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Abstract

The goal of this project is to accurately model the dynamic loads for power system planning and
operation and to address the challenges inherent in such modeling. Existing load models are inadequate to
handle the increasing proliferation of residential air conditioner loads and distributed energy resources,
the emerging trends of price-responsive demand, and the growing importance of protective devices in
equipment and buildings. A need has emerged to develop a fundamentally new class of load models and
next-generation data tools.

This work proposes to develop a set of regional-level, scalable open source load models and tools,
including large-scale aggregate load protection, concept of price responsive demand, advanced load
composition data, next-generation load model data tools, and advanced composite load model calibration
and validation frameworks to address new challenges in the representation of next-generation load
models.
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1.0 Background and Task Definition

1.1 Background

Modern power systems are facing a rapidly growing level of variability and uncertainty due to the
increasing level of variable resources and random market forces. The performance of bulk power systems
is analyzed using computer models that represent the systems’ behavior under normal or abnormal
conditions. Both technical and commercial segments of the industry must be confident that the simulation
models and database are accurate and up to date. First, having realistic models is critical to ensuring
reliable and economic power system operation. If transfer limits are set using overly optimistic models, a
grid operator may operate the system beyond its capability, increasing the risk of widespread outages such
as occurred during summer of 1996. If the models are too pessimistic, the operator may be overly
conservative and impose unnecessary restrictions on system operating limits, increasing the risk of power
shortages and higher costs in energy-deficient regions. Second, accurate representation of electrical loads
is crucial to evaluating the vulnerability of the bulk system to instability in the seconds after a major
system event. Third, correct models are essential to design and implement appropriate control responses
and to make sure system operation satisfies the required contingency constraints.

Bulk power transmission system planning requires accurate models of all the major generation,
transmission, and load components. Loads play an increasingly important role in power system dynamic
stability and load representation has historically been the least accurate of the three components modeled
to help control a system.

As the load changes during the day, the generators follow, and the power flows can be calculated.
However, for historical reasons, most load models are based on time-invariant, voltage-dependent
polynomial load representations. The loads may be represented as constant impedance (Z), constant
current (1), or constant power (P). Recently it has been understood that these models no longer provide a
true representation of the dynamic response of the load, particularly in view of the increased penetration
of residential air conditioners in recent years. The problem stems from load models not capturing the
electromechanical behavior of modern motors and load-protection devices in the moments after a fault
occurs on the power system.

A fault-induced delayed voltage recovery (FIDVR) event is the phenomenon in which system voltage
remains at significantly reduced (inadequate) levels for several seconds after a transmission, sub-
transmission, or distribution fault has been cleared. Such faults have increased significantly in Southern
California and Florida over the past several years.

A typical FIDVR event is depicted in Figure 1.1. The effect is thought to be caused by the stalling of
highly concentrated single-phase induction-motor loads with constant or reciprocating mechanical torque
in response to low voltage [1] [2]. The stalled motors draw more reactive power from the grid, holding the
local voltage down, which results in a vicious cycle: After several seconds of being stalled, motors’
protection devices trip the motors to prevent them from overheating. As a result, there is a large decrease
in the load on the power system, with a potential secondary effect of high system voltage (“power
bump™). That bump is particularly likely if the protection response is slower than the voltage regulation
response of the system. Once the system finally catches up to events and reduces power to the grid, the
protection devices of motors just coming back online trip again, and the cycle starts once more. The fact
that FIDVR events are not well represented in power system studies has increased interest in load
modeling, particularly of loads with a high penetration of motors, because dynamic load behavior
profoundly influences the system dynamic response.
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Figure 1.1 A Typical FIDVR Event [3]

IEEE provided initial guidance on load modeling in the early 1990s. The Western Electricity
Coordinating Council (WECC) has long recognized the need for better load modeling and has undertaken
significant efforts to improve load representation in dynamic simulations. An “interim” load model [4]
was approved in early 2000’s and the model had 20% of load represented as induction motors across the
entire system and for all study conditions. The motor load was still connected at a high-voltage
transmission bus. The “interim” model was developed to address operational issues on the California-
Oregon Intertie made apparent by the 1996 outages. During the approval process, WECC emphasized the
“interim” nature of the model and argued the need for more comprehensive load modeling. It was
recognized that the advance of computing capability would permit significant improvements beyond the
interim model. The experience gained since the development of this new model has confirmed that the
improvements were both possible and greatly needed.

WECC’s Modeling and Validation Work Group (MVWG)/ Load Modeling Task Force (LMTF) led
the development of the composite load model for dynamic simulations. The composite load model is
implemented in GE PSLF [5] and Siemens PTI PSS/E [6]. Comparable models are being developed in
PowerWorld Simulator [7] and PowerTech’s TSAT programs [8]. Eastern Interconnection and Electric
Reliability Council of Texas (ERCOT) have been monitoring and participating in load modeling activities
in recent years as well.

1.2 Tasks and Deliverables

This report is prepared to answer the need for a fundamentally different, new class of load models and
next generation of data tools. Such tools can provide improved outcomes compared with existing ones.
PNNL aims to address the new load trends to handle the increasing proliferation of electronics loads and
residential air conditioner loads, the emerging trends of price-responsive demand, and the growing
importance of protective devices in equipment and buildings. Moreover, the PNNL research team has
developed an aggregate motor protection model to augment and enhance the composite load model.
Further, we intend to address the data challenges embodied in these phenomena. The planned next-
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generation regional load composition data model and Load Model Data Tool will incorporate these many
changes to the current model, enhancing the supply of power to consumers throughout the U.S.

The accomplished deliverables include:

e An updated load shape database with respect to residential sector power consumption for
Western Electricity Coordinating Council (WECC), Eastern Interconnection (EI) and Electric
Reliability Council of Texas (ERCOT)

o Electro-magnetic transient (EMT) distribution feeder models implemented in PSCAD and
GridLAB-D for data extraction and model validation.

e Aggregate motor protection model implemented by Matlab code to generate two-dimensional
protection profile for motor components in WECC composite load models

e Trial-and-error and machine-learning based approaches for building initial prototype of load
model validation tool

o Development plan report of price responsive aggregate load model
e The second-generation load model data tool (LMDT) for open-source distribution

Four tasks are defined in this project. The major deliverables of these four tasks are correlated and
represented in Figure 1.2, which shows the essential elements of the aggregate composite load model and
the key approaches to achieve these elements.

Aggregate Composite Load i Load and Protection
¢ Composition

Aggregate Load
Protection Component r
Contactor Task 4: Next generation
h load model data tool
{ [+ IndividualiModular Task 2: Aggregate load-
CLM and DER support protection modeling
; + Optimization-based modeling

» Cross-categorical transfer

Task 1: Next generation regional-
level load composition modeling

+ Cross-correlation method
+ Machine-learning method

Electronic
Relay

Thermal
Protection

i

L1

fifkclelele

uvLs

Current learning method
urLs Overload ||| || el
Protection T
T Electronic | Model Calibration | Task 3: Simulation-based framework
BiElng | for collecting load dynamic responses
Management stat
System ae ! + PSCAD commercial feeder model
\Load Model + GridLAB-D residential feeder model
‘Validation

Figure 1.2 Aggregate Composite Load Modeling
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2.0 Description of Data Source for Estimating Next-
Generation Regional Level Load Composition

2.1 Introduction

Because power planning and operation tasks heavily depend on static and dynamic simulation studies,
adequate and accurate power system models play an essential role. Inaccurate, incomplete or insufficient
load models can significantly skew study results, leading to conclusions that deviate from reality and
faulty system designs and decision making. Poor modeling can also have severe consequences such as
power outage or cascading faults and system failures. The number of FIDVR events has been increasing
in Southern California, Tennessee, Kansas and Florida since the late 1980s and early 1990s. On July 2,
1996, voltage instability resulted from the loss of steady state equilibrium conditions caused by reactive
power deficiency in the Idaho area. The power failure affected parts of Alberta and British Columbia,
western Mexico, ldaho, Montana, Utah, New Mexico, California, and Arizona, impacting more than two
million people. Moreover, with recent rapid development of smart grid technologies, over 50 million
smart meters had been deployed in the US, reaching 43% of US families according to Edition
Foundation’s Institute for Electric Innovation 2014 report [9]. This number is consistently increasing
from 7 million since 2007, and will continue to increase in the near future, which will increase price
responsive demand coverage tremendously every year. It brings new challenges and requirements to the
load modeling.

Load composition modeling will include:
1. Aggregating distribution loads according to standard load classes
2. Specifying the types of devices comprised by those load classes

3. Assigning the appropriate composition of the aggregated load to the various components of a
suitable load model structure

This approach uses a common load model structure and associated set of parameter values throughout
the system model. What is changed throughout the system model is the percentage composition (e.g.,
percentage motor load versus static load) from bus to bus. In most cases, even this percentage
composition may be kept constant throughout the system model because of the lack of better knowledge.

The bottom-up method for load composition estimation uses results from building population
surveys, building simulations, and end-use metering programs to develop estimates for the fractions of
loads that are operating at any given time. Typically, the data collected is separated hierarchically by
customer class, building type, and end-use type, which includes residential, commercial, industrial, and
agricultural loads broken down in facility types.

2.2 Data Sources

2.21 Summary of Residential End-Use Load Consumer Assessment Program

The Bonneville Power Administration (BPA) conducted the End-use Load and Consumer Assessment
Program (ELCAP) from 1986 through 1989 and obtained hourly and sub-hourly electricity demand
information from a variety of residential and commercial end uses. The original residential-sector load
consumption data from ELCAP were processed and utilized in the development of light load composition
model in our previous research effort [3]. The currently adopted light load composition model sourced to
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ELCAP contains hourly load shapes of 12 end uses in 12 WECC climate zones and 5 typical seasons. A
brief summary of the features of light load model sourced to ELCAP is tabulated in Table 2.1.

Table 2.1 Key Features of Light Load Model Sourced to ELCAP

Residential End Uses Climate Zones in WECC Region Study Day Type

» Heating = Northwest Coast (NWC)

= Cooling = Northwest Valley (NWV)

= Vent = Northwest Inland (NWI)

= Water Heat = Rocky Mountain North (RMN) = Normal Summer (index=1)
= Cooking = Northern California Coast (NCC) = Hot Summer (index=2)
= Refrigeration = Northern California Valley (NCV) | , Cool Summer (index=3)
= External Lighting = Northern California Inland (NCI) = Shoulder (index=4)

* Internal Lighting = Southern California Coast (SCC) = Winter (index=5)

= Electronics = Southern California Valley (SCV)

= Appliances = Southern California Inland (SCI)

= Miscellaneous = Desert Southwest (DSW)

= Vehicle = High Desert (HID)

The ELCAP residential load shape data generally become obsolete because of increasing penetration
of electronics loads, enlarged capacity of residential air conditioner loads, and increase in equipment
efficiency in recent years. Newer data sources need to be discovered to derive residential load
composition for next-generation regional level WECC composite load models. Several up-to-date power
and energy consumption data sources are introduced in the next sub-chapters. Some of them are used in
this project.

2.2.2 Summary of Load Shape Library (LSL)

Load Shape Library has been developed and maintained by Electric Power Research Institute (EPRI)
since 2010. The end-use load shape data contained in the tool was obtained from simulations using the
EPRI NESSIE (National Electric System Simulation Integrated Evaluator) model platform. The inputs to
NESSIE were derived from data estimation conducted by the U.S. Energy Information Agency’s (EIA’S)
National Energy Modeling System (NEMS) and derived from data collected by EPRI through laboratory
testing and research [10].

The tool stores hourly end-use load data of three sectors for thirteen North American Electric
Reliability Corporation (NERC) regions and six season and day types. The three sectors include
commercial, residential and industrial end-uses. Several end-use load types are characterized for each
sector. Table 2.2 is generated to generalize all considered features of end-use load shapes in EPRI’s LSL.
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Table 2.2 Key Features of End-Use Load Shapes in Load Shape Library

Conditioning (CAC)
* Clothes Dryer

* Clothes Washer

* Dishwasher

* Heating

* Lighting

* Refrigerator

* Television & Personal
Computing (TV & PC)

» Water Heating

Commercial

* Cooling

* Heating

* Lighting, External
* Lighting, Internal
» Office Equipment
* Refrigeration

* Ventilation

» Water Heating

Industrial

* HVAC

* Lighting

» Machine Drives
* Other

* Process Heating

Coordination Agreement (ECAR)

* Electric Reliability Council of
Texas (ERCOT)

» Mid-Atlantic Area Council
(MAAC)

* Mid-America Interconnected
Network (MAIN)

» Mid-Continent Area Power Pool
(MAPP)

* Northeast Power Coordinating
Council — New York (NPCC/NY)

* Northeast Power Coordinating
Council — New England (NPCC/NE)
» Southeast Reliability Council (non-
Florida) (SERC/STV)

» Southeast Reliability Council
(Florida) (SERC/FL)

* Southwest Power Pool (SPP)

» Western States Coordinating
Council — Northwest (WSCC/NWP)

» Western States Coordinating
Council — Rocky Mountain Area
(WSCC/RA)

» Western States Coordinating
Council — California/Nevada
(WSCC/CNV)

peclol Regions Season and Day Type
Residential
« Central Air « East Central Reliability

* Peak season (summer): May
through September.

* Off-peak season (fall, winter,
spring): October through April.

* Peak weekday in the peak
season: Ten hottest weekdays (2 in
each month).

« Peak weekday in the off-peak
season: Ten coldest (or hottest)
weekdays depending on regions.

 Average weekday/weekend in
the peak season: all other
weekdays/weekends in May
through September.

* Average weekday/weekend in
the off-peak season: all other
weekdays/weekends in October
through April.6

A typical load shape curve can be shown in Figure 2.1 below. The peak power consumption of the
selected end-use loads is scaled to 1 kW. The actual power consumed by end-uses are obtained by
multiplying the scaled load shape time series with a pre-determined scaling factor to match real load
profile.
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Load Shape of Residential End-Uses in WSCC/NWP Region during
Peak Summer Day
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Figure 2.1 Typical Residential End-Uses Load Shape

Several pros and cons of Load Shape Library are highlighted:

o End-use load shapes can be used by utilities to develop applications in load forecasting,
integrated resource planning (IRP), and demand-side management (DSM) evaluations.

e Load Shape Library provides best-available data. The confidence and accuracy of the data are
unknown.

e End-use data does not capture behavioral and other unobservable effects, in which case
metered data would be the preferred choice of the industry.

2.2.3 Summary of Northwest Energy Efficiency Alliance (NEEA) Residential
Building Stock Assessment (RBSA) Data

Northwest Energy Efficiency Alliance sponsored this residential building stock assessment study [11]
to develop an inventory and profile of existing residential building stock in the Pacific Northwest based
on field data from a representative, random sample of existing homes. The RBSA study was conducted
across four states (WA, OR, ID, MT) for three categories of residences: single-family homes,
manufactured homes, and multifamily homes. EPRI collaborated with NEEA to incorporate the RBSA
load shape study results into EPRI’s Load Shape Library (LSL). The dataset used in Load Shape Library
4.0 comprises of 103 single-family residential premises with 15-min interval end-use metered data. The
data ranges from April 2012- March 2013. The raw RBSA load shape data from NEEA website and the
processed RBSA data stored in EPRI’s LSL 4.0 are both downloaded and used in this project.
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2.2.4 Summary of Market Analysis and Information System (MAISY) Utility

Customer Energy Use and Hourly Load Databases

The MAISY database [12] incorporates large utility customer load consumption data for each state
and utility service area. It contains individual customer record energy use and end-use data including
8760 hourly and 15-minute interval loads. The database records commercial and residential customer data
covering different business categories (medical office, fast food restaurant, etc.) and various house types
(single-family, multi-family, mobile homes, etc.). Detailed segmentation and deep drill-down capabilities
are highlighted in development of the database. The data are stored and rendered in either Excel
workbooks or EnergyApps software. The MAISY database has been applied by over 100 organizations
for technology and energy-related market analysis, product development and assessment, cost-of-service
studies, energy efficiency, smart grid analysis.

2.25 Summary of Energy Consumption Surveys by U.S. Energy Information

Administration (EIA)

U.S. Energy Information Administration [13] publicized energy consumption survey data of
residential, commercial and manufacturing sectors. The residential energy consumption survey (RECS)
collects total annual energy consumption data of housing units, based on end-uses, for the entire U.S. and
for different census regions and divisions. The number of housing units, and average consumption per
housing unit are also available. The commercial building energy consumption survey (CBECS)
documents statistics of commercial end-use electricity consumption for different commercial building
types, census regions and divisions. The manufacturing energy consumption survey (MECS) provides
statistic electricity (and other fuel) consumption information for a variety of end-uses in different
manufacturing industries and in different regions. Table 2.3 summarizes the properties of these series of
energy consumption surveys regarding the end-use statistics.

Table 2.3 Features of End-Use Properties of the Energy Consumption Surveys

cooking appliances,
clothes washers,
dryers, dishwashers,
televisions,
computers, small
electronic devices,
pools, hot tubs, and
lighting)

computers, servers,
copiers, FAX machines,
cash registers, printers,
mainframe computer
systems, typewriters)

e Computing

e Other

RECS CBECS MECS
Year 2009 2012 2010
e Space heating . Spacg heating
e Water heating » Cooling _ _
« Air-conditioning e Ventilation o Conventlona_l boiler use
« Refrigerators o Water heating e Process heating
« Other appliances e Lighting e Process cooling and refrigeration
(not shown ¢ Cooking e Machine drive
separately, e Refrigeration e Electro-chemical processes
End-uses | including: o Office Equipment (e.g. | ® Other process use

o Facility HVAC

o Facility lighting

¢ Other facility support
¢ Onsite transportation
e Other non-process use
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Commercial Buildings:

e Education

e Food sales

e Food service
e Health care

Industries:

e Food

¢ Beverage and tobacco products
o Textile and product mills

o Apparel

o Leather and allied products

¢ Wood products

o Paper

¢ Printing and related support

Housing o Lodging . Petrol_eum and coal products
or Housing: o Mercantile o Chemicals
building | ¢ Single-family o Office * Plastics and rubber products
or o Multi-family « Public assembly . Nqnmetalllc mineral products
industry | ® Mobile homes « Public order and safety | ® Primary metals
types « Religious worship . Fabrlgated metal products
« Service e Machinery _
« Warehouse and storage | * Computer and electronic
¢ Other products . .
o Vacant e Elec. equip., appliances,
components
e Transportation equipment
¢ Furniture and related products
¢ Miscellaneous
(Note: detailed industry sub-
categories are not listed)
o West
(Mountain north /
south, Pacific)
» Northeast (New * West
Regions England, Middle e Northeast
and Atlantic) The same as RECS * Midwest South
divisions | e Midwest (East / e South
West North Central)
e South (South
Atlantic, East /
West South Central)
e Total energy
Relevant consumption (Btu) |« Total ele(t:.t“C'tth « Net demand for electricity (kWh)
* Average energy consumption ( ) e Other fuel consumption (Not
contents consumption e Electricity energy

(Btu/house)
e Number of houses

intensity (kWh/sqft)

relevant to our research goal)
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3.0 Estimation of Residential Load Composition Using
Weighted Difference Approach

3.1 Introduction

The WECC LMTF led development and implementation of a composite load model (CMPLDW in
PSLF; CMLDBLUL1L in PSS/E) [14] to replace simpler load models previously used in most popular
transmission-level power system simulation programs. The composite load model includes distribution
feeder equivalent data (e.g., substation transformer characteristics, feeder equivalent impedances), load
component parameters (e.g., motor impedances, time constants and inertias), load model composition data
(e.g., fractions of motor, static and electronic loads) and protection parameters [3]. An illustration is
shown in Figure 3.1.

Traditionally, measurement-based approaches to characterize composite load models introduced a
top-down method in which a load model structure is defined, and the component compositions are
estimated directly from field measurement data [15]. The major limitations of this top-down approach
include (a) insufficient disturbance data suitable for estimating load model composition, and (b) multiple
solutions to the optimization problem, resulting in more than one estimated composition sets.

Load Component
Model
/ Data

Distribution Equivalent Data

69-kV
115-kV
138-kV

> Composition
Data

Air-conditioner load

UVLS and UFLS Data

— Electronic

— Static )

Figure 3.1 Composite Load Model Data Requirements

A bottom-up approach, based on building population surveys, building simulations, and end-use
metering programs, was previously proposed by WECC LMTF to estimate the fractions of different load
components, such as motors, constant impedance/current/power loads, and electronic loads at any given
time [3] [16]. PNNL in collaboration with the BPA developed an Excel version of the load composition
model (LCM) using the bottom-up approach. For commercial buildings in the LCM, the California
Commercial End-Use Survey (CEUS) was used as the primary source for commercial load composition
[17]. For residential loads, the End-use Load and Consumer Assessment Program (ELCAP) data were
used to estimate load composition [18] [19]. Figure 3.2 shows the implementation of the Excel LCM. The
final outputs of LCM are the load fractions of different components in the composite load model
illustrated by Figure 3.1.
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The ELCAP was a major data collection program undertaken by the BPA from 1983 through 1990 to
obtain metered end-use power consumption data in residential and commercial sectors. The 1983-1990
ELCAP data provides an overview of power consumption patterns in residential homes in the Pacific
Northwest. The residential load shape data in the initial prototype of LCM were derived from ELCAP
data. The ELCAP was conducted in the late 1980’s and the data are now outdated. In addition, growing
penetration of electronic loads in residential homes spurs the update of load shape data in the new version

of LCM.
Season Thermal
Conditions —‘ TMY Data Load Shapes Models
| |

Residential I

Design
- - End-use Load End-use Load
Commercial | Model Shapes

Design
A 4
Industrial | Feeder Load
Loads Mix Load Composition
Model
Agricultural | |  ——
Loads Rules of
Association Load
Fractions

Service Loads —

Figure 3.2 Structure of LCM

Chapters 3 — 5 present PNNL’s current efforts to update the residential load composition data in the
LCM using recent data sources and various mathematic algorithms. The studies utilize the recent load
shape results from the residential building stock assessment (RBSA) study sponsored by the Northwest
Energy Efficiency Alliance (NEEA). The WECC interconnection system includes a total of 12 climate
zones. The NEEA RBSA study was only conducted in the Pacific Northwest regions, consisting of four
typical climate zones. For the other eight WECC climate zones, up-to-date residential load shape data are
currently unavailable and need to be derived using existing data sources.

3.2 Climate Zone

This section discusses the divisions of WECC climate zones and definitions of five season conditions.
The LCM datasets include load composition for 12 climate zones in WECC, shown in Table 3.1, and 5
types of season conditions, including normal summer, hot summer, cool summer, shoulder (spring or
fall), and winter [3].

The first four climate zones in Table 3.1 are labeled as reference climate zones, which include the
cities in the region of NEEA RBSA study and have the RBSA load shape data available. The other eight
climate zones are defined as target climate zones, which do not have direct measurement data. Table 3.1
also shows the number of cities participating in the NEEA RBSA study and their distribution in the four
reference climate zones [20]. Figure 3.3 shows approximate boundaries for WECC climate zones.
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Table 3.1 WECC 12 Climate Zones

Number of
ID Climate Zone Surveyed Cities
NWC Northwest Coast 21
Reference Climate | NWV Northwest Valley 13
Zones NWI Northwest Inland 25
RMN Rocky Mountain North 7
NCC Northern California Coast N/A
NCV Northern California Valley N/A
NCI Northern California Inland N/A
Target Climate SCC Southern California Coast N/A
Zones SCvV Southern California Valley N/A
SCI Southern California Inland N/A
DSW Desert Southwest N/A
HID High Desert N/A

Figure 3.3 Map Depicting Geographic Region for Each Climate Zone [16]

The ELCAP load shape data reflect power consumption pattern of Pacific Northwest residential
homes back in 1980’s and gradually become outdated. The RBSA load shape data implemented in EPRI’s
LSL 4.0 provides an overview of residential load profiles in Pacific Northwest for the year 2012-2013.
The LSL-version RBSA data are used in this chapter to update the residential load shapes in the existing
Load Composition Model (LCM). A total of 66 cities participated in the RBSA study. Each city contains
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at least one representative surveyed house. There are totally 103 houses distributed in the 66 cities. Based
on the geographical locations, the 66 cities are divided into 4 climate zones as shown in Table 3.2 and
Figure 3.4. It is noted that each sampled house may not output a full set of end-use load information. The
number of houses that contain each of the end-uses are listed in Table 3.3 if all the surveyed cities are
selected in EPRI’s LSL 4.0. The average load shape of an end-use in a house is generated based on the
number of houses that have this end-use.

Table 3.2 Division of Surveyed Cities Based on Climate Zones

66 cities in Load Shape Library

NWC Region (21 cities)

WA Seattle WA, Tacoma WA, Tenino WA, Burien WA, Bainbridge Island WA, Kirkland WA,
Olympia WA, Arlington WA, Bothell WA, Mill Creek WA, Lynnwood WA, Bellingham WA, Oak
Harbor WA, Puyallup WA, Mountlake Terrace WA, Bellevue WA, Renton WA, Fox Island WA

OR: Bandon OR, Brookings OR, South Beach OR.

