate techniques and tools are needed to better understand the turbulent wind 
flow into and within the wind plant, which impacts energy transfer between scales and, 
ultimately, the amount of energy available to harvest. The ability to couple these scales is 
particularly important for nonstationary meteorological conditions (such as frontal passages, 
thunderstorm outflows, baroclinic systems, and low-level jets) or when considering changes of 
atmospheric stability associated with the diurnal cycle. Improved estimates of the driving flow 
are needed to optimize wind-plant and turbine siting, design, and operation. During the first 
phase of the Atmosphere to Electrons (A2e) MMC project, important progress was made by our 
team in a number of key areas that are highlighted later in this section.  

However, even with these advances, some significant challenges remain that include: 
1) providing appropriate and consistent boundary and initial conditions; 2) bridging the so-called
terra incognita (Wyngaard 2004)—that range of spatial scales between about 100 m and the
depth of the boundary layer that is problematic for boundary-layer parameterizations applied in
mesoscale models; 3) initializing turbulence at the correct spatial and temporal scales in the
microscale models; 4) testing appropriate coupling methodologies; and 5) quantifying the
uncertainty of the methods. The MMC team’s integrated approach to addressing these
challenges has been, and will continue to be, grounded in data. The team seeks to leverage
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Department of Energy (DOE)-supported field studies, including at the Scaled Wind Farm 
Technology (SWiFT) facility site in Texas and the second Wind Forecast Improvement Project 
(WFIP 2) in the complex terrain of the Pacific Northwest, to select case studies that facilitate 
addressing the challenges. Through these case studies, the different approaches can be 
systematically tested and assessed using metrics specific to wind-plant operations. Figure 1.2 
illustrates key elements of this approach. 

Figure 1.2. Depiction of overarching project goal, tasks, and planned outcome. 

1.3 MMC Project Context within the Atmosphere to Electrons 
Initiative 

The A2e initiative is an effort within the Wind Energy Technologies Office of the U.S. 
Department of Energy’s (DOE’s) Energy Efficiency and Renewable Energy Office, whose goal is 
to optimize power production from wind plants as a whole. To that end, the initiative is explicitly 
integrating advances in atmospheric sciences, wind-plant aerodynamics, and wind-plant control 
technologies, taking advantage of current and emerging capabilities for high-performance 
computing. Because atmospheric inflow is the fuel that powers wind plants, containing both the 
energy available for conversion into electricity, as well as characteristics that modulate that 
conversion, the development and validation of first-principles based, high-fidelity physics models 
within an open-source simulation environment have been identified as a crucial part of A2e 
science goals and objectives. Furthermore, there has been an overwhelming consensus within 
the research community that these models must be developed and systematically validated 
using a formal verification and validation (V&V) process plus uncertainty quantification. The 
MMC project was intended to provide an initial demonstration of the V&V-guided approach to 
model development specifically applied to the mesoscale-microscale coupling problem and to 
provide the foundation for the ultimate selection of a common framework for the development of 
atmospheric and wind-plant modeling within the A2e initiative. It has been a joint collaborative 
project between DOE national laboratories, with National Center for Atmospheric Research 
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(NCAR) leadership as a subcontractor, and incorporating external feedback from A2e team 
members, the merit review panel, industry, DOE leadership, and other stakeholders.  

The MMC project is grounded in data provided by other A2e facilities and projects. For the first 
two years, the data emphasized measurements taken at the SWiFT facility in West Texas. The 
MMC modeling helped characterize and inform the wake dynamics experiments being 
accomplished at that site and its results are expected to contribute to modeling wake dynamics. 
In years 3 and 4, the MMC project focused on coupled modeling in complex terrain, using data 
derived from observations taken in the Pacific Northwest as part of the A2e project, WFIP 2. 
Including mesoscale forcing in microscale models will also become critical to the success of the 
A2e project when focusing on wind-plant controls. Most prominently, the very specific coupling 
and modeling philosophies and technologies being developed by the MMC project are 
necessary for building the high-fidelity modeling tools that are needed by researchers and 
industry. The results of MMC modeling and case studies are being archived in DOE’s Data 
Archive and Portal (DAP), and code is being provided via a team GitHub repository.  

1.4 Progression of the MMC Project 

During the first phase of the MMC project, our team made a number of significant 
accomplishments: 

• Down-selected the mesoscale model to be the Weather Research and Forecasting (WRF)
model and initiated plans to transition changes to the A2e Energy Research and Forecasting
(ERF) model (via a separately funded project).

• Down-selected microscale model to Nalu, which is adopting the wind-plant modeling
capabilities of Simulator fOr Wind Farm Applications (SOWFA) [in collaboration with the A2e
High-Fidelity Modeling (HFM) project].

• Established metrics for verification and validation of these models relevant to wind-plant
simulations and the coupling mechanism, including evaluating turbulence.

• Developed, tested, and evaluated various methods to couple mesoscale-to-microscale
simulations, determining that online coupling is needed within WRF into the LES scales and
that applying tendency mesoscale forcing in NREL’s SOWFA allows the LES model to follow
the nonstationary behavior of WRF for diurnal cycle cases in flat terrain.

• Developed, tested, and evaluated various methods of initializing turbulence in the
microscale models that is subgrid to the mesoscale models, finding that perturbations that
are a combination of temperature and momentum induce turbulence at the correct scales.

• Developed, tested, and evaluated methods to deal with spurious rolls resulting from models
with grid spacing in the terra incognita. Showed that the upper end of the terra incognita is
roughly equal to the boundary-layer depth. Found that in most cases it is possible to
configure WRF to skip grid spacings in the terra incognita.

• Demonstrated and evaluated running coupled simulations for complex terrain associated
with WFIP 2.

• Explored methods to better represent the surface layer in both mesoscale and microscale
simulations.

These results were presented to the community through a series of articles in peer-reviewed 
literature (Rai et al. 2016, 2017, 2019; Mirocha et al. 2018; Haupt et al. 2019b; Rodrigo et al. 
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2016; Munoz-Esparza et al. 2015, 2018a; Quon et al. 2018); through presentations at 
conferences, including those of the American Meteorological Society, WindTech, Torque, Wind 
Energy Science, and International Conference on Energy and Meteorology; in PNNL technical 
reports (Haupt et al. 2015, 2017, 2019a); and a series of industry teleconferences. During the 
first phase of this project, the work emphasized atmospheric flow without including turbines. 
Much work remains, however, to develop and optimize a robust, fully coupled modeling system 
that can be used across industry. 

Building on the first phase of the project, the next stages being undertaken in this phase are to 
develop, test, refine, validate, and disseminate specific MMC coupling strategies and 
technologies that can be used across industry as well as providing basic research results and 
enabling reduced-order modeling that can lead to innovative work in wind-plant siting, controls, 
and better understanding the impact of wakes on downstream turbines. Our team will provide 
detailed guidance based on our rigorous research experience and is building new high-
performance-computing-based multiscale wind-plant simulation tools that couple a broad range 
of scales, including interactions across scales, which will enable the optimization required to 
ensure efficient, reliable production and integration of wind power. These tools will be applicable 
for diverse locations (both on and offshore) and operating conditions as required to support wind 
energy integration at high-penetration levels. The simulations will include not only the 
atmospheric flow, but also the wind plant/wake flow, broadening the modeling scope and 
increasing synergy with the A2e wake characterization and validation tasks. The results of the 
research in this project will provide essential input to the production of tools in the ERF and 
HFM tasks. Data and results of the modeling will be archived using the DAP. The tools will 
undergo thorough verification and validation and uncertainty quantification, via a series of 
observation-based case studies with increasing complexity in terms of nonstationarity, terrain, 
offshore influences, and inclusion of actual wind-plant field data. 

1.5 Expected Impacts on Industry 

The expected impact of the MMC project is to advance the science and engineering of coupled 
mesoscale-microscale modeling to provide industry with more advanced wind-plant optimization 
capabilities. Industry stakeholders have made it clear what must be done in terms of better 
modeling of power output. This issue is complex and involves many factors beyond applying a 
simple power curve to a simulated mean wind speed and making small adjustments for 
turbulence. Uncertainties come from many different aspects of the coupling, including 
interannual variability due to longer-term climatic variability, variability in the outer scales that 
are resolved by the mesoscale models, variability due to wake effects, inner variability due to 
the heterogeneity within the wind plant, variability due to coherent structures, inherent 
uncertainty due to the chaotic nature of turbulent flow, and, finally, impacts through the surface-
layer treatment and its interactions with characteristics of the underlying surface. The MMC 
project addresses these issues directly and, over the course of the multiyear project, will be able 
to provide specific guidance to industry. The MMC team developed Table 1.1 as a list of uses of 
the MMC approach, the stakeholder(s), quantities and metrics to assess for each use, and the 
type of uncertainty analysis that will affect power output. 
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Table 1.1. Assessment of stakeholder use and assessment strategies to determine if MMC 
modeling provides useful information for that use. 

MMC Use Stakeholder Quantity to Measure Metrics 
Uncertainty Analysis 

for Power Curve 
Basic understanding 
of physics 

Scientists, Engineers Basic metrics plus 
elevated structures 

Current list plus 
below 

Ensembles—
physics, initial and 
boundary conditions 

Micrositing Developers, 
Contractors, 
Manufacturers 

Binned wind speed, 
spectra, spatial 
variability 

Probability 
structures and 
spatial correlations 

Distributions, 
correlations, spatial 
correlations, 
covariance 

Turbine siting Developers, 
Contractors, 
Manufacturers 

Binned wind speed, 
spectra, spatial 
variability 

Probability 
structures and 
spatial correlations 

Distributions, 
correlations, spatial 
correlations, 
covariance 

Turbine reliability and 
design plus forensics 

Turbine statistics, 
shear, coherent 
structures 

Correlated 
structures to loads 

Distribution 
extremes, wind 
direction variability 

Operations and 
managements, 
controls, loads 

Slow variations, event 
variations, binned 
wind speed, accurate 
turbulence statistics 
plus characterization 
of structures 

Use spatial and 
temporal filters 

Time-dependent 
statistics and 
variability 

Inform low-order 
models: mass 
conserving models, 
Reynolds- averaged 
Navier-Stokes 

Developers, 
contractors, original 
equipment 
manufacturers 

3D wind speed, 
turbulent kinetic 
energy, and surface 
fluxes 

Spatial correlations All 

Both the improved computational methodologies and the knowledge gained through their 
assessment and validation will enable substantive improvements in wind-plant design, 
operation, and performance projections, all of which are required to attract continued investment 
in wind power as a viable means of meeting national goals of mitigating climate change and 
establishing energy independence. 

The successful outcome of the MMC project will result in improved computer simulation 
capability that accurately incorporates the impact of mesoscale weather on wind-plant 
performance. Meeting this goal will require microscale simulations driven by realistic mesoscale 
forcing, knowledge of when the additional complexity of mesoscale coupling is beneficial, and 
recommendations for best practices for modeling across spatial and temporal scales. Over the 
course of this project, the tools and knowledge developed during each phase, outlined above, 
will continue to be made available to industry and the broader research community.  

The MMC team has engaged with industry by participating in the first-year workshop, held in 
September 2015 at NCAR, at which industry representatives were invited to comment on the 
approach and results as well as to suggest changes. In FY16, the MMC team conducted an 
industry survey. During FY17, the team conducted a first telecom with industry to inform them of 
our progress and solicit input. During FY19, three more teleconferences with industry 
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(September 20, 2018, and February 14 and April 18, 2019) demonstrated industry’s interest in 
the team’s research results. The team also formed an industry advisory panel consisting of: 

• Mark Ahlstrom, NextEra, Energy Systems Integration Group (ESIG) President

• Greg Oxley, Envision Energy

• Lawrence Cheung, GE Global Research, US

• Samuel Davoust, GE Renewables

• Line Gulstadt, Vestas

• Philippe Beaucage, UL/AWS Truepower

This advisory committee is helping us to plan and lead an industry workshop in FY20. 

MMC team members have also been actively engaged in organizing and presenting papers at 
major wind industry conferences that were used as forums for bringing the research community 
together with industry during FY19. This was successfully accomplished at the International 
Conference on Energy and Meteorology held in Lyngby, Denmark in June 2019; the Tenth 
Conference on Weather, Climate, and the New Energy Economy held as part of the American 
Meteorological Society (AMS) Annual Meeting in Phoenix, AZ in January 2019; the American 
Institute of Aeronautics and Astronautics in January 2019; at the Wind Energy Science 
Conference in Cork, Ireland in June 2019; and at North American Wind Energy Academy 
(NAWEA)/WindTech in Amherst, MA in October 2019. All of these meetings included 
presentations about the MMC project and afforded ample opportunity for industry 
representatives and team members to discuss the team’s progress and plans. As described in 
more detail in the sections that follow, each of the models and techniques we used are validated 
against a range of metrics to determine their accuracy for a mix of wind-energy-related 
applications. A key outcome of this project is concrete guidance to both industry and research 
communities regarding the potential strengths and weaknesses of various MMC approaches. 
Additionally, the best performing of the approaches assessed will be incorporated into the A2e 
High-Performance Modeling environment for future design and testing. A set of metrics defined 
by the project continues to be refined further as the project progresses into additional realms of 
modeling. 

During FY19, the team moved toward a more distributed management structure to better 
facilitate teamwork across laboratories. The lab leads and NCAR principal investigator and chief 
scientist formed an executive committee. Each committee member was assigned a team 
leadership position. Between the biweekly full team teleconferences, the task-based teams 
would communicate on the specifics of their efforts. Several all-team workshops were held—in 
January and April 2019—which further facilitated face-to-face communication and planning 
details of the work. 

1.6 Report Contents and Organization 

The remainder of this report provides detailed documentation of the results of the MMC project’s 
FY19 effort. The performance metrics were defined at the beginning of the project and updated 
as needed to assess the phenomena mentioned above. The need for uncertainty quantification 
has been an intentional part of the metrics development and plans for model runs in the future. 

During FY19, the MMC generated a Phenomenon Identification and Ranking Table (PIRT) to 
determine the most important issues to address in our future research. The PIRT is presented 
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and discussed in Chapter 2.0. Chapter 3.0 documents the benchmark cases studied during 
FY19 and Chapter 4.0 describes the methods planned for assessment and the movement 
toward using common Python tools in Jupyter notebooks and sharing these tools in a team 
repository. The mesoscale modeling for case days is reported in Chapter 5.0. The results of 
team efforts to rigorously compare coupling methods appear in Chapter 6.0. Chapter 7.0 reports 
on efforts to rigorously compare methods of generating turbulence in the microscale 
simulations. The team also considered best ways to improve our models of near-surface 
physics in FY19, including machine-learning approaches as well as physics methods, as 
described in Chapter 8.0. Chapter 9.0 reports on quantifying uncertainty using a parametric 
approach. A lidar simulator was constructed and tested during FY19, as reported in Chapter 
10.0. Chapter 11.0 compares the A2e HFM model, Nalu-Wind, to the other microscale models 
considered at the beginning of the MMC project and reported in Mirocha et al. (2018). Chapter 
12.0 synthesizes the results and their expected impact. Appendix A lists the team’s FY19 
contributions to the peer-reviewed literature and conference papers presented. Appendix B 
details each lab’s contributions to the FY19 efforts.  
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2.0 Mesoscale-Microscale Phenomena Identification and 
Ranking Table 

2.1 Background 

In FY19, members of the A2e MMC team created an MMC-specific PIRT. The PIRT is a tool to 
help in prioritizing which aspects of the modeling and simulation framework require research 
and development. The one constructed in FY19 for MMC builds on the mesoscale PIRT 
developed during the 2015 A2e ModSim planning meetings. 

The MMC PIRT is structured such that it corresponds to the following three classes of locations: 
1) flat onshore sites, 2) complex terrain onshore sites, and 3) offshore sites. For each of these
locations, there are two classes of phenomena considered: mesoscale and microscale/wind-
plant scale phenomena.

For all three location classes, the microscale/wind-plant-scale phenomena considered are the 
same, but the key mesoscale phenomena vary with location. The rationale is that, in general, no 
matter where a wind plant is located, it reacts to the winds within the atmospheric boundary 
layer (or for very shallow boundary layers, the turbines will also react to the winds just above the 
boundary layer). On the other hand, the mesoscale weather patterns driving the wind resource 
vary greatly from location to location. For example, the eastern coast of the United States is 
prone to hurricanes, a type of mesoscale forcing, but the complex terrain of the central Rocky 
Mountains of the United States is not. 

In the end, a table is created with scores that indicate priority level for the research and 
development of modeling and simulation methods for each listed phenomenon. The table is 
shown below in the discussion section, but first we discuss how the rankings are created. 

2.2 Ranking Method 

Rankings are performed for the following categories: 

• Importance at application level

• Model adequacy

• Physics understanding

• Adequacy of physics in code

• Level of validation

• Ability to transfer relevant phenomena between scales.

2.2.1 Importance at Application Level 

The “Importance at Application Level” ranking category addresses how important the 
phenomena are in the application of mesoscale-microscale coupling. Here, the main application 
is to computationally simulate wind-plant aerodynamics using high-fidelity turbulence-resolving 
methods such as large-eddy simulation. We want to be able to simulate full wind plants under 
the most realistic atmospheric conditions possible where the turbines are represented using a 
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spectrum of models ranging from actuator disks to full geometry-resolved computations. The 
purposes of such simulations include: 1) gaining a better physical understanding of wind-plant 
flows and wind-plant response to the flow, 2) testing new wind-plant optimization ideas under 
realistic atmospheric conditions, 3) performing “forensic” analysis on existing wind plants 
exhibiting unexpected performance, and 4) high-resolution forecasting of wind-plant power 
production. 

2.2.2 Physics Understanding 

The “Physics Understanding” ranking category simply addresses how well we understand the 
physics driving the particular phenomena. For example, the physics of how large wind plants 
affect mesoscale weather is not well understood. 

2.2.3 Adequacy of Physics in Code 

The “Adequacy of Physics in Code” ranking addresses how well the real physics is modeled and 
implemented within the computational tool. For example, perhaps the physics are well 
understood, but they are complex physics that are difficult to replicate computationally or require 
prohibitively high resolution. In that case, models of the physics may not be adequate or may 
perform poorly at normal resolutions. An example of this is stratus-topped atmospheric 
boundary layers, for which the physics are well understood but the resolution requirement to 
resolve the sharp cloud top-free atmosphere interface is very high. 

2.2.4 Level of Validation 

Once a phenomenon is modeled in a code, the results of the model should be compared to 
high-quality data to validate the model. Low scores of “Level of Validation” mean that either 
there are little data from which to perform validation, or that validation has not been performed 
with existing data to the extent required. 

2.2.5 Ability to Transfer Relevant Phenomena Between Scales 

The “Ability to Transfer Relevant Phenomena Between Scales” ranking is especially pertinent to 
MMC work, which wishes to bridge the mesoscale and microscale/wind-plant scale. For 
example, if we wish to determine how a hurricane traveling along the Atlantic coast of the United 
States may affect a wind plant comprised of some proposed 20-megawatt, very large, very 
flexible wind turbines, we may need to model that hurricane with the mesoscale model and then 
transfer the relevant information about that hurricane to the microscale/wind-plant aerodynamics 
simulation tool. This ranking category addresses how well we can currently do this. 

2.2.6 Ranking Method 

All categories are scored on a 0-3 scale, in which 0 means unimportant or inadequate, and 
3 means the category is of the highest importance or adequacy. We then assign a planning 
priority number which is calculated by:  

𝑝 =
(𝑎𝑝𝑝	𝑙𝑒𝑣𝑒𝑙	𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒	 − 𝑚𝑜𝑑𝑒𝑙	𝑎𝑑𝑒𝑞𝑢𝑎𝑐𝑦) 	+ 	3

2
(2.1) 

where p is the planning priority. This equation simply compares the difference in phenomena 
importance at the application level and model adequacy and rescales it to fall on a 0-3 scale. 
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For example, in the extreme, if a phenomenon is of highest importance (ranking = 3), but the 
model is completely inadequate (ranking = 0), then p = 3, meaning that work to improve the 
modeling of this phenomenon should be of highest importance. On the other hand, if a 
phenomenon is not important at all, and the model is very adequate, then p = 0, meaning that 
work to improve the modeling of this phenomenon is not important. 

2.3 Discussion 

Figure 2.1 summarizes the mesoscale-to-microscale-coupling PIRT. The rows correspond to 
different phenomena and are grouped into the mesoscale and microscale/plant-scale 
phenomena. Three columns provide the planning priority for each phenomenon for each 
location: flat onshore, complex terrain onshore, and offshore. The priorities are numerically 
ranked on a scale of 0 to 3 as outlined above, and they are color coded to visually highlight the 
priority. The darker the shade of gray highlighting, the higher is the priority. Not all mesoscale 
phenomena have a priority ranking for each location because they do not necessarily occur in 
all locations. The far-right column represents the mean of the rankings for each phenomenon 
over all locations, which provides an overall sense of how much priority each phenomenon is 
allocated. The last two rows give the sum and mean of the rankings of all phenomena by 
location, presenting a general idea of how much priority is placed on the set of all phenomena 
for a given location. 

Overall, the mean of all prioritizations in order of highest-to-lowest priority is offshore, flat 
onshore, and complex terrain onshore. This is a somewhat surprising result because we would 
have expected complex terrain onshore to rank as having overall higher research and 
development priority over flat onshore. We expect that offshore would rank highly because it is 
one of the less researched areas in terms of MMC and contains complex air-sea interaction 
physics that are difficult to model. However, upon further inspection, we see that certain 
phenomena, including low-level jets, land-sea breezes, and interplant interactions are as equally 
applicable onshore in flat terrain as offshore. These rankings help us to realize that there are 
still many challenges, even for onshore flat terrain, and that researchers have not even 
mastered the diurnal cycle, which is something so commonplace that most onshore wind plants 
experience it every day. Nonequilibrium atmospheric turbulence is the norm over flat terrain, 
and it is an area of microscale research that is largely untouched. Thus, the offshore and 
complex terrain onshore locations have more varied mesoscale phenomena to consider so the 
number of different research challenges is greater.  

Overall, high-priority mesoscale phenomena include low-level jets, land-sea breezes, weather 
fronts, tropical cyclones, Nor’easters, and thermal pooling and terrain-gap flows. High-priority 
microscale/wind-plant scale flows include icing and precipitation, surface energy and 
momentum exchange, air-water-wave interactions, and roughness and canopy effects. 
Surprisingly, icing and precipitation are ranked high priority, but this is because liquid 
precipitation can cause wind-turbine blade erosion, a particular problem offshore, and freezing 
precipitation leading to blade icing can cause a need for curtailment. 

Although this PIRT is illuminating and definitely can guide decision making, there are reasons to 
be cautious. Importantly, the process of creating a PIRT is unavoidably subjective. It requires a 
set of experts coming to consensus using their knowledge and best judgement. In creating 
these rankings, there was a requirement of consensus among a group large enough and with 
sufficiently varied background to attempt to reduce the subjectivity. Equally important is that this 
PIRT is meant to be fairly general, but every researcher or engineer makes decisions based 
upon his or her specific application. The application space is vast because of wind energy’s 
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highly interdisciplinary nature. Examples include short-term wind power forecasting, grid 
integration studies, detailed structural analysis of a particular turbine design (fixed or floating) 
subject to turbulence specific to its location, and forensic analysis of wake effects within an 
entire wind plant. If a researcher is dealing with a specific application and needs guidance on 
which phenomena to prioritize and how, she or he really should perform a PIRT ranking specific 
to the application and use this general PIRT as a guide and for reference.  

Figure 2.1. The summary rankings of the mesoscale-to-microscale-coupling PIRT. Note that this 
summary does not include the rankings for each criterion. The full mesoscale-to-
microscale-coupling PIRT is available upon request. 

Last, when a researcher chooses a specific phenomenon that ranks high priority upon which to 
perform research and development, he or she should look at the full ranking and understand 
why that phenomenon received a high-priority ranking. For example, a ranking could be high 
priority because the physics are not well understood and require further study, the current 



Mesoscale-Microscale Phenomena Identification and Ranking Table 27 
 

physics model for the phenomenon is known not to duplicate the real physics well even though 
the physics are well understood, the model is adequate but requires unreasonable numerical 
resolution, or that the model behavior is simply unquantified because it has not been well 
validated.  
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3.0 Case Selection 
As seen in Chapter 1.0, the MMC project seeks to improve models through assessing their 
capabilities for reproducing the specific characteristics of particular case days. During FY19, the 
team looked at advances in both complex terrain cases and in nonstationary flat terrain cases. 
The case days are described as follows. 

3.1 Canonical Diurnal Case in Flat Terrain – Nov. 8, 2013 SWiFT Site 

To assess the ability of the coupled models to capture more canonical diurnal changes as one 
progresses through a typical day, it is convenient to use data from a flat terrain site. To that end, 
the team has considered a case day from measurements taken at the DOE/Sandia National 
Laboratories SWiFT facility in West Texas. The SWiFT site was chosen for its flat terrain, 
relevance to wind energy installations in the United States and the adjacent atmospheric 
measurement facilities hosted by Texas Tech University’s (TTU’s) National Wind Institute. More 
details of the SWiFT site are documented in the team’s Year 2 report (Haupt et al. 2017) and in 
the report by Sandia National Laboratories regarding that site (Kelley and Ennis 2016). 

The team selected November 8, 2013, as the primary diurnal cycle case to model because it 
represented a day that included typical morning and evening transitions and made a good first 
test case with common conditions that were important for wind energy. This is the same day 
studied earlier in the Years 2 and 3 reports. The 1-hour, near-neutral transition is centered 
around 22:30 UTC. The diurnal cycle, convective-neutral-stable atmospheric transition are 
centered on the near-neutral transition. 