NWYV Region (13 cities)

OR: Eugene OR, Lebanon OR, Albany OR, Jefferson OR, Monmouth OR, Salem OR, McMinnville
OR, Carlton OR, Dundee OR, Hillsboro OR, Beaverton OR, Lake Oswego OR, Portland OR

NWI Region (25 cities)

WA Kettle Falls WA, Okanogan WA, Newport WA, East Wenatchee WA, Wenatchee WA, Moses
Lake WA, Cheney WA, Airway Heights WA, Spokane WA, Spokane Valley WA, Yakima WA,
Grandview WA, West Richland WA, Kennewick WA,

ID: Coeur d'Alene ID, Moscow ID, Lewiston ID, Emmett ID, Caldwell ID, Nampa ID, Kuna ID,
Meridian ID, Boise ID, Mountain Home 1D, Sandpoint ID

RMN Region (7 cities)

MT: Hamilton MT, Cascade MT, Helena MT, Whitehall MT, Bozeman MT
ID: Shoshone ID, Jerome ID
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Figure 3.4 Geographical Segregation of Surveyed Cities
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Table 3.3 Number of Sites (Houses) that Contain Each Specific End-Use
Month=12, Workday and Weekend, All Area (NWC+NWV+NWI+RMN)

RBSA Type Appliance Type Sites (Houses)

Premise Total Premise kWh 103
HVAC Central Heating 6
HVAC Air Source HP 20
HVAC Packaged Terminal HP 1
HVAC Ductless Space HP 3
HVAC Central AC 26
HVAC Packaged Terminal AC 1
HVAC Ground Source HP 1
HVAC Air Handler 2
Water Heater Electric Resistance WH 57
Water Heater Heat Pump WH 2
Portable Heating and Cooling Room Heater(s) 45
Refrigeration Refrigerator 102
Refrigeration Freezer 46
Cooking Oven 68
Cooking Microwave 2
Laundry & Dishwashing Dryer 98
Laundry & Dishwashing Washer 96
Laundry & Dishwashing Dishwasher 63
Entertainment Gaming Console 32
Entertainment TV & Accessories 99
Entertainment Cable Box & DVR 46
Entertainment Home Audio 9
Computer Computer & Accessories 86
Lighting and Other Interior Lighting 93
Lighting and Other Exterior Lighting 13
Lighting and Other Other 58

3.3 Re-Categorization of LSL’'s RBSA End-Uses

The LSL’s RBSA load shape data have more specific categories of end use than ELCAP data. In
order to align RBSA data with ELCAP data, the RBSA end-uses need to be re-categorized to match the
ELCAP end-use types. This re-categorization not only facilitates the update of load shape data but also
preserves the structure of the load shape database that is linked to PNNL’s Load Model Data Tool
(LMDT). Table 3.4 displays some details of this re-categorization.
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Table 3.4 Mapping from RBSA End-Uses to ELCAP End-Uses

RBSA End-Use Categories

RBSA Appliances

Mapped to ELCAP End-Uses

HVAC Central Heating Heating
HVAC Air Source HP Vent
HVAC Packaged Terminal HP Cooling
HVAC Ductless Space HP Vent
HVAC Central AC Cooling
HVAC Packaged Terminal AC Cooling
HVAC Ground Source HP Vent
HVAC Air Handler Vent
Water Heater Electric Resistance WH Water Heat
Water Heater Heat Pump WH Water Heat
Portable Heating and Cooling Room Heater(s) Heating
Portable Heating and Cooling Window AC Cooling

Refrigeration

Refrigerator

Refrigeration

Refrigeration Freezer Refrigeration
Cooking Oven Cooking
Cooking Microwave Cooking
Laundry & Dishwashing Dryer Appliance
Laundry & Dishwashing Washer Appliance
Laundry & Dishwashing Dishwasher Appliance
Entertainment Gaming Console Electronics
Entertainment TV & Accessories Electronics
Entertainment Cable Box & DVR Electronics
Entertainment Home Audio Electronics
Computer Computer & Accessories Electronics
Lighting and Other Interior Lighting Interior Lighting
Lighting and Other Exterior Lighting Exterior Lighting
Lighting and Other Other Misc.

RBSA Database

The RBSA load shape data of each climate zone is manually downloaded from EPRI’s LSL 4.0 by
selecting corresponding surveyed cities in that zone. The load shape data are prepared on a monthly basis
to give some flexibility for choosing the type of season to be studied. An example of original RBSA 15-
min interval load shape data is demonstrated in Figure 3.5. Column 2 of Figure 3.5 lists the types of
RBSA end-use appliances that need re-categorization to match ELCAP end-use types.
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Month=6
RBSA Type
Premise Total
HVAC

HvAC

HVAC

HvAC

HVAC

HVAC

Water Heater

Portable Heating and Cooling
Portable Heating and Cooling

Refrigeration
Refrigeration

Cooking

Laundry & Dishwashing
Laundry & Dishwashing
Laundry & Disk hing

Appliance Type
Premise kWh

Central Heating

Air Source HP
Packaged Terminal HP
Ductless Space HP
Central AC

Air Handler

Electric Resistance WH
Room Heater(s)
Window AC
Refrigerator

Freezer

Qven

Dryer

Washer

Dist her

Entertainment
Entertainment
Entertainment
Computer
Lighting and Other
Lighting and Other
Lighting and Other

Gaming Console

TV & Accessories

Cable Box & DVR
Computer & Accessories
Interior Lighting
Exterior Lighting

Other

Avg Value At 0:00 Avg Value At 0:15 Avg Value At 0:30 Avg Value At 0:45 Avg Value At 1:00 Avg Value At 1:15 Avg Value At 1:30

0.211937086
0.012473118
0.078
0.005483871
0.002688172
4]
0.000645161
0.046912443
0.012404305
0.012465226
0.01795422
0.013681619
0.000705645
0.007605381
0.000891057
0.004738462
0.00375475
0.006522724
0.005926759
0.010239035
0.008837943
0.003866156
0.036535486

0.203661249
0.007777778
0.079199998
0.008
0.002888889
o
0.001333333
0043111111
0.009555607
0.014133514
0.017425723
0.012874213
0.000354167
0.006088571
0.0007068
0.00327504
0.003547146
0.006042602
0.005919691
0.01013229
0.007697208
0.003739052
0.039853103

0.199255774
0.008444444
0.087733333
0.005666667
0.002888889
0

0.001
0.046968254
0.010055035
0.011729703
0017741214
0.012296297
0.000375
0.003188137
0.00051701
0.00351087
0.003445204
0.005363461
0.005914428
0.010089744
0.005653178
0.003750286
0.038084759

0.193613345
0.008777778
0.082266667
0.007666666
0.002111111

4]
0.000333333
0.043714286
0.011065205
0.011505978
0.017896694
0.012725148
0.000354167
0.005254866
0.000331219
0.003847377
0.003265761
0.004813651
0.005912703
0.009973415
0.004018749
0.003752246
0.038518944

0.183917878
Q
0.091666666
0.006

0.003

0
0.000666667
0.032396825
0.0104256
0.012205089
0.016790043
0.012110077
0.000375
0.004244671
0.000291414
0.00290938
0.003285724
0.004428593
0.005506739
0.009813642
0.003149463
0.003714397
0.036629605

0.176201882
0.012777778
0.093266666
0.007333333
0.002555555
o
0.002333333
0.033412698
0.009406748
0.011230168
0.016305015
0.012308456
0.0003125
0.002335496
0.000246349
0.001855485
0.003301479
0.003894714
0.005905324
0.009575765
0.002729138
0.003755187
0.030588762

0.172035928
0
0.089599999
0.006666667
0.002777778
a

0.001
0030111111
0.012344673
0.009661497
0016611531
0.013008136
0.0003125
0.001556997
0.000283407
0.002750397
0.003231021
0.003727413
0.00580327
0.009645685
0.002460416
0.003782841
0.031283459

Figure 3.5 Original RBSA 15-min Interval Load Shape Extracted for NWC Climate Zone (in June)

The type of season is opted for by designating representative month as shown in Figure 3.6. An Excel
Visual Basic for Applications (VBA) Macro called “Update Data” has been developed to convert the 15-
min interval RBSA load shape data into hourly data and aggregate the same type of load shapes as shown
in Column 3 of Figure 3.6.

The output of the Excel VBA Macro is an excel sheet in similar format to the ELCAP light model
data sheet. A snapshot of the generated data sheet is shown in Figure 3.7. This generated excel sheet
stores the hourly load shape data derived from LSL’s RBSA data for the entire year.
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FirstColumn: RBSA Type
HVAC

HVAC

HVAC

HVAC

HVAC

HVAC

HVAC
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Water Heater
Water Heater

Portable Heating and Cooling
Portable Heating and Cocling

Refrigeration
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Cooking

Cooking

Laundry & Dishwashing
Laundry & Dishwashing
Laundry & Dishwashing
Entertainment
Entertainment
Entertainment
Entertainment
Computer

Lighting and Other
Lighting and Other
Lighting and Other

1 = Nermal summer
2 =Hot summer

3 =Cool summer

4 =Shoulder

5 = Winter

Figure 3.6 End-use Mapping Information and Representative Month for Each Type of Season
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<

dcal

Central Heating
Air Source HP
Packaged Terminal HP
Ductless Space HP
Central AC
Packaged Terminal AC
Ground Source HP

Air Handler
Electric Resistance WH
Heat Pump WH

Room Heater(s)

Window AC
Refrigerator
Freezer

Oven

Microwave

Dryer

Washer
Dishwasher

Gaming Console

TV & Accessories
Cable Box & DVR
Home Audio

Computer & Accessories

Interior Lighting
Exterior Lighting

Other

Month=6
Month=7
Month=9
Month=10
Month=12

Heating
0.043080151
0.045533062
0.046929784

0.05860884
0.080977963
0.083916807
0.078013307

0.0603333
0.045213018
0.0438B6233
0.046702439
o

Cocling

0.076655625
0.071302511
0.065591196
0.135404204
0054155644
0.074187915
0.040753836
0.038153844
0.043355252
0.037805405
0.042387305

Vent

0339088888
0.380755554
0.420844442
0456777775
0.5646
0.622287592
0.653222221
1776466672
2.06666667
2.31644446
152631112

0.029755952
0.036203315
0.035322082
0.035072033
0.022656685
0.024510234
0.033448093
0.041285509
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0042168787
0.043080151
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0.046929784

0.05B60884

e s 3
0.074122173
0.095348628
0.064943183
0.206111661
0.204211861
0.281872198
0.341321553
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Type

WaterHeat
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0.083507936

0.12144766
0.335269841
0351523809
0438336507
0.502365078
0.427492063
0.453031745

035711111
0.340365078
0.332256012
0.301802167
0338139904
0.382957075
0.365147802
0.408619047

039576026
0.423571426
0.359206348
0.291539682
0.180706053
0.12420634%9
0.090825397
0.099286032

ThirdColumn: Mapped to ELCAP End-Uses
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Figure 3.7 Generated Data Sheet Using RBSA Load Shape Database
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Figure 3.8 demonstrates the fractional change of different components in the load composition model
for a residential feeder in NWC climate zone after updating the residential end-use load shapes for the
four northwest climate zones (NWC, NWV, NWI and RMN). It can be seen from Figure 3.8 that for a
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residential feeder located in NWC zone the Motor-D component, which is the single-phase air-conditioner
load, significantly increases after the data update.

ELCAP PSLF LID Motor A  MotorB  MotorC M [ DG
5 0.07 10 0.04 ( 0.00 |

0 12 0.05 0.0 0.00

4] 11 0.04 C 0.00

1] 11 0.12 0.15 0.00

LD Motor A Motor B Motor C DG

RBSA | NWC 1 0.07 0,07 l 0.04 0.00

NWC CUN U223 TIT o5 20 U

NWC_MIX 0,16 0.09 0.04 % 0.18 0.00
NWC_RAG 0.15 0.09 0.12 0.23 0.13 0.00

Figure 3.8 Change of Component Fraction in the Load Composition Model for a Residential Feeder in
NWC Climate Zone, Hot Summer Day, Hour = 16 (4:00pm)

Figure 3.9 presents the comparison of load shapes of appliance and electronics end uses under old
ELCAP and new RBSA dataset. It is observed that the efficiencies of these two plug-in end uses are
improved by seeing reduced power consumption especially at the peak point over a day.
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Figure 3.9 Load Shapes of Appliance and Electronics End Uses for the Pacific Northwest 4 Climate
Zones on a Hot Summer Day (Study Type = 2)

3.5 Popularization of the RBSA Load Shapes

The up-to-date NEEA RBSA survey only covers 4 climate zones. The end-use load shapes for the
other 8 climate zones in WECC can be derived by populating the RBSA load shape data into the rest of
WECC region that does not have up-to-date load shape data sources available. Multiple strategies are
proposed and implemented in this chapter and following chapters to leverage the up-to-date dataset of
limited climate zones and the zonal correlations discovered from the old dataset to generate new dataset
for the remaining climate zones in WECC system.

This chapter only presents a preliminary approach based on weighted difference to calculate load
shapes of the other 8 WECC climate zones. It is presumed that the end-use load shapes change from the
ELCAP dataset to the new RBSA dataset in a uniform pattern. This uniform change can be expressed by
summing up the weighted differences between the RBSA and ELCAP load shape data for the four
northwest climate zones. And this uniform change of load shapes will then be applied to the other 8
climate zones. Therefore, the updated end-use load shapes of the other 8 climate zones can be computed
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by (3.1) and (3.2). Equation (3.1) computes the uniform change of the load shape of each end use in each
study type (Normal Summer, Hot Summer, etc.). Since the RBSA data of the four northwest climate
zones are available, the difference between the RBSA and ELCAP load shapes can be calculated for each
climate zone. After that, the difference is weighed based on the number of surveyed cities in that climate
zone to ensure data authenticity (more surveyed cities in a climate zone indicate more accurate data). The
uniform change of load shape of each end use is computed by adding up the weighted differences as
shown by (3.1). Equation (3.2) considers adding the load shape change to the ELCAP load shape data of
the other 8 climate zones to achieve the new load shapes for these climate zones.

AEndUse(!)sr(jy = Sk [WF(4CLZ(K)) * (EndUse(D) ppsasr(, acLzio) —

Enduse(i)ELCAP(ST(j), 4CLZ(k)))] (3.1)
Enduse(i)RBSA(ST(j), 8CLZ(k)) = EndUse(i)ELCAP(ST(j), 8CLZ(k)) + AEndUse(l)ST(]) (32)
In which,

4CLZ(K) = “NWC™, “NWV”’, “NWI”’, “RMN”’

8CLZ(k) = “*NCC”, “NCV”’, “NCI™, “SCC”, “*SCV”’, “SCI”’, “HID”", “DSW”

ST(j) = “Normal Summer”, “Hot Summer”’, “Cool Summer”’, “Shoulder™, “Winter”

WF = Weighted Factor, proportional to the number of surveyed cities in each of the 4 climate zones

After extending the RBSA data to the other 8 climate zones, the cooling load shapes for all 12 climate
zones are plotted in Figure 3.10.
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Figure 3.10 Cooling Load Shapes for All 12 Climate Zones under New RBSA Dataset

3.6 Summary

This section summarizes a preliminary approach based on weighted difference to update residential
load shape data using the RBSA results. A flow chart shown in Figure 3.11 is drawn to better illustrate the
process.
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of End Uses Study Season Type

Generate ELCAP-format RBSA Load
Shapes for 4 Northwest Climate
Zones (NWC, NWV, NWI and RMN)

Calculate Differences between
RBSA and ELCAP Load Shapes for
the 4 Northwest Climate Zones

Add the Differences to the ELCAP Load
Shapes of the Other 8 Climate Zones

Obtain End-Use Load Shapes of All 12
Climate Zones Based on New RBSA Dataset

Figure 3.11 Flow Chart of the Process to Update Residential Load Shapes
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4.0 Estimation of Residential Load Composition Using Cross-
Correlation Method

The chapter discusses our efforts [21] to update the residential dataset of the load composition model
(LCM) using the original RBSA load shape dataset collected and generated by NEEA rather than the
processed RBSA data implemented in EPRI’s LSL 4.0. The LCM residential dataset contains load
profiles for 12 climate zones and 5 season conditions. The original LCM residential dataset was derived
based on ELCAP load shape data, which is outdated. This chapter innovatively proposes a cross-
correlation-based methodology [22] [23] to use the latest NEEA RBSA data to estimate load shapes for
the other eight WECC climate zones by analyzing the correlations of power consumption patterns
between the four Northwest climate zones and the other eight climate zones. Based on the NEEA
database, this component-wise cross-correlation-based approach has been developed in this chapter to
reconstruct the residential load profiles of the four Pacific Northwest climate zones and to populate the
new load shape data into the other eight WECC climate zones.

4.1 NEEA RBSA Data

NEEA sponsored the RBSA program to develop an inventory and profile of existing residential
building stock in the Northwest based on field data from a representative, random sample of existing
homes. The RBSA study was conducted across four states (WA, OR, ID, MT) for three categories of
residences: single-family homes, manufactured homes, and multifamily homes. A total of 66 cities
participate in the RBSA study [20]. Each city contains at least one representative surveyed house
(measurement site). There are a total of 103 houses distributed in the 66 cities [20]. Based on the
geographical locations, the 66 cities are divided into four climate zones as shown in Table 3.1 and
depicted by Figure 3.3.

NEEA RBSA metering data is comprised of detailed end-use loads measured at 15-minute intervals.
In this chapter, we process and aggregate the metering data ranging from April 2011 through March 2012
to derive seasonal, hourly energy usage data characterized to LCM’s 11 end-use categories [3].

4.2 Model Development

This section discusses the details about the initial data processing, including re-categorizing the 160
RBSA end-use types [20] into 11 LCM end-use types, defining season conditions, and aggregating the
raw RBSA load shape data to form the hourly, seasonal and climate-zone-based data in the same format
as the LCM residential data. This section also presents the mathematic model of the cross-correlation-
based approach to apply the RBSA dataset to estimating load shape data for the eight WECC target
climate zones. The entire process for updating the LCM residential load shape data is shown in Figure
4.1.
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Figure 4.1 Flowchart of the Process for Updating LCM Residential Load Shape Data

4.2.1 End-Use Re-Categorization and Season Conditions

The RBSA study meters electric energy consumption for 160 end uses in a representative residential
home. In this chapter, a mapping is developed to re-categorize the types of these end uses into the 11
LCM end-use categories to facilitate load aggregation. The end-use re-categorization is shown in Table
4.1. As previously mentioned, five season conditions are defined in LCM, with normal summer = 1, hot
summer = 2, cool summer = 3, shoulder (fall or spring) = 4 and winter = 5. It is noted that the mapping in
Table 4.1 is defined for all five season conditions except Group# 4. The RBSA heat pump end uses in
Group# 4 function as heating load in the winter season and as cooling load during the other four seasons.

The raw RBSA data used in this section contain end-use load shapes measured at 15-minute interval
for each day within the period April 2011 - March 2012. To aggregate the RBSA load shapes over the
five season conditions defined by LCM, a relation between months and season conditions is developed in
Table 4.2.

To aggregate the RBSA load shape data to form a dataset in the same format as the LCM data, the
first step is to convert the RBSA 15-minute load shape data into hourly data by adding four 15-minute
energy consumption readings within each specific hour. The second step is to aggregate the RBSA hourly
data over the LCM end-use categories based on the defined mapping in Table 4.1. The hourly load shapes
of RBSA end uses belonging to the same LCM end-use category are added. The last step is to aggregate
the RBSA end-use hourly data aligned with LCM categories over the season conditions based on Table
4.2. For the same season condition, the RBSA hourly data of all the dates falling into this season are
added up and averaged over the total number of dates. Ultimately, the new RBSA residential load shape
dataset in the same format as LCM dataset is generated for the four Northwest climate zones (reference
climate zones) and used as the foundational data source to evaluate the residential load shapes for the
entire WECC climate zones.
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Table 4.1 Mapping RBSA End Uses into LCM Categories

. LCM End-Use
Group# RBSA End-Use Types in Each Group Categories
Light fixtures in basement, bedroom, bathroom, closet, den,
1 entryway, dining room, family room, garage, hallway, kitchen, | Interior lighting
laundry room, living room, office room and other room
2 Exterior light fixture Exterior lighting
3 Central, window air conditioners Cooling
ductless heat pump, ground source _heat pump units, air source Cooling (Heating in
4 heat pump systems, packaged terminal air conditioner, :
. winter season)
packaged terminal heat pump
Hydronic loop electric pump, electric resistance tank water
5 heater, heat pump water heater, Electric furnace resistance Water heater
heating element
Cable box, digital video recorder, computer, computer
accessory (printer, scanner etc.), computer tower, digital video .
6 : . : Electronics
disc player, gaming console, computer monitor, stereo, stereo
accessory, TV, TV accessory
7 Clothes washer, clothes drier, dish washer, standalone freezer, | Appliances
8 Zonal electric resistance heater Heating
9 Microwave oven, Electric cooking stove (oven and range) Cooking
10 Refrigerator Refrigerator
11 Central forced air system air handler Ventilation
12 Septic pump, ho_t tub, electrical subpanel, sump pump, Miscellaneous
unspecified device, well pump
Table 4.2 Relation Between Months and Season Conditions
Season Conditions Months
Normal Summer (Day 1) June
Hot Summer (Day 2) July, August
Cool Summer (Day 3) May, September
Shoulder (fall or spring) (Day 4) March, April, October, November
Winter (Day 5) December, January, February
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4.2.2 Cross-Correlation-Based Methodology

To reconstruct the LCM load profiles, a cross-dependence analysis-based approach [22] [23] is
developed. The differences between the aggregated RBSA and original LCM load profiles in the
reference climate zones are calculated as the basis for LCM adjustment. Specific weighting factors are
assigned to the load profile differences for each reference climate zone. For each end-use load
component, the weights are assumed to be proportional to the correlation coefficient between a reference
climate zone and a specific climate zone, if correlation coefficients exist. When correlation coefficients do
not exist, equal weights of 0.25 are used to compute the adjusted load profile. Such adjusted LCM data
maintain the original cross-dependence structure among the load profiles across the WECC climate zones,
and combine both the old and new measurement-based datasets to generate a more genuine dataset
reflecting realistic load profiles.

Total load of aggregated RBSA data is the summation of power consumption of the 11 end uses,
expressed by (4.1). The difference between new RBSA and old LCM data for the four reference climate
zones can be computed by (4.2).

11

RBSA_TotalLoad, ;, = > RBSA_EndUse, (4.1)
1=1

Difference, ;,, = RBSA ;,, —LCM, , (4.2)

where, i=1,2,...,12 represents the 12 climate zones (NWC, NWV, NWI, RMN, NCC, NCV, NCI, SCC,
SCV, SCI, DSW, HID), k=1,2,3,4 represents the four reference climate zones (NWC, NWV, NWI,
RMN), j=1,2,3,4,5 represents five different season conditions (normal summer, hot summer, cool
summer, shoulder, winter), and h=1,2,...,24 represents 24 hours in a day, 1=1,2,...,12 represents 11 end-
use categories (appliance, cooking, cooling, electronics, extlight, heating, intlight, misc, refrig, vent and
waterheat) and the total load. The correlation coefficients are computed between a specific climate zone
(i) and a specific reference climate zone (k) for each end use for any climate condition. The formulas are
expressed as (4.3) — (4.6).

) i cov| (LCM, ;, ), (LCM, ;)]
(LCMHVI)’(LCMMI) \/GZ(LCMi,j,I)*UZ(LCMk,j,I)

(4.3)

1 24 1 24 1 24
cov| (LCM, ;). (LCM, ;) |= gz[(l_cmi,j,,yh—ﬂz LCMiyjy,yh]*(LCMiyjy,yh—zz LCMkij,‘hﬂ (4.4)
h=1 h=1

h=1
) 1 24 1 24 2
c (LCMi'j',)zz—shZ;(LCMm'h _ﬂé LCMiYL,,hj (4.5)
) 1 24 1 24 2
o (LCMkY“)z—Z LCM,j1n — = D . LCM, |, (4.6)
234 24 &

When the correlation coefficients exist, the weights are proportional to the correlation coefficients
and scaled to unit length (i.e., the total weights add up to 1). The correlation coefficient-based scaled
weight W; , is computed to be proportional to the correlation coefficient between a specific climate zone i
and each of the four reference climate zones, and is expressed by (4.7).
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The LCM data is adjusted by multiplying the scaled weights to the corresponding differences, and the
results are added to the original LCM values.

4
Adjusted _LCM, ;, =>" Difference, ;, * W, +LCM, (4.8)
k=1L

Combining (4.7) and (4.8), the updated LCM data for all 12 climate zones can be calculated.

4.3 Results

The innovation of this part of work is to derive load profiles for the eight WECC target climate zones,
which typically did not have up-to-date residential load shape data measured by utility. This LCM data
update combines both the original LCM and the latest NEEA RBSA database to estimate load profiles for
the eight WECC target climate zones using cross-correlation analysis. This section presents the graphic
results of the updated LCM residential load shapes for selected end uses and climate zones. In addition,
the final changes of load model composition are presented.

Figure 4.2 presents the load shapes of the cooling end use for the four reference climate zones under
hot summer condition, including the original LCM data and the new NEEA RBSA data. Figure 4.3 shows
the comparison of cooling load profiles between the original and updated LCM datasets for the eight
target climate zones, considering both the normal summer and hot summer conditions. It can be seen from
Figure 4.3 that the peak values of the cooling loads become larger in the updated LCM dataset than in the
original LCM dataset, indicating expanded capacity of air-conditioner loads in the residential feeder.
Figure 4.4 and Figure 4.5 demonstrate the vent load shapes and total load profiles for the eight target
climate zones under normal summer condition.
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Figure 4.2 Hot Summer, Cooling Load Shapes for Four Reference Climate Zones

Table 4.3 presents the changes of load compositions for a residential composite load model in NWC
climate zone with the original LCM residential load shape data replaced by the updated LCM data. The
load composition data is extracted for hot summer season during the peak hour of cooling end use, which
is roughly 19:00 - 20:00 in the evening. It can be seen from Table 4.3 that the Motor D fraction in the
composite load model, representing the amount of air-conditioner load, increases from 21.3% in the
original LCM to 33% in the updated LCM. The power electronics load drops slightly because of
improved efficiency.
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Figure 4.5 Normal Summer, Total Load for Eight Target Climate Zones

Table 4.3 Load Compositions in Per Unit for NWC Climate Zone Residential Composite Load Model

Original LCM
Motor A Motor B Motor C Motor D Power Electronic
0.036 0.081 0.038 0.213 0.178
DG Static P Resistive | Static P Current | Static P Power Total
0.00 0.392 0.062 0.00 1.0
Adjusted LCM
Motor A Motor B Motor C Motor D Power Electronic
0.034 0.053 0.074 0.33 0.159
DG Static P Resistive | Static P Current | Static P Power Total
0.00 0.29 0.06 0.00 1.0
4.4 Summary

In this chapter, we discussed the philosophy to aggregate load profiles of the up-to-date NEEA RBSA
data to align with the existing LCM load shape dataset. A cross dependence structure analysis-based
approach was applied to make adjustments to the original LCM load shape data. This cross-correlation

approach studies the dependencies of power consumption patterns among the 12 WECC climate zones

using the original LCM dataset, and combines both the original LCM and new RBSA datasets to estimate

the residential load shape data for the eight WECC target climate zones, which typically don’t have new
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RBSA data available in the industry. In Chapter 5, weather conditions of those climate zones can be
considered as additional factors for LCM adjustment.
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5.0 Estimation of Residential and Commercial Load
Composition Using Machine Learning Techniques

Chapter 4 aims at load profile approximation/correction without taking into account factors such as
weather attributes which may well determine the load profiles or their cross-correlations. In this chapter,
machine learning feature selection was conducted to understand the impact of various weather attributes
on both residential and commercial electricity demand components in the western United States [24] [25],
where residential/commercial load in various climate zones are available, as explained in the previous
chapters. The load data has been processed to yield hourly load profiles with the same temporal resolution
and duration as weather condition data from the National Oceanic and Atmospheric Administration
(NOAA) at representative weather stations [26]. The data were divided into five seasonal conditions. For
each condition and each load component, the influences of weather factors were evaluated and quantified
using cross-correlation, principal component analysis, and mutual information evaluation. Then predictive
models were developed based on the ranked/screened factors using the regression tree (RT) and random
forest (RF) approaches. After multi-fold cross-validation, the optimal complexity/depth of the RT and RF
models are determined and used for approximating load profiles in the climate zones with available
weather data. Data from the western areas are used for training the models (i.e., WECC RT/RF models).
The validated better-performing WECC RF models, together with the available weather data, are then
used for approximating load profiles in the current focus areas of Eastern Interconnection (EI) and
ERCOT.

5.1 Introduction

The electric demands are affected by not only human activities but also different weather condition
[27] [28] [29]. In different seasonal conditions, the load demands of heating and cooling are significantly
different [30]. Normally, heating load variations in different seasons are caused by temperature variations
over a year, but daily heating load variations are caused by human activities and differences in
temperature occurring over the diurnal cycle during cold weather [31]. Humidity is another common
weather attribute that can affect electricity demands, as water vapor in the air may condense to its liquid
phase and release heat when air conditioning reduces the indoor temperature; for similar reasons, more
heating is needed for wetter days in the winter. In general, lower electricity demand comes with lower
humidity [32].

The purpose of this study is to leverage machine learning to investigate the connection between load
profile and weather conditions in the western United States (WECC) and then approximating load profiles
in the EI and ERCOT systems. Although the load profile for the rest of the United States is either
unavailable or unpublished, nationwide weather information is available online from NOAA. The
weather-load connection studied in our research could be used to estimate the load profile data for the
other regions in the nation where the weather information is available. The estimated load profile data
would eventually be used by power system planners to make decisions.

Feature selection—selecting a subset of relevant features (variables, predictors) for use in model
construction—is a common process in machine learning [33]. In this regard, feature selection is very
important to high-dimensional models because it reduces overfitting and simplifies the models. In this
study, three methods of feature selection are adopted: 1) cross-correlation analysis, 2) principal
component analysis (PCA), and 3) mutual information evaluation [33] [34].

Many studies have looked into the impact of weather attributes, particularly temperature, on
electricity load [35] [36] [37], and advanced machine learning approaches (e.g., artificial neural network,
support vector machine, regression models, random forest models and Bayesian methods) have been used
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to incorporate weather information in load forecasting [38] [39] [40] [41] [42] [43]. RT models combine
regression models and decision trees and can be applied to linear or nonlinear regression models when the
data has many features with complex nonlinear interactions [44]. Based on the work by Fan et al., RTs are
one of the best performing approaches used in machine-learning-based load time series forecasting
models [45].

Random forests (RFs) are an ensemble learning method by constructing a multitude of decision trees
during the training phase and producing predictions based on the mode of the classes (for classification)
or averaging (for regression) of the individual trees. RFs reduce decision trees' probability of overfitting
the training set [46]. Radom forests methods have been introduced in the field of electricity load
forecasting [47] [48].

We developed, validated, and tested both RT-based and RF-based predictive models that can be used
to predict critical residential heating and cooling loads using multiple weather attributes.

5.2 Data

Both the processed WECC residential and commercial data contain measurement points for 24 hours,
12 climate zones, and five seasons, with variables including cooling, lighting, heating, ventilation, and so
on. Other variables include climate zone, study day (season), hour of the day, and climate zone index,
based on which weather data were collected from the National Oceanic and Atmospheric Administration
website, with the same time spans, at one representative weather station for each climate zone. The
weather attributes include six variables: visibility (%), temperature (deg C), dew point temperature (deg
C), humidity (%), wind speed (mph), and precipitation (inch), for each climate zone, season, and hour of
the day.

5.3 Methodology

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables. PCA is one of the
methods developed to deal with the multi-collinearity problem; it analyzes covariance and correlation
structuring; and can be used to reduce dimensionality by eliminating trivial principal components.

Mutual information is another feature selection method used to find a suitable subset of features from
a data set that has the largest joint dependency on target variables [34]. Mutual information (I(x,y))
between two continuous random variables x, y with joint probability density function f(x,y) is given by the
following relationship [34]:

(X, y):ﬂ f(x, y)log%d (x)d(y) (4.1)

where f(x,y) is the joint probability density function of x and y, and f(x) and f(y) are the marginal
probability density functions of x and y, respectively. And for two variables, it is possible to represent the
different entropic quantities with an analogy of set theory.

The above approaches help understand the impacts of the various factors on the differences. To obtain
a predictive model of the response variable(s), multiple machine learning approaches are available. Here,
considering the nature of the data, we adopted the RT approach [44]. An RT algorithm targets the best
relationship between the factors (splitting variables) and the response variable, and is formed by a

41



collection of rules to achieve the best split to differentiate the data. The tree-based model can be written
as follows:

F(x)=X" c,l(xeR,). 4.2)

In the trees, the regions Rn are usually defined by means of binary split, and I(.) is an indicator
function returning 1 if its argument is true and O if otherwise, and M is the number of partition regions.
For a data set, we would like to pick the regions Ry and the constants ¢, to minimize the squared error.

Objective:min(Z(f (%)-V )z) 4.3)

The size of trees is reduced by removing sections that provide little power (e.g., in terms of mean
squared errors) to distinguish instances (called pruning) to improve predictive accuracy by reducing
overfitting.

An alternative approach using RF can be integrated to complement the RT models towards more
robust analyses and findings. The RF models can randomly classify a group of individual decision trees
and the final decision can be obtained by averaging the outputs of the selected individual trees, with the
following algorithm [49]: (a) randomly select a bootstrap sample of the size N from the training data; (b)
build a RF tree Ty, (b=1 to B) to the bootstrapped data and get the minimum node size nmin; and (c) repeat
the following steps: (c1) randomly select m variables out of the original p variables; (c2) choose the best
variable/split-point among the m variables; and (c3) split the node into two children nodes. The outputs
are the ensemble of trees, and the prediction at a new point x of RF regression can be written as:

)= 20T () (4.4)

5.4 Results

5.4.1 Development and Validation of Machine-Learning (ML) Models for
Residential Load

First, ML models were developed for the NEEA RBSA data, which has 12 load components, and the
corresponding NOAA weather data has six attributes. Figure 5.1 shows the variables with at least one
absolute correlation coefficient between weather attributes and load components over 0.5. The selected
variables are temperature, dew point temperature, visibility, humidity, heating, refrigeration, and
miscellaneous. Figure 5.1 shows statistical summaries of the load components and weather attributes for
the overall data across the four climate zones, including distributions of the selected variables, their
Pearson cross-correlation coefficients, and scatter plots of any two different variables. The histogram of
temperature is slightly bimodal but its distribution is symmetric. The visibility, dew point temperature,
and humidity are right-skewed while heating, refrigeration, and miscellaneous are left-skewed. Heating
has a negative linear relationship with temperature, visibility, and dew point temperature, and the Pearson
correlation values are -0.64, -0.61, and -0.59, respectively.

The feature scatter plots show that not all the relationships between the variables are linear. To
explore the nonlinearity more comprehensively, mutual information is used to provide a supplementary
perspective of the relationships.
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The x-axes in Figure 5.1 show the ranges of the variables. For example, temperature is from -4 °C to
32 °C, and the dew point temperature is from -10 °C to 12 °C.
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Figure 5.1 Marginal Distribution, Scatter Plots, and Cross-Correlation Coefficients between the NEEA
RBSA Load Components and Weather Condition Variables. Pairs with Absolute Correlation Values <0.5
are Not Shown.

Dew point temperature relates to temperature and humidity. The climate zones have different weather
conditions. Figure 5.2 illustrates the correspondences between load components (e.g., heating) and
weather conditions during different seasonal conditions (study days).

The panels for normal summer (Day 1), hot summer (Day 2), and cool summer (Day 3) in Figure 5.2
show that during the summer, the average use of heating is very low, especially for Day 2, when the
heating is less than 0.05 kW. The dew point temperatures of NWC and NWI are similar in their shapes
and magnitudes during different days. Except for Day 3, dew point temperatures have similar patterns
between NWV and RMN. During the normal and hot summer, RMN has a higher dew point temperature,
but during the shoulder and winter, NWV has higher dew point temperatures. During the cool summer,
the dew point temperatures of RMN and NWYV are very close to each other.

Electricity usage for heating during Day 5 is notable: peak usage for NWC is at 9:00 a.m., and the
value is near 10 kW. The peak usage for NWV is near 8 kW at 7:00 a.m., and the peak usage for NWI is
near 6.5 kW at 6:00 a.m. For RMN, the peak usage occurs at 9:00 a.m., and the value is near 4 kW. Dew
point temperature patterns for NWC and NWV are similar, but their heat usages are different. One of the
reasons is the different average temperatures of those two climate zones, although their heating usage
variations are similar. Both of them have dual peaks. We also found the heating usage patterns of NWI
and RMN to be similar but with different magnitudes.
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Figure 5.2 Time Series of Heating and Dew Point Temperature on Different Seasonal Conditions (Study
Days, Day 1 = normal summer, Day 2 = hot summer, Day 3 = cool summer, Day 4 = shoulder (fall or
spring), Day 5 = winter).

The absolute value of a correlation coefficient shows the magnitude of the relationship between two
variables. The greater absolute value of a correlation coefficient, the stronger the linear relationship.
Figure 5.3 is the heat map of absolute Pearson correlation coefficients among load components and
weather attributes. It is clear that the variables of load components and weather attributes can be grouped
based on absolute correlation coefficients. Temperature, visibility, dew point temperature, and wind speed
among the weather attributes, and heating, water heat, total load, and miscellaneous of the load
components are grouped together. This indicates that heating, water heat, and total load can be explained
linearly by some of those weather attributes. The rest of the load components, such as cooling,
electronics, appliances, cooking, internal light, refrigerator, external light, and ventilation are grouped
with humidity and precipitation.
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Figure 5.3 Heat Map of Absolute Pearson Correlation Coefficients among Load Components and Weather
Attributes.

Figure 5.4 shows the PCA bi-plots, where the first two principal components are used to visualize the
similarities among load components and weather conditions. The first component accounted for ~27.2%
and the second component accounted for about 17.4% of the total variance of load components and
weather attributes. The bi-plots show that the total load, water heat, and heating negatively correlate to
temperature and dew point temperature. Panel 1 of Figure 5.4 shows the points with different colors for
each of the four climate zones. Note that points that are close to each other correspond to observations
with similar scores/projections onto the principal components. Figure 5.4 shows that NWI (green points)
is behaving differently from NWC (orange points) and NWV (blue points). NWC and NWV are behaving
similarly because of their geographic vicinity. RMN observations are mixed with all the other three
climate zones. Panel 2 shows the measurement points with different colors on different days, and they
seem to be distinct without much overlap. Observations for Day 2 (hot summer) and Day 5 (winter) are
far apart. The arrows in Figure 5.4 indicate the projections of the variables onto the first two principal
components PC1 and PC2. Temperature mostly contributes to PC1 while electronics and wind speed
contribute mainly to PC2. Humidity and external light align well in the similar direction indicating certain
similarity, but humidity contributes more than external light to both PC1 and PC2.
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The mutual information of the load components and weather attributes is summarized in Table 5.1.
Unlike correlation coefficients that only provide linear relationship, mutual information can describe the
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joint distributions among load components and weather attributes (e.g., it is possible for two variables to
have zero linear relationship but a strong curvilinear relationship).

Table 5.1 Mutual Information among Load Components and Weather Attributes

DewPoint Wind

Visibility Temp | Temp Humidity Speed Precip Day
Appliances 0 0.306 0.226 0.352 0.162 0.014 0.057
Cooking 0 0.128 0.193 0.204 0.231 0.093 0.014
Cooling 0.284 0.538 0.722 0.238 0.17 0.101 0.502
Electronics 0.149 0.578 0.958 0.506 0.42 0.109 0.159
ExtLight 0.151 0.316 0.645 0.363 0.4 0.159 0.046
Heating 0.484 0.798 1.343 0.27 0.363 0.37 0.969
IntLight 0.064 0.321 0.345 0.287 0.218 0.142 0.141
Misc 0.112 0.519 0.618 0.282 0.359 0.15 0
Refrig 0.498 0.721 1.009 0.686 0.404 0.36 0.27
Vent 0.152 0.321 0.536 0.214 0.317 0.117 0.146
WaterHeat 0.22 0.353 0.492 0.181 0.179 0.183 0.242
Total 0.208 0.482 0.634 0.289 0.284 0.102 0.389

Table 5.1 shows that cooling is highly dependent on temperature and dew point temperature. Heating
and total load highly depend on temperature, dew point temperature, and seasonal day, while refrigeration
highly depends on temperature, dew point temperature and humidity. Water heat strongly relates to
temperature and dew point temperature. The mutual information among appliances, cooking and visibility
is zero. When using weather attributes to explain appliance and cooking, the visibility attribute can be
ignored. On the other hand, when the mutual information between heating and all the weather attributes is
greater than 0.2, none of the weather attributes should be ignored when predicting heating usage.

In a further study, we used an RT model to quantitatively relate the 12 load components to the
weather attributes and temporal factors such as seasons and hours of a day. We conducted multi-fold
validation in the load component and weather attributed data set is randomly split into a training subset
(75%) and a testing subset (25%). To find the optimal complexity of an RT, validations for trees with
various depths are done and compared. The highest test score of each load component and its maximum
depth of RT are shown in Table 5.2.

Table 5.2 The Highest Accuracy Scores of RT Models and the Corresponding RT Model Complexity
(i.e., Depths) for Each Load Component.

Optimal Depth Optimal Test Score

Appliances 10 0.33
Cooking 7 0.215
Cooling 7 0.584
Electronics 8 0.752
ExtLight 10 0.578
Heating 4 0.851
IntLight 3 0.361
Misc 5 0.657
Refrig 6 0.826
Vent 2 0.242
WaterHeat 4 0.722
Total 2 0.493
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The prediction accuracy of the RT models for heating can be as high as 85% with an optimal depth of
four layers (see Figure 5.6). The optimal test scores for RTs for appliance and external lighting are 0.33
and 0.578, respectively, when the depth is around 10 (see Table 5.2). However, note that the larger the

depth (higher complexity), the more likely the model is overfitting and not transferable to other regions of
study.

Based on Table 5.2, the RT model for heating with an optimal depth of four is taken as an example, as
shown in Figure 5.5. The tree represents the interaction between heating load and weather attributes and

temporal factors. The season factor (day) first splits heating into two parts (winter vs. non-winter). Dew
point temperature also plays an important role.

Season, dew point temperature, and temperature altogether can account for more than 50% of the
heating load.
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Figure 5.5 The RT Model for Heating
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Figure 5.6 shows the testing accuracy for the heating components as a function of model depth using
the RF and RT approaches. When the depth is smaller than or around four, the accuracy values of the RF
and RT models are comparable. With the increase of the RF and RT model depths, the RF models yield
higher accuracy and consistency in the predictions. A very complex RT model is not necessarily better
than a simple RT model due to significant overfitting of the training data. RF models, on the other hand,
can take care of the overfitting issues very well, and the testing accuracy can go up to 85% or above in
our study. Still it is more straightforward to visualize the impacts of important variables based on the RT
model fitting, and therefore it can be used as a guidance on the model complexity and factor importance.

5.4.2 ML Models for Residential and Commercial Cooling

In this section, we focus on the development and validation of ML models for the cooling
components in both the residential and commercial datasets of the WECC system. The models will be
used for approximating load profiles in the target zones (e.g., eastern interconnection and ERCOT).

In order to obtain reliable relationships among load components and weather attributes as well as
seasonal conditions, both RT and RF methods were developed with multi-fold validation, where the load
component and weather attribute dataset was randomly split into training (75%) and testing subsets
(25%). The analyses were done for all load components, and the results on the cooling component in the
summer time (July and August) is the focus of this section.

Table 5.3 shows the feature importance based on the RT and RF models for commercial and
residential cooling. For commercial cooling, temperature is the top factor as expected. Dew point
temperature also plays an important role according to the RT and RF models. The factor ranks are
consistent between RT and RF models for commercial cooling. For residential cooling, the relationships
are much more complicated, season (Day) is a critical factor based on the RT model, and dew point
temperature and humidity are also important. Humidity and visibility (related to humidity in the
Northwestern region) are also non-negligible in the RF model.
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Table 5.3 Feature Importance in RT and RF Models for Cooling

Commercial Residential

RT RF RT RF
Visibility 0.049 0.033 0.066 0.243
Temperature 0.658 0.745 0.011 0.037
Dew point Temperature 0.206 0.161 0.064 0.092
Humidity 0.014 0.022 0.056 0.405
Wind Speed 0.064 0.03 0.048 0.042
Precipitation 0.01 0.009 0.015 0.04
Day 0 0 0.739 0.141

Figure 5.7 and Figure 5.8 show the RT models for commercial and residential cooling, respectively.
The prediction accuracy (the goodness of fit on the testing data) of RT can be as high as 82% with an
optimal depth of three layers for commercial cooling, and temperature, dew temperature and visibility are
the major factors for fitting variability in commercial cooling. Fitting variability in the residential cooling
needs larger depths. The accuracy of the RT model for residential cooling is about 50% with a depth of
four and up to 60% with a depth of seven. Humidity, dew point temperature, day (seasonal condition),

visibility, precipitation, wind speed and temperature all contribute to this RT model.
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Figure 5.7 RT Model for Commercial Cooling
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Figure 5.8 RT Model for Residential Cooling

Figure 5.9 shows the testing accuracy for commercial and residential cooling as a function of RT and
RF model complexity (i.e., depths) for the four climate zones. The dotted lines represent the accuracy
values of the RF models and the solid lines represent those from the RT models. In general, the prediction
accuracy of commercial cooling (red) are higher than those for residential cooling (blue) with either RT or
RF models. A simpler RT or RF model is needed for the commercial data as the prediction accuracy can
go beyond 80% with a depth of three, and there is not much gain by adding layers in the models. More
complicated models are needed for residential cooling, a depth of four can help RT to achieve an accuracy
of up to 60%, and a depth of eight for RF yields an accuracy comparable to the commercial cooling
predictions.
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—#— RT-Commercial
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0.0 0.2 04 06 0.8 1.0

Test accuracy of RF & RT models

Figure 5.9 Testing Accuracy of RT and RF Models of Cooling.

The accuracies of the RF models are always higher than those of the RT models. For example, when
the model depth is three, the accuracy of the RT model is about 82% and the accuracy of the RF model is
over 86% for commercial cooling. For residential cooling, when the RT model depth is seven, the
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maximum accuracy is about 58%, while the RF model can achieve an accuracy to beyond 80% by adding
model layers. Much more layers did not help RT due to overfitting.

543 Summary

In this study, we applied two machine learning approaches to our unique commercial and residential
load datasets and the corresponding weather information. Reliable machine learning models were
developed and evaluated under different climate conditions in the Northwestern US.

In general, commercial data has rather straightforward relationships with weather attributes, and
therefore needs simpler models than for residential data. The temperature is highly important to the
commercial cooling while the residential cooling is affected by temperature and several other factors.

Both RT and RF models have good performance on commercial cooling predictions achieving
accuracy over 82% with a depth of three layers. Residential load models are more complex than the
commercial load models, and need more layers for acceptable accuracy. Based on the accuracy of the
fitted RT and RF models, the RF model is preferable as it can handle overfitting problems and yield lower
testing errors under all conditions in the study.

Overall, weather-based machine learning approaches can be reasonably used to predict commercial
and residential cooling and other load components to produce load profiling for power system planning
and operation purposes. In the next section, transfer learning methods will be evaluated to predict load
shapes using available weather attributes for the locations where load data are unavailable.

5.5 Load Shape Estimation for Eastern Interconnection (El) and
Electric Reliability Council of Texas (ERCOT)

5.5.1 Background

In Chapter 5.4, RF models were developed using weather attributes and commercial/residential load
data of the WECC system. The RF models have good performance on commercial cooling predictions by
achieving an accuracy over 82% with a depth of three layers. This is remarkable since it is well known
that the western zones cover a large geographic region with diverse weather and temperature conditions.
Since the major weather attributes in the western United States, such as the temperature and humidity, has
comparable ranges to the entire United States, we assume that developed models have transferability to
the eastern target zones. In this work, the weather data of the same time span was downloaded from the
NOAA website and Canada government website. The weather data is then used as inputs to the RF
models for approximating the commercial load for EI and ERCOT systems.

5.5.2 Target Zones: Eastern Interconnection and ERCOT

Eastern United States has two large interconnections - Eastern interconnection and ERCOT, which
can be divided into 11 climate zones as shown in Figure 5.10. For each climate zone, a representative city
was selected and shown in Table 5.4.
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Figure 5.10 Map Depicting Geographic Region for Each Climate Zone [50]

Table 5.4 Eastern Climate Zones with Represent Cities

Climate Zones Representative Cities
MRN Duluth, MN
MRS Wichita, KS
RFW Chicago, IL
SEN Nashville, TN
NPN Toronto, ONT
NPC Boston, MA
RFC Baltimore, MA
SEC New Orleans, LA
FRC Tampa, FL
TXG Houston, TX
TXI Dallas, TX

553 Weather Data of Eastern Climate Zones

For consistency, weather data of each eastern climate zone during the same time period (2002.1-
2003.12) as commercial load shape data was downloaded from the NOAA website and Canada
government website. Figure 5.11 and Figure 5.12 show the temperature time series on Day 2 (hot
summer). Comparing these two figures, the temperature range in the western region is wider than that of
the eastern region. Moreover, the temperature patterns of the eastern zones are simpler than those of the
western ones. Favorable conditions exist to make the developed ML models more likely to be
transferrable, which support our assumption that the WECC RF models and eastern weather information
can be used to estimate eastern load profiles.
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554 Results

Figure 5.13 presents the estimation of commercial cooling usage on hot summer (Day 2) by using the
developed RF model and eastern weather data. For most of those climate zones, the peak usage of cooling
match the peak temperature since temperature is the roughly the most influential factor. The climate zone
with higher temperature in general has higher cooling usage. It is noted that the estimated load seems to
be low in several zones (e.g., TXI, TXG and FRC) with concurrent high temperature and high humidity.
Such conditions are not often seen in the training climate zones in the western US. As a result, the model
transferability might be relatively low. In future development, a scaling factor might need to be
introduced, or an alternative solution is to include more data with such high-temperature and high-
humidity conditions in the model training.
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Figure 5.13 Cooling Estimation of Eastern United States for Day 2 (Hot Summer)
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6.0 Aggregate Motor Protection Modeling

6.1 Background

Four types of aggregate motor model are implemented in the WECC composite load model, referred
to as the motor type A, B, C and D. Brief description of the different types of motors are given below:

e Motor A: Three-phase induction motors that operate under constant torque. Examples of such
motors include commercial air-conditioners and refrigerators.

e Motor B: Three-phase induction motors with high inertia, operating under speed-dependent
torque. Examples include fan motors.

e Motor C: Three-phase induction motors with low inertia, operating under speed-dependent torque.
Examples include pump motors.