This period was marked by strong southwesterly winds over the Texas Panhandle and generally 
clear conditions and the winds at the lowest altitudes are consistently south-southwesterly over 
the course of the day. 

3.2 Complex Terrain Cases 

In this work, two real case simulations in complex terrain for unstable conditions were performed 
using multiple one-way nested domains in the WRF model. The simulations were run for 
parametric quantification of uncertainty (Chapter 9.0) for the lidar simulator (Chapter 10.0). The 
location chosen for the simulation was the WFIP 2 site near the Columbia River Gorge in 
Oregon. The candidate dates were selected from a five-month period from May through 
September 2016, during the intensive portion of the WFIP 2 field campaign. The candidate 
dates required lidar data to be available for more than 70% of the 5-km radius. This condition 
provided 36 days for the unstable case (with period 18:00–21:00 UTC). Furthermore, other 
conditions, such as fair weather (no clouds), westerly wind, and moderate heat flux and wind 
speed (~200 W/m2 and ~8 m/s), were also used to search the candidate dates. Finally, 
August 21, 2016 was found to be the best candidate date. Mesoscale simulation was performed 
using different reanalysis data—the North American Regional Reanalysis (NARR) and the 
Global Forecasting System (GFS)—in the WRF model to evaluate the wind magnitude and 
direction during the unstable period. The NARR forcing resulted in a consistent wind speed 
compared to the GFS forcing over the three hours of window. Therefore, NARR data were 
chosen to provide forcing in the mesoscale domain, which nests an LES domain inside in the 
WRF model. 
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4.0 Common Methodologies and Tools 
In the fifth year of the MMC project, the team has worked to streamline our simulation and 
analysis workflows, to centralize our code development efforts, and to add transparency and 
reproducibility to our assessment exercises. To engage with industry and the academic 
community, we also look toward disseminating a collection of validated, regularly maintained, 
and version-controlled MMC capabilities. For these reasons, we have created the “A2e: 
Mesoscale-to-Microscale Coupling” GitHub organization (github.com/a2e-mmc) to serve as a 
living archive of codes to be used in analysis, assessment, and reporting. The current 
repositories include: 

• mmctools: Python-based tools for data standardization, simulation, and analysis

• assessment: Results of data (measured and simulated) processing and analyses stored in
Jupyter notebooks, i.e., Python code with embedded output and figures

• WRF: Central version of the Weather Research Forecast model to contain all MMC-related
modifications

• WRF-setups: WRF input decks for MMC case studies

• SOWFA-setups: SOWFA input decks for MMC case studies.

The analysis codes developed in this repository are written in Python 3. Code is expected to 
adhere to PEP 8 style guidelines as much as possible to deliver clean, familiar code to all users 
of Python. In this way, we strive to allow MMC researchers with minimal Python coding 
experience to read, understand, and develop codes of their own. All code should be usable in, 
and demonstrated by, Jupyter notebooks. This is a familiar medium for many Python users that 
combines code with inline code output (including figures) in a natural format. Examples for 
usage have been added to the assessment repository. 

4.1 “mmctools” Repository 

These tools are intended to: 
1. Enable general offline-coupled mesoscale-to-microscale simulation between a variety of

mesoscale and microscale solvers
2. Standardize output from simulations and observational data
3. Facilitate the analysis, assessment, and reporting of MMC results.

The layout of the mmctools repository is illustrated in Figure 4.1. 
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Figure 4.1. Organizational structure of the A2e-MMC “mmctools” Python code repository. 

4.1.1 Offline coupling 

For offline coupling methods, the interface codes should automatically translate the outputs from 
the mesoscale solver into inputs to the microscale solver. Once the MMC methods have been 
verified, other researchers (both internal and external to the MMC team) should not have to 
manually repeat this process. To this end, we aim to make the coupling process as 
straightforward as possible to consistently reproduce expected results and also minimize user 
error. For example, to set up an offline, internally coupled simulation driven by time-height 
mesoscale data in the SOWFA microscale solver, a sample code snippet that an end user may 
write might look like this: 

from mmctools.coupling.sowfa import InternalCoupling 
to_sowfa = InternalCoupling(output_directory, 
  dataframe_with_driving_data, 
  dateref='YYYY-MM-DD HH:MM', # t=0 in simulation 
  datefrom='YYYY-MM-DD HH:MM', # output range 
  dateto='YYYY-MM-DD HH:MM') 
# create internal source terms, f(t,z), from a time-height series 
to_sowfa.write_timeheight('forcingTable') 
# create initial vertical profile, f(z) 
to_sowfa.write_ICs('initialValues') 

The InternalCoupling class will be responsible for processing the standardized data and 
generally should not require modification from case to case. Similarly, for boundary coupling in 
SOWFA: 

from mmctools.coupling.sowfa import BoundaryCoupling 
to_sowfa = BoundaryCoupling(output_directory, 
  xarray_with_driving_data, 
  dateref='YYYY-MM-DD HH:MM', # t=0 in simulation 
  datefrom='YYYY-MM-DD HH:MM', # output range 
  dateto='YYYY-MM-DD HH:MM') 
# create inflow planes, e.g., f(t,y,z) or f(t,x,z) 
to_sowfa.write_boundarydata() 
# create initial field, f(x,y,z) 
to_sowfa.write_solution(t=datefrom) 
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4.1.2 Data standardization 

Data standardization and analysis activities have included the identification and application of 
several MMC-preferred Python data structures and analysis tools (packages), the development 
of data processing tools for ingestion of MMC-centric model results and observational data into 
standardized Python-object data structures, and development of analysis and plotting utilities for 
use in assessment activities of standardized data. 

Two well-known Python packages have been adopted in the development of the mmctools 
capabilities for MMC-related data science workflows. These are the Series/Dataframe data 
structures of the pandas package (https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.html) and the DataArray/Dataset data structures, 
of the closely related xarray package (http://xarray.pydata.org/en/stable/data-structures.html).  

The standardized content for all processed data (both observation and simulation data sets) 
was formulated intentionally with assessment needs in mind. All standardized data sets include 
a specified set of variables, with consistent units, and naming conventions. After being 
standardized, any data set may be read into an assessment notebook for analysis.  

Raw data from the A2e DAP may exist in a variety of formats and be organized into different 
directory structures. To provide a convenient and repeatable framework for creating new data 
sets, a library of data readers has been developed to streamline the loading of data from a 
variety of sources. These sources include met mast observations and remote sensing products. 
Additional tools are under development to process simulation data as well. Once the data have 
been loaded into memory, they may be easily manipulated (e.g., unit conversions, calculation of 
derived quantities) and then written out in a standardized data format.  

A sample code snippet illustrating the data loading process looks like this: 

from mmctools.dataloaders import read_dir 
from mmctools.measurements.radar import profiler 
# read selected files within a directory and concatenate into dataframe 
df = read_dir(dpath, file_filter='*_w*', reader=profiler) 

4.1.3 Data analysis 

Two main utility libraries have been developed. First is a plotting library, which takes data 
loaded in the manner described above and generates near-publication-quality figures with a 
single command. As a result, all figures used in MMC reporting will have a consistent look and 
feel. The library also greatly facilitates the use of Python plotting tools and will also facilitate 
internal discussions and comparisons of results because the data processing and presentation 
are performed identically. Available plotting functions for comparing one or more data sets 
include: 

• Time-history plots at selected heights

• Time-height plots

• Profile plots at selected times

• Spectra plots for selected time periods.



Common Methodologies and Tools 32 

A library of helper functions has also been developed. The objective is to minimize time spent 
reinventing the proverbial wheel. Commonly calculated quantities (e.g., covariances, turbulence 
intensity, power spectral density) can be calculated consistently under the same assumptions. 
In addition, common meteorological functions and empirical models have also been added to 
the library. Having a centralized set of functions enables cleaner analyses with fewer calculation 
errors. These may be used, for example, to estimate virtual temperature from air temperature, 
pressure, and relative humidity. 

4.2 The “assessment” Repository 

Throughout the past year, several members of the MMC team collaborated to determine best 
practices for thorough model comparison and assessment. Discussions resulted in a three-step 
process: ingest/standardize the data, model evaluation, and evaluation synthesis. The data 
readers described above in the data standardization step ingest and process the data into a 
specific pandas or xarray data structure with consistent data field content, units, and naming 
conventions. Jupyter notebooks in this repository provide a means of evaluating each individual 
modeling effort in a synergistic manner by producing figures, plots, and statistics using the 
mmctools utilities. All modelers have been encouraged to use the assessment notebooks as 
defined evaluation recipes (in the context of this collaborative project) for model results as each 
team member progresses through his or her research activities. The notebooks provide uniform, 
publication-ready figures, and reduced assessment metric data sets automatically saved for 
sharing amongst project participants. Fundamentally, the notebooks simplify the process of 
synthesizing model results by producing equivalent plots, figures, and statistics for 
intercomparison against disparate MMC approaches and observations where applicable. 
Moreover, they provide a transparent and easily accessible means of documenting our analyses 
with code and discussions saved inline with the analysis products.  

The assessment repository contains the results of our data standardization and MMC 
assessment efforts, as well as accompanying higher-level code. Contents include: 

• Notebooks and codes to produce standardized data sets from observations and simulations,
ready to use for driving and validating MMC simulations

• Analyses of observations and simulations performed for studies within the MMC project

• Notebooks to produce figures for MMC publications

• Examples of data processing and analysis procedures.

These contents will exclude actual data, only including the code necessary to generate each 
data set as to keep the git repository lightweight. Actual data products should be uploaded to 
the DAP or some other suitable data repository. The layout of the assessment repository is 
illustrated in Figure 4.2. 
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Figure 4.2. Organizational structure of the A2e-MMC “assessment” Jupyter notebooks 
repository. 

4.3 WRF Repository 

To work toward our goal of reproducible and easily disseminated MMC tools, we have created a 
central version of WRF within the A2e-MMC GitHub organization. To facilitate comparisons 
between WRF modelers within the MMC team, and for reproducibility of results, we expect 
modelers to use this version for ongoing and future research efforts. This is also the version to 
which MMC developers should contribute new features so that all team members will have 
access to the same capabilities developed by others. Moreover, when interacting with research 
partners in the future, we will have to only deliver a single version of the mesoscale solver. 

The A2e-MMC version of WRF has been forked from the NCAR repository (at github.com/wrf-
model/WRF) from release version 4.1. The A2e-MMC repository is set up to track the upstream 
NCAR repository so that new releases may be directly merged into our code base.  

4.4 “WRF-setups” Repository 

This is an archive of the input files used in completed WRF simulations for MMC studies. 
Instead of retaining all working WRF files, we keep only the files in the input deck that are 
needed to generate all other input files (e.g., boundary and initial conditions). For convenience, 
a shell setup script has been provided that will download reanalysis data for the specified 
simulation days, run WPS for those dates, then set up submission scripts for WRF to be 
executed in a high-performance computing environment. 

4.5 “SOWFA-setups” Repository 

This is an archive of the input files used in completed SOWFA simulations for MMC studies. 
Similar to the WRF-setups repository, instead of retaining all working files, we keep only the 
SOWFA input files that are needed to generate all other input files (e.g., blockMesh, topoSet, 
and refineMesh input dictionaries). The directory structure should mirror the exampleCases 
directories provided with SOWFA and SOWFA-6.  
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5.0 Mesoscale Modeling for MMC 
5.1 Advancing the 3D PBL Parameterization 

Accurate characterization of the wind resource and wind power predictions over heterogeneous 
surfaces and in complex terrain requires resolving land-use and terrain effects on the flow. In 
numerical weather prediction models, turbulent stresses and fluxes are commonly 
parameterized using one-dimensional planetary boundary layer (1D PBL) parameterizations 
based on the assumption of horizontal homogeneity. Such parameterizations do not include 
horizontal gradients of turbulent stresses and fluxes and thus cannot accurately represent 
terrain effects as the grid-cell size decreases. We therefore developed and implemented a 3D 
PBL parameterization in the WRF model to account for 3D effects on turbulence kinetic energy 
(TKE) and turbulent stresses and fluxes. The 3D PBL parameterization is an algebraic stress 
and flux parameterization based on the developments of Mellor and Yamada (1974, 1982). The 
parameterization involves solving a system of 13 linear algebraic equations at each grid cell for 
turbulent stresses and fluxes. Once all 6 components of turbulent stresses and 3 components of 
turbulent fluxes are available, the full divergences of stresses and fluxes are computed and 
added to the right-hand side of the prognostic equations for momentum, potential temperature, 
and water vapor mixing ratio. The development of the 3D PBL parameterization started under 
the WFIP 2 project and continues under the MMC project. Under the WFIP 2 project, we 
implemented the Level 2 parameterization according to Mellor and Yamada (1982) in WRF, 
where the TKE is diagnosed. During FY19 under the MMC project we ported the code to a more 
recent version of WRF (version 4.0.3) and expanded it to include a prognostic equation for TKE. 
Furthermore, we developed surface boundary conditions that are consistent with the turbulence 
closure. 

During the WFIP 2 project, we carried out LES over the domain of the WFIP 2 field study. The 
output of these LES was compared to mesoscale simulations and validated using observations. 
The two domains of LES simulation are shown in Figure 5.1. Considering that the WFIP 2 
observations are relatively sparse and thus not suitable for validation of all the components of 
the 3D PBL parameterization, we therefore used validated LES to assess the 3D PBL 
parameterization. As a first step, we used LES results to estimate the relative importance of 
horizontal velocity gradients in comparison to vertical velocity gradients. Since the focus was on 
the relative importance of horizontal shear on the boundary layer structure and, in particular, its 
relevance for wind power forecasting, only the first 10 grid cells (approximately 120 m above the 
surface) were used in this analysis. For this purpose, we analyzed LES output saved every 
three minutes between 20:00 and 21:00 UTC for March 7, 2016, and used only the east half of 
the LES domain, 90 km x 90 km, resolved using 3000 x 3000 grid cells (denoted by the red 
rectangle in Figure 5.1).  
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Figure 5.1. Parent and child (black rectangle) domains of the LES corresponding to March 7 
and 8, 2016, of the WFIP 2 field study. The grid cell size of the parent/child domain 
was 90/30 m. The red square is the part of the child domain used in the analysis 
presented here. 

To assess the relative importance of horizontal gradients in comparison to vertical gradients, we 
computed the following ratio: 
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Here, horizontal derivatives of the streamwise velocity components are computed as: 
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Here, terrain following coordinates are denoted with a ‘prime.’ Second-order, centered 
differencing was used to compute all the derivatives. The cross-stream velocity component 
gradients are computed in a similar way. 

We computed the ratio, R, at different scales by filtering the LES results using a top-hat 
(i.e., moving average) filter with widths of 90 m, 120 m, 150 m, 180 m, 240 m, 300 m, 450 m, 
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600 m, 900 m, 1,200 m, 1,500 m, 1,800 m, 2,400 m, 2,700 m, and 3,000 m. The results are 
presented in Figure 5.2. 

Figure 5.2. Relative magnitude of horizontal gradients in comparison to vertical gradients, as a 
ratio given by Equation (5.1), computed by filtering LES output at different scales 
(blue). Left panel—linear-linear plot of the ratio; right panel—log-linear plot of the 
ratio. The ratio of vertical-to-horizontal grid-cell size is also presented for comparison 
(orange). 

The blue dots represent the ratio of horizontal vs. vertical shear. These results demonstrate that 
when the grid-cell size is greater than 1,500 m, the horizontal shear is on average less than 5% 
of the vertical shear in magnitude and decreases as the horizontal grid-cell size increases. 
However, when the horizontal grid-cell size is less than 1,500 m and while vertical grid-cell size 
is kept constant (in this case at 12 m), the relative magnitude of the horizontal shear increases 
exponentially, reaching 25% of the vertical shear magnitude when the horizontal grid-cell size 
reaches 90 m.  

The significance of horizontal gradients in the 3D PBL parameterization can be estimated by 
analyzing the matrix equation that must be inverted to compute all the turbulent stresses. This 
matrix is shown in equation 5.4. In this equation, horizontal gradients of horizontal velocity 
components are highlighted by red boxes. Horizontal gradients figure in a number of diagonal 
terms together with the turbulent kinetic energy denoted by q/2. In addition, the dominant 
turbulent shear stress terms are highlighted by yellow boxes. These terms are multiplied and, 
therefore, also modulated by horizontal gradients highlighted by both red and yellow boxes.  
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(5.4) 

5.2 Porting 3D PBL Code from WRF v3.8.1 to v4.0.3 

We implemented the new 3D PBL parameterization code into WRF version 4.0.3 to remain 
updated with the newest iteration of the numerical model. This task involved careful numerical 
testing of the WRF model after adding each portion of the 3D PBL code to ensure that we did 
not unintentionally alter the fundamental framework. Testing involved running three short 
(30 seconds to 1 minute of model time) simulations with WRF in LES mode and mesoscale 
mode with the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL parameterization activated 
(Nakanishi and Niino 2006). The three simulations tested for differences in output between 
(1) nonrestart and restart simulations, (2) serial and parallel simulations, and (3) unmodified
(official release version) and modified WRF code (development code containing the 3D PBL
parameterization). In addition, we ran two short simulations with WRF in mesoscale mode and
using the 3D PBL parameterization. For these 3D PBL simulations, we tested for differences in
output between configurations (1) and (2) only because there is not yet an official release
version of the 3D PBL parameterization. During the porting process, we discovered a couple of
coding typos that influenced the tendency calculations due to horizontal gradients in turbulent
fluxes. We speculate that the impact of these coding errors was minor.

As we ported each portion of the 3D PBL code to the new WRF version, we cleaned the code 
for readability. Examples of these housekeeping measures include renaming variables and 
adding new subroutines. 

5.3 3D PBL Substepping 

When simulating a real case with the new 3D PBL parameterization, one may need to reduce 
the model time step according to the domain topography because the parameterization 
becomes numerically unstable. To ameliorate this issue, we implemented a capability to 
substep only the 3D PBL parameterization. The benefit of including such a capability is that the 
model time step may be run near the recommended 6*Δx, where Δx is the horizontal grid 
spacing in kilometers. This new feature is user-friendly; one needs to include only a single 
namelist option (‘pbl3d_nsteps’) and decide the number of substeps necessary for the particular 
application. The default number of substeps is set to ‘1’ (that is, a single pass through the 3D 
PBL parameterization). 

The basic logic of the 3D PBL substepping is: (1) first, we save the state variables (u, v, w, θ, 
and qv) into temporary arrays (local to the 3D PBL parameterization) at the beginning of the 
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procedure; (2) then, the tendencies for each of the state variables are calculated from the 
divergence of the turbulent fluxes and added to both the (i) WRF official tendency arrays and 
(ii) temporary (local) state variable arrays. While (i) is conducted irrespective of substepping,
(ii) is conducted so that the state arrays are updated for the substepping routine. Step (2) is
repeated for the number of substeps that the user specifies.

To quantitatively understand the impact of choosing a particular number of substeps, we run an 
idealized LES (90 x 90 x 40 grid cells in the x, y, and z dimensions; Δx = 100 meters) with a 
homogeneous surface heat flux set to 279 W m-2 for 2 hours of model time. The model time step 
(Δt) is set to 1 second. We modify the WRF code base to calculate—at each model time step—
the state variable tendencies (u, v, w, θ, and qv) due to 3D turbulent mixing using 1, 2, 4, 8, 16, 
32, 64, and 128 substeps. We consider the 128 substep solution to be the control and calculate 
the maximum percentage difference in the tendencies at all grid cells in the domain between the 
control and the 1, 2, 4, 8, 16, 32, and 64 substep solutions (Fig. 5.3). We calculate the 
differences using 4 substeps twice (hence, plotting the ‘SS_4’ and ‘SS_4b’ lines) to ensure that 
our technique is robust. We confirm that the difference between these two solutions is equal to 
zero. The model solution is advanced using only the 3D PBL control (128 substep) solution. 
Therefore, the percentage errors plotted in Figure 5.3 are due to only the numerical substepping 
method. 

Figure 5.3. The maximum percentage tendency difference across all domain grid cells between 
the 3D PBL numerical solution using 128 substeps and the 3D PBL numerical 
solution using 1, 2, 4, 8, 16, 32, or 64 substeps (colored according to legend in top-
right corner of figure) for each model time step (Δt = 1 second). From top to bottom: 
potential temperature (θ), water vapor mixing ratio (qv), u-component of the wind (u), 
v-component of the wind (v), and vertical velocity (w). The percentage difference is
calculated as: 100% * (xi – xctrl)/ xctrl , where xi is the solution using 1-64 substeps and
xctrl is the solution using 128 substeps. Note that we show the y-axis in log scale.
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There are several features to highlight in Figure 5.3. First, and as expected, the maximum 
percentage difference decreases as the number of substeps increases. Also, Figure 5.3 
suggests that there are distinct regimes whereby the number of 3D PBL substeps may or may 
not appreciably change the 3D PBL solution. The maximum percentage differences increase 
during model spin-up (from t = 0 second to t ≈ 1800 seconds) as the PBL deepens. Evaluation 
of the vertical model index (not shown) confirms that the maximum difference occurs typically 
near the PBL top (that is, increasing vertical model index as the spin-up period progresses). 
From t ≈ 1,800 seconds to t ≈ 4,500 seconds and from t ≈ 5,300 seconds to t = 7,200 seconds, 
in general, the domain maximum difference for each of the state variable tendencies is 
approximately tenths of a percentage. In this regime, the 3D PBL solution is relatively 
insensitive to the number of substeps. Moreover, we see convergence from t ≈ 4,500 seconds 
to t ≈ 5,300 seconds; that is, a solution using relatively few substeps (e.g., 4) yields relatively 
large and erratic maximum differences, whereas that using relatively many substeps (e.g., 64) 
yields relatively small and consistent maximum differences. The cause of the spike in maximum 
differences during this time period is curious and additional tests confirm that these values occur 
at the PBL top (not shown). These results suggest that the sensitivity of the numerical approach 
outlined herein may be linked to atmospheric stability and resultant PBL characteristics; 
however, more testing is needed to confirm this hypothesis. 

Through preliminary testing of the aforementioned and additional idealized simulations, we find 
that the increased cost of substepping the 3D PBL parameterization is approximately 7% per 
substep. Additionally, a single domain (Δx = 750 meters), real-world case over a 5-day period 
and covering the WFIP 2 Wasco field site benefits greatly from using the substepping. Before 
the substepping, the model time step must be set to 0.5 seconds to avoid numerical stability 
issues. After the substepping, the simulation runs successfully using a 4-second time step, 
resulting in a substantial overall speed up in model run time. 

5.4 Prognostic TKE 

To solve the system of linear equations for the 3D PBL parameterization, one must calculate 
both the master length scale and the TKE at each grid cell. Therefore, accurately calculating the 
TKE is a crucial component of the turbulent closure model. Up to this point in the 3D PBL 
parameterization development, we have calculated the TKE diagnostically; that is, TKE is 
dependent upon characteristics of the atmospheric state from only the current time step and the 
local grid cell. While this approach is relatively simple and cost effective, the TKE field may not 
evolve smoothly. In some instances, we expect that this may contribute to the numerical stability 
issues discussed in section 5.3. To address this problem, we implemented a prognostic form of 
the TKE equation following Mellor and Yamada (1974, 1982). One of the main advantages of 
calculating TKE using a prognostic equation is that the field evolves smoothly because TKE is 
updated from the previous time step and is dependent upon information from both the local grid 
cell and adjacent grid cells. The prognostic TKE equation accounts for the following physical 
processes: vertical and horizontal advection of TKE, vertical and horizontal turbulent transport of 
TKE, shear production of TKE, buoyancy production of TKE, and dissipation of TKE. 

Idealized simulations to test the prognostic TKE implementation are currently underway. We 
also plan to test the new approach for real-world cases, including days from the WFIP 2 field 
campaign. Moreover, we hypothesize that running the new parameterization with prognostic 
TKE will reduce the number of substeps needed or eliminate the need for substepping. 
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5.5 Surface Boundary Conditions 

The advancements described in this section are being implemented currently by Masih Eghdami 
(graduate student at Duke University working under the direction of Ana P. Barros). To 
determine the boundary conditions near the surface after diagnosing 𝑢𝑤MMMM, 𝑣𝑤MMMM, 𝑤𝑞OMMMMMM,	and	𝑤𝜃MMMM from 
from the surface layer boundary conditions, the rest of the turbulent components can be 
diagnosed using the PBL equations. Other approaches such as Mellor (1973) are not readily 
available for modeling purposes as they are given for a streamline. Furthermore, the ratios 
between the velocity variance show a clear violation of the isotropy assumption, which is used in 
the model. Here, we use a simplistic empirical fit to diagnose the total available kinetic energy 
near the surface (𝑞QRST) based on stability conditions. 

𝑞QRST = {7.00𝑢∗C + 0.33, 𝜕𝜃Y/𝜕𝑧 < 0	9.47(𝜕𝜃Y/𝜕𝑧) + 0.84, 𝜕𝜃Y/𝜕𝑧 ≥ 0 (5.5) 

where 𝑢∗ is the friction velocity and 𝜕𝜃Y/𝜕𝑧 is the vertical derivative of virtual potential 
temperature. The model is a linear fit based on the values obtained from the 17-m-tower flux 
(identification code: 19z.b0). Otherwise we set 𝑞 as the maximum of 𝑞QRST and the 𝑞 diagnosed 
from the second layer. Furthermore, for vertical momentum transfer, we have an estimate of 
friction velocity that is 𝑢TC = √𝑢𝑤MMMMC + 𝑣𝑤MMMMC. The turbulent shear stress components can be 
computed as follows: 

𝑢𝑤MMMM = 𝑢TC𝑈/(𝑈C + 𝑉C)J/C (5.6) 

𝑣𝑤MMMM = 𝑢TC𝑉/(𝑈C + 𝑉C)J/C (5.7) 

The vertical heat and moisture flux can be diagnosed based on the surface layer: 

𝑤𝜃MMMM = 𝐻𝐹𝑋/𝜌𝑐g (5.8) 

𝑤𝑞YMMMMM = 𝑄𝐹𝑋/𝜌 (5.9) 

where HFX and QFX are sensible heat and moisture flux, respectively; 𝜌 is density, and 𝑐g is 
specific heat of the air. For diagnosis of the rest of the fluxes, we make two assumptions: first, 
we use the second layer derivatives for the surface; second, we assume that the Mellor and 
Yamada (1982) model, which is based on the return to isotropy, is still valid at the surface. 
Using the already diagnosed fluxes the rest of the fluxes will be as follows:  

𝑤𝜃YMMMMM = 𝑤𝜃MMMM + 0.608𝑇Qklm	𝑤𝑞YMMMMM/(1 + 0.608𝑞Y) (5.10) 

where we use the surface skin temperature and the water vapor from the first model layer (not 
the surface). We can now calculate the rest of the velocity covariances as follows: 

𝑢𝑣MMMM = 	−3𝐴J𝑙/𝑞(𝑢𝑤MMMM + 𝑣𝑤MMMM) (5.11) 

𝑢CMMM = 𝑞QRST/3 + 2𝐴J(−2		𝑢𝑤MMMM	𝑑𝑈/𝑑𝑧	 + 𝑣𝑤MMMM	𝑑𝑉/𝑑𝑧 − 𝑔/𝑇q		𝑤𝜃YMMMMM)	 (5.12) 

𝑣CMMM = 𝑞QRST/3 + 2𝐴J(	𝑢𝑤MMMM	𝑑𝑈/𝑑𝑧	 − 2	𝑣𝑤MMMM	𝑑𝑉/𝑑𝑧 − 𝑔/𝑇q		𝑤𝜃YMMMMM) (5.13) 

𝑤CMMMM = 𝑞QRST − 𝑢CMMM − 𝑣CMMM (5.14) 
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Now we can calculate the lateral components of horizontal heat fluxes: 

𝑢𝜃YMMMMM = −3𝐴C𝑙/𝑞 r𝑢𝑤MMMM D
𝑑𝜃Y
𝑑𝑧 E

+ 𝑤𝜃YMMMMM D
𝑑𝑈
𝑑𝑧E

s (5.15) 

𝑣𝜃YMMMMM = −3𝐴C𝑙/𝑞 r𝑣𝑤MMMM D
𝑑𝜃Y
𝑑𝑧 E

+ 𝑤𝜃YMMMMM D
𝑑𝑉
𝑑𝑧E

s (5.16) 

and the temperature variance as: 

𝜃YCMMM = −𝐵C𝑙/𝑞				𝑤𝜃YMMMMM	D
𝑑𝜃Y
𝑑𝑧 E

 (5.17) 

The moisture fluxes are then 

𝑢𝑞YMMMMM = −3𝐴C𝑙/𝑞 u𝑢𝑤MMMM D
𝑑𝑞Y
𝑑𝑧 E

+ 𝑤𝑞YMMMMM D
𝑑𝑈
𝑑𝑧E

v (5.18) 

𝑣𝑞YMMMMM = −3𝐴C𝑙/𝑞 u𝑣𝑤MMMM D
𝑑𝑞Y
𝑑𝑧 E

+ 𝑤𝑞YMMMMM D
𝑑𝑉
𝑑𝑧E

v (5.19) 

The horizontal heat flux terms can be calculated using the following expressions: 

𝑢𝜃MMMM = 𝑢𝜃YMMMMM − 0.608𝑇Qklm	𝑢𝑞YMMMMM/(1 + 0.608𝑞Y) (5.20) 

𝑣𝜃MMMM = 𝑣𝜃YMMMMM − 0.608𝑇Qklm	𝑣𝑞YMMMMM/(1 + 0.608𝑞Y) (5.21) 

This completes diagnosing the 13 turbulent covariances. These surface boundary conditions 
were implemented in the 3D PBL parameterization. The TKE observed at 10 m above the 
surface was compared to the TKE obtained using the Mellor-Yamada and MYNN surface layer 
parameterization as well as surface boundary conditions implemented in the 3D PBL scheme 
described above. In addition, a parameterization accounting for the buoyancy is assessed. 
Figure 5.4 demonstrates that the 3D PBL implementation results in more accurate estimation of 
the TKE near the surface in comparison to other approaches. 

Figure 5.4. Comparison of TKE at 10 m using the 3D PBL parameterization of surface stresses 
(blue), Mellor-Yamada (MY) surface layer parameterization (orange), surface layer 
parameterization, including buoyancy effects (green), MYNN surface layer 
parameterization (red), with observations (purple). 
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6.0 Comparing Coupling Models 
In FY19, the Mesoscale-Microscale Coupling Methods group both further developed MMC 
methods and began a more formalized assessment of the various coupling methods being 
developed. It is important to stress that there are a variety of different coupling methods that the 
MMC team is developing and using. Because wind energy is so interdisciplinary, there is also a 
variety of different applications. There is no one coupling method that stands superior to the 
others. Rather, different coupling methods excel at different applications. The Mesoscale-
Microscale Coupling Methods group sees its role as pursuing new methods and uncovering the 
advantages and limitations of each coupling method for different applications, then sharing that 
knowledge so that others can choose coupling methods appropriate for their unique problem. 

When considering mesoscale-microscale coupling, we tend to classify methods by four 
attributes that all coupling methods embody, shown graphically in Figure 6.1: 

• Communication Directionality: This attribute simply defines the direction of information
transfer between the mesoscale and the microscale. One-way or downscale communication
directionality means that information from the mesoscale solution (or even field data) informs
the microscale. Two-way or down/upscale means that the mesoscale information informs
the microscale, and the microscale solution then feeds back to inform the mesoscale
solution.

• Communication Strategy: This attribute describes how information from the mesoscale and
microscale simulations is shared. For example, within a single WRF simulation, WRF
mesoscale can be run with an embedded WRF-LES microscale nest and information can be
shared via the computer’s memory, which is referred to as online coupling. On the other
hand, a mesoscale simulation may be run (or even observational mesoscale collected), and
the generated data saved to hard disk. It is then later accessed by a microscale simulation
code, which is referred to as offline coupling.

• Information Transferred: This attribute describes what type of information is transferred
between the mesoscale and microscale simulations. Measurable or solved-for quantities—
including velocity, temperature, pressure, turbulent stresses, surface fluxes, etc.—are
referred to as “direct quantities.” On the other hand, “indirect quantities” are quantities such
as mesoscale momentum transport equation terms (e.g., advection), that are not direct
quantities but highly influence the direct quantities. This is termed the “budget” approach
because they derive from the mesoscale momentum and thermodynamic budgets.

• Information Transfer Location: The information transferred has to be transferred at specified
locations, which this attribute describes. The most common transfer locations in the methods
we use are on the microscale domain boundaries (“boundary-forced” methods), so two-
dimensional surfaces that are the edge of the microscale control volume, or over the entire
microscale volume (“internally forced” methods). With boundary-forced methods, quantities
including velocity and temperature are extracted from within the mesoscale domain and
applied over the entire microscale domain boundary in a time-varying fashion. Boundary-
forced methods usually require some sort of additional perturbation, which is the topic of
Chapter 7.0. Internally forced methods treat the microscale domain as periodic, much like
with canonical atmospheric boundary layer simulations, but time-height-varying source
terms are applied to capture the influence of the mesoscale forcing on the microscale flow.
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Figure 6.1. The four attributes of mesoscale-microscale coupling techniques and each 
attribute’s current possible options. 

In FY19, significant effort was placed on 1) the development of the “profile assimilation 
technique”, 2) further exploring and developing the “budget component” approach, and 
3) inflow-turbulence-generation methods. An overview of efforts (1) and (2) is given in
Section 6.1. Effort (3) is extensive, so all of Chapter 7.0 is devoted to it.

Both methods from efforts (1) and (2) are one-way, offline, and internally forced. They differ in 
that the profile assimilation technique utilizes the direct quantities of velocity and potential 
temperature derived from mesoscale simulations or observations whereas the budget 
component approach uses the indirect quantities of large-scale advections and pressure 
gradient forces from the mesoscale transport equations. Effort (3) has been applied to one-way, 
online and offline, boundary-forced methods. 

The overall roadmap for comparing coupling methods is a multiyear effort. The plan is to apply 
the various coupling methods to atmospheric flows over flat terrain, complex terrain, and 
offshore. In FY19, we focused on the flat terrain situation covered in Section 6.2, but we also 
performed side studies in the complex terrain situation described in Section 6.3, gravity wave 
treatment outlined in Section 6.4, and the effect of including microphysics in the microscale 
domain detailed in Section 6.5. 

6.1 FY19 Coupling Method Development 

6.1.1 Budget Component Approach 

Prior to FY19, we tested the “budget component” approach, which is an internal information 
transfer coupling method that uses the indirect information of terms from the mesoscale 
momentum and potential temperature budgets. Namely, for momentum, the pressure-gradient 
force and the advective term, and for temperature, the advective term are taken from the 
mesoscale model. These quantities are extracted as time-height histories, which are then used 
as input to the LES. From the microscale point of view, these terms are applied as time-height 
varying source terms, and the LES is treated as horizontally periodic. This method only applies 
to cases that have a significant degree of horizontal homogeneity.  
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In FY19, we rigorously tested the budget component approach, resulting in a publication (Draxl 
et al. 2019). We direct the reader to this article for details. The following gives a short summary 
of the work.  

The approach was tested on the SWiFT November 8, 2013, diurnal cycle. Figure 6.2 shows the 
results of the predicted mean wind speed, wind direction, potential temperature, and turbulent 
kinetic energy at a typical turbine hub height from the microscale simulation (blue) as compared 
to WRF predictions (orange) and meteorological tower data from the site (green). It is clear that 
the microscale predictions are highly influenced by the mesoscale input data. However, both the 
microscale and mesoscale predictions are in error compared to the field data to some degree. 
Interestingly, however, the microscale wind speed predictions better agree with the field data 
during daytime conditions than do the mesoscale predictions, hinting that the microscale solver 
is able to correct deficiencies in mesoscale predicted shear. This brings up an important 
consideration, though, that if the mesoscale model simulation is in error, which is almost always 
the case, how do we separate coupling error seen in the microscale predictions from mesoscale 
error? 

Figure 6.2. Time histories of (a) wind speed, (b) wind direction, (c) potential temperature, and 
(d) TKE from the mesoscale simulation (orange), the budget-component coupled
microscale simulation (blue), and field data (green).
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6.1.2 Profile Assimilation Technique 

Prior to FY19, we developed an MMC technique in which a stand-alone, periodic microscale 
simulation is driven to strongly match given time-height histories of velocity and potential 
temperature in the planar-averaged mean via internal information transfer. In other words, the 
planar-averaged profile of velocity and temperature from the microscale LES was forced to 
follow given profiles using time-height-varying volumetric source terms, and the turbulence 
responds accordingly.  

We developed this method because we had already seen the utility of internal information 
transfer with the budget-component approach outlined in Section 6.1.1. Although the budget-
component approach shows promise, we do not always have access to budget components 
from the mesoscale solver (WRF has to be modified to output these quantities) and much more 
commonly we have profiles of measured variables. Moreover, sometimes we have field-
observed profiles with which we may desire to inform a microscale simulation; for example, if we 
want to simulate a real observed day. Finally, mesoscale simulations of a particular event may 
not correctly capture quantities of interest.  

The source-term mean-following enforcement was very strong, and the resultant computed 
turbulence compared to measurements could be in great error, as shown in Figure 6.3. In that 
figure, one can observe that during the daytime, computed TKE is two to three times as large as 
in the observations. The source of this error is the fact that the given daytime potential 
temperature profiles from WRF are superadiabatic all the way through the mixed layer, where 
they should be more constant with height. Strong enforcement of this superadiabatic condition 
leads to excessive buoyancy production of turbulence. This led to the FY19 development of a 
variant of this coupling technique termed the “profile assimilation technique” (PAT). 

Figure 6.3. Computed and measured TKE at 80 m above the surface from a simulation and 
observations of the SWiFT site for the November 8, 2013 diurnal cycle. 

With the PAT, the same general internal coupling idea is used, but rather than strongly 
enforcing that the microscale planar-averaged velocity and temperature time-height histories 
match given time-height histories, the enforcement is weaker. For each time step, the error 
between the given and computed planar-averaged profile is computed. Rather than specifying a 
source term that drives the error to zero at all heights, a polynomial fit to the error profile is 
computed, and source terms are computed based on this fit. Because the source term is 
proportional to a fit of the error profile, which is a much simpler profile than the actual error 
profile, it provides for vertical coupling of the source term, which was not present before. The 
result is that the LES-generated profiles of velocity and temperature are freer to respond to the 
turbulence they contain. This allows, for example, the LES to correct for the erroneous 
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superadiabatic conditions WRF predicted for the daytime SWiFT case as shown in Figure 6.4. 
The profile assimilation technique is documented in a recent publication (Allaerts et al. 2019). 

Figure 6.4. Profiles of wind speed (top row), potential temperature (middle row), and turbulence 
intensity (bottom row) in the late morning (left column), midafternoon (middle 
column), and night (right column) from observations, WRF mesoscale, and SOWFA 
using various kinds of coupling, including the profile assimilation technique (labeled 
here as MMC indirect assimilation in red). 

Not only can the PAT method be driven with WRF-derived time-height histories, but with any 
given time-height history. This means that if one has field data, one can simply drive the 
microscale LES using those field data, which is a very powerful tool. 

6.1.3 Other Coupling Method Development 

Two coupling methods that underwent significant testing and development in FY19 are 
discussed in the previous two subsections, and they both use internal information transfer. The 
alternate class of coupling methods transfer information from the mesoscale to the microscale at 
the microscale domain boundaries. That class of method is more general and more 
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straightforward than internal information transfer methods, except that the inflowing mesoscale 
information contains no resolved turbulence as it is fed into the turbulence-resolving microscale 
domain. Therefore, the challenge is to produce realistic resolved turbulence with as little 
distance from the inflow boundary as possible. That problem merits enough research that 
Chapter 7.0 of this report is completely devoted to inflow turbulence generation.  

6.2 Formal Coupling Method Study 

The formal coupling method study initiated in FY19 was a comparison of methods in a flat-
terrain diurnal cycle, namely the SWiFT, November 8, 2013, benchmark case. The coupling 
method study is currently in progress, so we are not able to report final results here. This 
section is meant to be an introduction to our study and a snapshot of current progress. 

A variety of methods across the WRF, SOWFA, and Nalu-Wind codes is being compared. A 
summary of the coupling methods and their respective codes is shown in  
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Table 6.1 below. Each column of this table represents a different coupling configuration, and the 
rows below it describe the attributes of the particular coupling configuration. The title of the 
coupling configuration (in white) is of the format [Mesoscale Source] -> [Microscale Code]. The 
colored squares below each coupling configuration indicate which aspects of coupling that 
particular coupling configuration will compare. For example, the configuration “WRF -> Nalu-
Wind” uses WRF-generated mesoscale data to inform the Nalu-Wind microscale solver. It 
utilizes one-way directionality of information transfer from mesoscale to microscale (i.e., there is 
no feedback from Nalu-Wind back to WRF). The communication strategy is offline, meaning 
WRF data are saved to disk and available for use at any later date; Nalu-Wind can read that 
data from disk while the microscale simulation is running. The “budget component” approach, 
described in Section 6.1.1, is used, meaning that the information transferred includes the 
momentum and temperature advective terms, and pressure-gradient force from the mesoscale 
budget, with the mode of information transfer being internal (except at the lower boundary 
where skin potential temperature from WRF is used to compute microscale surface flux). This 
method can be compared to the WRF->SOWFA 3 case, which is run in the same configuration 
to compare the effect of the choice of microscale solver code. 

The remainder of this chapter details some of the coupling configurations included in this 
comparison. Not all configurations have been run as of this writing. 
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Table 6.1. A summary of the coupling methods studied in the coupling study initiated in FY19 
and extending into FY20. The columns represent the different coupling configurations 
titled by [Mesoscale Source] -> [Microscale Code]. The rows define the different 
attributes of each coupling configuration. The colored squares below each 
configuration indicate which aspects of coupling a particular configuration aims to 
compare. 

6.2.1 Mesoscale Simulation 

Several mesoscale simulations over the SWiFT site are performed to generate initial conditions 
and forcing for the internal and boundary forced microscale simulations. While holding the 
model setup constant, various reanalysis data sets are utilized in an attempt to produce the 
most realistic simulation possible of the case day, Nov. 9, 2013. These reanalysis data sets 
include: ERA-Interim, GFS, NARR, and ERA5. The first three of these data sets are well known 
and have been used extensively within the meteorology community, while ERA5 is a new data 
set that has shown promise in improving reanalysis representation. 

The mesoscale domain setup consists of three domains with respective grid sizes of 27, 9, and 
3 km and centered roughly over the SWiFT site. Domain extents (west-east by north-south) are 
3,186 km x 3,000 km for domain 1, 1,386 km x 1,197 km for domain 2, and 354 km x 300 km for 
domain 3. Model physics include the MYNN 2.5 level PBL parameterization, Morrison double 
moment microphysics (Morrison et al. 2009), and Rapid Radiative Transfer Model for climate 
model applications radiation on all three domains. For domain 1, the Kain Fritsch cumulus 
parameterization is employed. The WRF and WPS namelists for this case are available on the 
MMC GitHub (https://github.com/phawbeck/WRF-setups/tree/master/SWiFT_20131108_GFS). 
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Figure 6.5 shows the wind speed and wind direction at around 10 m for the SWiFT tower (black) 
and each of the reanalysis data sets tested herein. It can be seen that all of the reanalysis data 
sets fail to capture the peak winds within the wind ramp event. However, the wind speed in the 
ramp down period are captured fairly well by the GFS and NARR. Wind direction is consistent 
between each of the reanalysis data set cases with GFS having slightly better timing with the 
wind shift during the end of the ramp down period. 

Figure 6.5. Wind speed (top) and direction (bottom) from Nov. 8 0 UTC to Nov. 10, 2013 0 UTC 
for SWiFT tower observations at 10.1 m (black), and the model grid on domain-3 
that encompasses the SWiFT tower location in the mesoscale simulations driven by 
ERA-Interim (red), GFS (green), NARR (blue), and ERA5 (magenta) at 10 m. 

Checking closer to hub height, Figure 6.6 shows roughly the same outcome, where the 
magnitude of the wind ramp is underpredicted (or possibly delayed by several hours) and the 
wind speed in the down ramp is overpredicted by each case. Wind direction is close for all 
cases, but slightly better for the GFS simulations. 

Additional simulations consisting of larger parent domains, different boundary layer schemes, 
and additional or less spin-up time were also carried out (not shown) but little improvement was 
achieved between the other available cases. Thus, no model setup was able to provide very 
close agreement with observations for this case day. However, of the cases considered, the 
GFS performed somewhat better than the others and was chosen to be the mesoscale 
simulation moving forward. 
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Figure 6.6. Same as Figure 6.5 but for a height of 74.7 m and the closest WRF model level. 

6.2.2 Boundary Information Transfer Coupled Cases 

In the WRF->WRF-LES coupling configuration, the WRF framework is used so there is no need 
to transfer mesoscale data derived from one code to another. Here, WRF is run in mesoscale 
mode, as outlined in Section 6.2.1, and the data are saved to disk. As this is an offline coupling 
configuration, WRF-LES then reads in that data as boundary conditions. 

The WRF->WRF-LES case will be carried out using two separate simulations as depicted in 
Figure 6.7. First, a simulation with two domains, d01 and d02, will be run using the online 
approach to produce the meteorological variables that provide boundary condition to the third 
domain, “doff” using offline approach. The region 2 km x 2 km (dashed line) within doff domain 
represents an area of interest for analyzing the results. The outer domain d01 obtains the 
boundary forcing from GFS reanalysis product and it runs in mesoscale mode (i.e., one-
dimensional parameterization [MYNN 2.5 scheme]). The inner domain d02 runs in LES 
microscale mode (1.5 TKE closure) and receives boundary forcing through its parent domain in 
each time step. The horizontal grid spacing of domains d01 and d02 are 1.65 km and 150 m, 
respectively. Both domains use 159 vertical layers, with 10 m uniform grid spacing for the first 
75 vertical grids and stretched grid spacing from 10 m at 750 m height to 950 m at the model 
top. The domain d02 starts 4 hours later than domain d01, and the data are saved for 24 hours 
from domain d02, which will be used later to provide boundary forcing to domain doff (with 
horizontal grid spacing of 10 m) in the separate simulation. Time-varying turbulence produced 
by a synthetic method (Turbsim) is ingested through the west and south boundary planes 
(shown by dashed line) to develop turbulence flow. The first two domains, d01 and d02, run 
concurrently. The domain doff runs independently from d01 and d02, but couples with d02 using 
its flow field as boundary forcing (called offline coupling). The results of the offline domain doff 
depend on the state of the flow field of the outer domain d02, but not the other way around 
(called one-way nesting). The offline method may require frequent data to update its boundary 
forcing to obtain similar results as from online method (in which all domains runs concurrently). 
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Figure 6.7. Schematic diagram of domains d01 and d02 that runs concurrently (left) and a 
domain doff that runs separately (right). The area with dashed line represents the 
area of interest for analysis. 

The WRF->SOWFA 1 coupling configuration currently has not been performed, but it differs 
from the WRF -> WRF-LES case most markedly in that the coupling takes place across two 
completely different codes, WRF mesoscale and SOWFA microscale. The two codes have 
completely different numerics. WRF is fully compressible; SOWFA is incompressible with 
Boussinesq buoyancy effects. WRF contains many additional modules for atmospheric and 
surface physical processes beyond the basic flow equations, whereas SOWFA does not. 

The plan is to use a SOWFA domain that is of 5-10-km horizontal extent and 2-km vertical 
extent with 10 m resolution. The south and west sides will be inflow sides upon which velocity 
and potential temperature are specified by bilinearly interpolating from saved WRF flow fields 
every 10 to 30 minutes. Superimposed upon that WRF inflow data is synthetic turbulence 
generated using the TurbSim tool. The same TurbSim-generated synthetic turbulence is used in 
the WRF->WRF-LES case for consistency. 

6.2.3 Internal Information Transfer Coupled Cases 

Four internal-coupled cases have or will be run. Two use SOWFA as the microscale solver and 
the only difference in the cases is whether the budget-component approach of Section 6.1.1 or 
the profile assimilation technique of 6.1.2 is used. A third case that uses the budget-component 
approach is run with Nalu-Wind as the microscale solver. 

Last, another profile-assimilation technique case is run with SOWFA as the microscale solver, 
but the mesoscale source here includes profiles observed using the Texas Tech University 200-
m tower and radar sounding system. This case is unique because it does not rely on WRF to 
generate simulated mesoscale data, but rather is informed by real-world field-observed 
mesoscale data. We find that, in most cases, the budget-component and profile assimilation 
techniques follow the general trends provided by WRF mesoscale data quite well. However, if 
the WRF mesoscale data contain significant errors, which is sometimes the case, it is difficult to 
separate coupling error from mesoscale model input data error. The Obs -> SOWFA case 
avoids this WRF error by directly using observed data. The error in the SOWFA microscale 
results should hence provide an improved indicator of error induced by the coupling method. 
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6.3 Role of Terrain in Microscale Turbulence Generation 

To investigate how complex terrain generates turbulence within the boundary layer, we consider 
a semi-idealized case using SOWFA with a domain centered over the National Wind 
Technology Center at the National Renewable Energy Laboratory. The numerical domain 
includes roughly 10 km of the Colorado Rocky Mountains followed by several kilometers of the 
foothills and Great Plains. When the full complexity of the terrain was included within the model, 
gravity wave development and complexities within the inflow and outflow conditions on the 
model boundaries generated noise that greatly impacted the simulation results. To alleviate this 
issue, a large-windowed convolution was performed over the terrain and the large-scale terrain 
signal was removed. This left a domain with realistic peaks and valleys that oscillate about zero. 
Next, this terrain was smoothed with another window to test how rugged terrain needs to be to 
generate turbulence. 

The inflow conditions considered are a neutral boundary layer with a capping inversion and 
another neutral layer above in the free atmosphere. This upper neutral layer was applied to 
prevent any gravity waves from forming near the model top. The horizontal pressure gradient is 
fixed to ensure that wind speeds within the boundary layer stay somewhat constant throughout 
the simulation at moderate wind speeds. Coriolis forcing is set to zero to guarantee that inflow is 
coming strictly from west to east (over the mountains). 

A flat, periodic precursor simulation is performed to generate turbulent inflow conditions to the 
simulation including the terrain (Turbulent Case; TC). This precursor is also averaged every one 
second to produce nonturbulent inflow conditions (Nonturbulent Case; NTC). Lastly, a version of 
the stochastic cell perturbation method (see Chapter 7.0) is added on to the nonturbulent inflow 
(Cell Perturbation Case; CPC) to assess whether perturbations are necessary for complex 
terrain cases. Between these cases, TC serves as a control where the turbulence is fully 
developed at the inlet of the domain and then is augmented by the complex terrain. For both 
NTC and CPC, turbulence must develop with fetch and can be compared to the result from TC 
to assess how well the turbulence matches. 