¢ Motor D: Single-phase induction motors represented by aggregate performance-based model.
Examples of single-phase motors include residential air-conditioners and heat pumps.

Motors are typically protected by different protection methods, such as relays, contactors, thermal
protection, etc. During a fault, as the voltage drops below a certain limit for longer than a certain duration,
then the protection mechanism gets triggered to trip the associated motor load. Figure 6.1 illustrates how
an aggregate motor load may respond during voltage event due to the various protection schemes
activated over the duration of the fault (the figure ignores the motor dynamics, but focuses only on the
effect of the protection). Understanding the behavior of motor loads under the action of different
protection schemes is of paramount importance. The goal of this task is to develop aggregate motor
protection models for commercial-sector composite load models.

undervoltage undervoltage

initiated relieV
(partial) recovery AP
with automatic
~ reconnection l"

loss of load

due to protectionx—‘

Figure 6.1 Typical Load Tripping Profile

voltage (V)

net load (P)
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6.2 Protection Methods

The protection equipment presented in different motors vary widely in their operating parameters (i.e.
tripping and reconnection behavior). Furthermore, the response parameters of a protection may not be
static, and can also depend on factors such as the loading on the motor (e.g. fully loaded motors will
likely trip earlier than lightly loaded motors), which may in turn depend on conditions such as the outside
air temperature, occupancy of a buildings, etc. Modeling the protection schemes in a generic sense,
therefore, is a challenging task.

Protection A / Electronic Relay
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Figure 6.2 Protection Parameters for Electronic Relays

100%

To illustrate the modeling of the protection schemes, we introduce Figure 6.2 which depicts the
parameters of electronic relays. The red area labeled as “100% Tripped Zone” is where it has been
identified that the motor protection would most likely be activated and the motor taken offline. The white
area labeled “Operating zone” is where it has been identified that the motors will continually operate
through the voltage variance with no protection activated. The orange area labeled “Tripping Zone”
indicates the area in which the protections on some fraction of the motors, such as the ones that are
heavily loaded, are likely to be activated. The number/fraction of heavily loaded motors vary at any given
time, and could be estimated at, say, 5-10% during unoccupied hours or shoulder months, and 15-20%
during occupied hours or peak summer time. The figure shows that if the voltage falls below 80% the
protection trips almost 100% of the motors that have electronic relays, while the heavily loaded motors
(estimated at 20%) can start tripping when the voltage drops below 90%.

For this work, we categorize the different motor protection schemes found into five different types,
each of which is characterized by a (range of) voltage depth and duration for tripping, and a (range of)
voltage depth and duration for reconnection (upon recovery). The different categories of protection are as
follows:

(1) Protection 1 (or, Electronic Relays): These devices monitor incoming voltage to the motor.
When a critical fault condition (phase loss or phase reversal) is present, the relay will immediately
de-energize the contactor thus dropping the motor voltage. These devices have user defined trip
parameters but the device default settings apply to most applications and most devices are left to
the recommended manufacture trip settings. This protection trips the motor operating in under-
voltage conditions at the terminal. This protection is usually accompanied with reconnection
logics.

(2) Protection 2 (or, Current Overload Relays): When excessive current flows through the motor
circuit, the relay opens due to increased relay temperature or sensed overload current, depending
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on the relay type. This protection trips the motor if the motor terminal current exceeds a threshold
and lasts for a delayed period of time.

(3) Protection 3 (or, Thermal Protection): These devices rely on excessive motor winding or motor
case heat to trip a mechanical bimetal disk. These devices may be mounted internally next to the
motor windings or externally on the motor or compressor casing. These are used in single phase
applications only, such as residential air-conditioner motor.

(4) Protection 4 (or, Contactors): These devices play a role in how and when a motor may
disconnect and reconnect from the grid. This protection trips the motor running in extremely low
voltage conditions. This type of protection is usually configured for fast response to severe voltage
depression conditions. Contactor protection also has reconnection logics.

(5) Protection 5 (or, Building Management System): These devices are generally computerized and
when supply power or voltage is varied enough, the control system will proceed through a reboot
process. During that time the motors under its control will be shut down (This is generally
building wide). Testing conducted by the Bonneville Power Administration has shown that the
BMS can ride though severe voltage sags down to 65% of nominal voltage [51]. BMS controllers
have reconnection logics.

Our previous study [51] carried out a research on the different protection schemes found on various
commercial building types. The findings of that report were used to generate a “Protection Table” listing
the available motor protections into the five different types defined above.

Building Space Appliance Equipment Type Protection Rating
[sf] P1 P2 P3 P4 P5 Aggregate  [kW]
Small Retail 10000 RTU Fan MB 0 1 0 1 1 P2P4P5 6.15
Small Retail 10000 RTU Compressor MA OO0 1 0 1 1 P2P4P5 21.25
Small Retail 10000 RTU Frac_Condensor MD O O 1 1 1 P3P4P5 6.50
Small Retail 10000 Exhaust Frac_Fan MD OO0 0O 1 1 1 P3P4P5 0.46
Small Retail 10000 RiRF Frac Compressor MD 0 1 0 1 0 P2P4 8.50
Small Retail 10000 RiRF Frac_Fan MD 0 0 1 0 0 P3 3.40
Small Retail 10000 WiRF Compressor MA 1 1 0 1 0 P1P2P4 10.63
Small Retail 10000 WiRF Frac_Fan MD 1 0 1 1 0 P1P3P4 4.25
Medium Retail 25000 RTU Fan MB 0 1 0 1 1 P2P4P5 15.38
Medium Retail 25000 RTU Compressor MA 0 1 0 1 1 P2P4P5 53.13
Medium Retail 25000 RTU Frac Condensor ™MD 0 0 1 1 1 P3P4P5 16.25
Medium Retail 25000 RTU Frac_Ind_Draft MD 0 0 1 1 1 P3P4P5 10.41
Medium Retail 25000 Exhaust Frac_Fan MD O O 1 1 1 P3P4P5 0.92
Large Retail 75000 RTU Fan MB 0 1 0 1 1 P2P4P5 46.15
Large Retail 75000 RTU Compressor MA 0 1 0 1 1 P2P4P5 159.38
Large Retail 75000 RTU Frac_Condensor MD 0 0 1 1 1 P3P4AP5 48.75
Large Retail 75000 RTU Frac_Ind_Draft MD 0 0 1 1 1 P3P4P5 31.22
Large Retail 75000 Exhaust Frac_Fan MD 0 0 1 1 1 P3P4P5 1.38

Figure 6.3 Snapshot of Building Motor Loads and Protection Schemes.
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Figure 6.3 shows a snapshot of such a table, shown for retails buildings, where the P1 to P5 refers to
the protection types and the numbers O and 1 are used to represent absence and presence of that
protection, respectively. In this example, the small retail building (with a typical floor-space of 10,000
square feet) has different appliances — roof-top units (RTU), reach-in refrigerators and freezers (RiRF),
walk-in refrigerators and freezers (WiRF) and exhaust fans, with various motors (e.g. fan motors,
compressors, fractional compressors and condensers, etc.). Each such motor is equipped with a set of
protection methods (assigned a value 1). Such tables are built for the following types of commercial
buildings: (1) Retail: small, medium, large, (2) Supermarket, (3) Fast food, (4) Office: small, large, (5)
Hotel/Lodging, (6) Warehouse, (7) School, and (8) Hospital

6.3 Typical Commercial Building Prototypes and Controls

The next step in the process of generating the aggregate motor protection model is to estimate the
fractions of the commercial net end-use motor load consumption that is subjected to each type of
protection. To do so, we need to estimate the loading on the different appliances in each building type,
over a range of operating conditions defined by the seasons (summer, winter, etc.), time of day, and
climatic region the building is located in. This is done in two ways:

e EnergyPlus (E+) [52] simulations allow us to generate power consumption profiles of certain
appliances in prototype building models, which will be explained in Chapter 6.4.

o For appliances and/or building types for which EnergyPlus not available, we estimate the loading
on the appliance motors, based on factors such as occupancy and outside air temperature.

Once the loading of the appliance motors is estimated at every time instant of any given day of the
year the net load fractions associated with each protection type can be computed for each building. For
example, if a building has ‘n’ different motors, each of which is drawing a certain power P;(t), Vi €
{1, ...,n}, then the fractions of net building load at any given time ‘t’ that are assigned to any protection
can be computed as:

1 (t)z% Vje{12,..,5} (6.1)

where the variables s;; € {0,1},Vi € {1, ...,n},Vj € {1,2,..,5}, denote whether or not a particular
protection type-j is present in a the motor-i. Note that this fraction is a time-varying value.

The key here is to estimate the power consumption of the motors and the appliances. EnergyPlus
simulations help us get these power consumption for most of the appliances in the prototype buildings,
such as the roof-top units compressors and supply fans. For other smaller motors, such as those in exhaust
fans, dedicated outdoor air systems (DOAS) and make-up air units (MAUS), the power consumptions are
estimated based on buildings design protocols [53] [54] [55]. A couple of examples are given below:

1) The exhaust fans used in the toilets are generally designed for air movement of 75 cubic-ft-per-
meter (cfm) per fixture. The fan motors are typically rated at 1300 cfm/hp. Thus assuming a
medium retail building of 25000sf of floor-space has 20 toilet fixtures, the exhaust fans are rated
at 1.15hp (or, 0.92kW, with an efficiency of 0.8kW/hp). Furthermore, the exhaust fans are
expected to be running during the occupancy hours, which yield the desired power consumption
profile for the exhaust fans.

2) The dedicated outdoor air systems (DOAS) that are found in hospital or large office buildings are
designed to supply 5 cfm/person. Estimating the occupancies in a large office building of
500000sf at 2500 persons, and in a hospital of 200000sf at 1000 persons, the total air-movement
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through the DOAS can be estimated at 12500cfm and 5000cfm, respectively. An energy
conversion factor of 300cfm/hp yield the ratings of the DOAS fans in large office and hospital
buildings as 41.67hp and 16.67hp, respectively. The DOAS also run during occupancy hours.

@ =

RTU_Fan motor (type B)

load profiles of different
protection types

RTU_Compressor motor (type A)

equipment load profile a;:gr(te_gat’ed d
equipment protection model (calculations/E+) prof :cn.:;:::.- oa

Figure 6.4 Load Protection Profile for a Building Proto-type

Once the aggregation of appliance protection profiles is computed for each building (see Figure 6.4),
the next step is to build the aggregate protection profile across all the building types. To do this, the
presence of different buildings types across a (geographic/climatic) region is needed, either in terms of
number or the total floorspace. The EIA Commercial Buildings Energy Consumption Survey [56] data
provides us the total floorspace of each building type present in different geographic regions across the
United States of America. This is done as illustrated in Figure 6.5. For each building type, we scale the
protection profiles by a factor equal to:

~ total floorspace of (building)
"~ floorspace of a prototype of (building )

(6.2)

Opiting) *

and then take the sum across all building types weighted by this ratio.

protection profiles

Wiarge_office

Pro_tﬁc;-"t—;ge:hl:gfge Office - .
v
) Y —
. 1 = r s

| — Whospital

A building protection weighted sum of protection
Proto-type: Hospital profiles across building types

Figure 6.5 Aggregation of Protection Profiles across All Building Types, Based on Floor-Space Ratios.
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Using the proposed method, the aggregated protection profiles have been generated for commercial
buildings in representative cities from different climate zones. These results are presented in a tabular
form where the fractions of total load subjected to each protection method are calculated at an hourly
basis for five typical days chosen to represent each different season of the year. Figure 6.6 shows a
snapshot of such a table, for the commercial buildings in Phoenix, AZ, for a typical day in the month of
January (winter season).

Time MA MA MA MA MA MB M8 vB VB MB MC MC MC MC MC MD MD MD MD MD
P1L P2 P3 P4 P5 P1 P2 P3 PA P5 P1 P2 P3 PA P5 P1 P2 P3 P4 PS5

mo=1hr=1 5% 11% 1% 15% 3% 3% 43% 0% 46% 41% 0% 7% 0% 3% 6% 1% 1% 31% 23% 20%
mo=1hr=2 5% 11% 1% 15% 3% 3% 43% 0% 46% 42% 0% 7% 0% 3% 5% 1% 2% 31% 23% 20%
mo=1hr=3 5% 11% 1% 14% 3% 3% 43% 0% 46% 42% 0% 7% 0% 3% 5% 1% 2% 31% 23% 20%
mo=1hr=4 5% 11% 1% 14% 3% 3% 44% 0% 47% 42% 0% 7% 0% 3% 5% 1% 2% 31% 23% 20%
mo=1hr=5 5% 10% 0% 14% 3% 3% 45% 0% 47% 43% 0% 7% 0% 3% 5% 1% 2% 31% 23% 20%
mo=1hr=6 5% 8% 0% 12% 3% 3% 46% 1% 50% 46% 0% 6% 0% 3% 5% 1% 3% 30% 22% 20%
mo=1hr=7 5% 7% 0% 11% 4% 3% 53% 1% 56% 53% 0% 5% 0% 2% 4% 1% 3% 25% 19% 17%
mo=1hr=8 5% 7% 1% 12% 4% 3% 53% 1% 56% 54% 0% 5% 0% 2% 4% 1% 3% 25% 18% 16%
mo=1hr=9 5% 7% 1% 12% 4% 3% 54% 1% 57% 54% 0% 5% 0% 2% 4% 1% 2% 24% 18% 16%
mo=1hr=10 8% 7% 1% 14% 7% 2% 51% 1% 54% 51% 0% 6% 0% 2% 5% 1% 2% 23% 17% 15%
mo=1hr=11 9% 8% 1% 16% 9% 2% 49% 1% 52% 49% 0% 7% 0% 2% 6% 1% 2% 22% 17% 15%
mo=1hr=12 11% 9% 1% 19% 12% 2% 46% 1% 49% 47% 0% 8% 0% 2% 7% 1% 2% 22% 16% 14%
mo=1hr=13 13% 10% 1% 22% 15% 2% 44% 1% 47% 45% 0% 8% 0% 2% 7% 1% 2% 21% 16% 14%
mo=1hr=14 14% 11% 1% 24% 17% 2% 43% 1% 45% 43% 0% 8% 0% 2% 7% 1% 2% 21% 16% 14%
mo=1hr=15 15% 12% 1% 25% 18% 2% 41% 0% 44% 42% 0% 8% 0% 2% 7% 1% 2% 21% 16% 14%
mo=1hr=16 14% 12% 2% 25% 18% 2% 41% 0% 43% 41% 0% 8% 0% 2% 7% 0% 2% 21% 17% 14%
mo=1hr=17 14% 12% 2% 25% 17% 2% 41% 0% 43% 41% 0% 8% 0% 2% 7% 0% 2% 22% 17% 15%
mo=1 hr=18 14% 10% 2% 24% 16% 2% 42% 1% 44% 42% 0% 9% 0% 2% 8% 1% 2% 22% 17% 14%
mo=1hr=19 10% 10% 2% 20% 11% 2% 45% 1% 48% 45% 0% 8% 0% 2% 7% 1% 2% 23% 17% 15%
mo=1hr=20 10% 9% 2% 19% 10% 2% 45% 1% 48% 45% 0% 8% 0% 2% 7% 1% 2% 23% 18% 15%
mo=1hr=21 9% 9% 2% 18% 9% 2% 46% 1% 49% 46% 0% 7% 0% 2% 6% 1% 2% 24% 18% 15%
mo=1hr=22 9% 11% 2% 20% 8% 3% 42% 0% 45% 42% 0% 9% 0% 3% 7% 1% 1% 26% 20% 16%
mo=1hr=23 6% 11% 2% 17% 5% 3% 41% 0% 44% 40% 0% 8% 0% 3% 6% 1% 1% 29% 22% 19%
mo=1hr=24 6% 11% 1% 16% 4% 3% 42% 0% 45% 41% 0% 8% 0% 3% 6% 1% 1% 30% 22% 19%

Figure 6.6 Aggregated Protection Profile for Phoenix, AZ, for a Typical Day in January.

6.4 EnergyPlus Simulation

DOE’s Commercial Prototype Building Models [57] were used in this study to generate building
electric load profiles. The suite of prototypes consists of 16 building types, covering 80% of the
commercial and multifamily building floor area in the United States for new constructions. A list of the
prototypes is given in Table 6.1.
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Table 6.1 Building Prototypes

Prototype Floor
Building Activity Building Prototype Area (ft?)
Small Office 5,500
Office Medium Office 53,630
Large Office 498,640
. Standalone Retail 24,690
Retail ]
Strip Mall 22,500
. Primary School 73,970
Education
Secondary School 210,910
Outpatient Healthcare 40,950
Healthcare -
Hospital 241,410
. Small Hotel 43,210
Lodging
Large Hotel 122,120
Warehouse Warehouse 52,050
. Quick-Service Restaurant 2,500
Food Service -
Full-Service Restaurant 5,500
Mid-Rise Apartment 33,740
Apartment - -
High-Rise Apartment 84,360

The energy efficiency design of the prototypes meets the minimum requirements of national model
energy code ASHRAE Standard 90.1-2004 [58], which is assumed to represent existing buildings that
were constructed in the past decade. Whole building energy simulations were conducted by using DOE’s
EnergyPlus program for 111 representative weather locations in 50 states in the U.S. The electric loads
are outputted in 10-minute interval for an entire year. The load profile is generated at individual
equipment level when possible. In some cases, multiple pieces of equipment are combined in the
prototype models and their combined load profile is generated.

Altogether, the suite of prototype buildings covers a large range of electric equipment and appliances
including interior and exterior lighting, fans, pumps, direct expansion heating and cooling coils, electric
resistance heating coils, chillers, cooling towers, humidifiers, service water heaters, and plug and process
loads (such as elevators, commercial kitchen appliances, commercial reach-in and walk-in refrigerators
and freezers). The rated power of the equipment and appliances is also reported.

6.5 Optimization-Based Protection Aggregation Algorithm

Induction motors are usually equipped with several types of protection with different operation
mechanisms, making it challenging to develop adequate yet not overly complex protection models and
determine their parameters for aggregate induction motor models. This sub-chapter proposes an
optimization-based framework to determine protection model parameters for aggregate induction motor
loads in commercial buildings [59]. Introducing a mathematical abstraction, the task of determining a
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suitable set of parameters for the protection model in composite load models is formulated as a nonlinear
regression problem. Numerical examples are provided to illustrate the application of the framework.

6.5.1 Protections: Mathematical Modeling

Motors are typically protected by multiple devices, such as relays, contactors, thermal protection, etc.
During a fault, as the voltage drops below a certain limit for longer than a certain duration, multiple
protection mechanisms could be triggered to trip the associated motor load. The protection action has
been illustrated in Figure 6.1, which illustrates how an aggregate motor load may respond during a
voltage event due to the various protection schemes activated over the duration of the fault (Note that
Figure 6.1 ignores the motor dynamics, but focuses only on the effect of the protection). Understanding
the behavior of motor loads under the action of different protection schemes is of paramount importance.
The focus of the work presented in this section is on the commercial sector, however the application to
residential and industrial sectors should be similar.

Modeling protection schemes, in general, is a challenging task. The protection equipment present in
different motors vary widely in their operating parameters (i.e. tripping and reconnection behavior).
Furthermore, the response parameters of a protection device may not be static, and can also depend on
factors such as the loading on the motor (e.g. fully loaded motors will likely trip earlier than lightly
loaded motors), which may in turn depend on conditions such as the outside air temperature, occupancy
of a buildings, etc. A probabilistic framework is required to capture this behavior. However, for simplicity
in the mathematical modeling and the optimization framework presented in this section, we would assume
a deterministic model of the protection, i.e., given a fault, the protection is either tripped or is in the
operational region based on some static trip conditions. To facilitate the mathematical construction of
model, let us define the protection ‘trip-zone’ as:

Definition 1: Trip-zone for a given protection scheme-i, denoted by T¢, is defined as the set of pairs
of voltage levels at fault (v, ) and the fault duration values (z; ) such that the protection-i is tripped if and

only if (77, v) € T, ie.
(rf ,vf)eTi < protection—i is tripped (6.3)

Each protection scheme can be modeled mathematically in the form of a discrete-valued function
L RZ, — {0,1} defined as follows:

, 0, (rf,vf)eTi
f V)= .
(Tf vf) 1, otherwise ©4)

where the value of the function is 0 whenever the protection is triggered (i.e. the motor is
disconnected from the network), and 1 when the protection has not been triggered (i.e. the motor is still
connected to the network). It is noted that the shape of the trip-zone is different for different protections.

Remark 1: In this work, we focus only on the tripping of the protection and not on the reconnection
event.

Motor protection schemes commonly found in commercial buildings in United States can be
categorized into five different types including 1) electronic relays (P1), 2) current overload relays (P2), 3)
thermal protection (P3), 4) contactors (P4) and 5) building management system (P5), each of which is
characterized by a range of voltage deviations and durations for tripping after the fault. For more details
readers are referred to [51] [60]. Most often the motors are protected not by a single mechanism, but by a
combination of the different protection schemes, in a series combination. In a series combination of
protections, each protection needs to be in operational state in order for the motor to be connected to the
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network. Let us consider some protection-k which is a series combination of protection-i and protection-j.
Then the following holds:

T =T'UT! (6.5a)
(or, equivalently)  f*(z;,v, )= (r.v, o F2 (7, ) (6.5b)

i.e. the trip-zone of a series combination is a union of the trip-zones of each of the protections in the
combination. In other words, the motor is disconnected from the network whenever any of the protections
in the series combination trips. Figure 6.7 shows examples of the protection diagrams of the five
individual protection schemes outlined above, as well as a series combination P1-P4-P5 with a trip-zone
that is a union of the trip-zones for P1, P4 and P5. Other combinations can be constructed likewise.

In a distribution system different motors are protected by various (series combinations of) protection
schemes. For example, a total of 31 series combinations can be constructed out of the five individual
protections outlined in this section (excluding the unprotected case). Let us denote the set of all available
(series) combinations of protection schemes by P (set of all available protection combinations) such that
each member of the set P is unique. aggregate protection modeling is about constructing a reduced order
protection model that can predict the fractions of total motor load tripped during a fault.

Electronic Relays (P1) 2 Current Overload Relays (P2) Thermal Protection (P3)
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Figure 6.7 Examples of Protection Diagrams for Various Protection Schemes. Black Region Denotes the
Trip Zone.

Definition 2: The aggregate protection scheme of a collection of motors served by (combinations of)
protection schemes belonging to the set P can be mathematically modeled in the form of the (discrete-
valued) function F: RZ, ~ {0, 1} defined as follows:

(rf, ) ZEf (rf, ) (6.6)

ieP

where ¥ € [0, 1] is the fraction of the motor load served by protection-i, i.e. ¥;ep m* = 1. Henceforth
F is referred to as the ‘aggregate protection function’.

Remark 2: Note that the fractions of the motor load served by a particular protection type is a time-
varying quantity. Thus, the aggregate protection function will also be time-varying. For the purpose of
this work, we do not explicitly model the time variability, while noting that the approach extends to the
time-variable aggregate protection functions as well.
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Since P is a finite set, F takes discrete values between 0 and 1, with the value of O referring to all the
motor loads are disconnected, while the value of 1 refers to all motor loads being connected. In recent
work [61], the authors presented a methodology to approximate the motor load fractions (%) for each
protection combination based on typical commercial buildings’ (hourly) energy consumption profiles, in
different climate-zones. In the following example, we show how the aggregate protection scheme can be
used to predict what fraction of motor loads will be tripped during a fault.