Results from this set of simulations indicate that at the lower model levels, complex terrain 
generates fairly consistent turbulence despite the inflow condition. However, once the analysis 
is performed throughout the depth of the boundary layer, the NTC produces large overshoots in 
TKE, and the mean TKE field does not closely match the mean TKE field from the TC 
simulations. By adding the perturbations at the inlet, the TKE overshoot is decreased and more 
of the domain is closer to matching that of the TC simulation. 

By smoothing out the terrain, the TC again produces a boundary layer that is filled with 
turbulence due to the turbulent inflow. However, the NTC is only able to produce turbulence 
near the surface and fails to grow throughout the boundary layer. By adding perturbations, this 
is, again, improved. However, the magnitude of the cell perturbations was not adjusted to 
produce optimal results. 

Similar cases were performed to assess the impact of boundary layer height on turbulence 
generation and wind speed on turbulence generation over complex terrain. The results indicate 
that as boundary layer height increases, there is a larger distance over which the turbulence 
generated by shedding off of the complex terrain features needs to travel to reach the boundary 
layer top. Further, as wind speed increases, more turbulence is tripped but there is less 
resonance time within the domain so it, too, takes more fetch before the turbulence can reach 
the top of the boundary layer. In all cases, adding perturbations improved performance. 
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6.4 Atmospheric Gravity Wave Treatment 

A focus of our coupling work in FY19 was on how to treat atmospheric gravity waves that may 
form within the microscale domain, particularly when the microscale solver is separate from 
WRF. A problem arose in FY18 when gravity waves improperly interacted with domain 
boundaries of our SOWFA simulations of the Biglow Canyon/WFIP 2 site. To better understand 
the problem, in FY19, we devised a simplified 2D, nonturbulent case. The case consists of a 
variable length domain (up to 200 km, but as short as 40 km) that is 15-km tall. At the midpoint 
of the lower surface of the domain is a small, 100-m tall hill. The background temperature 
stratification is stable throughout the domain. As uniform 10-m/s flow passes over the hill, it 
generates significant gravity waves, as shown in Figure 6.8. Two appealing aspects of this 
simple test case are that there is a semi-analytical solution for the steady-state gravity waves 
and it is computationally inexpensive so many cases can be run. 

Figure 6.8. Contours of vertical velocity of a flow-over-hill case that generates atmospheric 
gravity waves. The upper contour plot is the analytical solution and all others are 
from the SOWFA microscale solver. The effect of domain length and Rayleigh 
damping is compared. 

The main idea we examined was to add Rayleigh damping layers to study their effect at 
mitigating undesirable interaction of the gravity waves with domain boundaries. Damping layers 
of 5-km thick were placed at the top, inflow, and outflow sides of the domain. Each layer can be
independently activated or varied in strength.  

Figure 6.8 is an overview of the results that shows contours of vertical velocity, which well 
illustrates the gravity waves. The top contour plot is the semi-analytical solution; all other 
contour plots come from SOWFA solutions. (As a side note, we tried some cases with Nalu-
Wind and obtained nearly identical solutions to SOWFA.) The next two contour plots show the 
effect of using only a top damping layer and how damping-layer strength affects the solution. 
With a 200-km-long domain, the lack of inflow or outflow damping layers does not matter, but an 
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upper damping layer is critical. A damping strength of about 0.005 1/s worked well. Too strong a 
damping layer causes the gravity waves to reflect off of the damping layer. 

Next, we examined the effects of domain length and inflow and outflow damping layers (always 
with the top damping layer engaged). Interestingly, if we shortened the downstream side of the 
domain and did not use any outflow damping, spurious wave patterns formed upstream of the 
hill that very closely resemble the spurious wave patterns originally seen in the Biglow 
Canyon/WFIP 2 case. However, engaging Rayleigh damping on the outflow side nearly 
completely mitigates this problem, which is a key finding. Finally, we shortened the upstream 
domain length as well and use Rayleigh damping on the inflow, outflow, and upper domain 
boundaries; the solution reasonably well agrees with the analytical solution. 

6.5 Sensitivity of Coupled WRF/WRF-LES Computations to 
Simplified Model Physics 

To accurately predict mesoscale flow, numerical weather prediction models must account for 
the complexities of the moist atmospheric thermodynamic system and provide 
parameterizations for a number of physical processes that affect that system, such as radiative 
transfer and precipitation. In contrast, microscale computational fluid dynamics solvers that are 
used to resolve much finer scale details of the flow through wind plants often more roughly 
approximate, or even neglect altogether, these physical processes. These approximations 
decrease simulation cost and can also permit greater flexibility in the discretization and 
numerical schemes used by the microscale solver. However, it is unclear what impact these 
approximations have on predicted wind speeds and turbulence levels relevant for wind energy 
applications.  

One goal of the MMC project is to provide guidance for users to determine the right approach 
for coupling between the mesoscale and microscale solvers, including the right grid resolution at 
which to transition to the microscale solver. An underlying premise of turbulence modeling is the 
concept of the energy cascade: TKE is expected to be transferred downscale, via the nonlinear 
momentum advection terms of the Navier-Stokes equations, from the largest eddies to 
progressively smaller ones. Therefore, it may be possible to capture the level of TKE in larger-
scale boundary layer motions using a mesoscale solver with detailed atmospheric physics and 
then rely on the microscale solver to represent the primarily kinematic process of downscale 
energy transfer. However, atmospheric flows are complicated by the importance of buoyant 
production and destruction of turbulence in addition to shear production. Consequently, we must 
assess at what scale (if any) the errors associated more approximate treatments of buoyancy 
become acceptably small for flow quantities of interest to wind energy. 

To address this question, we performed a series of simulations using WRF-LES at fine 
resolutions driven by boundary conditions extracted from coarser WRF-LES simulations. This 
procedure emulates the approach that could be used to drive a stand-alone microscale 
computational fluid dynamics solver such as Nalu-Wind. Various combinations of physical 
approximations were considered, as described in Table 6.2. These were compared to the 
offline-coupled “full physics” case, which was in turn compared to an online-coupled fine LES 
simulation. The approach is illustrated schematically in Figure 6.9. In addition to varying the 
treatment of surface fluxes, microphysics, and radiation, two additional sensitivity tests were 
performed using the full physics setup and varying only the value of the coefficient ck used by 
the subgrid-scale turbulence closure by ±33% from its default value. Increasing this coefficient 



Comparing Coupling Models 56 

strengthens the diffusive mixing effect associated with small-scale turbulent eddies that are not 
directly resolved in LES. 

Table 6.2. Summary of the options used in each of the physics sensitivity test cases. Some 
options may be invoked by modification of WRF namelist entries, while others 
required source code changes. Specifically, the Morrison two-moment scheme 
(Morrison et al. 2009) is activated by WRF namelist option mp_phyics=10, the MYNN 
surface scheme is sf_sfclay_physics=5, and the Rapid Radiative Transfer Model for 
climate applications scheme for long- and short-wave radiation is ra_lw_physics=4, 
ra_sw_physics=4. 

Figure 6.9. A schematic of the relationships between the simulations described in this section. 
Rectangular shapes indicate online-nested simulations which are connected to their 
parents with solid arrows; ovals indicate offline-nested simulations which are 
connected to their parents with dashed arrows. Blue color indicates the finest LES 
resolution; other colors denote coarser resolutions. The case names are explained 
in Table 6.2 and in the text. 

For our study, we selected two time periods, representative of convective and stable conditions 
from the SWiFT diurnal cycle benchmark case that is used in other analyses by the MMC team. 
The SWiFT facility in western Texas is located in an area of generally flat terrain. The diurnal 
cycle benchmark case day of November 8-9, 2013 is associated with strong southwesterly 
winds and generally dry, clear conditions. These features make the diurnal cycle benchmark a 
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good starting point for understanding the impacts of various physical approximations on 
predicted boundary layer winds as greater complexity may be expected under conditions of 
stronger surface heterogeneity, higher humidity, and even cloudiness.  

The convective scenario setup uses three nests: a mesoscale parent with 1.75-km horizontal 
resolution, an intermediate coarse LES domain with 250-m resolution, and a finer LES nest with 
50-m resolution. The stable scenario set up uses four nests: a 990-m resolution mesoscale
parent with nested LES domains at 90-m, 30-m, and 10-m horizontal resolutions. Sensitivity
tests are performed on the highest resolution domain for each stability class (i.e., on the 50-m
resolution domain for the convective scenario and on the 10-m resolution domain for the stable
scenario).

Snapshots from the convective scenario simulations are shown in Figure 6.10. The finest, 50-m 
grid spacing domain is shown embedded in a portion of its 250-m resolution parent nest. 
Markers show a line of virtual tower locations at which profile data are extracted. For both 
convective and stable scenarios, the dominant low-level wind is from the south-southwest and 
the wind field of the convective scenario shows a clear “streaky” structure associated with 
convective rolls. Multiple tower locations are analyzed to gauge how errors might grow with 
distance from the inflow boundary and also to help establish robust comparisons between the 
physics sensitivity cases, since a slight shift in the position of a streak might cause a 
misleadingly large error at a single tower.  

Figure 6.10. A snapshot of horizontal wind speed in the convective scenario at an 
approximately 90-m level after one hour of run time (Nov. 8, 2013, 19 UTC) of the 
offline-nested 50-m domain. The outer box is a portion of the 250-m parent 
domain, showing the alignment of flow structures across the nests. The “fully 
physics” case is shown on the left, and the “dry” physics sensitivity test is shown 
on the right. Dots indicate the virtual tower locations. 

Means and variances of the velocity components and horizontal wind are computed over 
averaging windows of 30 and 10 minutes for the convective and stable scenarios, respectively. 
Time histories of absolute and relative errors and time-averaged root-mean-square errors 
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(RMSE) of 90-m wind speed and resolved turbulent kinetic energy were calculated for each of 
the sensitivity tests with respect to the offline-coupled, full physics simulation. The same 
analysis was repeated for the convective scenario using a 10-minute averaging window; this 
generally led to increased RMSE but did not change the relative ranking of the sensitivity test 
cases. 

Figure 6.11 shows the relative difference in wind speed and resolved TKE at approximately 
90 m above the surface as recorded at the fourth, centermost, virtual tower. The relative error of 
a variable is computed as the difference between the values of the variable obtained from the 
sensitivity test and full physics cases, divided by the value of variable in the full physics case. 
The ranking of error among the sensitivity cases was similar at each tower, although there is 
variability in the magnitude of the errors among the towers. Errors in wind speed did not show a 
clear pattern moving along the row of towers, but errors in TKE grew from the first virtual tower 
location, nearest the southern boundary, through the fourth tower. Moving northward from the 
fourth tower, the TKE errors either flattened or decreased. The temporal variations of the 
relative error of the wind speed and resolved TKE are similar, consistent with the magnitude of 
the velocity fluctuations being correlated with the magnitudes of the velocities themselves. 
However, while the relative error in 90-m wind speed is typically below 5% and does not exceed 
10% over the analysis period, the relative error in TKE can be greater than 60% at this central 
virtual tower location.  

Figure 6.11. Percent differences in horizontal wind speed (left) and resolved 3D TKE (right) at a 
90-m level as extracted from the centermost virtual tower during convective
scenario simulations. Differences are computed relative to the full physics, offline-
nested case. Note that the “no micro” case result (blue line) is mostly obscured by
the “avg. flux” result (orange line) in both panels. Likewise, the “fixed fluxes” result
(green line) is covered by the “no rad.” result (red line) in the right panel.

As expected, in the absence of significant cloudiness and precipitation, turning off the 
microphysical scheme had virtually no effect on the results. Averaging the surface fluxes of 
latent and sensible heat in space, but retaining their temporal variation, also had a negligible 
effect on the predicted 90-m winds and turbulence. However, fixing the surface fluxes at their 
spatial and temporal mean values had a significant effect, producing errors in the wind speed of 
several percent. Additionally, neglecting radiative transfer had only an extremely minor impact. 
Also, neglecting virtual temperature effects (the “dry” sensitivity test) shifted the values of the 
error in 90-m winds while keeping the same pattern of peaks and valleys in the time history. 
Note that the mean value of sensible heat flux was 207.6 W m-2, while the standard deviation of 
the domain mean over the period was just over 10% of the mean value at 26.6 W m-2. 
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As a point of comparison, the sensitivity of the wind speed to changes in the surface flux 
specification is roughly commensurate with the sensitivity to the ±33% change in the turbulence 
model coefficient, ck. 

The same analysis is presented in Figure 6.12 for the stable scenario. A few features are 
notable. First, the magnitude of the errors in the 90-m wind speed are comparable to those 
obtained in the convective scenario, in both an absolute and relative sense. Percent errors in 
the TKE peak at values above 100%. However, it should be noted that the absolute error in the 
TKE is only about one-tenth as large as the absolute error of the TKE in the convective 
scenario, corresponding to an overall very low level of turbulence in the stable scenario. 
Notably, the errors in the wind speed show a very smooth temporal variation, despite the shorter 
10-minute averaging window. This suggests that a flow feature that has a spatial scale
comparable to the size of the LES domain is responsible for the differences in wind speed,
rather than a mismatch in prediction of smaller scale turbulent variations. Inspection of
snapshots of the flow field across the approximately 90-m vertical level (Figure 6.13) shows this
is indeed the case. An anomalous structure forms near the western boundary of the finest
domain in the sensitivity cases with fixed fluxes (bottom) that is not present in the full-physics
offline (top) or online (not shown) nested domains. The anomalous structure extends through
most of the depth of the domain and is observable in all velocity components as well as the
potential temperature field. It is hypothesized that disturbances in the flow due to differences in
the specified boundary conditions and the predicted interior flow field are amplified in the stable
case in the absence of turbulent mixing.

Figure 6.12. Percent differences in horizontal wind speed (left) and resolved 3D TKE (right) at a 
90-m level as extracted from the centermost virtual tower during stable scenario
simulations. Differences are computed relative to the full physics, offline-nested
case. Note that the “no micro” case result (blue line) is obscured by the “avg. flux”
result (orange line) in both panels.

Finally, we note that the differences in predicted wind speed produced by increasing or 
decreasing the turbulence model parameter, ck, are generally slightly weaker than the 
differences produced by the same change in the convective case, and the magnitude of the 
difference is comparable to the change in wind speed observed when nesting from a 90-m 
resolution parent (the “90_10” case in Figure 6.12) rather than the 30-m parent used by the 
other stable cases. 
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Figure 6.13. A snapshot of horizontal wind speed in the stable scenario at an approximately 90-
m level after 1 hour run time (Nov 9, 2013, 2 UTC) of the offline-nested, 10-m 
domain. The outer box is a portion of the 30-m parent domain to allow the 
alignment (or misalignment) of flow structures across the nests to be seen. The 
“full physics” case is shown above the “dry” physics sensitivity test. 

In summary, we undertook a study of the sensitivity of hub-height wind speed and turbulence 
levels to the treatment of atmospheric physical processes in high-resolution LES. Our approach 
to this study offers a framework that can be used to identify the appropriate range of resolutions 
at which to couple mesoscale and microscale atmospheric flow simulations. Using WRF-LES, 
which is equipped with a comprehensive suite of atmospheric physics parameterizations, we 
selectively simplified or turned off these parameterizations to mimic the typical capabilities of a 
microscale computational fluid dynamics solver such as Nalu-Wind. These WRF-LES sensitivity 
tests were driven by coarse WRF-LES inflow, emulating the boundary forcing approach that can 
be used to provide a microscale simulation with realistic inflow. Convectively and stably 
stratified flow regimes were considered based on the SWiFT diurnal cycle benchmark case 
previously identified and analyzed within the MMC project. 

In both regimes, we found that hub-height wind speed and TKE were most sensitive to the 
representation of the temporal variation of the surface heat fluxes. While errors in wind speed 
were typically within a few percent of the mean wind speed, relative errors of the TKE were 
much larger. To give a scale for the importance of these errors, they were compared with the 
sensitivities associated with reasonable uncertainties in an important turbulence model 
parameter. 

For this phase of our study, relatively simple conditions were selected, including flat terrain and 
clear, dry conditions. With greater surface heterogeneity, higher humidity, and cloudiness, 
physical processes that were not significant in this case study might grow in importance. We 
plan to examine this issue by expanding our study to additional sites in diverse environments 
that are relevant to wind energy. 
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7.0 Perturbation Methods 
7.1 Overview 

When forcing a turbulence-resolving LES with initial or boundary data that does not contain the 
full spectrum of turbulence motions that are resolvable upon the LES mesh, a transition occurs 
over which resolved-scale turbulence is generated within the flow. This transition region, 
referred to as a fetch, comprises the distance into the LES domain from the inflow boundary or 
boundaries over which the turbulence and other flow characteristics approach an equilibrium 
with extant forcing conditions. 

The oldest and most common practice for simulating turbulent flow is to initialize a mean flow 
field with small amplitude perturbations to the velocity or, more commonly, potential temperature 
field and to run the simulation using periodic lateral boundary conditions (LBCs). Periodic LBCs 
permit flow exiting the domain to be recycled back into the upstream boundary or boundaries, 
creating an effectively infinite fetch over which turbulence can continue to develop until 
approaching a desired level of equilibration.  

For highly idealized setups involving nearly steady and homogeneous forcing, statistics of the 
flow and turbulence fields, such as mean wind speed, turbulence kinetic energy, and spectral 
content, can be evaluated over time until those parameters converge to steady values. Those 
values can then be validated against either observations taken during similar forcing conditions 
or from a higher-fidelity simulation, such as a direct numerical simulation.  

While the above approach to generating turbulent flow data works well for specific setups, it is 
limited to conditions that can be reasonably approximated with periodic LBCs. For general 
conditions not amenable to the approximation of periodicity, periodic LBCs cannot be used, and 
domain inflow and outflow must be prescribed differently. A primary implication of the inability to 
use periodic LBCs is that there is no longer an effectively infinite fetch over which the turbulence 
field can spin up and approach equilibrium, rather the fetch is constrained by the physical extent 
of the LES domain. This constraint places a premium on the ability of the simulation to spin up 
turbulence within a sufficiently short distance from the inflow to leave part of the domain 
available for analysis of the flow field and its interaction with turbines.  

While turbulence eventually forms within the microscale simulation domain via nonlinearities in 
the governing flow equations, the process can be quite slow, especially when turbulence 
production mechanisms are weak relative to the speed at which flow traverses the domain. To 
address the sometimes slow rate of turbulence spin-up, various methods have been developed 
to accelerate turbulence development within LES domains not using periodic LBCs. Such 
methods can generally be classified among the following categories: 1) superposition of 
correlated turbulence motions onto a mean flow, 2) application of uncorrelated perturbations to 
flow field variables, and 3) use of turbulent flow generated from a precursor simulation, such as 
an offline LES. The inflow perturbation working group within the MMC project is evaluating 
representatives of these three categories of perturbation inflow methods, described below. 
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7.2 Description of Methods 

7.2.1 Stochastic Cell Perturbation method (SCPM) 

The stochastic cell perturbation method (SCPM, Muñoz-Esparza et al. 2014) entails application 
of rectangular patches of uncorrelated, stochastically generated perturbations to either the 
potential temperature (SCPM-T) or momentum (SCPM-M) field, along three consecutive strips 
extending into the domain from the inflow plane(s), as shown in Figure 7.1. Patches of correct 
sizes and amplitudes produce buoyant instabilities that rapidly amplify via the nonlinear 
dynamics represented by the governing flow equations, generating turbulence that is consistent 
with the forcing.   

Figure 7.1. Domain schematic showing cross sections in the horizontal and vertical planes 
along which the stochastic cell perturbations (either thermal or momentum) are 
applied (modified from Mazzaro et al. 2019). 

The approach is simple, computationally efficient, and highly general because the turbulence 
forms naturally based on the forcing and geometry of the domain rather than being imposed a-
priori. The SCPM-T has been validated in idealized neutral (Muñoz-Esparza et al. 2014; Muñoz-
Esparza et al. 2015), unstable (Muñoz-Esparza et al. 2014; Mazzaro et al. 2017, Muñoz-
Esparza and Kosović, 2018), and stable conditions (Muñoz-Esparza et al. 2014; Muñoz-
Esparza and Kosović, 2018). Optimal settings of the cell perturbation method were identified by 
Muñoz-Esparza et al. (2015) and Muñoz-Esparza and Kosović (2018) and its ability to produce 
realistic turbulence has been demonstrated in a variety of cases, including: 

• A diurnal cycle in full-physics atmospheric simulations during the Crop/Wind Energy
Experiment (CWEX-13) field campaign (Muñoz-Esparza et al. 2017), 
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• Multiple daytime scenarios corresponding to convective conditions during the Experimental 
Measurement field campaign (Muñoz-Esparza et al. 2018), 

• A variety of semi-idealized scenarios dealing with ocean-island interactions and cloud
formation (Jähn et al. 2016), 

• A sea breeze over an urban-like coast (Jiang et al. 2017), and

• Flow over a real urban canopy (Lee et al. 2019).

Muñoz-Esparza et al. (2015) showed that SCPM-T performed better than the synthetic method 
of Xie and Castro (2008) in several metrics and significantly reduced computational overhead, 
as the Xie and Castro (2008) method requires either precursor simulations or analysis of high-
frequency observations, to obtain required parameter values. SCPM-M has also been evaluated 
under neutral and unstable thermodynamic forcing in idealized flat terrain setups (Mazzaro et al. 
2019), but has not been validated to the extent of SCPM-T. 

Both SCPM-T and SCPM-M are examined herein, with the SCPM-T perturbation amplitude, 
timescale, and other aspects of the setup determined following Muñoz-Esparza et al. (2017), 
while those for SCPM-M followed the approach of Mazzaro et al. (2019), as shown in Figure 
7.1. 

7.2.2 Synthetic Mann method 

Synthetic inflow turbulence methods, for which a correlated turbulence field is applied directly at 
the inflow plane(s), provide a means to potentially accelerate the generation of equilibrated 
turbulence significantly relative to methods requiring a nontrivial development fetch. However, 
as synthetic methods are predicated upon exact matches between the simulated flow conditions 
and the parameters used to generate the synthetic turbulence field, any mismatch will result in 
the need for a fetch over which the applied turbulence can equilibrate to the forcing. Additional 
computational demands and workflow complexity in obtaining parameter values to run the 
synthetic methods, either from precursor simulations or analysis of high-frequency 
measurements, should also be taken into account in evaluating the efficacy of such approaches. 
Herein we investigate one such method based on Mann (1998). 

Synthetic turbulence generation methods, such as those of Mann (1998) and Kelley (2011), 
assume that the turbulence field is frozen in time and space. The spectral characteristics of the 
wind field at one point are determined using an empirical relation; for example, from Kaimal 
(1972). A coherence function is then used to estimate the spectra over the set of grid points 
defining the inflow plane. This frequency-domain description of the wind field is converted into 
the time- and space-domain using Fourier Transforms. These 2D planes of synthetic turbulence 
are generated ahead of time, archived, and applied at the inflow plane(s) of the domain during a 
simulation, at a specified time interval.  

Herein, we use the Mann method to generate the inflow turbulence data. The Mann method is 
derived for sheared flow during neutral condition, for which shear production is the only TKE 
production mechanism. Figure 7.2 shows y-z and x-y slices of the u velocity generated from the 
Mann method. The spatial resolution is 12 m along the y-axis, and 10 m along the x and z 
directions. To generate turbulence that is comparable with that of the observations, the variance 
of wind velocity at hub height (~90 m) was obtained from the SWiFT tower observations. A 
length scale of 400 m (in this case not obtained from the tower observations) was also 
prescribed. The inflow plane is 6 km (500 grid points) in the crosswise (y) direction and 450 m 
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(45 grid points) in the z direction, covering approximately 60% of the boundary layer height, with 
the x-dimension containing 900 grid points. The turbulence structures occupy the entire plane 
and are statistically homogeneous along vertical and horizontal directions. 

Figure 7.2. Representative (left) vertical and (right) horizontal planes of inflow turbulence data 
generated using the Mann method. 

7.2.3 Synthetic TurbSim method 

The project team also calculated a synthetic turbulent inflow velocity field using the TurbSim 
stochastic wind simulator. Output from this simulator is a time-varying inflow plane that is 
periodic in time. The velocity spectra of the turbulent field are dictated by the International 
Electrotechnical Commission (IEC) Kaimal model (Kaimal 1972), with an integral length scale of 
340.2 m. A characteristic hub-height turbulence intensity (TI) of 10%, approximately the mean 
over the study period, was specified. This TI dictates the variance of the streamwise u velocity. 
Variances of v and w velocity (lateral and vertical components, respectively) are assumed to be 
related to the standard deviation of the streamwise velocity, σu; σv = 0.8σu and σw = 0.5σu.  

Spatial coherence in u is enforced between points in the inflow plane based on the International 
Electrotechnical Commission (IEC) coherence model; no coherence is enforced in v or w. 
Microscale simulation times are mapped to the TurbSim simulation that has a period of 
approximately 10 minutes (600 + ẟ s). For an input analysis period of 601 s and a perturbation 
frequency of 10 s, the small nonzero ẟ provides a longer unique series of inflow planes with 
which to perturb the flow.  

The mean velocity profile, on which the turbulence simulation does not depend, is subtracted 
from the instantaneous inflow plane. The resulting velocity fluctuations are used as 
perturbations superimposed onto the mesoscale flow field. Three quantities calculated from the 
inner nest of the WRF mesoscale simulation were used: the resolved wind direction, modeled 
PBL height, and modeled TKE. The instantaneous magnitude of the velocity fluctuations is 
obtained from the hub-height TKE = 0.5(σu

2 + σv
2 + σw

2) and the assumed relationship between 
variances. At each timestep, the stress tensor is rotated to align u with the streamwise direction 
at hub height and then the velocity-component fluctuations are scaled by the square root of the 
ratio of the PBL- and TurbSim-modeled variances, noting that the TurbSim-simulated turbulence 
is stationary.  
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Because the TurbSim simulation does not account for the depth of the boundary layer, the 
fluctuating velocity field needs to be scaled such that the fluctuations vanish in the free 
atmosphere. We applied a hyperbolic-tangent scaling function centered at the PBL height. 
Fluctuations are scaled such that the magnitude of the fluctuations decreases from 90% to 10% 
over an ad-hoc distance of 100 m. To remain consistent with the simulated homogeneous 
turbulence field, the velocity fluctuations are uniformly scaled with height above the ground up to 
the capping inversion.  