Example 1: Consider the protections shown in Figure 6.7. Let us assume a scenario where various
motors are protected by the schemes P1, P2, P3, P5 and P1-P4-P5 (series combination), with equal
fractions of motor loads associated with each protection scheme. The resulting protection diagram is
shown in Figure 6.8. The aggregate protection diagram is shown (on the top), along with a plot (on the

bottom) of the fractions of non-tripped (operational) motor loads under two voltage dips at 50% and 55%
of nominal values.
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Figure 6.8 Aggregate Protection Diagram and Load Tripping

6.5.2  Aggregate Protection Modeling

As can be seen from the example (Figure 6.8), the aggregate protection scheme can be quite complex
with rather arbitrarily shaped trip-zones. While such detailed models can be quite useful for
understanding the behavior in the distribution networks, these are not very easy to integrate with
transmission-level simulation tools. A simplified model with reduced complexity appears to be necessary,
which approximates the detailed aggregate protection model as best as possible. More details can be
found in the WECC composite load modeling efforts [14]. In this section, our goal is to approximate the
aggregate protection model using the simplified form as follows (Figure 6.9).
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Figure 6.9 Simplified Model of the Aggregate Protection Scheme

F(z,ve J=mFa(r, v )+ Fo (7, v, )

(6.73)

Vief1,2}: E (Tf, ):_ 0, 7,277 &V, S.Vi
1, otherwise 6.7b)
127’;14'7’2\'2 (67C)

Here F, (F,) denotes the protection scheme that serves 7, (#,) fraction of motor loads, with a trip zone
that is parameterized by a trip voltage v; (v3) and trip duration z7 (z3). The goal is to find the parameters

@:{gl,r;,v;,gz,fg,v;} (6.8)

such that the simplified protection scheme F in (6.7) approximates the true protection scheme F in (6.6).
We set up a nonlinear regression problem to find the parameters in @ that gives the best approximation
(F) of the true aggregate protection (F). This is done in the following steps:

1) Randomly select N points from the (‘L’f, vf) -space and note down the values of the true aggregate
protection function F at those points (from (6.6)). Let us denote these points by (rj{vj{) and the
corresponding value of F as y/ = (Tf,vf) foreachj € {1,2,...,N}.

2) Construct the cost function as

2

:=%§N:[ (z).vi)- J‘] (6.9)

j=1
3) Solve the following optimization problem:
mq!n[J (9)] (6.10a)
st. v, e [O,lOO],ri* IS [0,5] Vie {1, 2}, (6.10b)
TA T =1 (6.10c)

66



Note that the optimization problem (6.10) cannot be solved directly in the present form, since it involves
functions (F; ,) that are described in conditional forms (6.7). We overcome this problem by using logistic
functions to model the protection functions £, ,. Logistic functions h: R ~ [0,1] are approximations of
step functions and are defined as follows:

1

(logistic)  h(xier) = o)

(6.11)

where a > 0 is a steepness parameter related to the slope of the function at x = 0. The function F, , are
approximated using logistic function as follow:

Fi(rov)=1-h(r; —zse ) 1-h(v, -V;e, ) | (6.12)

for each i € {1,2}, for some chosen a,, a,, > 0. The optimization problem (6.10) is solved via IPOPT [62]
using the logistic functional representation of F"inn (6.12).

Ideally, one would like to solve (6.10) with as many data points as possible (large N), however, due
to computational limitations N has to be reasonably small. Thus, the data points need to selected
judiciously so that the approximation is sufficiently accurate. It can be argued from the protection
diagrams in Figure 6.7 that the protection function changes value rapidly when z¢ is near Os. Moreover,
during faults v is typically close to 50 %. Therefore we select the data points by assigning some weights

w(*) € [0,1] to every point on the (zy, v;)-axis as follows:
(v, ) :1—(1—e‘”f“ )(1—e‘ﬂ’(vf '50)) (6.13)

for some B;, 3, > 0, and selecting N points randomly from all points that have larger than a chosen
weight. Finally, we measure the accuracy of the approximation using the following mean absolute error
metric:

e olF (e F (e )

where the M (»N) points (zf, vf) are selected randomly (and separately from the data points used in
(6.10)) using, say, Latin hypercube sampling technique from the (rf, vf)-space.

(6.14)

6.5.3 Numerical Results

We apply the aforementioned optimization framework to the problem in Example 1 in Chapter 6.5.2
to obtain the simplified aggregate protection diagram. The result is shown in Figure 6.10, where the top
plot shows the selected data-points for (6.10) and the bottom plot shows the resulting simplified
protection scheme with a mean absolute approximation error (&) of 0.06.

Next, we consider the test cases developed in [63]. In particular, we apply the optimization
framework to obtain simplified aggregate protection functions for motor loads in a hotel, large retail,
medium retail, school, warehouse and supermarket. The protection schemes and the associated motor load
fractions used in the study are listed in Table 6.2. Note that, out of a possible 31 combinations of
protection schemes, only seven were found in the buildings considered (based on the study done in [51],
[61]). The optimization problem was separately for the motor types A, B, C and D to obtain their
simplified aggregate protection schemes. The results are shown in Figure 6.11 (due to similarity between
the protection schemes of motor A and B, only A is shown in the plot). In this particular case, it turned
out that the 77; = 0 for all the motors (but not expected in general, e.g. Figure 6.10).
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Table 6.2 Test Case Protection Parameters

P 7 (for motors A, B, C & D)
P3 {0.00, 0.00, 0.00, 0.08}
P2-P4 {0.09, 0.08, 0.00, 0.00}
P3-P4 {0.08, 0.00, 0.00, 0.20}
P2-P5 {0.00, 0.00, 1.00, 0.00}
P1-P4-P5 {0.25, 0.21, 0.00, 0.00}
P2-P4-P5 {0.58, 0.69, 0.00, 0.00}
P3-P4-P5 {0.00, 0.02, 0.00, 0.72}
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6.5.4 Summary

There is a need for high-fidelity composite load protection models for induction motor loads to better
represent the aggregate dynamic behavior of distribution systems in the transmission system dynamic
simulations and studies. This work builds on recent developments on the aggregate protection modeling,
to propose an optimization framework to generate simplified aggregate protection schemes. Introducing a
mathematical abstraction of the protection schemes, a nonlinear regression problem is formulated to
suitably approximate complex protection schemes in a simple parametric form. Numerical results are
presented to illustrate the application of the framework.

6.6 Cross-Categorical Transfer Learning Algorithm

6.6.1  Transfer Learning Problem Definition

This sub-chapter discusses a cross-categorical transfer learning algorithm to model the aggregate
motor protection [64]. In this problem, we have one source S and one target T space. Source space is
defined as the data space used to train part of the proposed deep learning based framework offline
(specifically transferable layers), while target space is a much smaller disjoint space (S N T = @) where
the pre-trained architecture can be transferred with minimal amount of retraining (training involving the
rest of the proposed deep network based architecture, i.e., the non-transferable layers). In our learning
problem, we have two training datasets and two testing datasets. Furthermore, we define a feature space F
where all the instances are represented.

For this application, source system S comprises of simulated fault scenarios (without modeling
uncertainties) generated for four different class of electric motors (Domain D;), with instances which
denotes the tuple with measurements of fault duration, voltage level and fraction of motor load tripped at
fault, happened at discrete time step k. On the other hand, target system T comprises of simulated fault
scenarios with different level of uncertainties in the simulation model parameters (specifically we have
made two different uncertainty cases, one with uncertainty variation between +10% and the other one
between +20% of the nominal values of the modeling parameters). Feature space F comprises of the
detected features, output from the transferable layers. The non-transferable layers will work on the feature
space F to identify simplified model parameters as shown in Figure 6.9.

6.6.2 Transferable Layers

Dataset Preparation: Both source S and target system spaces T, consists motor specific dataset. For each
type of motor, dataset consists of fault duration (r}), voltage level at fault (vj!), and the fraction of motor

load tripped by the fault (n/), of different fault category. Each row of this dataset contains one fault
incident, with the repeating tuple of fault duration, voltage level of fault and fraction of motor load
tripped by fault, at each discrete time step until the duration of this particular fault type.

Dataset Splitting: We have used a 10-fold cross validation for training and validation of the transferable
layers, using the source S, specific dataset (without model uncertainties). We have kept the testing set
separated as an indicator of generalized performance. 30% of the source specific dataset are separated
and kept as test dataset, and 70% have used in the random cross validation, of the transferable layers of
the proposed network.

Transferable Layers Architecture: Proposed transferable layers are shown in Figure 6.12, with respective
dimensions of each transferable layers along with the selected activation functions. As shown in Figure
6.12, the transferable layer consists of an Autoencoder and a Classifier. Addition of classifier enforces,
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these Autoencoder layers to turn properties related to different type of motor in the dataset. These
properties in the feature space F are not fault event specific and are transferable. The inner most encoding
dimension is important, as it represents the dimension of the feature space F. The higher the dimension
of the feature space F, the more computation time is required to convert the feature space output, to the
simplified model parameters. Based on this motivation, effort needs to be taken to reduce the feature
space F dimension. We have tested different feature space F dimension starting from 100 to 10, with a
constant decrement of 10. Figure 6.13 shows the variation of the reconstruction error from the
autoencoder along with the true positive accuracy from the classifier, with the reduction in feature space
F dimension. We have selected feature space dimension, i.e., inner most encoding dimension to be 30, as
below that true positive accuracy from the classifier significantly drops, which implies loss of motor type
specific information. Moreover, we have plotted the confusion matrix for the feature space dimension 30,
as shown in Figure 6.14. As we can see, we get a total true positive accuracy (TPR) of 94% for feature
space dimension 30, which is adequate for our purpose.

Legend
M Dense, selu

30 20 4

M Dense, relu

M Dense, sigmoid

M Dense, linear « Type A
* TypeB

* Type C

1500 800 500 200 30 « TypeD

| | | | |\1.. 200 3500 800 1500

Figure 6.12 Architecture of the Transferable Layers
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Figure 6.13 Change in Reconstruction Error and True Positive Rate (TPR) with Change in Encoding
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Figure 6.14 Confusion Matrix of Feature Space of Dimension 30
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Model Exploration: Now we will discuss the different network architecture we have tried to design rest of
the transferable layer architecture, after fixing the inner most encoding. We have tested different
combinations of intermediate layer dimensions for the encoder and the decoder part, and tabulated the
reconstruction error. Table 6.3 shows the four different network architectures that we have tried to design
the transferable autoencoder layers, within which we have selected the bold-faced architecture, as shown
in Figure 6.12.

Table 6.3 Variation of Reconstruction Error with Different Tried Transferable Layer Architectures

Encoder Decoder | Reconstruction
Structure | Structure error (€)
(,1000,30) (30,1000,) 0.00153
(,1000 30) (30,200, 0.00117
T 1000,) '
(,900,200, | (30,200,
, 0.00108
30) 900,)
(,800,500, (200, 000071
200,30) | 500,800,

Training and Validation: Proposed transferable network is trained using Tensorflow backend [65] using 2
GPU nodes on a NVIDIA P100 GPU cluster. We have used Adam algorithm to train the transferable
layers, for 2000 epochs using the settings, learning rate=0.001, §; = 0.9, B, = 0.999, ¢ = None,
decay=10"°, amsgrad=False. Furthermore, we have used a batch size of 100 data points and have
implemented an early stopping protocol to avoid overfitting. This protocol consists of monitoring the loss
of the validation set, and if there is no improvement of the validation loss after 100 epochs, the training is
stopped and restarted with a different initial weights and biases. After successful training of the proposed
transferable architecture, the encoded (30) dimensional output from the trained Autoencoder, should be
able to capture motor type specific information.

6.6.3

Proposed Architecture: For this part of selected architecture, both training and evaluation involves only
target space (T) specific dataset (dataset with uncertainties as discussed before. Similar dataset
preparation and dataset splitting methods are used for target space dataset, as mentioned before. Proposed
network architecture combining the transferable and non-transferable layers is shown in Figure 6.15. The
non-transferable layers comprise of two dense layers, as shown in Figure 6.15.

Non-Transferable Layers
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Legend
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Figure 6.15 Architecture of the Whole Proposed Framework (Combination of Transferable and Non-
Transferable Layers)

Training and Validation: Proposed stack of non-transferable layers is trained using Tensorflow backend
[65] using 2 GPU nodes on a NVIDIA P100 GPU cluster. We have used stochastic gradient descent
algorithm to train the proposed architecture, for 1000 epochs using the settings, learning rate=0.1,
decay=10°, momentum=0.9, nesterov=True. Furthermore, we have used a batch size of 100 data points
and have implemented an early stopping protocol to avoid overfitting.

6.6.4 Numerical Results

Figure 6.16 shows the advantage of using our proposed transfer learning based framework. While our
transfer learning based framework achieves similar reconstruction error, as in a framework without the
transferable layers (complete retraining of Figure 6.15), saves computation time in the order of more than
80% in average, between all the different type of fault scenarios. Figure 6.17 shows the error histograms,
of the relative percentage error ((Actual-Reconstruction of actual)/Actual*100) for both voltage level and
motor load fraction, applied to four different types of motor. From Figure 6.17, more than 85% error
points lie within + 10% of the relative percentage error. Finally, Figure 6.18 - Figure 6.20 show the
simplified protection diagrams

In conclusion, we have proposed a stacked Autoencoder based framework to find a simplified load
model, for a given occurrence of fault for a given motor type. Furthermore, we have identified specific
layers in our framework, which is transferable between different category of faults, and reduced the
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number of non-transferable layers (parameters need to be tuned online), which results in a significant
savings in computation time. Moreover, we have incorporated probabilistic moments, to calculate the
correct mean and variance in the final layer of the stacked Autoencoder, which results in an accurate
estimation of the simplified protection model.
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Figure 6.16 Comparison of Reconstruction Error and Training Epoch, with and without Transfer Learning
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Figure 6.20 Simplified Protection Diagrams for Case3 with 20% Uncertainty
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7.0 Simulation Platform Development for Performance Data
Extraction

7.1 Transmission and Distribution (T&D) Simulations

7.1.1 Introduction

There are mainly three categories of parameters for the WECC composite load, i.e., composition,
operation and protection parameters for each class of loads. For motor loads, composition can be derived
from the regional end-use load survey and operational parameters such as the electrical impedances and
the time constants for the motors are well-understood and well-defined. While motor protections play a
significant role in determining the behavior of the motors, as it dictates whether motors connected to the
grid continue running when subjected to voltage sag and recovery. So far, the aggregate protection
models and parameters have not been well understood, and they are loosely determined based on past
experiences and limited number of measurements for actual disturbances. Furthermore, it was pointed out
in [66] that the four classes of motors in existing composite load model are categorized based on driven
loads and thus are quite broad. Within each class of motors, there are various types of protection and
controls, which makes it challenging to derive suitable aggregated protection models.

To develop adequate aggregate motor protection models, we first need to have better understanding of
the detailed responses of the protections in typical motor loads. In this section, integrated transmission
and distribution (T&D) system dynamic co-simulation will be employed to obtain detailed responses,
particularly the responses of the protections, of loads in the distribution systems to disturbances in the
transmission system. The detailed responses and their collective performance will subsequently be used to
study the aggregated protection behaviors of different classes of loads (the classification of loads is based
on the components in existing WECC composite load model). A flowchart of the proposed process of
developing enhanced aggregate motor protection model is illustrated in Figure 7.1.

Load Connect the Run simulation Protection
composition Develop CMPLDW using a response of
B i CMPLDW model(s) to a transient the
R model(s) transmission stability CMPLDW
survey data system simulation tool model

Apply a fault | Compare the Develop next
ora responses sen_el_atl‘::ad
disturbance andanalyze — il:;mposite- :
Study region in the the mih:L particularly
e ’ modeling

system

Main Run Aggregate

appliances Select a X Connect the simulation protection
and their r:pre"e“ta‘“'e feeder(s) to a using a T&D responses of
protectionsin “d"’l’[" a:d transmission | dynamic co- loads in the
commercial T::;;fdt'a[: system simulation distribution

buildings I tool systems

Figure 7.1 A Flowchart of Developing Enhanced Motor Protection Models Based on Integrated T&D
Dynamic Simulation
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7.1.2 Integrated T&D Dynamic Co-Simulation

Due to the traditional separate modeling and simulation practice, existing transmission-level and
distribution-level simulation tools (e.g., PSLF, PSS/E for transmission systems and OpenDSS, GridLAB-
D for distribution systems) cannot be used to study the detailed responses of end use loads in the
distribution systems when subjected to a disturbance or fault in the transmission system. With integrated
T&D dynamic co-simulation, both systems can be modeled and studied simultaneously so that their
interactions can be adequately captured. Thus, it serves the purpose of obtaining detailed responses of the
protections in typical motor loads in distribution systems when there is a fault or disturbance in the
transmission system. The interactions between the transmission and distribution systems during the co-
simulation include two stages: 1) power flow for initializing the dynamic simulation will be solved, and
2) the dynamic simulation stage where the dynamic responses of the motor loads to voltage sag and
recovery will be analyzed in detail. The two stages are illustrated in Figure 7.2.

Three-sequence network

equivalent (constant power

load for positive sequence, Three-phase

voltage current source for negative- current injection
and zero-sequence)

Three-ph b i
ree-phase bus Three-phase Thévenin

network equivalent

Distribution Distribution

power flow Dynamic simulation

Figure 7.2 The Interactions between the T&D Solvers: (Left) at Each Iteration Step of Power Flow
Calculation; (Right) at Each Step of Network Solution during Dynamic Simulation

After the T&D power flow successfully converges, the simulation is then transitioned to integrated
T&D dynamic simulation. In dynamic simulation, network solution and integration steps will be solved
iteratively at each time step. The iterative information exchange at each time step is illustrated in Figure
7.3. It should be noted that the number of iterations is not predefined. The algorithm has been developed
on InterPSS, an open-source power system simulation tool. More details can be found in [67].
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Figure 7.3 Iterative Information Exchange at Each Time Step.

7.1.3 Test System

Transmission System

In this study, the IEEE 39 bus test system [68], which is shown in Figure 7.4, is used to represent the
transmission system. Basic information about the system is summarized in Figure 7.5.
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Figure 7.4 One-Line Diagram of the IEEE 39-Bus Test System
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Switched Shunts
2Term, DC Lines
Multi-Term. DC

Breakers
Disconnects
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Distribution Feeder
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A part of the original load directly connected to bus 18 of the transmission system is replaced by
PNNL taxonomy feeder GC-12.47-1 [69] (shown in Figure 7.6). The basic information of the feeder is
shown in Table 7.1. This feeder is representative of serving a block of dense commercial or industrial
loads, such a very large shopping mall or a lumber mill. These feeders may supply the load through a
single large transformer or a group of smaller units.
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Figure 7.5 Case Summary of the IEEE 39-Bus Test System

Table 7.1 Basic Information of the Feeder GC-12.47-1

Nodes

27

Voltage (kV)

12.47

Load (kW)

5,200

Voltage Regulators

Reclosers

Residential Transformers

Commercial Transformers

Industrial Transformers

Agricultural Transformers

oOjlw|o|jo|Oo|O
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Figure 7.6 One-Line Diagram of the Feeder GC-12.47-1

In this study, to represent a typical feeder in a city downtown area, one large office, five small offices
and one hotel are modeled to represent commercial buildings connected to the feeder. All commercial
buildings are connected to the three transformers at the end of the feeder shown in Figure 7.6. Modeling
of the main motor loads in each of the three buildings are shown in Table 7.2. It is assumed that the motor
loads account for 70%, 70% and 75%, respectively, of the total loads (in terms of real power) in the large
office, small offices and hotel. The remaining loads are assumed to be static load model represented by
constant impedances.
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Table 7.2 Main Motor-Driven Appliances in the Large Office, Small Offices and Hotel.

Percentage
Rating | of building
Building Appliance Equipment Type Protection | (kW) motor load
Large Office AHU Fan MB P2P4P5 308 13%
Large Office VAV Frac_Fan MD P3P4P5 51 2%
Large Office DOAS Fan MB P2P4P5 33 1%
Large Office Chiller Compressor MA P1P4P5 875 38%
Large Office Chiller Pump MC P2P5 245 11%
Large Office Cool_Tower Fan MB P2P4P5 105 5%
Large Office Boilers Ind_Draft MB P1P4P5 208 9%
Large Office Boilers Pump MC P2P5 245 11%
Large Office CRAC Compressor MA P1P4P5 106 5%
Large Office CRAC Fan MB P1P4P5 31 1%
Large Office CRAC Frac_Condensor | MD P3P4P5 51 2%
Small Office AHU Compressor MA P1P2P4P5 | 106 55%
Small Office AHU Fan MB P1P2P4P5 | 31 16%
Small Office VAV Frac_Fan MD P3P4P5 15 8%
Small Office Boilers Ind_Draft MD P3P4P5 21 11%
Small Office CRAC Compressor MA P1P4P5 11 6%
Small Office CRAC Fan MB P1P4P5 3 2%
Small Office CRAC Frac_Fan MD P3P4P5 5 3%
Hotel PTAC Compressor MA P3P4 425 32%
Hotel PTAC Fan MD P3 123 9%
Hotel Exhaust Fan MD P3 23 2%
Hotel Split Fan MB P2P4 123 9%
Hotel Split Compressor MA P2P4 425 32%
Hotel Split Frac_Condensor | MD P3P4 130 10%
Hotel Split Frac_Ind_Draft | MD P3P4 83 6%

Motors are typically protected by different protection methods, such as relays, contactors, thermal
protection, etc. During a fault, as the voltage drops below a certain limit for longer than a certain duration,
the protection mechanism gets triggered to trip the associated motor load. As discussed in Chapter 6, the
motor protection schemes commonly found in the commercial buildings in United States can be
categorized into five types i.e., 1) electronic relays (P1), 2) overload relays (P2), 3) thermal protection
(P3), 4) contractors (P4) and 5) building management system (BMS) control (P5). Each motor is usually
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equipped with multiple types of protection devices. Each protection is characterized by a (range of)
voltage depth and duration for tripping, and a (range of) voltage depth and duration for reconnection
(upon recovery). The protection triggering zones of the five types of protection are illustrated in Figure
7.7. For the tripping zone illustrated on the top subplot of Figure 7.7, if the sustained low voltage
magnitude and duration fall into the region under the characteristic curve of specific protection scheme,
the motor will be tripped by this scheme. For the reconnection zone depicted on the bottom subplot, if the
voltage magnitude and duration recover to the region above the characteristic curve, the motor will be
reconnected. The fact that P2 and P3 have no traces on bottom subplot of Figure 7.7 means they will not
automatically reconnect in the time frame of interest.
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Figure 7.7 Illustration of Protection Parameter Setting of the Five Protection Types: (Top) Tripping
Voltage and Time Delay; (Bottom) Reconnection Voltage and Time Delay

7.1.4 Simulation Results

A three-phase fault close to bus 18 in the transmission system results in a voltage drop to 0.4 pu at
bus 18, lasting for 0.0833 second (5 cycles) and followed by normal recovery. The voltages at nodes
meter_1, meter_2 and meter_3 of the feeder are shown in Figure 7.8.
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The individual protection trip and reconnection responses of all motors are shown in Figure 7.9. If the
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Figure 7.8 Phase A Voltages at Nodes meter_1, meter_2 and meter_3 in the Feeder

trip time or reconnection time is zero, it means the motor was not tripped by its protections.

It can be observed from the scatter plot that the protection performance of MA type motors follows a
similar pattern, while there is not a clear pattern for the MB and MC types of motors. This suggests that it
is more challenging to perform aggregation for the MB and MC type motors. It should be noted that these
are preliminary results, more simulations should be performed to better identify the trends and patterns in

the protections.
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Figure 7.9 Trip Time and Reconnection Time for All Three Phase Motors

The aggregated power of different class of three phase induction motors are shown in Figure 7.10.
The non-tripped fractions of each class of motors in terms of total MVA and the normalized fraction are
shown in Figure 7.11 and Figure 7.12, respectively. The results in Figure 7.12 show that normalized non-
tripped fractions are significantly different for the three motor classes, which is significantly different
from the fact that very similar protection default settings are recommended for current WECC composite
load model.
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Figure 7.12 Normalized Fraction of Non-Tripped Three-Phase Induction Motors: (a) MA; (b) MB; (c)
MC

7.2 Commercial Feeder Modeled in GridLAB-D

In this section, the five types of protection schemes for commercial buildings are developed in
GridLAB-D [70]. Both SPIM and TPIM utilize the same set of protection schemes. A total of 5 protection
types (relay, overload, thermal, contactor, building management system (BMS)) share the same trip and
reconnection functions, which are based on under-voltage protection logics.

In this task, four Matlab functions are written to read from a .xlIsx file containing motor information in
representative commercial buildings connected to a commercial feeder, and to write the information into
.gIm files for GridLAB-D simulation. One .glm file will be generated for each building, containing the
motor objects for all the motors in this building. All the building model .glm files will be included in the
feeder model .glm file to connect buildings to the feeder.
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7.2.1 Input Parameters

The protection parameters as shown in Figure 7.13 contain the types of available protections and their
parameters. Column "Trip" and "Reconnect” list the protection parameters for each type of protection.
The number before the semicolon is the trip (or reconnect) voltage, and the number after the semicolon is
the trip (or reconnect) time. For example, P1 (electronic protection) has parameters "0.6;0.08" under
"Trip", which means that if the voltage falls below 0.6 pu for 0.08 seconds, electronic protection should
kick in and trip the motor. Similarly, the parameters "0.9;0.033" indicates that if the motor is tripped, but
the voltage recovers to be above 0.9 pu for 0.033 seconds, electronic protection should reconnect the
motor to the grid.

Protection Type Trip Reconnect
P1 Electronic 0.6;0.08 0.9;0.033
P2 Overload 0.60.70.8;0.330.5 1.0 Manual
P3 Thermal 0.550.60.650.70.750.8;0.51.0 2.04.0 8.0 10.0 Manual
P4 Contactors 0.65;0.1 0.75;0.1
P5 BMS 0.00.40.50.60.7;0.083 0.1 0.166 0.25 0.5 0.95;2.0

Figure 7.13 Commercial Building Protection Parameters

The building types as shown in Figure 7.14 indicate the number of each type of buildings connected
to this feeder. Thus, it also determines the number of .glm files generated as output files with the naming
rules as: if there is only one building like "Hotel" in Figure 7.14, the output file name is "hotel.gim". If
there are more than one building of the same type, for example "Small Retail", the output files are named
as "small_retail_1.glm™ and "small_retail_2.glm".

Small Retail
Medium Retail
Large Retail
Supermarket
Fast Food
Small Office
Large Office
Warehouse
Lodging
School

Hotel
Hospital

= = R o T R ¥ o B o B o R o B o [ L

=

Figure 7.14 Types of Commercial Buildings

The motor loads and protection schemes of typical commercial buildings (e.g. retail buildings) are
summarized in an excel file and a snapshot of this file is shown in Figure 6.3Error! Reference source
not found.. The motor loads table of each building contains the following information for each motor:
building type, appliance, equipment, motor type, protection schemes and motor rating. For type D motors
(MD), as they are single phase motors, one motor is assumed to connect to each phase to ensure phase
balance. The naming rules for a motor object are: "Building_Appliance_Equipment™ for three-phase
induction motors, and "Building_Appliance_Equipment_Phase" for single-phase motors. "Phase" can be
A, B,orC.
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The motor parameters as shown in Figure 7.15 list the motor electrical and mechanical parameters.
Note that motor type D is using GridLAB-D default values. Different parameters for each motor can be
used by explicitly modifying the parameter values in motor information .xIsx file.

MA 0.363 0.0041472 0.078336 3.350016 0.00466176 0.0768
MB 0.363 0.0041472 0.078336 3.350016 0.00466176 0.0768
MC 0.363 0.0041472 0.078336 3.350016 0.00466176 0.0768
MD default default default default default default

Figure 7.15 Motor Parameters
7.2.2 Matlab Codes
Four Matlab functions are developed to read the input .xlsx file and write the output .glm files.
e motorGimGenerator.m: Main function. The user should only execute this function once.

o xls2cell.m: Read in the .xlsx input file containing motor information and convert it to cell arrays.
actXserver technique [71] is used to accelerate the process.

o glmFileGenetator.m: Write motor models of different buildings into .gIm files.

¢ writeMotorObject.m Subfunction of gimFileGenerator.m that writes a motor object into .glm file.
Should be run for each motor.

7.2.3  Output Files

Figure 7.16 illustrates snapshot of a sample output file. This file contains multiple motor objects in a
commercial building (small office building). A recorder object is associated with each motor object. To
link this building to the feeder model for GridLAB-D simulation, the users should add "#include
"small_offices_1.gIm"" to the feeder model .gIm file.
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object motor {
name small offices_
parent GC-12-47-1 m
phases ABCN;
frequency_measur
base_power 1062
nominal_ voltage
flags DELTAMODE;

TPIM type TPIM A;

H
Rs @
Xs
Xm 3
Rr
Xr

groupid small_offices_1;

relayProtectionTrip "0.6;0
relayProtectionReconnect "8.9;@8.833";

overLoadProtectionTrip "8.6 6.7 ©.8;8.33 8.5 1.8";

contactorProtectionTrip "0.65;8.1";
contactorProtectionReconnect "8.75;8.1";

emsProtectionTrip "0.8 8.4 6.5 8.6 ©.7;0.883 0.1 0.166 8.25 0.5";
emsProtectionReconnect "8.95;2.8";

object recorder {
property "ws, rotor_speed, Vas.real, Vas.imag, Vbs.real, Vbs.imag, Vcs.real, Vcs.imag, mechanic
interval 8;
file output/small_offices_1_ AHU Compressor.csv;
flags DELTAMODE;

}

object motor {
name small offices_1 AHU Fan;

parent GC-12

Figure 7.16 Sample Output File
7.2.4 Simulation Results

A voltage depression test is applied at the head of GC-12.47-1 feeder (used in Chapter 7.1). Three
types of commercial buildings, including large office, small office, and hotel, are placed at meter 1,
meter_2, and meter_3 of the GC-12.47-1 feeder respectively. It is assumed that the motor loads account
for 70%, 70% and 75%, respectively, of the total loads (in terms of real power) in the large office, small
offices and hotel. The remaining loads are modeled as constant impedance loads. Figure 7.17 shows the
zoomed-in diagram of GC-12.47-1 feeder. Table 7.3 shows the connection of the three types of buildings
to specific nodes of the feeder.
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Figure 7.17 Zoomed-in Diagram of GC-12.47-1 Feeder

Table 7.3 Connection of the Three Types of Commercial Buildings

Meter Building Number of | Total motor power per Impedance load
buildings building at the meter
meterl Large office 1 3000*0.7 kW 900 + j546 kKVA
meter2 Small office 5 300 * 0.7 kW 450 + j273 kVA
meter3 Hotel 1 3000 * 0.75 kW 500 + j303 kVA

The motor types, protection schemes and motor ratings for each type of building are demonstrated in
Figure 6.3. The rotor speed plots of all the motors in large office and hotel buildings are simulated and
presented in Figure 7.18 and Figure 7.19.
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7.3 Commercial Feeder Model Modeled in PSCAD

The intent of this section is to provide implementation guidelines for several critical motor protection
models at the distribution end-use level and to investigate the impacts of end-use motor protections on
system transient behaviors in electro-magnetic transient (EMT) simulation. The heterogeneous collection
of motors present in the system is represented for several typical commercial buildings connected to
different nodes of a distribution feeder. Each of the commercial buildings contains a combination of
motor loads and ZIP loads [72]. The composition and protection parameters of the heterogeneous motors
in each building are based on reviews of previous research publications. Several representative motor
protection schemes are described and implemented in detail. The feeder model, motor composition model,
and five types of protection models with examined parameters are explicitly developed in the PSCAD
simulator [73]. The dynamics of the realistically modeled feeder are observed in the PSCAD simulation
by feeding various voltage depressions at the head of the feeder. Transmission and distribution (T&D)
hybrid modeling is carried out intentionally to explore the impacts of individual motor protections on
transmission-scale system dynamics.

7.3.1  Categorization of Motor Loads

The common types of three-phase or single-phase induction motors found in typical commercial
buildings were investigated through reviews of previously reported work [3] [51] and identified in
Chapters 6 and 7. Six buildings are selected and represented in PSCAD feeder model, including two retail
stores (medium and large), a supermarket, a school, a hotel, and a warehouse. The identified motors in
these buildings are categorized into the four CMPLDW motor types based on inertia and torque
characteristics. The four motor types in WECC composite load model, referred to as Motors A, B, C, and
D, and are summarized in Chapter 6.1.

The ratings of the identified motors were determined from reviews of DOE-conducted survey reports,
including an Energy Information Administration commercial building survey [56] and DOE commercial
prototype building models [57] used in EnergyPlus simulations [52]. For motor-rated data that was not
found in DOE reports, a common calculation was applied to find the typical rated motor load for each
particular building set. If specified motors fell outside the common calculations, a top-down approach
[57] was used to roughly estimate the rated motor load within that building set.

7.3.2  Five Types of Protection

Motor protections are categorized into five typical types and discussed in detail in Chapter 6.2. Some
performance metrics of these five protection schemes associated with voltage levels are presented in
Figure 7.7 and Figure 7.13. The motor loads and associated protections for the six commercial buildings
have been studied in previous works [51] [61], and are summarized in Table 7.4. According to the
investigation, some identified motors are equipped with more than one types of protection. It is noted that
protections P1, P4, and P5 are triggered by transient low voltage conditions, and each has a reconnection
logic. These three voltage-dependent protections can be defined identically and implemented with
different parameter settings. Unlike the voltage-dependent implementation presented in Chapters 7.1 and
7.2, the current overload and thermal protections are implemented individually based on real physical
models in this sub-chapter. The development of the five protection logics is accomplished in PSCAD
using the master library components and user-defined models.

93



Table 7.4 Static Loads, Motor Loads and Associated Protections

Building Appliance | Equipment |Motor Type|Protections| Rating (kW)
RTU Fan MB P2P4P5 15.38
RTU Compressor MA P2P4P5 53.13
Medium Retail RTU Frac. Condenser MD P3P4P5 16.25
RTU Frac. Ind. Draft MD P3P4P5 10.41
Exhaust Frac. Fan MD P3P4P5 0.92
Static Loads 41.18
RTU Fan MB P2P4P5 46.15
RTU Compressor MA P2P4P5 159.38
RTU Frac. Condenser MD P3P4P5 48.75
Large Retail
RTU Frac. Ind. Draft ™MD P3P4P5 31.22
Exhaust Frac. Fan MD P3P4P5 1.38
Static Loads 122.95
RF Compressor MA P2P4 425
RF Frac. Fan MD P3 17
Exhaust Frac. Fan MD P3P4P5 1.38
Supermarket RTU Fan MB P2P4P5 30.77
RTU Compressor MA P2P4P5 106.25
RTU Frac. Condenser MD P3P4P5 325
RTU Frac. Ind. Draft MD P3P4P5 20.81
Static Loads 107.66
Gas_Heater Fan MD P3P4 1.2
Warehouse Exhaust Frac. Fan MD P3P4 24.62
Static Loads 11.07
Chiller Compressor MA P1P4P5 350
Chiller Pump McC P2P5 98
Cool_Tower Fan MB P2P4P5 42
Fan_Coil Fan MB P4P5 6.15
Exhaust Fan MB P2P4P5 1.29
school Boilers Ind. Draft MB P1P4P5 83.25
Boilers Pump MC P2P5 98
RTU Fan MB P2P4P5 123
RTU Compressor MA P2P4P5 425
RTU Frac. Condenser MD P3P4P5 130
RTU Frac. Ind. Draft MD P3P4P5 83.25
Static Loads 617.12
PTAC Compressor MA P4 425
PTAC Fan MD P3 123
Exhaust Fan MD P3 23
HWP Pump MD P3 1.2
Hotel Split Fan MB P2P4 123
Split Compressor MA P2P4 425
Split Frac. Condenser MD P3P4 130
Split Frac. Ind. Draft MD P3P4 83.25
Static Loads 571.48
Static MA MB mcC MD Total
1471.45 1986.26 470.99 196.00 780.14 4904.84
30.00% 40.50% 9.60% 4.00% 15.91% 100.00%
Note: Frac. - Fractional, Ind. - Induced
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7.3.3 Voltage-Dependent Protection Schemes

The voltage-dependent protection schemes include the electronic relay (P1), contactor (P4), and BMS
(P5). These three protection logics are defined in the same subroutine of the PSCAD user-defined
component with options of enabling or disabling each type. Each protection logic receives the same
voltage signal from the motor terminal sensor. If the voltage drops below the trip voltage level of a
specific protection, an individual timer will begin to count the length of time the voltage stays below the
trip level. If the voltage recovers sooner than the delayed time is reached, the motor does not trip, and the
timer would be reset to zero. If the voltage does not recover, a trip signal will be sent. The reconnection
for this specific protection type follows similar rules under the pre-conditions that the motor has been
disconnected by this protection and voltage recovers above the reconnection threshold. Because some
motors have more than one voltage-dependent protection, the outputs of these three protection controllers
are logically connected in parallel as inputs of an OR gate to ensure that the final output of the OR gate
will be based on a “first-come—first-trip” mechanism. The implementation algorithm of the voltage-
dependent protection scheme is outlined in Table 7.5.

Table 7.5 Algorithm of Voltage Dependent Protection

Algorithm 1 Voltage Dependent Protection

1: Subroutine MyProtection

2: Protdctivated +— True or False (user specified)

3: ProtWorkTime +— time protection begins to work (user specified)
4: Fir « trip voltage (user specified)

5. Ttr < trp delay (user specified)

6. Frec +— reconnection voltage (user specified)

7: Trec « reconnection delay (user specified)

8: MaxTripCount +— masamum allowed tripping count (user specified)
9. Initialize Variables:

10: Time < 0.0, TripTimer +— 0.0, RecTimer +— 0.0, TripCounter +— 0
11: Leap:

12: If (Protdctivated = True) AND (Time == ProtWorkTime) Then
13: If Vimeasured < Vir Then  //Tripping logic initiated

14: TripTimer «— TripTimer + At
15: If TripTimer = Ttr Then
16: If ProtTrip = False Then
17 TripCounter < TripCounter + 1
18: End if
19: ProtTrip +— True
20: Else
21: ProtTrip +— False
22: End if
23: Else
24: TripTimer +— 0.0
25: End if
26: If ProtTrip = True Them  //Reconnection logic initiated
27: If Fmeasured = Vrec Then
28: RecTimer «— RecTimer + Af
29: If RecTimer > Trec Then
30: ProtTrip +— False
31: TripTimer — 0.0
2: End if
33: Else
34: RecTimer «— 0.0
35: End if
36: End if
37: If TripCounter >= MaxTripCount Then  //Check trip counter
38: ProtTvip « True
39: End if
40: Endif

41: Time «— Time + Ai, goto Loop
42: Qutput: ProtTrip
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7.3.4 Current Overload Protection

Current overload protection is implemented using similar tripping logic (lines 13-25 in Table 7.5) to
the voltage-dependent protection scheme presented in Table 7.5. The current measurement (Imeasured) IS
sent in as an input and compared with trip current threshold (l). The motor is tripped by the current
overload protection after a time delay if (Imeasured >1tr). The difference is that there is no reconnection logic
for overload protection. Thus, the maximum allowed tripping number (MaxTripCount) is hard coded to
be 1.

7.3.5 Thermal Protection

The standard thermal protection model used in the PSLF performance-based model of an air-
conditioner (Idlpac) [14] [5] is implemented for all the single-phase motors identified as MD in Table
7.4.

The thermal protection logic, which is connected to the third input port of the OR gate, is shown in
Figure 7.20. When the motor is stalled, the current drawn by the stalled motor is represented by a constant
impedance load (Rsan + jXsan). The temperature of the motor is computed by integrating (Rstail’measured)
through the thermal time constant (Tierm) in the first-order transfer function in Figure 7.20. The integrated
result, which represents the motor temperature, is compared with a threshold temperature (Tw). The motor
is tripped when the motor temperature exceeds the threshold.

Fl PPS
Vmeaswed  Voltage

e 1 .
Imeasured verasTent Proledion _(__/ Breaker Contrel Signal

N R TR
s @

Rstall {pu) Tth (pu)
I Threshold Winding

Figure 7.20 Schematic of Protection Logics
7.3.6  Capacitor Bank Over-Voltage Tripping

A capacitor bank is deployed at the high-voltage side of each building transformer to provide VAr
support. The over-voltage tripping mechanism is implemented for these capacitor banks during a
cascaded motor tripping event caused by voltage depression. The status of the capacitor bank does not
change if the terminal operating voltage Vo, stays within a range. The capacitor bank is tripped when Vg,
rises above the upper bound, and is reconnected when V,, drops below the lower bound. The mechanism
is expressed by (7.1)—(7.4).

Initialize: Status < on (7.1)
If Vop > Vinax then, Status « off (7.2)
Else if Vimin < Vop < Vimax then, Status <« Not Changed (7.3)
Else, Status < on (7.4)

7.3.7  Study Cases

In this study, the six commercial buildings are supplied by two distribution taxonomy feeders GC-
12.47-1 [60], as shown in Figure 7.21. The feeders consist of 30% static (ZIP) loads and 70% motor loads
[60] [74]. The percentage of each motor type is shown in Table 7.4. The feeders are connected to Bus 18
of the IEEE 39 bus system [60] to replace the original ZIP load, as illustrated by Figure 7.22.

96



s il )
Botel g-' N Ciap_fes_Hotel n
GID L@ # i - o - . e e # o .3 i 4
A g N

@ g
: %[ n.n:\n m,;m f
=

T Vol
i & aD .l L B
4 | J[I‘I-E\IR] l[MIWIJ e

Figure 7.21 Distribution Feeder Schematic

7 & @,
; = 138kV — J8
@ 25 1 _230kV % [ = 11
30 ,-J_' . ! - 1 T ] 29
% 'E th 24
| Feeder I 16
1 3 T 17 15i_|_ b 1
) ¥ ABC >
f’y 39 4
! - ‘ 14
N 6 12
T T
8. | 8°8
T 1 3 L ]
SRR G N T 13 ¢
2 v : 10 1 L
Id -

/ : -
b

Figure 7.22 IEEE 39 Bus Transmission System

The building load ratings in Table 7.4 are identically scaled to match the original load at Bus 18. A
six-cycle, three-phase-to-ground fault is applied at Bus 16 of the transmission system, thus depressing the
voltage at Bus 18 to 0.35 pu. The simulation considers two scenarios: Scenario A when all of the
described protections for each motor in Table 7.4 are activated and Scenario B when only the thermal
parameters of the five
protections used in the simulation are generated from the specific numbers or randomly picked up from

protection (P3) is activated and the other protections are deactivated. The

the ranges described below [51] [66] [75]:
o P1:Vy=0.8~0.9pu, Ty =20 cycles ~20 s, Vrec = 1.0 pu, Trec = 6~300 s
o P2:ly=85pu, Ty=10s
o P3: Tw =0.15 pu, Tiherm = 10 S, Rstan = 0.054~0.086 pu
o P4:Vy =05 pu, Ty = 1~5 cycles, Viec = 0.65~0.7 pu, Trec = 2~8.5 cycles
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o P5:Vy=0.6pu, Tu =28, Viee =1.0 pu, Trec = 2~300 S

The parameters of over-voltage protection for all the capacitor banks are given as
L4 Vmax = 115 pu, Vmin = 055 pu

The voltage between the warehouse and school buildings is measured by a three-phase RMS voltage
meter, as shown in Figure 7.21. The measured voltages in Scenarios A and B are compared in Figure

7.23.

Figure 7.23 shows the voltages at the head of the feeder (Bus 18) and at the measurement point. It can
be seen that with all protections activated, the post-event voltage is slightly higher than the scenario in
which only thermal protection is enabled because some motors are tripped offline by fast-reacting
contactor protection (P4). However, most motors equipped with P4 are reconnected because the contactor
protection has a relatively low reconnection voltage. It can be seen from Figure 7.23 (b) that a slow
voltage drop, caused by motor reconnection, occurs after the clearance of the fault. In Scenario B, for
which only the thermal protection is activated, the stalled single-phase motors are tripped offline with
delays of seconds.
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Figure 7.23 Voltages at Bus 18 (Feeder Head) and Measurement Point

Figure 7.24 shows the comparison of protection actions in Scenarios A and B. In Figure 7.24 (a), the
motor is first tripped by contactor (P4) and then reconnected after the voltage recovers. The stalled motor
draws high current and the stator winding heats up after the motor is reconnected. When the winding
temperature reaches a threshold value, the motor is tripped by thermal protection (P3). In Figure 7.24 (b),
because the motor is equipped with only the thermal protection, the stator winding starts to heat up once
the voltage recovers.
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(a) MedRetail: RTU Frac. Condenser (MD, ph-A) - All Protection (P3P4P5)

Breaker Status (0->closed, 1-~open)
= = =Motor Terminal Current / 5 (pu)
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(b) MedRetail: RTU Frac. Condenser (MD, ph-A) - Only Thermal (P3)
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Figure 7.24 (a) Performance of thermal protection (P3) and contactor (P4) for Scenario A. (b)
Performance of thermal protection (P3) for Scenario B, in a roof top unit fractional condenser motor in a
medium size retail building

7.3.8 Summary

In this section, we discuss the results of our study of the impacts of end-use motor loads with
protections on power system transient behaviors. The motor loads and their protections in six types of
commercial buildings are categorized and modeled in Electro-Magnetic Transient Program T&D co-
simulations. The IEEE 39 bus system and a typical distribution taxonomy feeder are used in the PSCAD
simulation. The realistic system dynamics can be properly simulated by modeling the motor loads and
protections in detail. It can be concluded from our study that with all motor protections properly
configured the fault-induced delayed voltage recovery could be improved. The protection parameters
have a great impacts on the system dynamics.

7.4 Residential Feeder Modeled in GridLAB-D

This sub-chapter focuses on modeling a generic residential distribution feeder with detailed
representation of residential end-use loads and motor protection schemes [76]. The feeder and motor
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models are implemented in GridLAB-D simulator, which supports model development based on
dynamic-phasor techniques and effectuates distribution system simulation in mini-seconds timescale. The
power ratings of the end-use loads are determined based on the consideration of residential home types,
device nameplate values, home floor space and climate zones. Two common protection models residing
in residential motor loads are elaborately developed. Three profiles of mechanical torque are explicitly
modeled for the residential motors serving different functions. With the triangular-wave mechanical
torque modeled for reciprocating air-conditioner (A/C) compressor motor, the point-on-wave effects
impacting motor stalling and recovery can be innovatively investigated in the dynamic-phasor simulation
program, while previously the effects could only be simulated in electro-magnetic transient (EMT)
simulation tools [1]. An individual motor test is performed to explore the mechanism of motor recovery,
and a feeder-level test is carried out to investigate the impacts of motor protections on system voltage
profile. The feeder-level simulation results can be further used to calibrate the aggregate protection
parameters of the residential composite load model in the WECC network.

7.4.1 Identification of End-Use Loads in Residential Houses

Typical residential houses can be classified as single-family home (SFH) and multi-family home
(MFH). Single-family homes usually consist of one property unit that houses only one family, Multi-
family homes have more than one unit, which can ultimately house more than one family. The types of
end use in single-family and multi-family homes are identical, while the power ratings are different. Table
7.6 shows a list of common end uses in single-family and multi-family homes.

Table 7.6 End Uses in Single-Family and Multi-Family Homes

Residential Home Enduse Type |Voltage [V]| Base Power [W] | Protection/Power Factor | Scaling Factor
AJ/C Compressor | MDT 240 Floor-Area Related P1P2 7
A/C Fan MDS 240 Floor-Area Related P1P2 7
Dryer MDS 240 3000 P2 7
Clothes Washer MDS 120 1000 P2 7
Dish Washer MDS 120 1500 P2 7
Single-Family Home Fridge MDC 120 60 P2 7
Freezer MDC 120 52 P2 7
Water Heater ZIP 240 4500 0.8 7
Oven ZIP 120 1200 0.85 7
Microwave ZIP 120 1000 0.98 7
Lighting ZIP 120 Floor-Area Related 0.7 7
Electronics ZIP 120 Floor-Area Related 0.6 7
AJIC Compressor | MDT 240 Floor-Area Related P1P2 4
A/C Fan MDS 240 Floor-Area Related P1P2 4
Dryer MDS 240 2400 P2 4
Clothes Washer MDS 120 800 P2 4
Dish Washer MDS 120 1200 P2 4
. . Fridge MDC 120 50 P2 4
Multi-Family Home Freezer MDC | 120 45 P2 4
Water Heater ZIP 240 4500 0.8 4
Oven ZIP 120 1200 0.85 4
Microwave ZIP 120 1000 0.98 4
Lighting ZIP 120 Floor-Area Related 0.7 4
Electronics ZIP 120 Floor-Area Related 0.6 4

All the motor loads in residential houses are single-phase induction motors, noted as MD in Table 7.6.
The A/C compressor and A/C fan motors are equipped with thermal protection (P1) and contactor
protection (P2). All the other motors are only equipped with contactor protection. The power factors of all
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ZIP type loads [77] are provided in the same column of the motor protection type, as shown in Table 7.6.
The mechanical torque of these motors is different based on their functionality. Three types of mechanical
torque are represented for the single-phase motors (MD), with T indicating triangular-wave torque for
reciprocating A/C compressor [1], S indicating speed dependent torque, and C indicating constant torque.
In Table 7.6, some end uses consume a certain amount of power regardless of the floor space of a house.
The base powers of these end uses are computed based on the best estimates and online resources [78]
[79]. The power ratings of the A/C compressor and associated A/C fans are computed according to the
floor space of a house. To reflect the actual power consumption at each node of the feeder, a scaling
factor will be applied to scale up the total power of a house to represent multiple identical houses
connected in parallel.

For the A/C compressor, the compressor motor base power in W [80] [81] is calculated as:
P _ HRRxC
comp EER

where, HRR is the heat remove ratio, which is a constant defined as the heat removed by a 1 ton A/C in 1
hour, and its value is 3516 W/ton [80]; C is the A/C capacity in number of tons, which is related to the unit
area and climate zone [81]; and EER is the abbreviation for energy efficiency ratio, which is defined to be
the ratio of amount of heat removed in W over the power consumed in W [80].