While the Turbsim method has undergone preliminary testing, formal assessment using the 
tools and methodology described below is not yet complete but is planned for early FY20. 

7.3 Assessment Methodology 

During previous years, methods based on the above approaches were developed and applied in 
various setups by different members of the project team. What has been lacking thus far is a 
systematic assessment of all the approaches in controlled setups, using the same assessment 
metrics. This year, the team developed a framework whereby each method could be examined 
using identical forcing and assessment, as required to evaluate strengths and weaknesses of 
various approaches. Below is a brief description of the simulation and analysis framework, 
presentation of preliminary results and analyses, and plans for future assessment activities. 

7.3.1 Common framework for assessment 

With multiple team members participating in development and evaluation of inflow perturbation 
methods, several different versions of the WRF model were being used, either to generate 
mesoscale inflow for offline LES, or to provide inflow to nested LES using online coupling. 
Analysis of the team workflow revealed an inability to perform the same idealized mesoscale 
runs, starting with common domain setups, modifications to various physics subroutines, and 
ingestion of initialization and forcing data sets. These discrepancies complicated the attribution 
of errors in assessment of the various perturbation methods under analysis. Moreover, each 
entity was using its own analysis scripts to compute various metrics, such as spectra and TKE, 
introducing another potential source of ambiguity into the assessment process. 

In a parallel task during FY19, the MMC team undertook development of a community code and 
database repository in which the team would archive all of the components (including forcing 
and evaluation data sets, codes, and data processing scripts) required to set up, run, and 
analyze test cases using our codes that is described in Chapter 4. While this repository was 
being developed to facilitate engagement with the larger research and industry communities, we 
realized that our collective team required just such a framework to facilitate our own 
assessment. As such, the team decided to develop the inflow perturbation intercomparison 
study within this new framework, both to help with our own analysis and to demonstrate its 
efficacy to other potential users of our tools and procedures.  

The three components of this framework include simulation codes, data sets, and analysis 
scripts. For the simulation codes, we instantiated our own branch of WRF, version 4.1, within 
the repository. We stipulated that all modifications to force the simulations, as well as the 
perturbation methods undergoing testing, be implemented into this code base, with formal 
vetting of correct implementation. This ensures both that each group can produce identical 
mesoscale inflow condition to test their perturbation methods, and that all perturbation methods 
are available to all members of the team, and others, for subsequent development or analysis.  
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The data sets utilized for the first assessment include observations from the TTU tower near the 
SWiFT facility during the diurnal cycle case of November 8-9, 2013. These data, while archived 
on the DAP, contain missing values, and also do not contain certain derived quantities useful to 
our analyses. We therefore developed a common set of data and simulation processing tools 
using a Python-based Jupyter Notebook environment, enabling the team to process raw input 
data in exactly the same manner and to compute and compare analysis metrics unambiguously. 

Standing up this new common code development and analysis framework required nontrivial 
investments, both by the team members who created the repository and the scripts, and from 
team members who needed to learn new procedures involving GitHub, Python, and Jupyter 
Notebooks, as required to adhere to project-wide standard workflow practices. While the 
learning curve was substantial, the team now has a repository and set of procedures that can 
both facilitate all future team code development and analysis efforts, but also build in usability 
by other members of the community, as demonstrated below.  

7.3.2 Assessment of Nov 8-9, 2013, diurnal cycle case 

As described above, our assessment activity for FY19 focused on examining the various 
perturbation methods within the common assessment framework case studies based on the 
diurnal cycle occurring during November 8-9, 2013, at the SWiFT facility. As a first step, we 
tested the various methods using idealized convective, neutral, and stable case studies based 
on observed conditions at SWiFT. The case studies were constructed from analysis of 50-Hz 
data obtained at 10 heights between the surface and 200 m on an instrumented tower. The data 
were subsampled to 1 Hz and averaged to obtain mean and turbulence quantities over the 
2 days. Time series of 10-minute average values of temperature, wind speed, wind direction, 
and TKE from November 8, 2013, are shown in Figure 7.3.  

Figure 7.3. Ten-minute average (a) temperature, (b) wind speed, (c) wind direction, and (d) TKE 
from Nov. 8, 2013, observed at the SWiFT tower. 
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While the goal for FY19 was to complete examination of the various inflow turbulence 
generation methods in all three stability classes, the expenditure of resources to move to the 
common code and assessment framework prevented completion of the neutral and stable case 
studies at the time of the writing of this report. However, the convective case represents a 
template that the team will follow for the other stability classes, to be undertaken in early FY20. 

The convective case study comprised the afternoon of November 8 from hours 18-20 UTC. This 
period was chosen due to the existence of high data acquisition and nearly steady wind speed, 
wind direction, and potential temperature profiles across the tower depth, with potential 
temperature increasing at a nearly constant rate due to surface heating (see Figure 7.3). 

7.3.3 Computational setup 

The mesoscale simulations used for the perturbation comparison were obtained using the MMC 
version of WRF from the team GitHub repository. The code includes modifications to the 
initialization and surface layer routines to allow user specification of latitude, roughness length, 
and heat flux values to enable idealized setups under a range of conditions, including variability 
of the Coriolis forcing, which influences rotation of the wind vector with height. This study used 
the standard Monin-Obukhov surface layer scheme (sf_sfclay_phys = 1) and the Yonsei 
University (YSU) PBL scheme (bl_pbl_physics = 1), while all other physics options (radiation, 
cloud, and surface) were turned off. The domain setup used 480 and 88 grid points in the 
horizontal and vertical grid directions, with grid spacings of 240 and approximately 4 m, 
respectively, with the vertical grid spacing stretched by approximately 5% per index with height, 
resulting in a domain top of 1606.5 m. The initial condition utilized a neutral potential 
temperature profile of 288 K up to 250 m, capped by a thermal inversion of 3.3 K km-1, to 
prevent turbulence from reaching the domain top. This profile is an idealization based upon a 
mesoscale WRF simulation of the period at the time of local sunrise. A Rayleigh damping layer 
was used over the upper 400 m of the domain to damp oscillations and to force the free 
tropospheric temperature and wind fields toward specified values, the latter representing the 
geostrophic wind used to force the mean flow.  

Because of the absence of measured values of key initial and forcing parameters, the initial 
temperature, geostrophic wind, surface heat flux, and surface roughness parameters were 
varied about a representative range of values, consistent with the observations and known 
characteristics of the site, and informed by previous mesoscale simulations of the period. The 
combination that provided the closest agreement with the observed wind speed and potential 
temperature profiles across the depth of the instrumented tower, representing processes most 
important to the generation of TKE, included zq = 0.01 m, Hy = 175 W m-2, and Vg = 18.0 m s-1. 
Rather than attempting to duplicate the observed wind direction, the angle of the geostrophic 
wind vector was instead modified to 297.6 degrees (yielding zonal and meridional values of ( , 

) = (15.952,-8.3393) m s-1) to align the flow with the x-axis of the simulation domain during 
the time period of interest, hours 6 to 8 of the simulation. This rotation allowed for a simplified 
setup, requiring application of inflow perturbations over the west inflow plane only, while also 
enabling the use of a rectangular LES domain, elongated in the streamwise direction, permitting 
a large fetch over which turbulence could develop, at a low computational cost. The change of 
angle has no impact on the solution, since all forcing parameters are horizontally homogeneous. 

Figure 7.4 shows the evolution of the domain-averaged wind speed, wind direction, potential 
temperature, and vertical velocity profiles from the mesoscale simulations used to force the LES 

gu

gv
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domains, relative to the observed values of each quantity, 2 hours prior to, and spanning the 2-
hour window during which assessment was performed. 

Figure 7.4. Mesoscale profiles at hours 16, 18, and 20 Z (=UTC) comprising the spin-up (16-
18Z) and assessment (18-20Z) periods, versus centered 30-minute-averaged 
quantities observed at the SWiFT. 

7.3.4 Assessment of perturbation methods 

Although a goal of this study is to compare the simulated turbulence field to observations during 
the case study, a complicating factor in such comparisons is the absence of measured values of 
above discussed forcing parameters influencing the evolution of the turbulence field. While 
sensitivity experiments were performed to obtain representative values of these forcing 
parameters, showing good agreement with observed mean wind speed and potential 
temperature profiles across the tower, perfect agreement between simulated and observed 
turbulence data is neither expected nor achieved. This gap between the real and simulated 
forcing environments thus requires a tiered assessment approach. As the primary goal of the 
perturbation methods is to accelerate development of the turbulence field, assessment begins 
with comparison of the various perturbation methods to identical simulations conducted without 
any perturbations. Subsequent analysis will additionally compare the perturbed simulations 
against corresponding stand-alone LES conducted with the same forcing, but with periodic 
LBCs (such as employed by Muñoz-Esparza et al. (2015) and many others). This method 
provides a good proxy for the expected far-field behavior of the perturbed solution, since the 
perturbed and periodic setups are identical, and thereby embody the same assumptions and 
departures from real data, but with the periodic stand-alone domain providing an essentially 
infinite fetch for turbulence development. Comparison against observed turbulence data will 
augment these assessment methods, providing a rich global assessment of the performance of 
the various inflow perturbation techniques, relative to uncertainties in the forcing parameters 
and limits of the computational setups. 

7.3.4.1 SCPM using online WRF 

The SCPM was examined by nesting an LES domain directly within the described mesoscale 
domain, all within the WRF model. The grid size in the nest was reduced by a factor of 20, 
yielding a horizontal grid spacing of 12 m and a grid aspect ratio of 3 at the surface, which has 
been shown to work well in many WRF-LES studies. The nest contained 960 x 480 grid cells in 
the x- and y-directions, respectively. The velocity and temperature fields were output at 1-
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minute increments over the entire domain, while an array of 20 x 10 vertical columns equally 
spaced in the x- and y- directions were also output at 10 Hz for comparison against high-
frequency tower data. The LES utilized the 1.5-order TKE subgrid-scale (SGS) model to 
facilitate comparison against other codes used within the project that also employ this closure. 

7.3.4.2 NO-SCPM 

For the first phase of assessment, a simulation was performed with no perturbations at the inlet 
(x = 0) of the LES domain (NO-PERT). A summary of the results from NO-PERT is shown in 
Figure 7.5 within which several flow parameters and analysis metrics from approximately 90 m 
above the surface are displayed. The top left panel shows instantaneous contours of the 
streamwise flow component (u), overlayed by colored lines indicating 11 distances from the 
inflow at which the quantities shown in the other figure panels are computed. The fourth panel 
from the top in the left column shows instantaneous values of the vertical velocity (w). Between 
the two contour plots are spectra of the u	velocity, and cospectra of the u and w velocities, 
computed along the y-direction, and averaged over all times, at each of the 11 analysis 
locations. The right column shows relative frequency distributions approximating probability 
density functions (PDFs) of w over the 2-hour analysis window at each of the 11 locations, 
whereas the lower left panel shows values of the skewness and kurtosis of w as functions of 
distance from the inlet. 

The results displayed in Figure 7.5 indicate the slow development of turbulence, even under 
moderately strong convection, in the absence of inflow perturbations. Neither the u nor 
w	velocity contours show turbulence features until beyond 5 km from the inflow, after which 
other metrics indicate very slow development of the turbulence field with distance. The spectra 
and cospectra demonstrate this slow development via a surplus of energy at small wavelengths 
following the first appearance of turbulence, followed by gradual increases at larger 
wavelengths with increasing distance. The PDFs indicate even more clearly than the spectra 
and cospectra how the turbulence field evolves, as the PDFs continue to change as the flow 
approaches the end of the domain. For NO-PERT, the fetch dependence of the skewness and 
kurtosis are difficult to discern from the lower left panel, due to the large kurtosis value occurring 
prior to turbulence initiation. However, the skewness and kurtosis values shown on the insets 
within the PDFs indicate that convergence has not been achieved within the extent of the 
domain.  

7.3.4.3 SCPM-T 

Figure 7.6 shows the same fields and analyses from the NO-SCPM simulation setup, but with 
SCPM applied to the potential temperature field at the inflow plane. All panels in Figure 7.6 
indicate significantly earlier onset of turbulence using SCPM-T, followed by much faster 
equilibration, with quasi-convergence of all parameters by approximately 6 km from the inflow. 
Furthermore, comparison of the PDFs between Figure 7.5 and Figure 7.6 highlights the much 
more rapid appearance of non-Gaussianity following application of SCPM-T, as expected under 
convective forcing, which gives rise to relatively fewer but larger magnitude convergent and 
updraft flow motions, versus relatively more numerous but weaker diverging downdraft flow 
motions. 
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Figure 7.5. Microscale assessment results from the base case without any turbulence 
instigation methodology (NO-SCPM). 
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Figure 7.6. Microscale assessment results using the SCPM-T approach. 
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7.3.4.4 SCPM-M 

Although the SCPM-T uses buoyancy forcing to initiate fluid motions that then evolve into 
turbulence, an alternative application of the SCPM is to perturb the velocities directly, using the 
“force” or “momentum” approach, SCPM-M. The motivation for SCPM-M is a capability to 
accelerate turbulence formation, relative to SCPM-T, by proving an ability to more rapidly 
generate larger fluid motions nearer to the inflow plane(s). However, a concern of the SCPM-M 
is that the fetch required for this perturbed velocity field to subsequently develop into coherent 
turbulence, consistent with the governing flow equations, may be larger since SCPM-M imposes 
a velocity field that is not initially consistent with the governing equations, rather than working 
through the buoyancy forcing mechanism as SCPM-T does.  

To compare these two approaches, momentum perturbations were introduced into the flow via a 
method similar to SCPM-T with a few key differences. First, although SCPM-T imposes thermal 
perturbations immediately and directly onto the potential temperature field, leading to immediate 
buoyant forcing as the equations are integrated forward in time, SCPM-M is implemented via 
application of a tendency, or time rate of change, to the prognostic equation governing the 
affected velocity component(s). Hence, SCPM-M requires several model time steps to influence 
the velocities, with the rate of influence controlled by the amplitude of the forcing. Since WRF’s 
governing equations prognose the product of the velocity and the mass contained in the vertical 
column containing each model grid point, the optimal amplitude for the momentum perturbation 
depends upon the mass in each column, which in turn, depends upon the pressure field and the 
depth of the computational domain. Since, as yet, no general formula exists for computing the 
optimal magnitude for SCPM-M based on those physical and computational factors, we follow 
Mazzaro et al. (2019) and investigate a range of coefficient values that multiply the stochastic 
perturbations, obtained from a random number generator in the range of [-0.5, 0.5], centered 
about 0. While we analyzed simulations using all six of the forcing amplitudes examined in 
Mazzaro et al. (2019), here, for brevity, we discuss results using a subset of those runs.  

Figure 7.7 and Figure 7.8 show results from SCPM-M applied to the horizontal momentum 
components only, using amplitudes of 2,000 and 5,000, respectively, whereas Figure 7.9 and 
Figure 7.10 show results applied only to the vertical momentum component using amplitudes of 
5,000 and 10,000, respectively, with all results presented in the same format as for NO-PERT 
and SCPM-T. 

As Figures 7.7–7.10 demonstrate, all of the simulations using SCPM-M feature accelerated 
turbulence generation relative to NO-SCPM (Figure 7.5). For all cases, the larger amplitudes, 
whether acting on the horizontal (Figure 7.7 and Figure 7.8) or vertical momentum components 
(Figure 7.9 and Figure 7.10), generate turbulence nearer to the inflow, with the largest-
amplitudes results comparing qualitatively well with the SCPM-T results (Figure 7.6). However, 
a careful examination of the spectra and the PDFs reveal that aspects of turbulence 
development arising from SCPM-M differ from those of SCPM-T. For example, SCPM-M applied 
to w produces the most rapid equilibration of the smallest wavelengths of turbulence, while the 
application to w with the largest amplitude also achieves the most rapid convergence of the 
skewness. However, all of the SCPM-M results show slower convergence of the large-
wavelength spectral energy, which continues increasing with fetch, and to higher values than for 
SCPM-T. Further examination, described in the following section, is required to better 
understand the differences between SCPM-T and SCPM-M.  
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Figure 7.7. Microscale assessment results from SCPM-M applied to the horizontal momentum 
components, with a perturbation amplitude of 2,000. 
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Figure 7.8. Microscale assessment results from SCPM-M applied to the horizontal momentum 
components, with a perturbation amplitude of 5,000. 
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Figure 7.9. Microscale assessment results from SCPM-M applied to the vertical momentum 
component, with a perturbation amplitude of 5,000. 
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Figure 7.10. Microscale assessment results from SCPM-M applied to the vertical momentum 
component, with a perturbation amplitude of 10,000. 
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7.3.4.5 Synthetic Mann method 

Figure 7.11 shows an example of application of the Mann method for the same idealized setup 
as used for the SCPM analysis, with the synthetic inflow turbulence again applied to the west 
inflow boundary of nested domain d02. In this implementation, the synthetic inflow data are 
provided at 2-minute frequency and linearly interpolated in time to the simulation time. The 
simulated flow field was saved in the same format as the SCPM simulations. The top panel in 
Figure 7.11 shows a horizontal slice of u-component of velocity at 100 m above the surface at 
1900 UTC after 9 hours of applying synthetic turbulence. The bottom panel in Figure 7.11 
shows the vertical slice of u-component of velocity that passes through the middle of the west 
boundary. Both flow fields show the presence of turbulent flow structures immediately at the 
location of the inflow boundary, after which the turbulence persists throughout the extent of the 
domain.  

Figure 7.11. Horizontal (top) and vertical (bottom) slices of u-component of velocity from 
simulated flow field using the synthetic Mann method. 

7.3.4.6 Application of the MMC tools framework to the synthetic Mann method 
While Figure 7.11 shows that the synthetic Mann method readily imparts flow structures that 
appear turbulent immediately at the inflow into the domain, differences in the turbulence 
morphology relative to the NO-PERT and the SCPM solutions are apparent. The project 
assessment tools and metrics framework was applied to these simulation results, providing both 
a more thorough understanding of the nature of these differences and, importantly, identification 
of a parameter value used in the synthetic method that can be rescaled to potentially improve 
agreement with the SCPM approaches. This analysis, in turn, motivated the introduction of 
additional metrics that can better inform the overall assessment process in quantifying the 
strengths and weaknesses of various approaches going forward.  
Figure 7.12 provides assessment of the Mann method in the same framework as the other 
methods (Figs. 7.5–7.10) to facilitate comparison. Key differences include spectra and 
cospectra that are between one and two orders of magnitude greater for the Mann than the 
other methods and noticeably broader PDFs throughout most of the domain. As described 
earlier, the length scale of 400 m used in the synthetic turbulence generation is hypothesized to 
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be responsible for the bulk of these differences, having been prescribed a value that is likely 
much larger than is appropriate for the extant forcing conditions. Determination of a more 
appropriate value from the SWiFT tower data is underway.  

Figure 7.12. Microscale assessment results from the synthetic Mann method. 
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7.4 Summary and Future Work 

Herein, assessment of several inflow perturbation methods, intended to accelerate the formation 
of turbulence in turbulence-resolving LES forced by mesoscale inflow data, was performed. This 
assessment was performed using a new simulation and assessment framework developed by 
the team this year to facilitate formal assessment of codes and procedures applicable to MMC. 
The new simulation and assessment framework was demonstrated in a case study from the 
SWiFT facility, a site with relatively uniform surface cover and smooth terrain, comprising the 
convective portion of a typical diurnal cycle, under quiescent meteorological conditions. 

Three different inflow perturbation methods were examined, relative to an unperturbed “control” 
simulation, all using identical mesoscale forcing and using the same assessment scripts and 
resulting performance metrics. Analysis reveals that, in the absence of any inflow perturbations, 
turbulence initiation requires about 5 km to develop, after which the developing turbulence 
slowly evolves through the remainder of its transit through the domain, never achieving steady 
values of key turbulence parameters within the extent of the domain. Each perturbation method 
examined herein significantly accelerates the onset and evolution of turbulence, producing 
nearly equilibrated turbulence statistics over the same distance as required just to initiate the 
turbulence field in the absence of any treatment at the inflow boundary.  

Among the methods examined, the stochastic cell perturbation method, applied to the potential 
temperature field (SCPM-T), has undergone the most development and validation in similar 
atmospheric-boundary-layer flow simulations to those conducted herein. Application of the 
method with the published optimal parameter settings herein yielded results consistent with 
those presented in the literature. A variant of the SCPM for which the perturbations are applied 
directly to the momentum field (SCPM-M) was also assessed. In the absence of similar 
published guidance on the optimal perturbation amplitude, SCPM-M was run with several 
different amplitudes. While the study demonstrates the potential of SCPM-M to perform similarly 
to SCPM-T, provided the correct amplitude information, the absence of practical guidance on 
optimal perturbation amplitudes complicates application of the method, relative to SCPM-T. 

Analysis of the synthetic Mann method likewise demonstrated applicability to turbulence inflow 
generation, producing results that were comparable to the other methods. Notable differences 
between the Mann method relative to the SCPM variants included the appearance of turbulence 
nearer to the inflow plane of the microscale domain, somewhat wider PDFs, and significantly 
larger spectral energy contents. The latter two differences are hypothesized to have resulted 
from the large value of the length scale used by the turbulence generation algorithm, with 
testing underway to evaluate the impact of reducing that parameter. 

The study also demonstrated an important new element of the team workflow, the common 
code and assessment framework. The ability of the team to produce identical forcing and run 
identical assessment scripts eliminated ambiguities in the detection and attribution of 
differences that had previously arisen from inconsistencies in how various members of the team 
chose to set up and force their simulations and conduct and present analyses. Examples of the 
payoffs resulting from the collective investment by the team into a common evaluation 
framework include the ability to rapidly assess the impacts of different perturbation amplitude 
values for SCPM-M and the straightforward identification of the length-scale as a likely factor in 
the enhanced spectral energy contents and wider PDFs using the Mann method.  

It is important to emphasize that the assessment described earlier does not, by itself, determine 
the ultimate accuracy of any of the above described methods. Other metrics and approaches 
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must be incorporated to assess accuracy. However, the analysis described thus far does clearly 
demonstrate how the use of a common simulation and assessment framework can greatly 
assist both the detection of differences that would be difficult to ascertain in similar but 
nonidentical setups and analyses and generate hypotheses regarding the sources of those 
differences.  

Additional metrics under development to augment the evaluation of these and other methods 
include TKE and fluxes of heat and momentum, each highly applicable to wind energy 
applications. An additional method to assess the methods will be to conduct stand-alone LES 
with the same forcing but with periodic LBCs, a technique to provide proxies for the expected 
far-field equilibration values of many of the previously described assessment metrics, including 
PDFs and their characteristics, spectral content, TKE, and fluxes. Finally, the simulations will be 
compared against the observed data to provide a rich qualitative and quantitative comparison of 
the various perturbation methods under examination by the team.  

The capability of analyzing these and other metrics in the time domain is undergoing final 
testing prior to incorporation into the MMC assessment toolkit repository. For the current 
scenarios under investigation, where the domain is flat and inflow conditions evolve slowly, 
spatial characterizations as performed herein yield more robust statistical convergence than 
time domain analysis. However, under more general environmental conditions, including 
unsteady meteorology, complex terrain, and heterogeneous surface characteristics, such as 
waves and land-sea contrasts, time domain analysis will be required. Evaluation of these and 
other perturbation approaches in complex terrain and offshore conditions is planned for FY20. 
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8.0 Improvements in Near-Surface Physics 
8.1 Using Artificial Intelligence for Surface Layer Parameterization in 

WRF 

The MMC team is exploring using a machine-learning approach to represent the atmospheric 
surface layer in replacement of Monin-Obukhov Similarity Theory (MOST; Monin and Obukhov 
1954). Its goals are to: (1) determine the best representation of heat, momentum, and moisture 
fluxes by training random forest and artificial neural networks and (2) test these auto-encoded 
representations in WRF compared to standard parameterizations that use MOST. We use 
surface layer data sets for the KNMI-mast at Cabauw, Netherlands, and the National 
Atmospheric and Oceanic Administration Field Research Division tower in Idaho. Our data are 
split so that two-thirds of the years were used for training and one-third for testing. Both random 
forecast (RF) and artificial neural networks (ANN) were tested. The mean absolute error and 
correlation (R ) were used to compare the machine-learning predictions and the observations 
on the test data set. We found that the RF and ANN models generally improved upon MOST for 
estimating friction velocity, temperature scale, and moisture scale. Additionally, we found that a 
model trained on Idaho data and applied to Cabauw's test data set (and vice versa) showed 
generally lower errors and higher correlations than MOST, which provides evidence of the 
robustness of the machine-learning models. 

We implemented the random forest surface layer parameterization subroutine in WRF and 
performed initial WRF single column runs using the second global energy and water cycle 
experiment atmospheric-boundary-layer study (GABLS-II; Beare et al. 2006) idealized forcing. 
The initial analysis represents a series of 3-day WRF runs with different random forest and WRF 
settings and compares them to the default WRF surface layer scheme and idealized slab land 
surface model. We further reduced the number of input variables and removing counter-gradient 
fluxes resulted in the best-performing WRF run so far in the preliminary analysis. We have 
begun writing a manuscript to be submitted to the Journal of Advances in Modeling Earth 
Systems, titled, Machine Learning Parameterization of the Surface Layer. 