(7.5)

For the A/C fan motor, the base power can be calculated using a ratio between A/C fan power and
AJC compressor power. Typically, this ratio is 15:85 [82]. Thus,
an :E R:om

g5 ™

For lighting and electronics loads, referring to the statistical data released by Energy Information
Administration [83], the values of power rating in W can be estimated by

S S
ighting :E ) R

electronics :E

P, (7.6)

R (7.7)

where S represents the square-feet floor space per property unit.
7.4.2  Protection Models for Residential End-Use Motors

There are two types of protection modeled for residential end-use motors [66], including contactor
protection and thermal protection. The contactor protection is an undervoltage protection. If the voltage
drops below a specific level for a specific length of time, contactor protection will trip the motor. If the
voltage recovers to another level for a specific length of time, contactor protection will reconnect the
motor to the system. The thermal protection is triggered by high temperature on stator winding. The stator
current of motor is monitored and used to evaluate the temperature inside the motor. If the temperature
exceeds a pre-defined threshold, the thermal protection will trip the motor. Usually the thermal protection
requires manual reconnection.

Figure 7.25 illustrates the flowchart implementation of contactor protection, where Ttrip and Trec are
time delay thresholds for contactor tripping and reconnection, respectively; and TripTimer and
ReconenctTimer are the elapsed time after voltage drops below trip threshold (Vtrip) and recovers above
reconnect threshold (Vrec), respectively.

The implementation of thermal protection is described by Figure 7.26. The standard thermal
protection model used in the PSLF performance-based model of an air-conditioner (Idlpac) [14] is
implemented for A/C compressor and A/C fan motors.
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In Figure 7.26, | represents the stator current of motor; Ty, is the thermal time constant of a first-order
lag transfer function; and I” indicates the motor temperature. When the motor is stalled, the current drawn
by the stalled motor is represented by a constant impedance load (Rstan + jXstai). The temperature of the
motor is computed by multiplying (I?Rsan) with the first-order lag transfer function in Fig. 2. The integrated
result, which represents the motor temperature, is compared with a threshold temperature (7). The motor
is tripped when the motor temperature exceeds the threshold.

( Start )

Is motor
tripped?

Yes No

ReconnectTimer =0 TripTimer =0

1 :

Yes Yes
Reconnect } Trip the
the motor motor
Ye ReconnectTimer TripTimer Yes— 1
> Trec ? > Ttrip ?
No No
' '
ReconnectTimer TripTimer
= ReconnectTimer + At = TripTimer + 4t
Figure 7.25 Implementation of Contactor Protection
R K I Tri
Compare —— Tri
IQ stall 1+ 15,5 p
Lyp—

Figure 7.26 Implementation of Thermal Protection

7.4.3

The motor model used in the simulation is the dynamic-phasor model of single-phase induction
motor, which was initially developed for use in the positive-sequence transmission system simulator [84],
and later adopted in the GridLAB-D simulation program [85]. Three types of mechanical torque,
including constant torque, speed-dependent torque and triangular-wave torque, are represented based on
the functionality of motor, as shown in Table 7.6. The triangular-wave torque is modeled uniquely for
reciprocating A/C compressor, which is prone to stalling [1]. Figure 7.27 depicts the mechanical torque of

Motor Model and Mechanical Torque
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the A/C compressor in steady state, comprising a speed-dependent component Tsq and a rotor-angle-
dependent component T;.

A Mechanical
Torque

Figure 7.27 Triangular-Wave Mechanical Torque for A/C Compressor
7.4.4  Simulation Cases

The simulation considers two scenarios in this study. In the first scenario, the point-on-wave analysis
is performed to investigate the motor recovery behavior of an individual A/C compressor. The second
scenario examines the dynamic responses of a feeder supplying multiple residential homes to the voltage
depressions at the feeder head.

Scenario |I: Test of an Individual A/C Compressor

The purpose of this test is to verify the feasibility that the dynamic-phasor model of single-phase
induction motor with proper modeling of mechanical torque could emulate the point-on-wave effects
discovered in the simulation of EMT model of A/C compressor motor [1]. In this scenario, an individual
AJC compressor motor without protection is tested by altering supplying voltage at the motor terminal. In
the test, two voltage depressions are applied at the motor terminal with the same depression level,
duration, and recovery level, but are initiated at different time instants. The results are shown in Figure
7.28 and Figure 7.29.

Magnitude [pu]

0.2 0.25 0.3 0.35 04 045
t[s]

Figure 7.28 Case 1: Mechanical Torque (Tmech), Terminal Current Magnitude (|Is|), Terminal Voltage
Magnitude (|Vs|), Electrical Torque (Te) and Rotor Speed (wr)
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02 0.25 03 0.35 04 0.45
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Figure 7.29 Case 2: Mechanical Torque (Tmech), Terminal Current Magnitude (|Is]), Terminal Voltage
Magnitude (|Vs|), Electrical Torque (Te) and Rotor Speed (wr)

For both Case 1 and Case 2, the voltage drops from 1.0 pu to 0.2 pu, lasts for 0.1038 s, then recovers
to 0.7 pu and keeps at this level afterwards. In Case 1, the voltage depression starts at 0.1962s, at which
time the triangular mechanical torque is at its minimum value. In Case 2, the voltage drops at 0.1984s, at
which time the motor mechanical torque is at its maximum value. It is seen from the results in Figure 7.28
and Figure 7.29 that, after the voltage recovery, the motor re-accelerates in Case 1 and remains stalled in
Case 2. The determining factor for motor recovery is not the level of mechanical torque during voltage
depression. However, the change of mechanical torque following voltage recovery determines whether a
motor recovers or not. It is seen from Figure 7.28 (Case 1) that the mechanical torque following the
voltage recovery tends to decrease to the bottom point of the triangular wave, which gives the electrical
torque enough time to overcome the mechanical torque and reaccelerate the motor. In Figure 7.29 (Case
2), the mechanical torque tends to increase after t = 0.3s, preventing the recovery of the motor. The point-
on-wave analysis in [1] discovered the mechanism of motor stalling. In this section, the behavior of motor
recovery from stalled status is captured through a similar point-on-wave study.

Scenario I1: Test of Residential Feeder

This scenario considers the simulation of a typical residential feeder supplying 21 residential homes,
including 15 single-family homes and 6 multi-family homes. The feeder R1-12.47-3 from the GridLAB-D
taxonomy feeder list [86] is chosen to be the testing feeder, with the schematic shown in Figure 7.30.
Table 7.7 shows the base floor space and the connection of the 21 residential homes to specific nodes of
the feeder. In this section, it is assumed that each single-family home represents one property unit, thus
contains one group of end use, and each multi-family home consists of three units and contains three
groups of end use.

To add a certain level of randomization to the residential homes to reflect reality, the actual space of
each unit is uniformly distributed within £10% of the value specified in the last column of Table 7.7 so
that the A/C compressor and fan powers that are area-related will have some randomness. For those end
uses whose base powers are not area-related, the base power itself is assumed to be uniformly distributed
within 10% of the base power values specified in Table 7.6.
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Table 7.7 Connection of 21 Residential Homes

In this scenario, the two types of protection as given in Table 7.6 are enabled for all the motor end
uses. A voltage depression is applied at the feeder head (Bus 53) to dip the voltage from 1.0 pu to 0.4 pu
at t = 0.1s and recover the voltage to 0.74 pu at t = 0.3s. The simulation is performed to explore the
device-level functionality of the two protections and the aggregate system-level impacts of motor
protections on voltages. Table 7.8 shows the parameters of the two protections. The results are shown in
Figure 7.31 and Figure 7.32.

Figure 7.30 Residential Feeder Model (SFH Stands for Single-Family Home; MFH Indicates Multi-
Family Home)
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Table 7.8 Protection Parameters

Protection Type Trip Parameters Reconnect Parameters

Rstall = 0.124 pu
Tth=10s )

P1 Thermal Manual Reconnection
K=1.0
I'th=0.8pu
Vtrip = 0.6 pu Vrec =0.7 pu

P2 Contactor .
Ttrip=0.1s Trec=0.1s

It can be seen from Figure 7.32 that when voltage drops at t = 0.1s, the motor stalls instantly and is
tripped by contactor after 0.1s delay, at which point the terminal current drops steeply to zero. After the
terminal voltage recovers to a level above Vrec = 0.7 pu, the motor is reconnected to the system after 0.1s
delay, remains stalled and draws high-magnitude current, resulting in the rise of stator winding
temperature. When the temperature hits the pre-determined threshold, the stalled motor is tripped by

thermal protection.

Node 45 Phase A voltage
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Figure 7.31 Phase-A Voltage at Node 45
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Figure 7.32 A/C Compressor in Multi-Family Home 1: Motor Mechanical Torque (Tmech), Terminal
Current Magnitude (|ls|), Terminal Voltage Magnitude (|Vs|), Electrical Torque (Te), Rotor Speed (wr)
and Stator Winding Temperature

Figure 7.31 shows the Phase-A voltage at Node 45, which is far away from the feeder head. With all
protections enabled, the voltage level after t = 2.0s is higher compared to the situation of no protections,
attributing to the action of thermal protections that trips all stalled motors.

7.45 Summary

This part of work presents guidelines and relevant details to realistically model residential end-use
motor loads and associated protections. The mechanism of A/C compressor stalling and recovery can be
studied in the dynamic-phasor simulation with appropriate implementation of triangular-wave mechanical
torque. The contactor and thermal protections, if properly coordinated, can help to reduce the fault-
induced delayed voltage recovery (FIDVR) problem by tripping stalled motors. In the future, the
dynamic-phasor models of variable frequency drives [87] [88] [89]will be implemented for distribution
system simulations. The characteristics of motor behind drive [90] and associated protection behaviors
will also be investigated.
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8.0 Next Generation Load Model Data Tool

The Load Model Data Tool (LMDT) has been developed by PNNL in cooperation with Bonneville
Power Administration (BPA), NERC load modeling task force (LMTF), and WECC modeling and
validation working group (MVWG). The LMDT is a standalone Windows application and it helps to
generate composite load model parameters taking into account climate zone and seasonal information,
operating hour and feeder type. The LMDT reads in the necessary long identifier (LID) information, and
supplements that with the base case power flow conditions and supplemental load shape data to generate
the dynamics records in GE PSLF and Siemens PTI PSS/E format. The LMDT application has been
released under an open-source license and can be downloaded at [91].

The first version of the tool (LMDT 1.0) was released in 2013. The first version of the tool is a
relatively simple application (Figure 8.1), it does not have built-in load model database and it requires to
generate composite load data using external tools (e.g. WECC composite load spreadsheet). The LMDT
1.0 is still maintained and available for downloading on the LMDT web site. Recently, the PSS/E
CMLDBLU2 model support has been added to the first generation LMDT (version 1.1)

(= Load Model Data Tool = =
Open Load Composition Data. Open Motor Data Open Powerflow Bus Data 0

Load Compostion Data | Motor Data | Powerflow Bus Data

HAREA Tx_Lf T X Tx_HS Tx_LS TX_LTC Tx_TapMax Tx_TapMin Tx_TapStep Tx_Vmax  ~

» 1 0.08 1 1 1 1.1 09 0.00625 104
NWC_COM 1 0.08 1 1 1 1.1 09 0.00625 104
NWC_MIX 1 0.08 1 1 1 1.1 09 0.00625 104
NWC_RAG 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWV_RES 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWV_COM 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWV_MIX 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWV_RAG 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWI_RES 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWI_COM 1 0.08 1 1 1 1.1 03 0.00625 1.04
NWI_MIX 1 0.08 1 1 1 1.1 09 0.00625 104
NWI_RAG 1 0.08 1 1 1 1.1 09 0.00625 104
RMN_RES 1 0.08 1 1 1 1.1 09 0.00625 104 v

< >

|l Save Dynamic Model Data File... Q
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Minimum Load (MW) 5 lodrep ~

#Composte load represertation
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Minimum power factor .82 "Pfs" 0,898 "Ple" 2 "Plc” 0.559 "F2e" 1 "P2c" 0441 "Fireq” 0 /

"Qle" 2 "Qle” 05 "0 1 Q%" 15 "Ciea” -1 /

"MipA” 3 "MpB" 3 "MipC" 3 "MD" 1/

“LfmA" D.75 "RsA" 0.04 "LsA" 1.8 "LpA” 0.12 "LppA” 0.104 /

" " 0. "TppoA" 0.0021 "HA" 0.1 "etrgA" 0 /
Vi

Output " 07 "TrIA" 0.02 "Rr1A”
O PSLF 18 Generate
" 0.2 "TppoB" 0.0025 "HB" 0.5 "etrg
CFElF 0.6 "Ttr1B” 0.02 "Rr1B" 02 "Vrc1B" 0.75 "Tre1B” 0.05 /

() PSSE "Wr2B" 0.5 "Tir2B" 002 "Rr28" 0.3 "Vic2B" D65 "Trc2B" 0.05/

B "LimC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 /

“TpoC" 02 "TppoC" 0.0026 "HC" 0.1 "straC" 2 /

"WriC" 0.65 "Ttr1C" 0.02 "RAriC" 0.2 "ViclC" 1 "Tre1C" 9999 / &

Figure 8.1 LMDT 1.0 Main Graphical User Interface (GUI).

8.1 LMDT 2.0

New version of the tool (LMDT 2.0) was released in 2016. The LMDT 2.0 has a built-in database of
load models for different climate zones and also has an advanced analytical and visualization capabilities.
The LMDT 2.0 graphical user interface (GUI) consists of the toolbar and four major panels (Figure 8.2):

1) Toolbar - includes buttons to specify the program settings and to display/hide additional panels
(map, hourly plots, etc.).
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2) Database panel — The database includes information for commercial, residential, industrial,
agricultural, and data load.

3) Composite load model panel — to setup the composite load parameters

4) Hourly plots panel — to display dependence of the composite load model parameters on the
operating hour

5) Map panel — to show the climate zone location and composite load model parameters distribution
using a heat map.
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Figure 8.2 LMDT 2.0 Main Graphical User Interface (GUI).

8.1.1 Load Model Database

The LMDT tool has a built-in database of the load shapes (end use data) for different load types,
including: (1) Commercial, (2) Residential, (3) Industrial, (3) Agricultural, (4) Data, and (5) Service. This
information is collected for different seasons and climate zones. Example of commercial and residential
end use data is shown in Figure 8.3.
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Figure 8.3 Example of Commercial and Residential End Use Data.

8.1.2 Rules of Association

Rules of association are used by LMDT to link end use data with composite model fractions (e.g.,
Motor A or Motor B). Rules of association are defined for each climate zone and stored in LMDT settings
(Figure 8.4)
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Figure 8.4 Rules of Association Screen.
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8.1.3  Feeder Configuration

Four types of feeders are supported by LMDT (RES - residential feeder, COM — commercial feeder,
MIX — mixed use feeder, RAG — rural feeder). Feeder parameters can be defined for each climate zone
and stored in the program settings (Figure 8.5). LMDT also supports custom industrial feeders (e.g.,
petro-chemical, paper mill, steel mill, semiconductor).
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Figure 8.5 Feeder Configuration Setup.

8.14 Motor Parameters Screen

Motor parameters can be selected in “Motor data” screen (Figure 8.6). Parameters are stored in csv
files and can be chosen using the file selector. The set of parameters includes: different three phase
motors (motors A, B and C), single phase motor (Motor D), and power electronic load.

111



#Type|ID |LF. [PF. |Vstall| Tstall | Rstall| Xstall| Frst [Vrst | Trst
AC AC (1 [098|045 |0.03 |01 |01 |02 (085 |03
#Type|ID |LF [P.F. |Vdl |Vd2 |Frcel
PE PE |1 1 07 |05 |0.8
PE Pl (1 1 072 052 (05
PE PP (1 (1 [06 |05 |09

Composite Load Mod< Motor Data !EE,;L! Area Data | Powerflow Bus Data | PSLF | PSSE | Error Log

Figure 8.6 Motor Parameters.
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M3 MA([075(0.78(1.8 |012 [0.104|004 |0.095(0.0021|01 |0 [065]0.1 |02 |1 99999(0.5 [0.02 [075 [0.65 3 @©
M3 MB|0.75(0.78(1.8 |0.19 [0.14 (003 |02 [0.0026(05 |2 055002 |03 [065 |005 (0S5 0,025 (03 0.6 | ;‘ %
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8.1.5 Bus Data

Bus information is needed to generate composite load records for individual buses. CSV files are used
as a bus data input and should include climate zone ID information to map bus with corresponding
climate zone (Figure 8.7). To add distributed generation (DG) to composite load record, bus data file
should also include DG information.

DG information

Climate Zone ID (optional)
* 0 X | Powerflow Bus Data — - o X
Season/Hour BusNumber BusMame BasekV loadiD Area Zone Owner P Q Voltage @ LD fen DG 14
Normal_Summer - 106 NORTH LD |115 1 1 1 0 1000|0 | 1.02 WCiMIK‘WsIWJ;ngq \
= 202 MIDWAY 115 |1 1 o 300 | 150]1.01871¢| NwC_RES |Rus202 long Ip |15 |DG1 | ¥
306 soutHw [11s |1 1 o 2700[0 | 1.0300gh[HID MiX | ;5306 long D [12 [-100
102 NORTHG1 |18 |1 1 [t Jo w0 [s0 |1 PPAAUX [bls102 long®D |25 [DG2
File Selec 104 NORTHG2 |18 |1 1 o 100 [50 PPA_AUX | b§5104_longliD
Bumﬂ B 202 soutHGT |18 |1 1 [0 o501 PPA_AUX | bfs302 long D | 156 |-101
Settings 304 soutHG2 18 |1 11 o [wo[s0 1 HID_RES_[Hs304 long P [31_[DG1
e 307 soutHG2e[1a |1 1 o 100 [50 [1 \[HiD_cOM [gus307tong IR |13 [-100
Minimum Load(MW) 3 T Texsi111 |18 |1 11 o [wo 501 TXG_COM Jbus1111 long 16]20 [oG1 | 7
Minimum voltage to add transformer (kV) 40 N 7
-
Minimum voltage (p.u.) 0.93

Minimum power factor 087 I
®
PSLF PSSE \_/_/

® CMPLDW(G) @ CMLD*U1

_ _CMPLDW ) CMLD™U2
Sumou Thresholds
® Bus Number @ Bus Number (BL)
! Long ID ! Area (AR)
Climate Zone () Zone (ZN)
Area ) Qwner ([OW)

Zane
Owner Composite Load Model | Motor Data | DG Data | €gea Data | Powerflow Bus Data | PSLF__DSSE | Error log

Figure 8.7 Bus Data.

8.1.6 Area/Zone/Owner Data

Area (zone or owner) information is needed to generate composite load records for a group
(area/zone/owner). CSV files are used as an area data input and should include climate zone ID
information to map area/zone/owner with corresponding climate zone (Figure 8.8).
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u
120 110

NERC regions and q:"'nrxmﬁil ;
N

Do Balancing Authorities
I .

File Selector
Area Data
Area/ZorlOwner: | MMWG_areas.csv ~ |[&
AreaNum | AreaName |Region | Climatezons | Feeder
101 ISO-NE__|NPCC_|NPC MIX
102 NYISO  |NPCC |NPL MIX
103 IESO NPCC | NPL MIX
104 TE NPCC_|NPE MIX
105 NE NPCC_|NPE MIX
106 NS NPCC_|NPC MIX
107 CORNWALL [Npce [npL MIX
108 NF NPCC | NPE MIX
201 AP RF RFE MIX
202 ATS! RF__|RFL MIX
205 AEP. [RE__[RFS MIX
206 OVEC RF_|RFE MIX
207 HE RF RFS MIX
208 DEI SERC |[SEI MIX
209 DAY RF RFS MIX
210 SIGE RF__|RFS MIX
212 DECAK __ |SERC |SEW MIX
215 DLEO RF RFE Mix
216 1PL RF RFS |MIK
Composite Load Model | Motor Data | DGQata | Arez Data  Pgoher

Figure 8.8 Area Data.

8.2 Load Model Creation Process Using Second-Generation LMDT

To create composite load dynamics records, several steps need to be done. The users can elect to

generate composite load records by bus level or by group.

The first 4 steps are described below and shown in Figure 8.9.

Step 1: Select season

Step 2: Select operating hour

Step 3 (optional): Specify percentage of different types of loads connected to the feeders:

0 RES - residential feeder

0 COM - commercial feeder

0 MIX - mixed use feeder

0 RAG - rural feeder

Step 4: Click “Update Model” button
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Composite Load Model Settings *+ O X
Load Mix

Load Mix Res Com Ind Agr Data Service

—

®nwe, < ~

RES 0.75]0.23 |0 0 0 N C%z
( M o2 {013 o [o [oos [o.d2,
X 045[048 [0 o [0.05 [0.02", Motors file: E
J RG 04 [02 Joisloasfo Jo Y otors fe:
’ @ NWI 4 Buses file: U
RES 075l023 o o |o 002 | V| settings
COM 0.2 |0.73 |0 0 0.05 |0.02 l Minimum Load(MW) 5
l MIX 0.45]0.48 |0 0 0.05 ]0.02
RAG 04 lo2 lo1slo2slo 0 [ Minimum voltage to add transforme 40
" @NWV ' Minimum voltage (p.u.) 0.93
\| Res 075023 [0 [0 |0 [002 [ Minimum power factor 0.82
VYcom  fo2 Jor3 o o [oos [0.02 #
WX 0.45]0.48 |0 0 0.05 [0.02 g Generate...
E 04 (0.2 [0.15]0.25]|0 0 »

(MR

N V4
| Res Yozsloas o [o _Jo# oo |-

Figure 8.9 Composite Load Model Records Creation (Steps 1-4)

8.2.1 Generate Load Records by Bus Level

If the users choose to generate load records by bus level, the following Steps 5-9 need to be executed
and are illustrated by Figure 8.10 and Figure 8.11.

e Step 5: Select bus data

o Step 6: Select PSLF/PSSE load model
e Step 7: Select by “Bus” option

o Step 8: Click “Generate” button

o Step 9: Copy and add composite load model dynamic records to the dynamic records file
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Season/Hour
Hot_Summer -
HE7 i
Update Model
@ @s'w(th_m.csv l$
Settings PAREY
Minimum Load(MW) /5 |y
! \
Minimum voltage to add transformer (kV) | 40 \
Minimum veltage (p.u.) Il 1
1
Minimum power factor V087 4
) 7
AY -

>

) ) Area (AR)
Climate Zone () Zone (ZN)
Area ) Owner (OW)
Zone
Owner

Figure 8.10 Composite Load Model Records Creation by Bus (Steps 5-8)

PSSE PSLF

DYRE Data Record:

1, "USRLGD', LID, 'CMLDxxUZ', 12, IT, 2, 133, 27, 146, 48, 0, 0, Model Name: cmpldwg
CON(J) te COW(J+132) / B

LIDvis an explieit load identifier or may be * for applieation 16 loads of ary 1D associated with the subsystem Description WECC load 1 with distributed
type Composite
generation (DG)

Model | IT" Description T Description

Prerequisites: Load in load flow sclved case
BL 7 BUs number —_D quisites
L b

Ow

™ 3 Zone number Inputs:

AR 0 Rres number

g B o Invocation:

o x

PSSE - X |PSLF - X
202 'USRLOD' 1 'CMLDBLUZ' 121 2 133 27 146 48 0 0 ~ | [empld 202 "MIDWAY" 115 1" : #1 mwa=-1/ ,
I X = L L

111 09 11 "Wxf" 0.08 "ThxHS" 1 "TAxlS" 1 "LTC" 1 "Tmin® 09 "Tmax® 1.1 "step” 0.00625 /
000625 1025 104 30 5 “Vmin® 1025 "Vmax® 1.04 "Tdel" 30 "Ttap" 5 "Rcomp” 0 “Xcomp® O /

0 0 0058 0065 0038 “Fma" 0.058 “Fmb" 0.065 “Fmc" 0.038 “Fmd" 0.092 “Fel® 0.115 /

0092 0119 1 07 05 “PFel® 1 "Vd1® 0.7 "Vd2" 0.5 “Frcel* 08 /

-1 2 0469 1 0531 0 "Pfs” -1 "Ple” 2 "Plc” 0469 "P2e” 1 "P2c” 0.531 "Pfreq™ 0 /

2 -0.500008562670183 1 1.50000856267018 -1 "Qle” 2 "Qle” -0.500008562670183 "Q2e” 1 "Q2c” 1.50000856267018 "Ofreq” -1 /
3 075 004 18 032 0104 "MtpA® 3 "MtpB" 3 "MtpC" 3 “MtpD" 1/

0095 00021 01 0 065 “LfmA® 0.75 "RsA™ 0.04 "LsA™ 1.8 "LpA” 0.12 "LppA” 0,104 /

01 02 1 99999 05 “TpoA® 0.095 "TppoA® 0.0021 “HA® 0.1 “etrgh™ 0 /

002 075 065 0.1 “VirlA® 063 “TtrlA® 0.1 “FrrlA® 0.2 “Vrc1A™ 1 “Trc1A® 99999 /

3 075 003 18 019 0.4 "Vir2A" 0.5 "T2A® 002 "Fr2A" 0.75 "Vrc2A" 065 "Trc2A® 0.1/

02 00026 05 2 055 “LfmB* 0.75 "RsB" 0.03 °LsB" 1.8 "LpB" 0.19 “LppB" 0.14 /

002 03 065 005 05 "TpoB” 0.2 "TppoB” 0.0026 "HB™ 0.5 "etrgB™ 2 /

0025 03 06 005 “Vir1B® 055 "Ttr1B" 0.02 “Ftr1B* 0.3 "Vrc1B® 0.65 “Trc1B™ 0.05 /

3 075 003 18 019 094 “Vtr2B® 05 "Ter2B" 0025 “Ftr2B* 0.3 "Vrc2B" 0.6 “Trc28" 005/