As part of the MMC project, we plan to address remaining issues with the land-based machine-
learning surface layer parameterization and transition the approach for use in the offshore 
environment. First, we will test the ANN parameterization in WRF and determine whether its 
smoother predictions produce better or worse results within WRF than the random forest. We 
will perform regime-based interpretation of the machine-learning models to determine how the 
importance and sensitivity of different variables change when transitioning from unstable to 
stable regimes. To support offshore wind prediction, we will develop an ocean surface layer 
parameterization using available meteorology and flux data from buoys and potentially ship-
based field programs. We will then implement both the land surface layer and offshore surface 
layer parameterizations together in WRF and evaluate them across selected case studies 
covering a range of weather regimes. 

8.2 Additional Surface Layer Methods for the Marine Environment 

Two additional methods that can be applied to improving the surface boundary condition over 
water include those based on the addition of forcing terms to the momentum equations and 
immersed boundary methods. Each of these approaches can enable the representation of 

2
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surfaces of arbitrary shapes, such as waves of any amplitude, and furthermore, can enable 
those features to change shape in time and space. 

Methods based on supplying a force to the momentum equations typically utilize drag 
coefficients to retard the flow, either in applications involving forest canopies, for which drag 
terms approximate the effects of vegetation extending into the surface or boundary layer 
(e.g., Shaw and Patton 2003) or in urban areas where large momentum sink terms can 
approximate the effects of buildings, causing the flow to deflect around and over such “virtual 
buildings” (e.g., Chan and Leach 2007). Moreover, canopy methods have been shown to be 
extensible to idealized flat, rough surfaces where they can provide improved fidelity relative to 
the standard MOST approach (Arthur et al. 2018). 

While wave height can be specified as the explicit bottom boundary in any computational fluid 
dynamics model, simpler approaches may generate sufficient fidelity, depending upon the 
application, and moreover, allow models such as WRF that use a terrain-following vertical 
coordinate, to represent the effects of steep wave slopes without incurring increased numerical 
errors (e.g., Lundquist et al. 2012). 

Canopy approaches could potentially be modified to the marine environment to account for 
unresolved drag and pressure effects, either in applications for which the wave features are 
entirely subgrid, or at higher resolution where the canopy shape profiles could be modified in 
time and space to represent resolved sea-state features. For wave-resolving simulations, the 
application of large momentum sinks could be applied to generate virtual waves, analogous to 
the virtual building approach. These approaches could potentially be combined, whereby 
canopy methods could approximate, for example, the impacts of smaller surface waves 
superimposed on resolved virtual swell. Such an approach could likewise be modified to provide 
momentum augmentation in cases where waves moving relative to the flow aloft can increase 
the momentum of the flow field. 

In addition to momentum-based approaches, immersed boundary methods could also be used 
to characterize the marine boundary interface and its changes over time and space using a 
more exact implementation than methods based on momentum, while also permitting arbitrary 
slopes without leading to numerical errors in models that use terrain-following vertical 
coordinates. As with the virtual building approach, canopy methods could likewise be combined 
with immersed boundary methods to add fidelity. 

Exploration of these previously described methods will be undertaken by the team to provide 
improved sea-surface effect parameterization, addressing a range of sea-state applications, 
model resolutions, and fidelity requirements. 
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9.0 Uncertainty Quantification 
Mesoscale-microscale-coupled simulations are sensitive to the parameterizations used in each 
of the mesoscale and microscale solvers. In particular, these parameterizations typically include 
a number of uncertain parameters. Ideally, uncertainties propagating from both the mesoscale 
and microscale models should be taken into account when attempting to quantify the overall 
uncertainty in mesoscale-microscale-coupled simulations. However, due to the large number of 
parameters plus the relatively high computational cost of LES, it is more feasible to employ a 
tiered strategy to assessing the uncertainty of coupled simulations by first identifying the most 
critical parameters in each of the mesoscale and LES closures before attempting a combined 
analysis. Using WRF in a mesoscale configuration, Yang et al. (2017) analyzed the sensitivity of 
predicted turbine-height wind speeds to 12 parameters of the MYNN planetary boundary-layer 
scheme and 14 parameters of the MM5 surface-layer scheme. Promisingly, this study found that 
most of the uncertainty in predicted wind speeds was attributable to just a few of the parameters 
in each of the boundary- and surface-layer schemes. Here, using nested WRF/WRF-LES 
simulations, we evaluate the sensitivity of predicted boundary layer winds and turbulence to 
parameters of a 1.5-order, TKE-based SGS turbulence closure and of a surface flux scheme. 
We sample a range of parameter values to generate an ensemble of coupled mesoscale-
microscale model runs using a nested WRF/WRF-LES computational approach. This set of 
WRF/WRF-LES model runs is then used to determine which LES closure parameters most 
strongly influence predictions of hub-height winds. 

9.1 Case Selection and Set Up 

We simulate a period on Aug. 21, 2016, during the WFIP 2 in the Columbia Basin region of 
Washington and Oregon (Shaw et al. 2019). This period has also been simulated and compared 
to lidar observations using a proper orthogonal decomposition technique by MMC project team 
members, as described in Chapter 10.0 of this report. The selection criteria that were applied to 
identify this case are described in Section 3.2. This analysis indicates that nested WRF/WRF-
LES simulations can generate coherent turbulent structures that are generally consistent with 
the observed structures. 

Simulations are run with three levels of nested domains. The outermost domain has a horizontal 
grid spacing of 1.35 km and uses a typical suite of physical parameterizations appropriate to 
mesoscale resolutions. Initial and boundary conditions of this domain are generated from the 
GFS reanalysis. We also evaluated the National Centers for Environmental Prediction’s NARR 
for this purpose but did not find consistent improvement in the agreement between observed 
and simulated wind speeds. The two inner domains have horizontal grid spacings of 150 m and 
50 m, respectively, and both are treated as LES. The outermost domain is spun up for 6 hours 
before initiating the inner domains, then all three domains are run for an additional 3 hours, 
spanning 18:00-21:00 UTC. This mid-day period, which is characterized by strong positive 
surface heat fluxes, experiences convective conditions. 

The simulation domains are positioned so that all three encompass two key measurement 
locations from the WFIP 2 campaign. Sodar, lidar, and radar wind observations were obtained 
at the Wasco State Airport in Oregon, whereas sonic anemometer measurements of wind and 
temperature at 50-m and 80-m levels were collected at the nearby Physics site-12 (PS-12).  
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9.2 Determination of Parameter Ranges 

Although a few SGS turbulence closures are available in WRF-LES, we focus on the 1.5 order 
TKE-based closure that largely follows the model presented by Deardorff (1980), as similar 
types of closures are implemented in many microscale atmospheric models, including Nalu-
Wind. For clarity of the following discussion, we present some key equations of this closure. 

In particular, eddy viscosity, 𝐾�,	is determined (at each grid point) from the SGS TKE 𝑒 and an 
eddy length scale as 𝐾� = 𝑐k𝑒J/C. The eddy length scale equals the grid-based filter scale, Δ, 
when (grid-scale) stratification is neutral or unstable and is reduced under stable stratification 
according to 𝑐m = 𝑒J/C𝑁�J/C, where 𝑁 is the Brunt-Väisälä frequency. The ratio 𝑙Δ�J is used in 
the closure as a measure of the local level of flow stability. 

The SGS TKE itself is determined by solving a prognostic equation that includes terms for 
resolved and SGS transport, production of TKE by resolved shear, production/destruction of 
TKE through buoyancy, and dissipation, 𝜖. The closure for dissipation is 𝜖 = 𝑐�𝑒�/C𝑙�J and the 
coefficient, 𝑐�, is modified in response to local stability according to 𝑐� = (𝑐�� − 𝑐�Q)𝑙Δ�J + 𝑐��, 
where subscripts 𝑁 and 𝑆 refer to neutral and stable stratification. The coefficient, 𝑐��, is difficult 
to directly constrain through physical arguments. However, the coefficients of the closure can be 
related to a critical Richardson number, Ri�	(de Roode et al. 2017), then 𝑐�� can be determined. 

The SGS TKE closure interacts with the surface layer scheme in several ways, most notably 
through setting the near-surface value of 𝑒. Therefore, we also consider the effect of varying the 
surface roughness. This is accomplished by enhancing the default roughness length by a 
multiplicative factor, 𝑧T, ranging between 1 and 2, following Yang et al. (2017). We frame our 
analysis in terms of the logarithm of 𝑧T to be more consistent with how this factor is used within 
the surface scheme. 

Modifications to the WRF source code were required to explicitly define and expose all 
parameters (except 𝑐k) as options in the namelist input file. This code is available at 
https://github.com/cmkaul/WRF/tree/les_uq and is a fork of the A2e-mmc version of WRF. The 
parameters tested, their uncertainty ranges, and their default values in WRF are summarized in 
Table 9.1. 
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Table 9.1. Parameters varied in the uncertainty analysis. Symbols are defined in the text. The 
uncertainty quantification (UQ) range is the range of values input to the Latin 
Hypercube sampling algorithm. The WRF default is the default version used in WRF 
v4.1.2. Note that in the standard WRF release, only 𝑐k	is available as a namelist 
option. The other parameters are not explicitly defined, but rather implicitly fixed within 
the code base. 

9.3 Simulation Ensemble 

We generate an ensemble of 64 nested WRF/WRF-LES simulations. This number of 
simulations is needed to adequately sample across the uncertainty ranges of the five 
parameters identified for our analysis, provided the sample values are selected through an 
efficient technique. Here, we employ a Latin hypercube sampling algorithm (Stein 1987; Helton 
and Davis 2003). 

All ensemble runs use an identical configuration of the outermost mesoscale domain and each 
uses the same set of LES parameter values in the 150-m and 50-m domains. Thus, uncertainty 
quantification analysis can be performed using output from either domain. In particular, scale 
dependence of the parameter sensitivity can also be investigated. Our initial analysis focuses on 
the 10-minute average wind speed and its variance.  

Time series of these quantities at the PS-12 location are shown in Figure 9.1. For both 
simulations and observations, we compute means and variances of 1-Hz instantaneous wind 
speed values over 10-minute windows. Simulated wind speeds are biased low relative to the 
observed wind speeds. The one standard deviation range of 10-minute averaged simulated 
wind speeds is narrow; however, the variance of the 1-Hz simulated wind speeds is large, which 
is consistent with the observations. Simulated wind speeds were also found to be biased low at 
the Wasco State Airport location. 



Uncertainty Quantification 86 

Figure 9.1. 80-m wind speed at PS-12 from WRF simulations and observations. Data from 
south and west sonics are shown in blue and green, respectively; solid lines indicate 
the 10-minute average wind speeds, and shading indicates their one standard 
deviation range. The solid black line shows the mean 10-minute average wind 
speed of the simulation ensemble at 150-m resolution, gray lines indicate the one 
standard deviation range of the ensemble, and gray shading shows the one 
standard deviation spread about the ensemble mean considering the maximum 
wind speed variance of any of the ensemble members. 

9.4 Parameter Importance Ranking 

Valuable information can be gained by ranking the relative importance of the five tested 
parameters in determining the ensemble spread. For example, any parameters that show a low 
level of importance could be excluded in future analyses, whereas parameters with a high level 
of importance can be targeted for performing model calibration. While there are a number of 
possible approaches to performing importance ranking, here we use two approaches. 

The first approach, which is very similar to the methodology used by Yang et al. (2017), is 
based on a generalized linear model (GLM). This approach is best suited to identify the 
parameters that have strong linear effects on the model output. 

The second approach is based on regression with random forests (RF). A description of the 
method can be found in Genuer et al. (2010), and the implementation in the R environment is 
discussed by Liaw and Wiener (2002). In contrast to the GLM approach, the RF approach is 
better suited to identify parameters that affect the model output nonlinearly. 

Briefly, the method begins with the construction of a set of learning data with vectors of 
explanatory variables, 𝑋l	(here, the values of 𝑐k,	𝑐m,	𝑐��,	Ri�,	and	𝑧T) and vectors of responses, 	𝑌l. 
In our study, these 𝑌l	are WRF-LES predictions of 10-minute running means and variances of 
wind speed at 50-m and 80-m vertical levels. Specifically, we analyze the values obtained at 10-
minute intervals between 19:20 UTC and 20:50 UTC, at the PS-12 and Wasco State Airport 
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locations, and consider both the 150-m (“d02”) and 50-m (“d03”) resolution domains. The index 
𝑖	runs from 1 to 64, to account for all 64 ensemble members. 

The method proceeds by growing regression trees to describe the learning data. A procedure 
called permutation importance ranking (Genuer et al. 2010) can then be used to determine the 
relative importance of the explanatory variables. Parameter sensitivity scores can be computed 
with respect to each of the response variables, 𝑌l	(again, these are means and variances of 
wind speed in our analysis), then summed across the response variables. The results of this 
analysis are shown in Figure 9.2. Each of the bar plots shows the result of one of the analysis 
methods (“GLM” or “RF”) for a given location (“PS-12” or “Wasco”), computational domain 
(“d02” or “d03”), and vertical level (“50 m” or “80 m”). Several interesting features emerge from 
Figure 9.2. First, the results do not show a strong dependence on vertical level, at least over this 
narrow range. Second, the GLM and RF analysis methods yield different results, indicating the 
significance of nonlinear interactions among the parameters. With the details depending on the 
analysis method used, we also note differences between the parameter rankings on the coarser 
and finer grids.  

Figure 9.2. Comparison of the aggregated sensitivity scores for each parameter. 



Uncertainty Quantification 88 

Using the RF method, all parameters show nearly equal importance for the coarser grid 
predictions of both means and variances at the two sites. Differences in the sensitivity scores 
are certainly too small to allow any of the parameters to be excluded from future analysis. 
However, a slightly different pattern emerges on the finer grid. Here, the RF method more 
clearly identifies 𝑐k	as the most important parameter, while sensitivity to the remaining 
parameters is about equal.  

The GLM method identifies 𝑐�� as the most important parameter at the Wasco site for the 
coarse domain simulation, and 𝑐k	followed by	𝑐�� at the PS-12 site. However, there are no 
obviously excludable parameters. On the finer grid, 𝑐k	strongly predominates as the most 
important variable at both locations when the GLM method is used. Considering the roles each 
of the parameters plays in the model, it is reasonable that 𝑐k	receives larger sensitivity scores 
under the GLM method that identifies linear effects as it directly multiplies local gradients to 
determine the subgrid-scale fluxes of momentum and scalar quantities. 

It should be recalled that the coarser resolution domain provides the lateral boundary conditions 
for the higher resolution domain (i.e., here d02 provides the boundary conditions to d03). Thus, 
it is interesting that the parameter sensitivity scores differ as much as they do between the 
domains with 150-m and 50-m horizontal grid spacing. Since 150-m resolution is a relatively 
coarse resolution for LES, even LES of convective ABLs, it is not entirely surprising that the 
parameter importance shows resolution dependence. However, it needs to be assessed 
whether the parameter importance tends to stabilize over the more typical range of resolutions 
at which LES is performed (i.e., horizontal grid spacing spanning roughly 10 m to 100 m). 

9.5 Summary and Next Steps 

Our results indicate that all five of the parameters we considered influence predictions of hub-
height winds. While the eddy viscosity coefficient, 𝑐k, seems to be the single most important 
parameter for this case, all remaining parameters remain influential when we use a random 
forest analysis approach that can capture nonlinear interactions between variables. While these 
results do not support excluding any parameters from subsequent UQ analyses, we note that 
the number of parameters remains relatively tractable. 

The preceding results raise a few outstanding questions. First, how generalizable are these 
findings? Here, we analyzed a single case study of a convective boundary layer. Although the 
computational cost of generating the simulation ensemble precludes consideration of a large 
number of cases, it is important to examine other scenarios. In particular, we plan to evaluate at 
least one more convective period observed during WFIP 2 as, intuitively, the parameter 
sensitivities found for that case should be similar to those documented here. As already 
mentioned, we would also like to further examine resolution sensitivity of the parameter 
rankings. 

Second, what additional output variables should be considered? Higher-order statistics, such as 
turbulent momentum fluxes, are relevant to issues such as wake recovery into which LES can 
provide important insights.  

It is interesting to note that, even under the convective conditions simulated here, the results are 
sensitive to parameters that are used only in the presence of local stable stratification. We plan 
to investigate this finding more closely to better understand the cause(s) for this dependence. 
The TKE-based SGS model implemented in the Nalu-Wind model is simpler than that in WRF 
and does not include explicit stratification dependence. In other words, of the five parameters 



Uncertainty Quantification 89 

we examine here, only 𝑐k and 𝑧T are relevant for Nalu-Wind’s current formulation. Based on 
these results, we would like to assess the potential consequences of using this simplified 
closure form. Ongoing with our UQ analyses using WRF, we are participating in verification 
tests of Nalu-Wind’s predictions of atmospheric boundary layers, which is important preparation 
for performing uncertainty quantification studies of coupled WRF/Nalu-Wind simulations.  
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10.0 Lidar Simulator 
In our previous work (Rai et al. 2019), LES horizontal wind velocity contours near the surface 
showed streak-like structures orienting along the mean wind direction. For instance, Figure 10.1 
(left) for the u-component of velocity 90 m above the surface shows such elongated structures 
occupying the entire area and orienting west to east. This flow field was generated using WRF-
LES with 30-m grid spacing during daytime with moderate heat flux and winds. These structures 
play a significant role in transferring the heat and momentum over space and time. However, it 
is difficult to validate their existence in a real atmosphere using traditional measuring 
instruments, such as anemometers. The scanning lidar can provide data at more spatial 
locations. Therefore, this work uses lidar scanning data collected during the WFIP 2 campaign 
at Wasco State Airport, Oregon, to observe the turbulence structures and evaluate the flow field 
from the simulation. Figure 10.1 (right) shows the location and the scope of plan position 
indicator (PPI) scanning for the lidar. PPI scanning at three elevation angles (2.4, 4, and 6 
degree) has been used. The scanned grid points shown here only cover the east-sector data for 
which the flow is approximately westerly, and the radial velocity would provide truer magnitude 
of u-component of velocity. The spatial resolution along the line of sight (LOS) is 100 m, and the 
LOS moves 1° azimuthal angle in each second for 25 seconds. Here, only 19 radial locations 
are considered as the quality of data worsens for larger radial distance from the lidar.  

Figure 10.1. u-component of wind velocity 90 m above the surface (left); location of scanning 
lidar and east-sector area for analyzing lidar data on the top of elevation contour 
(right). 

To evaluate the streak-like structures seen in the simulated flow, we prepared simulated lidar 
data (east-sector) using a highly resolved wind field from LES (30-m grid spacing) by 
interpolating the simulated data into the corresponding grid locations of the lidar. The data were 
interpolated each second to match the corresponding scanning rate of the lidar. Then, the east-
sector data from our simulated lidar were compared against the east-sector data from the 
Wasco scanning lidar. The wind data consist of a 2-hour period (i.e., total data length) with 
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unstable conditions that were simulated for August 21, 2016, using three nested domains in the 
WRF model. The east-sector PPI data that were scanned at two elevation angles¾2.4 and 
4 degree—were added together to increase the number of east-sector data (i.e., 16 east 
sectors). Fluctuating velocities about the mean for both measured and simulated lidar data were 
calculated using the east-sector data (Figure 10.2). The instantaneous velocity from both the 
scanning lidar data and simulated data exhibits similar magnitude of the fluctuating radial 
velocity. The flow structures in both cases are oriented west to east along the mean wind 
direction. Qualitatively, the radial velocity contours show that the simulation for this date is able 
to capture the flow features of the lower atmospheric boundary layer.  

Figure 10.2. Fluctuating radial velocity about its mean, derived from a 2-hour unstable period 
for the scanning lidar data (top) and simulated data (bottom). 

Proper orthogonal decomposition (POD) analysis of the flow field containing coherent structures 
can segregate the energetic structures of the flow into the first few POD modes and, hence, 
they can be used to reveal the amount of turbulent structures present in the different mode 
numbers. The POD decomposes the flow field into basis functions (i.e., POD spatial mode) and 
its coefficients. Figure 10.3 shows the first six spatial POD modes obtained using the fluctuating 
velocities of east-sector data described above for the 2-hour period. The first spatial POD mode 
for both simulated and observed cases shows positive magnitude in the entire sector area, 
suggesting that the first POD mode represents the largest amount of energy and size of 
turbulent structures. As the POD mode number increases, the magnitude of POD modes starts 
to fluctuate about zero mean, and the size of the spatial structures decreases. The energy 
contained in these higher POD mode structures are smaller compared to that of the lower POD 
mode structures. Moreover, the orientation of the flow structures in both simulated and 
measured cases are similar, mostly orienting along the mean wind. However, the POD energy 
(not shown here) for most of the modes of the simulated case shows little mismatch with that of 
the observed case, except for the second and third modes.  
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Figure 10.3. Spatial POD modes derived from fluctuating radial velocity from a) scanning lidar 
data and b) simulated data. 

The results for the POD analysis discussed above were derived from the scanning lidar data 
from a single day and from 2 hours of simulated data (that provide 16 east sectors). The POD 
results derived from these few east-sector data may not well represent the unstable case due to 
the lack of convergence of the second-order statistical moment. To make the east-sector 
ensemble data, we have used all 36 days of data for the POD analysis that allows more than 
500 east-sector snapshots for each case. As the mean and variance of radial velocity of east-
sector data vary with time, each east-sector scan was binned according to the range of mean 
and variance values (i.e., <5 m/s, 5-10 m/s, and >10 m/s for mean and <1.5 m2/s2 and >3 m2/s2 
for variance of the radial velocity). The spatial POD modes and energy were computed using 
the east-sector data for the period of 2000-2300 UST, representing daytime unstable conditions. 
Note that these modes are derived from using more than 500 east-sector data (from 36 days), 
different from that depicted in Figure 10.2 and Figure 10.3, which resulted from a single day of 
data (i.e., 16 east sectors). Figure 10.4 shows four representative spatial POD modes (1st [top 
row], 4th [second row], 10th [third row], and 19th [bottom row]) for various groups of mean and 
variance of the east-sector data. The POD modes help to evaluate the type and size of flow 
structures for each different POD mode number. The results show that the POD modes for the 
smaller mode number for all five cases exhibit large and similar spatial structures. However, the 
size of the spatial structures decreases as POD mode number increases, irrespective to the 
type of case. The large structures in the lower mode numbers indicate that most of the energy of 
the flow is distributed over the first few modes. Although the size of the turbulent structures 
decreases with an increase of mode number in all cases, the shape of the structures differs 



Lidar Simulator 93 

between them. Cellular-like structures dominate for the small mean and variance, whereas the 
more streak-like structures become more common for the large mean and variance of the radial 
velocity. This indicates that the different size of structures resulted from varying wind conditions 
and contributes to energy exchange, which varies in magnitude and rate of energy transfer over 
space and time.  

Figure 10.4. Spatial POD modes derived from scanning lidar data using mean¾less than 5 m/s 
(579 east sectors), 5-10 m/s (598 east sectors) and greater than 10 m/s (619 east 
sectors), and variance – less than 1.5 m2/s2 (799 east sectors) and greater than 
3 m2/s2 (333 east sectors) of the radial velocity (shown in columns) for the 1st 
mode (top row), 4th mode (second row), 10th mode (third row), and 19th mode (last 
row). 
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11.0 Evaluation of Nalu-Wind as a Microscale Solver 
11.1 Introduction 

Evaluation of candidate mesoscale and microscale solvers was an early activity of the MMC 
project team. Results of the microscale solver evaluation were published in Mirocha et al. (2018) 
(hereafter, M18) and feature a comparison of simulations of idealized neutral and convective 
boundary layers using WRF-LES (Skamarock et al. 2008), SOWFA (Churchfield et al. 2012), 
and HiGrad (Sauer et al. 2016). Since this study was conducted, Nalu-Wind has been 
developed as a microscale solver with advanced capabilities for wind farm simulation. Thus, the 
major objective of the work presented in this chapter was to understand the performance of 
Nalu-Wind in simulating relatively simply configured atmospheric boundary layers in the context 
of the earlier analysis performed by the team, preparatory to using Nalu-Wind to perform more 
complex, coupled simulations. We focus on predictions of the mean wind speed and variance of 
the 10-minute averaged wind speed and do not replicate the analysis of turbulent fluxes and 
spectra performed in M18. As the following discussion will illustrate, even a quantity as simple 
as the mean wind speed shows sensitivity between (and within) models that is difficult to fully 
explain. 

11.2 Approach 

This section reviews key aspects of the formulation of Nalu-Wind, describes the simulation 
setups, and outlines the suite of sensitivity tests. 

11.2.1 Nalu-Wind Formulation 

Nalu-Wind is a generalized unstructured solver for the Boussinesq equations of atmospheric 
motion. Like its parent code, NaluCFD/Nalu (Domino 2015), it employs a finite-volume 
discretization approach but includes a number of enhancements targeted to wind energy 
applications. Documentation of Nalu-Wind may be found at https://nalu-
wind.readthedocs.io/en/latest/index.html.  

Nalu-Wind offers two options for spatial discretization: a control volume finite element method 
(CVFEM) and an edge-based vertex-centered (EBVC) scheme that is similar to the 
discretization approach used by OpenFOAM and, by extension, SOWFA. Broadly speaking, the 
EBVC scheme offers good accuracy at lower computational cost for highly structured meshes 
while the CVFEM scheme is recommended for lower-quality meshes. The EBVC scheme is 
used here, unless specifically noted. 

Advection stabilization is implemented as a blend between generalized central and higher-order 
upwind interpolation/extrapolation operators for the advected quantities, including the three 
velocity components, potential temperature, and SGS TKE. The blending function depends on 
the cell Peclet number. Most of the simulations presented here choose parameters of the 
blending function such that velocity interpolation uses central operators and interpolations of 
other variables are upwinded. 

An implicit, second-order backward difference formula (BDF2) scheme is used for time 
integration, and all simulations use a 1-s time step unless stated otherwise. 
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Nalu-Wind has a few options for SGS turbulence closure. Most of the simulations performed 
here use Nalu-Wind’s 1.5 order, SGS TKE scheme, but the Smagorinsky scheme is also used 
as a sensitivity test. Details of these schemes, and other aspects of Nalu-Wind’s formulation, 
are provided in the code documentation. 

11.2.2 Simulation Setup 

M18 discuss the design of the simulations. In brief, neutral and convective scenarios were 
defined based on observations from a 200-m meteorological tower located at TTU’s National 
Wind Institute near the SWiFT test facility.  

Initial velocity profiles were set equal to the geostrophic velocity components. For the neutral 
case, the geostrophic velocity components are (ug, vg) = (-2.223 m s-1, 6.108 m s-1), yielding a 
geostrophic wind speed, Ug = 6.5 m s-1. The potential temperature profile is initialized as 𝜃= 300 
K below 1 km and increases at a rate of 10 K km-1 above 1 km. The domain size is 2.4 km in 
each horizontal dimension with a 2-km vertical extent. A Rayleigh damping layer is applied 
above 1,600 m.  

The convective case has (ug, vg) = (9 m s-1, 0 m s-1). The mean potential temperature equals 
309 K below 600 m and increases at a rate of 4 K km−1 above 600 m. The surface potential 
temperature flux is HS=0.35 K m s-1. The domain size is 6 km by 3 km with a damping layer 
above 2,400 m. 

Both cases use a surface roughness length of 0.05 m and calculate Coriolis forcing with respect 
to a latitude of 33.5o. 

11.2.3 Sensitivity tests 

For each of the neutral and convective cases, we define a “baseline” case that uses the initial 
conditions and surface forcing described in Section 11.2.2 and the following options in Nalu-
Wind: EBVC discretization, TKE-based SGS scheme, and advection stabilization described in 
Section 11.2.1. We also perform sensitivity tests. In one set of these tests, aspects of the 
physical forcing are perturbed. In the second set of tests, we test different model configuration 
options: use of the CVFEM scheme, use of the Smagorinsky SGS scheme, and centered 
interpolations in the advection scheme.  

Additionally, we look at sensitivity to the grid aspect ratio (AR), using the same choices as 
tested by M18. Here we hold the grid filter scale approximately constant while varying the ratio 
of horizontal and vertical resolutions.  

The suite of neutral simulations is summarized in Table 11.1 and convective simulations are 
described in Table 11.2. The simulation naming convention uses four attributes of the 
simulations, as follows: simulations using the “baseline” options begin with “N” for Nalu-Wind; 
other simulations are named by the modified option. The second part of the name indicates the 
neutral or convective case (“N” or “C”). The first number indicates the forcing, “1” for the 
standard forcing and “2” or “3” for forcing perturbations. The second number is the grid AR. 
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Table 11.1. Neutral case simulations. 

Table 11.2. Convective case simulations 

11.3 Results 

Following M18, we evaluate the results of our simulation using 1-Hz time series of vertical 
profiles extracted from one location within the periodic simulation domain. The simulation data 
are compared to observations from the TTU tower for August 17, 2012 (neutral case) and 
July 4, 2012 (convective case). WRF, SOWFA, HiGrad, and observational data were obtained 
from the A2e’s Data Archive and Portal; digital object identifiers of the specific data sets are 
provided in M18. 
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The neutral case simulations are analyzed over a 2-hour window between hours 14 and 16 of 
the simulation. The convective case simulations also use a 2-hour window, between hours 
1 and 3 of the simulation, taking advantage of the more rapid spin-up of this case. 

11.3.1 Neutral Case 

Instantaneous contour plots of the wind speed in the baseline, AR=3.3 simulation, are shown in 
Figure 11.1 and depict elongated flow structures aligned with the mean flow direction. The 
vertical extent of the turbulence is strongly limited by the imposed temperature inversion. 

Figure 11.1. Snapshots at 14 hours simulated time of baseline neutral case with AR = 3.3 (N-N-
1-3.3). The horizontal wind speed is shown (a) on a horizontal plane at a height of
100 m; (b) on an east-west plane through the center of the domain.

The mean wind speed, U, normalized by the friction velocity, u*, is plotted in Figure 11.2. The 
WRF, SOWFA, and HiGrad results correspond, respectively, to the W1, S1, and H1 simulations 
defined by M18. These particular simulations are selected for comparison as they are most 
similar to the baseline Nalu-Wind simulations in terms of the grid geometry, forcing, and SGS 
modeling approach. All models tend to predict a faster increase of wind speed with height than 
the theoretical, logarithmic rate. Comparison of the N-N-1.3.3 and N-N-1-1 results shows the 
sensitivity of the results to the numerical grid, with the “overshoot” problem described by 
Brasseur and Wei (2010) being worsened at higher AR, as expected. In the version of Nalu-
Wind tested here, the height above the surface is taken as one-quarter of the length of the 
nearest edge that intersects the boundary face. In newer versions of Nalu-Wind, the user will be 
able to specify the height at which to evaluate the similarity functions. 
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Figure 11.2. Comparison of mean wind speed, U, scaled by the surface friction velocity, u∗, to 
the theoretical log-law scaling with κ = 0.4 (black dashed line) for each model. 
H = 250 m and roughness height z0 = 0.05 m. The left panel shows results for 
AR = 3.3 for Nalu-Wind (N-N-1-3.3, blue) and WRF (W1, orange). The right panel 
shows results for AR = 1 for Nalu-Wind (N-N-1-1, blue), SOWFA (S1, pink), and 
HiGrad (H1, green). 

Figure 11.3 compares means of the 10-minute-averaged wind speed, U10min, over the 2-hour 
analysis window (with the running averages assigned to the right edges of each 10-minute 
window.) Bars or shading show the one standard deviation range of U10min around the overall 
mean. The models, particularly Nalu-Wind and SOWFA, show lower variance than the 
observations. This may be due to the fixed (rather than more realistically fluctuating) forcing, 
limited simulation domain size, and/or to tower wake errors in the observations (M18). To 
compute this variance, we use only the LES-resolved velocity and do not attempt to include 
SGS variability. However, this should not significantly affect the comparison with the 
observations at a 10-minute time scale: using the mean velocity and LES grid spacing, we can 
estimate the effective temporal filter scale of the simulations as being of the order of only a few 
seconds. 

Figure 11.3. Wind speeds in the baseline neutral case for (a) Nalu-Wind (N-N-1-3.3, blue) and 
WRF (W1, orange); and (b) Nalu-Wind (N-N-1-1; blue), SOWFA (S1, pink), and 
HiGrad (H1, green). Averages of U10min are shown as solid lines; their standard 
deviations are shown by the shaded regions. Means of the observed wind speeds 
are plotted as dots, whereas the bars show the standard deviations. 
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To assess sensitivity to forcing, we increase and decrease the surface roughness length, z0, by 
a factor of 5, and vary the geostrophic wind by +/- 10% (see Table 11.1). Results are shown in 
Figure 11.4 and Figure 11.5. The response of the mean wind speed shows the expected trend 
where greater Ug drives greater U. However, the models vary in their sensitivity. For example, 
the change in WRF’s hub-height wind speed is nearly in one-to-one proportion with the change 
in Ug, whereas HiGrad shows almost no change (Figure 11.5). Nalu-Wind and SOWFA show 
similar, intermediate responses. Differences between the models appear to be amplified as Ug is 
increased. 

Figure 11.4. Effect of increasing Ug and z0 on mean wind speed. Results plotted with solid lines 
have Ug = 1.1Ug,0, z0 = 0.1 m (run “2” for each model), while dotted lines show the 
corresponding baseline case results. Panel (a) shows Nalu-Wind, AR = 3.3 (blue) 
and WRF (orange). Panel (b) shows Nalu-Wind, AR = 1 (blue), SOWFA (pink), and 
HiGrad (green). Observations are shown as in Figure 11.3. 

Figure 11.5. As in Figure 11.4, but for Ug = 0.9Ug,0, z0 = 0.01 m (run “3” for each model). 

The final set of sensitivity tests for the neutral case looks at sensitivity to choices of numerical 
and turbulence closure schemes as listed in Table 11.1. Results are shown in Figure 11.6.  
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Figure 11.6. Sensitivity of mean wind speed (computed as in Figure 11.3) to solution options in 
Nalu-Wind. Shown are baseline options (N-N-1-3.3 and N-N-1-1, blue); CVFEM 
discretization (CVFEM- N-1-3.3 and CVFEM-N-1-1, maroon); central scheme for 
interpolation of advected scalars (CentAd-N-1-3.3 and CentAd-N-1-1, teal); and 
Smagorinsky SGS closure (Smag-N-1-3 and Smag-N-1-1, yellow). Gray shading is 
the maximum +/- one standard deviation range of U10min among all simulations 
plotted in a panel. Means and variability of observed winds are plotted as in 
Figure 11.3. 

Sensitivity to the model configuration depends on the grid configuration and the specific heights 
examined. Above about 50 m, the sensitivity is rather weak. The strongest sensitivity is 
associated with the choice of SGS closure, particularly near the surface. Note this sensitivity 
could likely be reduced (but probably not eliminated) by adjustments of the SGS closure 
coefficients. 

11.3.2 Convective Case 

Snapshots of horizontal wind speed in the convective case are shown in Figure 11.7. In 
comparison to the neutral case, fluctuations in wind speed are larger and correlated over the 
boundary layer depth. Quasi-cellular, instead of streaky, flow structures are shown in the plan 
view (panel a). 
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Figure 11.7. Snapshots at 1-hour simulated time of baseline convective case with AR = 3 (N-C-
1-3). The horizontal wind speed is shown (a) on a horizontal plane at 100 m; (b) on
an east–west plane through the center of the domain (b).

Baseline Nalu-Wind convective simulations are compared to the W1 and H1 convective 
simulations of M18 in Figure 11.8. Again, differing from the neutral case, the simulated 
variability of the 10-minute wind speeds is comparable to, or even greater than, the observed 
variability. Dependence of the mean wind speed to grid cell aspect ratio is small in the Nalu-
Wind simulations, suggesting that the important flow structures are well resolved by either 
combination of horizontal and vertical resolutions. 



Evaluation of Nalu-Wind as a Microscale Solver 102 

Figure 11.8. Mean wind speeds in the baseline convective case for (a) Nalu-Wind (N-C-1-3, 
blue) and WRF (W1, orange), and (b) Nalu-Wind (N-C-1-1; blue) and HiGrad (H1, 
green). The averages of U10min are shown as solid lines; their standard deviations 
are shown by the shaded regions. Means of the observed wind speeds are plotted 
as dots, while the bars show the standard deviations. 

To look at forcing sensitivity, we increase surface heat flux by 25% and increase Ug by 1 ms-1 
(see Table 11.2). Figure 11.9 shows results from these simulations. In Figure 11.9(a), both 
Nalu-Wind and WRF show nearly proportionate change of hub-height wind speed with Ug. The 
perturbed Nalu-Wind simulation also shows enhanced variability of U10min relative to the 
baseline.  

Figure 11.9. Effect of forcing perturbations. Solid lines for Ug = 10 m s−1, HS = 1.25HS,0. Dotted 
lines show the corresponding baseline run. (a) Nalu-Wind, AR = 3 (blue) and WRF 
(orange), (b) Nalu-Wind, AR = 1 (blue) and HiGrad (green). Observations as in 
Figure 11.8. Blue and gray shaded areas are ±1 standard deviation ranges of 
U10min for perturbed and baseline forcings of Nalu-Wind, respectively. 
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Increases in both the wind speed itself and the variance of the wind speed are much weaker in 
the AR=1 Nalu-Wind simulations [Figure 11.9(b)], contrary to expected changes in the flow due 
to higher shear and larger surface heat fluxes. Comparison of resolved TKE in baseline and 
perturbed simulations also shows a very weak change (not shown). 

As for the neutral case, we perform sensitivity tests on model configuration options. These are 
summarized in Table 11.2 and results are shown in Figure 11.10. For the AR=3 simulations, the 
largest sensitivity is to use of the Smagorinsky scheme, as was found in the neutral case. 
However, the results are quite different for the AR=1 simulations. Here, we find a strong 
response to the use of the CVFEM scheme, which produces a jagged wind speed profile. Recall 
that these are not instantaneous oscillations but rather time-averaged profiles. The dashed line 
in Figure 11.10(b) corresponds to another CVFEM sensitivity test simulation performed with a 
reduced 0.5-s time step. The jaggedness of the profile is not removed, but we do note an 
apparent time step sensitivity. To examine this further, we carried out additional CVFEM and 
baseline simulations, as shown in Figure 11.11. When looking at time averages of the virtual 
tower data (i.e., single location vertical profiles), significant time step/iteration count sensitivity is 
found for the CVFEM simulations and a smaller time step sensitivity is shown by the baseline 
configuration simulations. However, when time and spatial averages are both used (exploiting 
the periodic simulation domain), the time step sensitivity disappears. Note that the anomalous 
CVFEM wind speed profile persists. Due to this finding, we recomputed the wind speed profiles 
shown in Figure 11.10 using combined planar and temporal averaging. Key features of the 
model configuration sensitivity are qualitatively in agreement to the sensitivity shown in the time-
averaged-only results, but the quantitative spread in the models is affected.  

Figure 11.10. Sensitivity of mean wind speed to solution options in Nalu-Wind: baseline options 
(N-C-1-3 and N-C-1-1, blue); CVFEM discretization (CVFEM-C-1-3 and CVFEM-
C-1- 1; maroon); central operators for interpolation of advected scalars (CentAd-
C-1-3 and CentAd- C-1-1,teal); and Smagorinsky SGS closure (Smag-C-1-3 and
Smag-C-1-1, yellow).
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Figure 11.11. Sensitivity of mean wind speed to time step plotted as (a) time average of single 
point data and (b) time and planar averages over entire periodic flow domain. 

11.4 Conclusions 

In this work, we revisited the comparison of microscale solvers performed earlier in the MMC 
project to incorporate Nalu-Wind, a relatively new, highly advanced solver. Simulated winds 
were compared to observed wind speeds near the SWiFT site in west Texas. Here we focus on 
the mean wind speed and the variance of the 10-minute averaged wind speed. Detailed 
analysis of second-moment quantities (turbulent fluxes and turbulent kinetic energy) remains as 
future work. Discrepancies between models and observations are expected because of the 
simulations’ idealization of the real convective and neutral flow scenarios; however, the 
differences among the models are difficult to attribute owing to the many differences between 
the codes in terms of the formulations of their governing equations, numerical schemes, and 
closures. Nalu-Wind’s predictions of mean wind speeds were typically plausible relative to the 
observations and other models, although there are indications that the implementation of the 
surface flux scheme and modeling of near-wall turbulence should be improved. Sensitivities of 
Nalu-Wind to forcing perturbations were generally stronger than sensitivities to various 
discretization and turbulence modeling options. This strongly argues for the importance of 
providing realistic forcing to microscale solvers using techniques such as those being developed 
in the MMC project. 
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12.0 Synthesis and Summary 
The MMC team continues to work together to advance the science and application of coupling 
mesoscale models to microscale models for the purpose of better simulating wind plants. The 
team has made major advances in FY19, in planning via a PIRT analysis, setting up a common 
code development and assessment framework within a team GitHub repository, testing methods 
to quantify uncertainty, comparing Nalu-Wind to other microscale models, and building a lidar 
simulator that allows comparison between simulations and 3D lidar scans. In addition, the team 
has advanced in its core capabilities, planning, and performing rigorous comparisons of 
coupling techniques and methods to generate turbulence at the microscale. New initiatives to 
better model surface-layer physics, including applying machine-learning methods, were initiated 
in FY19. Each of these is summarized briefly below. 

12.1 PIRT Analysis 

The PIRT is a format to enumerate physical phenomena of importance to an application, such 
as wind energy, and to rank their importance to the application, our level of physical 
understanding, and our ability to model those phenomena. The relative levels of phenomena 
importance and model adequacy lead to a priority score for each phenomena. Such a system 
enables research groups to prioritize research and development of physics models. The earlier 
creation of PIRTs for the A2e wind-turbine-wake dynamics and high-fidelity modeling efforts 
covered phenomena at the turbine and turbine-wake level. There was a need for an 
atmospheric-scale PIRT, so in FY19 the MMC team developed this atmospheric/MMC PIRT, 
using a draft all-encompassing PIRT from the 2015 A2e ModSim workshops that included a 
mesoscale PIRT as a starting point. Team members from all participating MMC labs provided 
input to the creation of this PIRT. Early in the effort, we realized that this PIRT is somewhat 
location specific, so phenomena and rankings are provided for flat onshore, complex terrain 
onshore, and offshore situations. We find that the offshore situation has the most high-priority 
phenomena due to the relative absence of measured parameters of importance, and model 
adequacy, level of validation, and simulation capabilities. Surprisingly, the flat onshore condition 
ranks second highest in terms of cumulative priority. While people often think of the flat onshore 
situation as relatively easy, it contains many important phenomena, including low-level jets and 
the land side of land-sea breezes that are challenging to simulate, yet impact a very large 
number of developments. Although the PIRT is a useful guide, every modeling exercise is 
application specific, so one must think about the application at hand and how the various 
phenomena affect that application to prioritize model development for that application. The 
MMC PIRT can therefore assist the group in developing a clearer picture of research priorities in 
applications that we support. 

12.2 Assessment 

Two new objectives have been defined and met this year for assessment of our MMC 
capabilities. Our first objective was to establish a repository of assessment tools with 
accompanying living documentation of our workflow and best practices, thereby facilitating the 
development and dissemination of our research. To this end, we utilized the Python language 
and Jupyter notebook format to meet our current requirements. This choice reflected the 
existence of the large Python user community, the large number of available tool libraries in the 
public domain, and consequently, the ease of learning, applying, and sharing these tools. In 
addition, Jupyter notebooks bridge the gap between coding and reporting, combining 
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documentation and executable Python code with inline code output and figures. Our second 
objective was to establish central repositories for our WRF code—with accompanying MMC-
related modifications—as well as WRF simulation setups and data sets for forcing and 
evaluating those simulations. Having a common code base and input decks has enabled direct 
comparisons between simulation results, improving the quality and reproducibility of our work. In 
the spirit of open science and making the team’s results and code readily available to industry, 
both of these objectives have been realized in the public domain on GitHub. Two of our current 
research studies comparing coupling methods and perturbation methods have successfully 
adopted the new tools, Jupyter notebooks, and MMC WRF code.  

12.3 Mesoscale Modeling Advances 

To improve mesoscale boundary layer simulation at the higher resolutions that are becoming 
common practice, as well as in horizontally heterogeneous settings, the MMC project has been 
advancing a fully 3D PBL scheme that continues work from the WFIP 2 project. Traditional 
methods of modeling the boundary layer in mesoscale simulations treat each vertical column 
independently, computing turbulent stresses and fluxes in the vertical direction only. Such an 
approach assumes horizontal homogeneity, which limits the applications to flat, smooth 
surfaces, at sufficiently coarse resolutions that horizontal transport can be neglected. During 
FY19, the team ported the 3D PBL code to WRF v4.0.3 and thoroughly tested it, implemented 
and tested a substepping scheme, implemented prognostic TKE computation, and advanced 
the ways that the surface boundary conditions are handled by the scheme. These advances 
make this 3D PBL scheme more usable in general modeling for wind energy. 

12.4 Coupling Comparisons 

The MMC team has identified a variety of viable mesoscale-microscale coupling methods over 
the past few years. In FY19, we began a formal comparison process that will continue into 
FY20. This process began by performing a comparison of coupling configurations on the SWiFT 
November 8, 2013, diurnal cycle benchmark case. Coupling configurations include WRF to 
WRF-LES, WRF to SOWFA in a few configurations, WRF to Nalu-Wind, and observations to 
SOWFA. This chapter is a snapshot of that coupling comparison effort. Beyond the flat terrain 
diurnal cycle case, we plan to also perform organized coupling comparisons for the offshore and 
complex terrain cases. 

Additionally, work was performed in FY19 to develop the “profile assimilation technique” and 
further examine and document best practices for the “budget component approach.” Also, we 
studied the effect of complex terrain in creating turbulence in the microscale domain when 
mesoscale inflow that lacks resolved turbulence is applied. Advances were made in handling 
atmospheric gravity waves within the microscale domain. Last, we examined the effect of the 
activation or deactivation of the atmospheric physical process parameterizations within the 
microscale domain, such that are normally activated within the mesoscale domain, and may 
impact the formation of turbulence and other phenomena of importance to wind energy while 
activated within the microscale domain as well. 

12.5 Perturbation Comparisons 

The turbulence working group within the MMC project team examined several different inflow 
perturbation methods developed to accelerate the development of resolved turbulence on 
microscale simulation domains forced by mesoscale (nonturbulent) inflow. These methods were 
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assessed within a revised team workflow, consisting of a shared repository of common code 
bases, data sets, and assessment scripts, as described in Section 12.2.  

This year’s activities focused on the assessment of inflow perturbation methods within the 
context of a case study culled from the unstable afternoon portion of November 08, 2013, 
diurnal cycle observed at the SWiFT facility. Participants from five institutions across the 
working group all pulled a common version of the MMC WRF code, modified to support analysis 
of perturbation methods, built the executable in their own environments, ran the simulations, 
and evaluated the results using common assessment scripts housed within the MMC GitHub. 
Intercomparison of results, facilitated by the use of common metrics and presentations, enabled 
quantitative determination of strengths and weaknesses of the various approaches, while also 
helping to identify tunable parameters that influence the performance of the methods. This 
framework will be utilized to compare other methods that have not yet undergone formal 
assessment, as well as to examine the performance of all of the techniques in increasingly 
challenging conditions, including other stability categories, complex terrain, and offshore 
settings, in future work.  

12.6 Near-Surface Physics 

New machine-learning approaches to model the surface layer based on relationships between 
measured data have shown improvements over traditional parameterizations based upon the 
Monin-Obukhov Similarity Theory. Both random forests and artificial neural networks can be 
trained to predict friction velocity, temperature scale, and moisture scale, even improving on 
MOST for flat-terrain sites different than those the models were initially trained on. The random 
forest approach has been tested in WRF for a diurnal cycle case, showing promise at forcing 
the expected diurnal case. These machine-learning models will be tested in additional onshore 
cases as well as for offshore implementation. Two additional methods will be tested for 
modeling the marine surface layer: adding forcing to the momentum equations and using 
immersed boundary conditions. These multiple approaches will be tested for the marine surface 
in the coming year, providing much needed information on best methods to model this complex 
offshore environment. 

12.7 Uncertainty Quantification 

Idealized LES have long been known to be sensitive to SGS turbulence SGS closures, but the 
implications for microscale simulations coupled to realistic forcing with mesoscale variability are 
not well characterized. To investigate this issue, an ensemble of several dozen coupled 
WRF/WRF-LES simulations of a convective boundary layer observed during the WFIP 2 
campaign were performed, varying key parameters of a common turbulent kinetic energy-based 
SGS closure. Parameter sensitivity was evaluated considering different LES grid resolutions, 
observation locations, and sensitivity analysis methods. The robustness of these findings for 
onshore cases will be assessed by performing additional case studies. Moving forward, the UQ 
analysis approaches that the team finds to be most valuable will be applied to quantifying 
uncertainty in simulations of the offshore wind-plant environment. 

12.8 Lidar Simulator 

Scanning lidar data were constructed using a highly resolved turbulent flow field generated by 
WRF-LES for the unstable condition, and the PPI mode near the surface to compare the flow 
structures between simulated and measured lidar scanning data. These data sets were 
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analyzed using POD spatial modes. The fluctuating velocity about the mean of radial velocity 
and the orientation and size of spatial structures resulting from the POD modes were found to 
be similar among both simulated and measured data. This shows that the streak-like structures 
produced by WRF-LES for the moderate heat and wind condition near the surface correspond 
well with similar structures observed within the real atmosphere. In addition to the lidar 
simulator, turbulence was characterized using several days of measured scanning lidar data 
near the surface for unstable conditions. The lidar data (simulated and measured) were binned 
into different groups according to the magnitude of mean and variance of the radial velocity of 
the scanned sector before applying the POD approach. The spatial POD modes of these data 
showed that the varying size and shape of spatial structures depend on the mean and variance 
of radial velocity of the scanned sector. The structures of the POD spatial modes change from 
cellular to streak-like as the magnitude of mean and variance of the radial velocity increases. 
This result reflects that scale of turbulence is a function of the forcing conditions and that the 
POD approach can be used to analyze the turbulence structures.  

12.9 Comparison of Nalu-Wind to Other Microscale Models 

Nalu-Wind is a relatively new microscale solver with advanced capabilities for wind-plant 
simulation. Due to its novelty, it was not included in an intercomparison of microscale solvers 
performed previously by the MMC team (Mirocha et al. 2018). We revisited this earlier study, 
using Nalu-Wind to simulate the same suite of neutral and convective boundary layer scenarios 
based on observed conditions at the SWiFT site in west Texas. Nalu-Wind’s predictions of the 
wind speed profile were generally found to be about as consistent with the observed wind 
speeds as the results of the previously tested microscale solvers, but some potential areas for 
improvement were also identified. Further evaluation of Nalu-Wind for simulation of atmospheric 
boundary layers is planned using both canonical flow configurations and coupled runs with 
realistic forcing derived from mesoscale simulations.  

12.10   Relevance for Wind Energy 

Most of the energy in the atmosphere inhabits the largest scales. It is through nonlinear 
interactions that this energy cascades into the finer scales, including those scales where wind 
plants reside. Thus, it is critical to correctly model this energy cascade as a forcing for 
microscale simulations of wind plants that are sufficiently detailed for making industry decisions. 
This MMC provides the correct forcing for those simulations that can model wake interactions, 
plant control strategies, analyze loads on turbines, and all applications that require models of 
the wind plant or turbine blades. The coupling studies are defining best practices for particular 
use case scenarios. The intercomparison of methods to generate turbulence will provide better 
turbulence intensity estimates for the load studies. Moving beyond Monin-Obukov theory to 
parameterize the surface layer using machine learning and real data, alternative methods such 
as drag or immersed boundaries, or combinations thereof, promises to improve models of the 
lowest layers of the atmosphere. Continued efforts to assess the models’ accuracy and to 
quantify their uncertainty will help industry better plan in a probabilistic environment. By 
performing this applied research, we are building new tools that can be used by industry to 
make decisions using these tools that have been widely exercised on real-world cases.  

To assure that the MMC efforts remain relevant to the wind industry, the team held three 
webinars with industry, both to present our most recent advances and to solicit feedback from 
industrial partners on their needs and where they see the most useful advances. In addition, 
MMC formed an industrial advisory panel, including six members that represent wind-plant 
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developers, turbine manufacturers, and wind power forecasters. This panel helped plan an 
industry workshop in June 2019. 

12.11   Plans for the Future 

At the beginning of FY20, the MMC plans to complete and publish some of the ongoing work, 
including the rigorous intercomparison of coupling techniques and turbulence generation 
methods. Completing this work will clarify best practices in this MMC domain as gleaned from 
several years of joint research across several laboratories. Not only will it include the nearly 
canonical conditions at the SWiFT site, but also use the WFIP 2 data to make some strong 
statements about best practices for simulating wind plants in complex terrain. The team plans to 
assess potential use cases and available data in parallel with finishing the onshore 
intercomparisons. Using machine learning for physics parameterization by publishing the 
onshore work and training such models for offshore conditions will test blending physics with 
artificial intelligence as a path for future simulation of wind-plant environments. All of these 
efforts will transition toward the offshore environment.  

In coming years, the team will emphasize coupling the mesoscale to the microscale in the 
offshore environment. The team has planned a large case study of an offshore wind farm for 
FY20, beginning from identifying an interesting use case that includes complex physics, such as 
land-shore breezes and low-level jets. At the mesoscale, the team will add an appropriate 
surface layer for wave conditions to WRF and produce a high-quality mesoscale simulation. The 
mesoscale will be coupled with Nalu-Wind (or SOWFA) while generating turbulence appropriate 
for the conditions. The team will use actuator disk codes to simulate turbines in both WRF-LES 
and Nalu-Wind (SOWFA). This first simulation will help the team define what we already do well 
in the offshore environment and where we should focus resources in areas where we need 
improvement. 
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Appendix A – List of Project Publications 
A.1 Journal Articles

Allaerts, D., C. Draxl, E. Quon, and M. Churchfield. “Large-Eddy Simulation of a Diurnal Cycle 
Driven by Assimilation of Mesoscale Time-Height Profiles.” Boundary Layer Meteorology, 
submitted September 2019. 

Abstract: Mesoscale-to-microscale coupling aims to address the limited scope of traditional 
large-eddy simulations by driving the microscale flow with information concerning large-
scale weather patterns provided by mesoscale models. This paper presents a new offline 
mesoscale-to-microscale coupling technique for horizontally homogeneous microscale flow 
conditions in which adequate mesoscale internal source terms are computed based on 
mesoscale time-height profiles of mean flow quantities. The advantage of such an approach 
is that it doesn’t rely on mesoscale budget components, which are not outputted by default 
by most mesoscale solvers, and that it could also be used to drive microscale simulations 
with observational data. The performance of the proposed profile assimilation technique is 
assessed based on the simulation of a quiescent diurnal cycle over the Scaled Wind Farm 
Facility (SWiFT) site in west Texas. Results indicate that simple data assimilation techniques 
lead to unphysically high levels of shear and turbulence caused by the algorithm’s inability to 
cope with inaccuracies in the mesoscale time-height profiles. Modifying the algorithm to 
account for vertical coherence in the mesoscale internal source terms allows the microscale 
solver to take over and correct the provided mesoscale time-height profiles, leading to 
improved predictions of turbulence statistics in line with meteorological tower observations 
and simulation results obtained with standard internal forcing coupling techniques. 

Arthur, R. S., J. D. Mirocha, and K. A. Lundquist. 2018. “Using a Canopy Model Framework To 
Improve Large-Eddy Simulations of the Atmospheric Boundary Layer in the Weather Research 
and Forecasting Model. Mon.-Wea. Rev. 147(1), 31-52. https://doi.org/10.1175/MWR-D-18-
0204.1.  

Abstract: A canopy model framework is implemented in the Weather Research and 
Forecasting model to improve the accuracy of large-eddy simulation (LES) of the 
atmospheric boundary layer (ABL). The model includes two options that depend on the 
scale of surface roughness elements. A resolved canopy model, typically used to model flow 
through vegetation canopies, is employed when roughness elements are resolved by the 
vertical LES grid. In the case of unresolved roughness, a modified “pseudo-canopy model” 
is developed to distribute drag over a shallow layer above the surface. Both canopy model 
options are validated against idealized test cases in neutral stability conditions and are 
shown to improve surface layer velocity profiles relative to simulations employing Monin-
Obukhov Similarity Theory (MOST), which is commonly used as a surface boundary 
condition in ABL models. Use of the canopy model framework also leads to increased levels 
of resolved turbulence kinetic energy and turbulent stresses. Because LES of the ABL has a 
well-known difficulty recovering the expected logarithmic velocity profile (log-law) in the 
surface layer, particular focus is placed on using the pseudo-canopy model to alleviate this 
issue over a range of model configurations. Tests with varying surface roughness values, 
LES closures, and grid aspect ratios confirm that the pseudo-canopy model generally 
improves log-law agreement relative to simulations that employ a standard MOST boundary 
condition. The canopy model framework thus represents a low-cost, easy-to-implement 
method for improving LES of the ABL. 
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Draxl, C., D. Allaerts, E. Quon, and M. Churchfield. “Coupling Mesoscale Momentum and 
Temperature Budget Components to Large-Eddy Simulations for Wind Energy Applications.” 
Boundary Layer Meteorology, submitted November 2019. 

Abstract: Wind plants are exposed to a variety of weather phenomena on many scales—
from synoptic to mesoscale to microscale conditions. Mesoscale phenomena are described 
by mesoscale numerical weather prediction models and drive large horizontal variations on 
the microscale. Microscale turbulence and flow structures can be predicted by large-eddy 
simulation (LES) models and are important because their variability impacts the operating 
environment of wind plants. To simulate wind flow through a wind plant across a wide range 
of atmospheric conditions that drive wind plant performance, microscale models have to be 
coupled with mesoscale models, because microscale models lack atmospheric physical 
processes to represent local forcing. 

Here we couple mesoscale model output to an LES solver by applying mesoscale 
momentum and temperature budget components from the Weather Research and 
Forecasting model to the governing equations of Simulator fOr Wind Farm Applications 
(SOWFA). We test whether averaging the budget components impacts the LES simulations 
with regard to quantities of interest to wind energy. Results show that averaging reduces the 
spatiotemporal variability of the mesoscale momentum budget components; however, when 
coupled with LES, the mesoscale bias (in comparison with observations in wind speed, wind 
direction, and potential temperature) is not corrected by the LES simulation. On the contrary, 
LES can correct for shear and veer. In both cases, however, averaging the budget 
components showed no significant impact on mean flow quantities in the microscale and is 
not necessary when coupling mesoscale budget components to LES. 

Haupt, S. E., B. Kosovic, W. Shaw, L. Berg, M. Churchfield, J. Cline, C. Draxl, B. Ennis, E. Koo, 
R. Kotamarthi, L. Mazzaro, J. Mirocha, P. Moriarty, D. Munoz-Esparza, E. Quon, R. K. Rai, M.
Robinson, and G. Sever. 2019. “On Bridging a Modeling Scale Gap: Mesoscale-to-Microscale
Coupling for Wind Energy.” Bulletin of the American Meteorological Society, Early online
release. https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0033.1?mobileUi=0.

Abstract: Accurately representing flow across the mesoscale to microscale is a persistent 
roadblock for completing realistic microscale simulations. The science challenges that must 
be addressed to coupling at these scales include: 1) What is necessary to capture the 
variability of the mesoscale flow and how do we avoid generating spurious rolls within the 
terra incognita between the scales? 2) Which methods effectively couple the mesoscale to 
the microscale and capture the correct nonstationary features at the microscale? 3) What 
are the best methods to initialize turbulence at the microscale? 4) What is the best way to 
handle the surface layer parameterizations consistently at the mesoscale and the 
microscale? 5) How do we assess the impact of improvements in each of these aspects and 
quantify the uncertainty in the simulations? 

The U.S. Department of Energy Mesoscale-to-Microscale-Coupling project seeks to 
develop, verify, and validate physical models and modeling techniques that bridge the most 
important atmospheric scales determining wind plant performance and reliability, which 
impacts many meteorological applications. The approach begins with choosing case days 
that are interesting for wind energy for which there are observational data for validation. The 
team has focused on modeling nonstationary conditions for both flat and complex terrain. 
This paper describes the approaches taken to answer the science challenges, culminating in 
recommendations for best approaches for coupled modeling.  
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Mirocha, J. D., M. J. Churchfield, D. Munoz-Esparaza, R. Rai, Y. Feng, B. Kosovic, S. E. Haupt, 
B. Brown, B. L. Ennis, C. Draxl, J. S. Rodrigo, W. J. Shaw, L. K. Berg, P. Moriarty, R. Linn, R. V.
Kotamarthi, R. Balakrishnan, J. Cline, M. Robinson, and S. Ananthan. 2017. “Large-Eddy
Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical
Boundary Layer Flows for Wind Energy Applications.” Wind Energy Sci. 3, 589-613.
https://doi.org/10.5194/wes-3-589-2018.

Abstract: The sensitivities of idealized large-eddy simulations (LES) to variations of model 
configuration and forcing parameters on quantities of interest to wind power applications are 
examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in 
relation to variations of two physical factors: geostrophic wind speed and surface roughness 
length, and several model configuration choices, including mesh size and grid aspect ratio, 
turbulence model, and numerical discretization schemes, in three different code bases. Two 
case studies representing nearly steady neutral and convective atmospheric boundary layer 
(ABL) flow conditions over flat terrain, occurring at the Sandia Scaled Wind Farm 
Technology test facility, were used to force and assess idealized LES using periodic lateral 
boundary conditions. Comparison with fast-response velocity measurements at five heights 
within the lowest 50 m indicates that most model configurations performed similarly overall, 
with differences between observed and predicted wind speed generally smaller than 
measurement variability. Simulations of convective conditions produced turbulence 
quantities and spectra that matched the observations well, while those of neutral simulations 
produced good predictions of stress, but smaller than observed magnitudes of turbulence 
kinetic energy, likely due to tower wakes influencing the measurements during the neutral 
case. While sensitivities to model configuration choices and variability in forcing can be 
considerable, idealized LES are shown to reliably reproduce quantities of interest to wind 
energy applications within the lower ABL during quasi-ideal, nearly steady neutral and 
convective conditions. 

Rai, R. K., L. K. Berg, B. Kosović, S. E. Haupt, J. D. Mirocha, B. L. Ennis, and C. Draxl. 2019. 
“Evaluation of the Impact of Horizontal Grid Spacing in Terra Incognita on Coupled Mesoscale–
Microscale Simulations Using the WRF Framework.” Monthly Weather Review 147(3), 1007-
1027. 

Abstract: Coupled mesoscale–microscale simulations are required to provide time-varying 
weather-dependent inflow and forcing for large-eddy simulations under general flow 
conditions. Such coupling necessarily spans a wide range of spatial scales (i.e., ~10 m to 
~10 km). Herein, we use simulations that involve multiple nested domains with horizontal 
grid spacings in the terra incognita (i.e.,  km) that may affect simulated conditions in both 
the outer and inner domains. We examine the impact on simulated wind speed and 
turbulence associated with forcing provided by a terrain with grid spacing in the terra 
incognita. We perform a suite of simulations that use combinations of varying horizontal grid 
spacings and turbulence parameterization/modeling using the Weather Research and 
Forecasting (WRF) Model using a combination of planetary boundary layer (PBL) and large-
eddy simulation subgrid-scale (LES-SGS) models. The results are analyzed in terms of 
spectral energy, turbulence kinetic energy, and proper orthogonal decomposition (POD) 
energy. The results show that the output from the microscale domain depends on the type of 
turbulence model (e.g., PBL or LES-SGS model) used for a given horizontal grid spacing but 
is independent of the horizontal grid spacing and turbulence modeling of the parent domain. 
Simulation using a single domain produced less POD energy in the first few modes 
compared to a coupled simulation (one-way nesting) for similar horizontal grid spacing, 
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which highlights that coupled simulations are required to accurately pass the mesoscale 
features into the microscale domain. 

Rai, R. K., L. K. Berg, M. Pekour, W. J. Shaw, B. Kosovic, J. D. Mirocha, and B. L. Ennis. 2017. 
Spatio-Temporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary 
Layer over Both Simple and Complex Terrain.” J. Appl. Meteor.and Climatol. 
https://doi.org/10.1175/JAMC-D-17-0124.1 (in press).  

Abstract: The assumption of subgrid-scale (SGS) horizontal homogeneity within a model 
grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, 
becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such 
as in many emerging high-resolution applications. Herein, we use the turbulence kinetic 
energy (TKE) budget equation to study the spatiotemporal variability in two types of 
terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, northeastern Oregon) 
and flat (Scaled Wind Farm Technology [SWiFT] site, West Texas) using the Weather 
Research and Forecasting (WRF) model. In each case, six-nested domains (three domains 
each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal 
grid spacing from ∼10 km to ∼10 m using the WRF model framework. The model output 
was used to calculate the values of the TKE budget terms in vertical and horizontal planes 
as well as the averages of grid cells contained in the four quadrants (a quarter area) of the 
LES domain. The budget terms calculated along the planes and the mean profile of budget 
terms show larger spatial variability at the CBWES site than at the SWiFT site. The 
contribution of the horizontal derivative of the shear production term to the total shear 
production was found to be ≈45% and ≈15% at the CBWES and SWiFT sites, respectively, 
indicating that the horizontal derivatives applied in the budget equation should not be 
ignored in mesoscale model parameterizations, especially for cases with complex terrain 
with <10 km scale. 

Rai, R. K., L. K. Berg, B. Kosovic, J. D. Mirocha, M. S. Pekour, and W. J. Shaw. 2016. 
“Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective 
Boundary Layer over Complex Terrain.” Bound.-Layer Meteor. 163, 69-98. 

Abstract: The Weather Research and Forecasting (WRF) model can be used to simulate 
atmospheric processes ranging from quasi-global to tens of meters in scale. Here we 
employ large-eddy simulation (LES) using the WRF model, with the LES domain nested 
within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km 
(mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary 
boundary layer over an area of complex terrain. The WRF-LES model results are evaluated 
against observations collected during the U. S. Department of Energy-supported Columbia 
Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence 
spectrum, and probability density function of wind speed shows good agreement between 
the simulations and observations. One key result is to demonstrate that a systematic 
methodology needs to be applied to select the grid spacing and refinement ratio used 
between domains, to avoid having a grid resolution that falls in the grey zone, and to 
minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model 
variables show large variability in space and time caused by the complex topography in the 
LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll 
vortices and convective cells, vary depending on both the location and time of day as well as 
the distance from the inflow boundaries. 
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Simon, J. S., B. Zhou, J. D. Mirocha, and F. K. Chow. 2019. “Explicit Filtering and 
Reconstruction To Reduce Grid Dependence in Convective Boundary Layer Simulations Using 
WRF-LES.” Mon.-Wea. Rev. 147(5), 1805-1821. https://doi.org/10.1175/MWR-D-18-0205.1. 

Abstract: As model grid resolutions move from the mesoscale to the microscale, turbulent 
structures represented in atmospheric boundary layer simulations change dramatically. At 
intermediate resolutions, the so-called gray zone, turbulent motions are not resolved 
accurately, posing a challenge to numerical simulations. The representation of turbulence is 
also highly sensitive to the choice of closure model. Here, we examine explicit filtering and 
reconstruction in the gray zone as a technique to better represent atmospheric turbulence. 
The convective boundary layer is simulated using the Weather Research and Forecasting 
(WRF) Model with horizontal resolutions ranging from 25 m to 1 km. Four large-eddy 
simulation (LES) turbulence models are considered: the Smagorinsky model, the TKE-1.5 
model, and two versions of the dynamic reconstruction model (DRM). The models are 
evaluated by their ability to produce consistent mean potential temperature profiles, heat 
and momentum fluxes, velocity fields, and turbulent kinetic energy spectra as the grids 
become coarser. The DRM, a mixed model that uses an explicit filtering and reconstruction 
technique to account for resolvable subfilter-scale (RSFS) stresses, performs very well at 
resolutions of 500 m and 1 km without any special tuning, whereas the Smagorinsky and 
TKE-1.5 models produce heavily grid-dependent results. 

A.2 Conference Papers (presenter in bold)

Allaerts, D., C. Draxl, and M. Churchfield. “Large-Eddy Simulations of a Diurnal Cycle Driven by 
Mesoscale and Observational Profile Assimilation.” American Physical Society Division of Fluid 
Dynamics Meeting, November 18-20, 2018. Atlanta, GA. 

Allaerts, D., C. Draxl, E. Quon, and M. Churchfield, “Evaluation of Internal Forcing Techniques 
for Mesoscale-to-Microscale Coupling.” 2019 Wind Energy Science Conference, June 16-20, 
2019. Cork, Ireland. 

Arthur, R. S., J. D. Mirocha, N. Marjanovic, B. D. Hirth, J. L. Schroeder, and F. K. Chow. “Multi-
Scale Simulations of Wind Farm Performance with Complex Terrain and Weather Events.” 
NAWEA/WINDTECH, October 14-16, 2019. Amherst, MA. 

Churchfield, M., D. Allaerts, P. Hawbecker, and E. Quon. “Treatment of Gravity Waves in Wind 
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Appendix B – Contributions of Individual Laboratories 
Lawrence Livermore National Laboratory: LLNL’s primary contributions to the MMC project 
during FY19 were: 1) to lead the effort to assess various inflow perturbation methods used to 
accelerate turbulence development on turbulence-resolving microscale simulation domains 
forced by mesoscale (nonturbulent) inflow, and 2) to make available new codes and case study 
data sets on a publicly accessible site, to encourage tech transfer and engagement with others 
in research and industry. As described in detail in Section 7.0, achievement of these goals 
necessitated a significant shift in the team’s established workflow, including transition of all team 
members to a common code development and assessment environment. This new 
environment, consisting of core computational codes, data to force and evaluate model 
simulations, and assessment scripts, achieves several important goals, including improved 
collaboration across the team, more rigorous code development and documentation practices, 
unambiguous intercomparison and assessment of various methods, and finally a platform from 
which to share new codes and procedures, both across the team and with any interested party 
who wishes to investigate or adopt our tools and techniques (https://github.com/a2e-mmc). 
While LLNL provided high-level oversight of the perturbation assessment and code 
dissemination tasks, NCAR and NREL led several of the major components of developing the 
community environment, the code modification and validation framework, and the generation of 
the multiple data processing and analysis scripts used to assess the methods.  

In addition to the common code development, analysis, and dissemination framework, LLNL 
also implemented improvements into the stochastic cell perturbation method, including a height-
dependent perturbation refresh timescale, and ability to utilize boundary-layer height computed 
from the bounding mesoscale simulation during a nested simulation. LLNL also continued 
developing the distributed drag surface canopy parameterization with a view toward complex 
terrain and offshore applications. LLNL also worked with collaborators at UC Berkeley to 
examine the use of the more sophisticated “DRM” dynamic LES subgrid model, relative to 
simpler linear eddy-viscosity approaches, in simulating turbulence at coarse model resolutions 
and into grey zone scales. Finally, LLNL continued to assist in project planning, and 
communication and dissemination, including participating in team and industry meetings and 
teleconferences, and contributing material for and presenting at conferences.  

Los Alamos National Laboratory: LANL’s primary contribution to the MMC project during 
FY19 was participation in the effort to assess various inflow perturbation methods used to 
accelerate turbulence development on turbulence resolving microscale simulation domains 
forced by mesoscale inflow, as described in Section 7.0. As part of this effort, LANL made 
available to the team codes related to the random force perturbation extension of the cell 
perturbation method and ran simulations based on case study data sets provided by LLNL. 

LANL team members attended in-person and phone MMC meetings and have contributed to 
journal publications in FY19, including one first-author publication on the random force 
extension of the cell perturbation method.  

National Center for Atmospheric Research: NCAR continued to serve in a leadership role for 
the MMC project, which includes leading biweekly team telecons, representing the team at A2e 
meetings and external peer reviews, and facilitating and publicizing the work. Dr. Haupt served 
as project Principal Investigator and contributed to the A2e Uber-PI meetings as well as overall 
project leadership, including work planning and tracking. NCAR hosted team workshops in 
Boulder in January and April 2019. Dr. Haupt was also responsible for summaries in quarterly 
reports and producing this FY19 Annual Report and presented an overview of project progress 
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at DOE Headquarters in May 2019. She also led a team summary paper that appears in the 
Bulletin of the American Meteorological Society. The NCAR team members presented papers 
on MMC work at the Tenth Conference on Weather, Climate, and the New Energy Economy 
held as part of the American Meteorological Society (AMS) Annual Meeting in Phoenix, AZ in 
January 2019; Energy Systems Integration Group Forecast conference in Denver in June 2019; 
Wind Energy Science Conference in Cork, Ireland in June 2019; International Conference on 
Energy and Meteorology held in Lyngby, Denmark in June 2019; and the MAC-MAQ conference 
in California in September 2019. 

NCAR led the assessment planning and implementation. In FY19, that process was formalized 
(in collaboration with NREL and the other laboratories) and new standardized processes were 
initiated. The team moved toward completing postprocessing and assessment in Jupyter 
notebooks in Python, with standard code archived on a GitHub repository. In addition, standard 
code bases were initiated, which allows more rigorous comparison of techniques. 

NCAR led the Mesoscale Modeling portion of the project in 2019, producing some use cases 
and also advancing the 3D PBL scheme that was initiated in the WFIP 2 project. NCAR also 
began incorporating new machine-learning models for the surface layer as part of the MMC 
project in FY19. The team is in the process of moving the emphasis of our research toward 
applications in the offshore environment. NCAR is providing leadership in assessing the primary 
needs for the offshore environment and incorporating that expertise into the team. 

National Renewable Energy Laboratory: NREL’s main roles within the MMC project during 
FY19 were: 1) to lead the coupling methods group, including the formal coupling methods 
assessment for the SWiFT flat-terrain, diurnal cycle case outlined in Chapter 6.0 of this report, 
2) to lead the creation of the A2e-MMC Github repository and work side-by-side with NCAR to
produce high-quality Python codes for performing everything from simulation assessment to
publication-quality plots outlined in Chapter 4.0 of this report, and 3) to develop new coupling-
related methods. Some specific highlight activities that members from the NREL team
undertook include participation in mesoscale modeling efforts, participation in the inflow
turbulence perturbation comparison effort, development of the new profile assimilation coupling
technique and further analyzed the budget-component coupling approach, examination of the
role of terrain in microscale inflow turbulence generation, enhancement of the use of TurbSim
for inflow turbulence generation, and development of strategies for atmospheric gravity wave
handling in the microscale.

NREL continued to assist in project planning. Members of the NREL team attended the in-
person and phone meetings of the overall MMC group. The NREL team is providing overlap 
between MMC and other A2e projects, including the High-Fidelity Modeling (HFM), Wake 
Dynamics, and Controls Science projects.  

Members of the NREL team have been first-authors or coauthors of various journal publications 
in FY19 and presented work at conferences, including the American Physical Society Division of 
Fluid Dynamics Meeting, the American Meteorological Society Annual Meeting, and the Wind 
Energy Science meeting.  

Pacific Northwest National Laboratory: PNNL staff contributed to many facets of the MMC 
project, including: preliminary testing of Nalu-Wind, development of coupling methods, 
development of perturbation methods, development and application of a lidar simulator, UQ, 
and assessment. Efforts related to Nalu-Wind focused on setting up, running, and evaluating 
Nalu-Wind simulations using the same case studies presented by Mirocha et al. (2018). This 
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work was presented by Kaul et al. (2019) at the North American Wind Energy Academy 
(NAWEA)/International Conference on Future Technologies in Wind Energy (WindTech) 
conference and is described in detail in Chapter 11.0 of this report. The team’s work on 
perturbation methods focused on generating turbulence using synthetic methods, such as those 
of Mann or Veers (Chapter 7.0). Application of a new lidar simulator gives the opportunity to 
more carefully evaluate the nature of turbulence in the planetary boundary layer. This work is 
presented in Chapter 10.0 and is a collaboration with the A2e WFIP 2 project. Staff renewed 
efforts focused on UQ presented in Chapter 9.0 that are focused on LES applications and builds 
on other UQ efforts.  

PNNL staff contributed to or led (Rai et al. 2019) several peer-reviewed publications. The team 
also presented results at the American Meteorological Society Annual Meeting and the 
NAWEA/WindTech conference.  
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