02 00026 01 2 058 "LimC* 0.75 "RsC" 003 "LsC* 1.8 "LpC" 0.19 "LppC" 0.14 /
003 02 088 005 052 “TpoC* 02 “TppoC" 0.0026 "HC® 0.1 “etrqC” 2 /
003 03 062 01 "VtrlC* 0.58 “Ttr1C" 0.03 "Ftr1C* 02 "Vre1C" 0.68 “Tre1C™ 0.05 /
003 03 002 005 "Vir2C" 052 “Ttr2C" 0.03 "Ftr2C" 0.3 "Vre2C" 062 “Tre2C™ 0.1/

1 098 045 01 01 "LfmD" 1 "CompPF" 0.98 /

0.0 0.0 1.0 60 20 120 32 11.0 25 0.86 "Vstall' 045 "Rstall” 0.1 "Xstal" 0.1 “Tstall® 0.03 "Frst* 02 "Vrst® 095 "Trst" 0.3 /
02 095 1.0 -33 05 “fuvr® 01 “virl® 0.6 “ttr1® 002 “wir2™ 1 “tr2" 9999 /
04 06 03 15 07 19 “Veloff* 05 “Vie2off* 0.4 “Vclon® 0.6 “Ve2on® 0.5 /

1 09999 08 /MIDWAY 115 “Tth™ 15 “Thit" 0.7 *Th2t" 1.9 “tv" 0025/

306 'USRLOD' 1 'CMLDBLUZ 121 2 133 27 14 "DGtype” 1 "pfigdg™ 2 “Pgdg" 0 "Pfdg” 1 "Imax” 1.1 /

-1.2 0 004 004 075 008 "VE0" 0.45 "Vt1" 075 "Vi2" 1.1 "Vi3" 1.2 "Vrec" 05 /
11109 11 "f0" 57 “f1" 504 606 "f3" 61.7 "frec” O
000625 1.025 104 30 5 v cmpl - mva=-

Figure 8.11. Composite Load Model Records Creation by Bus (Step 9)
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8.2.2  Generate Load Records by Group

If the users choose to generate load records by group, the following Steps 5-9 need to be executed and
are illustrated by Figure 8.12 and Figure 8.13.

e Step 5: Select area data

e Step 6: Select PSLF/PSSE load model

e Step 7: Select “Area”, “Zone”, or “Owner” option
o Step 8: Click “Generate” button

e Step 9: Copy and add composite load model dynamic records to the dynamic records file

Area Data @
Area/Zone/Owl MMWG _areas.csv

Region| Climatezone| Feeder,
101 150-NE NPCC [NPC MIX
102 NYISO NPCC [NPL MIX
103 IESO NPCC | NPL MIX
T i NPCC |NPE WX
105 NB NPCC [NPE MIX
106 NS NPCC [NPC MIX
107 CORNWALL [NPCC | NPL MIX
108 NF NPCC [NPE MIX
201 AP RF RFE MIX
200 |atsi RE_[RRL MIX
205 |AEp RF__|RFS MIX PSLF only
Settings |26 [ovic  [rF [re = —_— ;T
L. Composite Load Model MWDG DG Data | Area Data | Powerflo > »
Minimun: cuauyvivey 15 \
! \
Minimum voltage to add transformer (kV) 140 |
! I
Minimum voltage (p.u.) 1 093 I
. \ I
Minimum power factor 1 0.87 /

N

Bus Number () Bus Number (BL) Generate >
Long ID ® Area (AR) . -
@ O Climate Zone O Zone @N)
'..:_.' Owner (OW)
(_ Zone
() Owner

Figure 8.12 Composite Load Model Records Creation by Group (Steps 5-8)
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PSSE PSLF

Model Name: _cmpldw
DYRE Data Record:
I, 'USRLOD', LID, 'CMLDwxU2', 12, IT, 2, 133, 27, 146, 48, 0, O, Description WECC Composite load model for a group
CON(J) to CON(J+132) ] (load zone, area. zone, owner).
LID s an explicit load identifier or may be * for application to boads of any 1D associated with the subsystem r—
type. Prerequisites:
Wodel [T Description T Description Inputs: Voltage st bus to which the composite load s
suffix " connected
8L T B ouobar
- 2 TOwner number ] Invocation: _TPpliv BUR "QIoUP Rame” <gESUP Type $r mvas-load
JEL |E |Zone number o
- I TArea number Parameters: Settings
= - | | : Mirimum LosdlW)
b . - ' Mirimurm vohige 1 o3 srwformer (V) o
Variable Description [m—— s
Mindrmem load P, MW Mildmom incter 087

Minimm load P/ Q ratio

Mindrmsm bus voltage, pu __‘-_-/

PSSE - - X
Save DYD..

/I AR Name=150-NE Climate Zone ID=NPC Feeder=MIX cmpldw 101 "ISO-NE* 1 : #1 mva=-1/

101 "USRLOD" * 'CMLDARUZ2' 12 4 2 133 27 146 43 0 0 “Prin” min. 1. min 0.

TT 0 00f 00F o5 008 "Bss® 0 "Rfde" 0.04 "¥6d-" NN Che ATS s

110 09 11 “Yxf* 0,08 “TfixHS" The group type valves and comesponding “group name” are as follows:
000625 1025 104 30 5 “Vmin' 1025 “Vmax 0 (or missing) —Load Zene (Climate Zone)
0 0 0112 0048 0016 "fma” 0.112 "Fmb” 1 = Area name

0168 0199 1 07 05 “PEel* 1 *Vd1* 0.7 2 — Zone name

0998 2 0502 1 0498 0 “Pfs" -0.998 "Ple” : = Owner name )

2 -0500008562670183 1 1.50000856267018 -1 "Qle” 2 "Qlc” -0.5000 "Q2e" 1 "02c" 1.5000 "QOfreq” -1 /

3 075 004 18 032 0104 “MtpA® 3 “MtpB* 3 “MtpC* 3 “MtpD" 1/

0095 00021 01 0 065 “LimA" 0.75 "RsA” 0.04 “LsA" 1.8 "LpA" 0.12 “LppA" 0.104 /

01 02 1 99999 0S5 "TpoA™ 0.095 "TppoA" 0.0021 "HA™ 0.1 "etrgA" 0 /

002 075 065 01 “VerlA® 065 “TerlA® 0.1 “FrlA® 0.2 “VrclA® 1 “Trc1A® 99999 /

3 075 003 18 019 014 "Wer2A" 0.5 "Ter2A" 0.02 "Ftr2A" 075 "Vre2A® 0.65 "Tre2A™ 0.1/
02 00026 05 2 055 “LfmB" 0.75 "RsB" 0.03 "LsB" 1.8 “LpB" 0.19 "LppE" 0.14 /

002 03 065 005 05 “TpoB™ 0.2 “TppoB™ 0.0026 "HB" 0.5 “etrgB” 2 /

0025 03 06 005 "¥er1B® 055 "Ttr1B" 0.02 "Ftr18" 0.3 "Vrc1B® 0.65 "Trc1B™ 0.05 /
3 075 003 1.8 099 014 "Vtr2B® 0.5 "Ttr2B™ 0.025 "Ftr2B" 0.3 "Vrc2B™ 0.6 "Trc2B" 0.05/
02 00026 01 2 058 “LfmC® 0.75 "RsC" 0.03 "LsC* 1.8 "LpC" 0.19 “LppC® Q.14 /

003 02 068 005 052 "TpoC" 0.2 "TppoC" 0.0026 "HC™ 0.1 "etrqC" 2 /

003 03 062 01 "WrlC" 0.58 "Ttr1C" 0.03 "Ftr1C" 0.2 "Vrc1C® 0.68 "Trc1C" 0.05 /
003 03 002 005 “Vr2C* 0.52 “Ter2C" 0.03 “Fr2C* 0.3 "Vrc2C® 062 “Trc2C* 0.1/

1 098 045 01 01 "LfmD" 1 "CompPF" 0.98 /

0.0 0.0 1.0 60 20 120 3.2 11.0 25 0.86 "Vstall" 045 "Rstall" 0.1 "Xstall* 0.1 "Tstall* 0.03 “Frst" 0.2 "Vrst" 085 "Trst® 0.3 /
02 095 10 -33 05 “fuvr® 0.1 *wtr1® 0.6 “ttr1® 002 “vtr2® 1 “tr2" 9999 /

04 06 05 15 07 19 "Veloff* 0.5 "Ve2off” 04 "Velon™ 0.6 "Ve2on" 0.5 /

01 06 002 1 9999 08 / “Tth™ 15 “Thit" 0.7 “Th2t" 1.9 “tv" 0025

i ame= imate Lone (U= eeder= _cmpldw 102 "NYBO" 1 : #1 mva=-17

102 "USRLOD" * "CMLDARUZ' 12 4 2 133 27 146 48 0 0 "Pmin”" 5 "POmin”" 1.7645 "Vmin" 0.93 "kVthresh® 40 /

Figure 8.13 Composite Load Model Records Creation by Group (Step 9)

8.3 LMDT Version History
831 LMDT2.1

In 2017 new features were implemented in the LMDT tool and updated version of the tool has been
released (LMDT 2.1). New features include:

o Configurable presets for each climate zone (based on XML file). Users can modify and store load
composition and feeder configuration in the program setting file for future use.

o Improved errors diagnostics and errors log.
o Search within output files.

Configuration file structure is shown in Figure 8.14. It allows to store multiple presets with different
configurations. Each preset includes an individual configuration for each climate zone and consist of
feeder parameters and information for commercial and residential loads.
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<Preset Name="presetl">
<Climate Name="DSW">
<Feeders>

<Commercial>

<Residential>

</Climate>
<Climate Name="HID">
<Feeders>

<Commercial>

<Residential>

</Climate>
<Climate Name="NCC">
«<Feeders>

<Commercial>

<Residential>

</Climate>

Model Settings
InputFile: | CEUS.csv | Peak Hour | HE16 * | [Update Model

Figure 8.14 Configuration xml File Structure.

Feeder configuration xml schema is shown in Figure 8.15. LMDT tool supports four types of feeders
(residential, commercial, mix use and rural). Each feeder composition of different types of loads can be

specified and saved in the program settings file.

<Climate Name="DSW">
<Feeders>
<RES>
<Residential>0.75</Residential>
<Commercial>0.23</Commercial>
<Industrial>0</Industrial>
<Agricultural>0</Agricultural>
<Data>0</Data>
<Service>0.02</Service>
</RES>
<COM>
<Residential>0.2</Residential>
<Commercial>0.73</Commercial>
<Industrial>0</Industrial>
<Agricultural>0</Agricultural>
<Data>0.05</Data>
<Service>0.02</Service>

oo h RAG 04 102
<MIX> @ NCC

<Residential>0.45</Residential>
<Commercial>0.48</Commercial>
<Industrial>0</Industrial>
<Agricultural>0</Agricultural>
<Data>0.05</Data>
<Service>0.02</service>

</MIX>

<BAG>
<Residential>0.4</Residential>
<Commercial>0.2</Commercial>
<Industrial>0.15</Industrial>
<Agricultural>0.25</Agricultural>
<Data>0</Data>
<Service>0</Service>

</RAG>

</Feeders>

Load Mix
Load Mix Res Com Ind Agr Data Service

(~) DsW

RES 075/023 [0 o [0 o002
coM |02 [o73 o [0 [o005 [0.02
MX___ [045[o48 [0 o o005 [002
RAG |04 Jo2 [o1s[o2s[o o

(~) HID

RES 075|023 [0 |0 |O 0.02
COM 02 |073 |0 |0 |0.05 |0.02
MIX 045|048 |0 [0 [0.05 [0.02
0.15|10.25|0 0
RES 075|023 [0 |0 |O 0.02

COM 02 (073 [0 |0 |0.05 |0.02
MIX 045(048 [0 |0 |0.05 |0.02
RAG 04 (02 [0.15]|0.25(0 0

(A)Na

RES 075|023 [0 |0 |O 0.02
COM 02 |073 |0 |0 [0.05 |0.02
MIX 045|048 [0 |0 |0.05 |0.02
RAG 04 |02 |0.15(0.25(0 0

Figure 8.15 Feeders xml Schema.

Commercial and residential loads configuration file structures are shown in Figure 8.16 and Figure
8.17. Users can specify and store parameters of the loads in different presets and use them in the future

studies.

118



= <Climate Name="DSW">
<Feeders>
= <Commercial>
lﬂ—] <Heating>
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Figure 8.16 Commercial Load xml Schema.
<Climate Name="DSW">
<Feeders>
<Commercial>
<Residential>
<Heating>
<MotorA>0</Motori>
<MotorB>0</MotorB>
<MotorC>0</Motorc>
<MotorD>0.3</MotorD>
<PE>0</PE>
<DG>0</DG>
<StatP Res>0.7</StatP Res>
<StatP_ Cur>0</StatP_Cur>
<StatP_Power>0<;’StatP_Power>
<Stat(Q React>0</StatQ_ React>
<StatQ_Cur>0</StatQ_Cur>
<StatQ_Power>0</StatQ_ Power> e izl EOET
F </Heating> Model Settings
(E3) <Cooling> Input Fik: | Residential_Inputcsv ~ | Peak Hour | HE16 ~ | [Update Model
= <vent> Load Heating Cooling Vent WaterHeat Cooking Refrig Extlight Intlight Electronics Appliances Misc Vehicke
H <WaterHeat> (=) osw
®H <Cooking> Motard 0 0 oo o o o o (] 0 [ []
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&) <appliances> Stat P Cur |0 o o [0 o [ i [] 05 o |0
H <Misc> Stat_P_Power |0 0 o o 0 0 o 0 0 0 0o Jo
o Stat_Q React |0 0 o 0 0 (] 0 0 0 [ [] 0
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[ </Residentizl> Stat_Q Power |0 o o [o o o o 0 ] 0 o o
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Figure 8.17 Residential Load xml Schema.
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8.3.2 LMDT 2.2

New version of the LMDT tool was released in 2019. The tool’s load shapes database was extended
to the Eastern interconnection and ERCOT. Support of distributed generation (DG) was added for PSLF
data records. Also torque-slip motors characteristics calculation (Figure 8.18) and new visualization (pie
chart for load composition, see Figure 8.19) was added.

Motor MB
Ls: Lp: Lpp:
5
18] 0.19[E] 014
— Lgad Torgle
LI Ra: Tpo:
0123 0032 02}
15 Tppo: Dtorque: Torque at wO:
0.0026 [+ = 0.75 &
Terminal Voltage:  |m: LIrt:
g 1 1680 0.073
o
2 L Lir2: Rr1: Rr2:
0.028 0.023 1.743
05—
0 -

0 100 200 300
Speed (rad/sec)

Figure 8.18 Motor Torque-Slip Characteristic Screen.

FRC_RES (HET1)

Season=Normal_Summer

14%

Figure 8.19 Load Composition Pie Chart.

Climate zone definition map is shown in Figure 8.20 [50]. User can select presets and use datasets for
“whole” county or use datasets configured for WECC or Eastern interconnection (Figure 8.21).
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Latitude

Figure 8.20 Climate Zone Definition Map.

Load Model Database | Composite Load Database |

Selected Preset |w M |Ddﬂe]
Coml WEST dustrial | Agricultural | Data | Service |
M EAST
MNEW MNorthAmerica 3 ——
Peak Hour | HE16 * | [Updﬂﬂmdd]

Inptrerrereremesy—
Figure 8.21 Presets for West, East and North America.

Distributed generation (DG) screen of LMDT 2.2 is shown in Figure 8.22. Two types of DG models
are supported: PVD1 and DER_A. The tool uses csv format to store DG information and supports
multiple presets for DG settings. Bus and group composite load model records are linked with DG

parameters through DG ID identifier.
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DG Data > ax
DG daka: | DG_datacsv
#Type|ID |DGtype|pflgdg |Pgdg|Pfdg |Imax|VtD |Vl [Vi2 |Wi3 |Vrec RO |1 ft2 |f3 frec
1
1

PVD1 |DG1 |1 2 0 1.1 |045 |0.75 |14 1.2 |05 |57 |594 |60.6 |61.7 |O
PVD1 |DG2 |1 2 0 1.2 |046 |0.76 |11 [1.21]05 |57 [59.5 [60.8 |61.7 |0
#Type|ID |DGtype|trv dbd1 |dbd2|kqv [vrefO|tp |pfflag|tiq |ddn |dup|fdbd1|fdbd2 | femax|femin | pmax|pmin|frgflg| dPmax |dPmin |tpord |ima
DER_A|-100|2 0.00416(-0.1 |01 |1 102 [0.025]1 002/0 (0 |0 0 999 |[-239 [11 |0 0 9 -9 01 |12
DER_A|-101|2 0005 |-011)|01 |1 1.02 10.025(1 0.02 1.1 |0 0 9 =4 0.1 1.2

g
8

{ h
Composite Load Model | Motor Wm\r Bus Data | PSLF | Psse | Ermor Log

Figure 8.22 DG Screen.
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9.0 Investigation on Motor Progressive Tripping

9.1 Motor Progressive Tripping

Within the traditional WECC composite load model (e.g. CMPLDW model in PSLF), the three-phase
induction motor models (MOTORW model in PSLF) are protected by a 2-level voltage-dependent
protection scheme which trips or reconnects specific fractions of the aggregate motor loads when the
terminal voltage drops below or rises above pre-determined thresholds. However, this protection scheme
neglects the fact that the realistic distribution feeder, which is simplified by a composite load model in
PSLF, is in a radial or meshed configuration. The motor loads distributed along the feeder do not trip
simultaneously given a voltage depression at the feeder head. Typically, motors approaching to the feeder
head are more vulnerable to tripping than that connected downstream the feeder. To replicate this
phenomenon, PSLF released a new three-phase induction motor model “MOTORLD” with progressive
tripping implemented. However, the MOTORLD model is a standalone model that has not been merged
into WECC composite load model. In this study, the progressive tripping mechanism will be explained
and validated in an individual unit test case. This chapter also proposes a WECC composite load model
formulated by individual components, in which all three-phase induction motors are represented by
MOTORLD model rather than the traditional MOTORW model. A system-level test is performed to
evaluate system voltage responses under different aggregate protection models.

There are two protection schemes implemented in MOTORLD, including contactor model and
controller model. The model for the contactor is shown in Figure 9.1. It is intended to represent the
tripping (and reconnection) of a fraction of an aggregation of motors over a range of voltage levels. If
using the model to represent a single motor, VVc2off should be set equal to VVcloff, and VVc2on should be
set equal to VVclon [5]. The output of the contractor model indicates the fraction of motor connected to the
grid.

fen
’ Ve1off Vcion
Vbus 1 \Y, fen
—_— > —»
1+sTc
Vc2off  Ve2on V

Vc1off 0.0 Contactor voltage at which motors start tripping, p.u.

Vc2off 0.0 Contactor voltage at which all motors are tripped, p.u.

Vcion 0.0 Contactor voltage at which all motors are reconnected, p.u.

Vc2on 0.0 Contactor voltage at which motors start reconnecting, p.u.

Tc 0.0 Voltage sensing time constant for contactor, sec.

fr_with_c 0.0  Fraction of motors with contactors

Figure 9.1 Contactor Protection [92]

The model for the “control trip” is shown in Figure 9.2. It is intended to represent the tripping of
motors by a “controller” such as an energy management system, with a range of time delays that are a
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function of voltage. If using the model to represent a single motor, one should set V2 = V1, T2a = Tla,
and T2b=T1b. When the voltage dips below V0, a timer (dT) is started. For single motor trip curve, when
timer exceeds T1, the motor is tripped. For the dual (fasted and slowest) trip curves, at each time step, the
points on the two characteristics corresponding to the present value of V are calculated, call them T1 and
T2. When dT becomes > T1, a fraction of the load is tripped equal to (dT — T1) / (T2 — T1), that is, the
relative fraction of the distance between the two characteristics. As V changes, the values of T1 and T2
will change, which may result in the trip fraction shifting to higher or lower values. However, once a
given fraction has been tripped, it is not allowed to be “untripped”. When V recovers above VO, the timer
is reset and the fraction tripped is stored. If a subsequent voltage dip below VO occurs, the calculations are
repeated to determine what additional amount may be tripped, i.e. tripping amounts on successive voltage
dips are cumulative. Reconnection of tripped load is assumed to require operator action or a time delay
beyond the range of the simulation, so no reconnection is modeled [5].

— Voltage
olta . .
Voltage Single Trip Curve Fastest Trip
SYowest Tric

VO vo

vl T1 vi | 1 41 T

V2

Time Time

T1A T18 T1A T2A TiB T8
(a) Single Motor Trip Curve (b) Fastest and Slowest Trip Curves

Figure 9.2 Controller Protection

It is noted that the fractions of motors with contactors and with controller are not additive but
overlapping. Therefore, tripping of fractions of the motor by contactor, controller, and load shedding
relays is multiplicative, that is, the total fraction not tripped is the product of the fraction not tripped by
each of these devices. Tripping by these devices also trips a corresponding fraction of the compensating
capacitor, if present [5].

9.2 Individual Unit Test

In this sub-chapter, single MOTORLD model is tested in a two-bus system. The scenarios exclusively
consider a) contactor protection (no other protections) and b) controller protection (no contactor). In
Scenario b), a single voltage dip and two consecutive voltage dips are created to examine the
performances of single trip curve (representing single motor) and dual (fastest and slowest) trip curves
(representing a number of motors) in controller protection model. The two-bus system schematic is given
in Figure 9.3.
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' 100000 MVA R=0.0001 pul 5 | ismvA
Vsag @ X=0.001 pu D
Timé

\. P
Figure 9.3 Two-Bus System for Testing Individual MOTORLD Model
The motor parameters of MOTORLD model is given in Figure 9.4.

pul 0.500000
JE 3.500000
1p 0.1%0000
ipp 0.165000
11 0.1Z0000
ra 0.020000
oo 1.830000
e =) 0.020000
h 0.5%00000
dc 2.000000
ael 0.010000
ged 0.100000
ace 0.%00000
ndslt 10.000000
wdslt 0.800000

Figure 9.4 Motor Parameters

Firstly, the contactor protection is tested. The protection parameters are summarized in Table 9.1. The
simulation considers three scenarios: a). Vsag > Vcloff, b). Vcloff >Vsag > Vc2off, and c). Vsag < Vc2off.
The results are presented in Figure 9.5.

Table 9.1 Protection Parameters for Contactor Test

Parameters Vcloff Vc2off Vclon \Vc2on Tc

0.6 pu 0.5pu 0.7 pu 0.65 pu 0.02s
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Figure 9.5 Contactor Test Results

The controller protection is tested considering the single motor trip curve depicted in Figure 9.2. The
protection parameters are summarized in Table 9.2. This simulation involves three voltage dip scenarios:
a). Vsag > V0 (0.7 pu), b). VO > Vsag > V1 (0.6 pu), and c). Vsag < V1 (0.6 pu). The results are presented
in Figure 9.6.

Table 9.2 Controller Protection Parameters for Single Motor Trip Curve

Parameters V1 V2 T1A T2A T1B T2B

0.6 pu 0.6 pu 0.067 s 0.067 s 0.1s 0.1s
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Figure 9.6 Test Results of Controller Protection with Single Motor Trip Curve

In the second test case of controller protection, the dual (fastest and slowest) trip curves are
implemented. The protection parameters are summarized in Table 9.3. Four voltage dip conditions are
considered, including a). Vsag > VO (0.7 pu), b). VO > Vsag > V1 (0.6 pu), ¢). Vsag < V1, and d). Vsag <
V2 (0.5 pu). The simulation results are shown in Figure 9.7.

Table 9.3 Controller Protection Parameters for Dual (Fastest and Slowest) Motor Trip Curves

Parameters

V1

V2

T1A

T2A

T1B

T2B

0.6 pu

0.5 pu

0.06 s

0.08 s

0.1s

0.15s
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Lastly, two successive voltage dips are applied to test the performances of dual-curve controller
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protection (see Table 9.3 for parameter setting). The simulation result is shown in Figure 9.8.
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Figure 9.8 Test Results of Controller Protection with Dual Trip Curves under Two Successive Voltage
Dips

The test results of single MOTORLD model showed that the contactor and controller protection
responded to voltage sags of various magnitudes as expected (i.e., in agreement with the model
specification and documentation).

9.3 System-Level Test

In this sub-chapter, a minni-WECC 120-bus transmission system [93] is utilized to represent the
detailed WECC system in a smaller scale. The one-line diagram of mini-WECC system is shown in
Figure 9.9. All the static load models in the minni-WECC system are replaced by WECC composite load
models in two forms, including PSLF internal CMPLDW model and composite load model built with
individual components as shown in Figure 9.10. The system-level responses of the two forms of models
are compared in this study.
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Figure 9.9 One-Line Diagram of Minni-WECC. All Generators and High-Voltage Buses Shown [93]
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(b) WECC Composite Load Model Built by Individual Components

Figure 9.10 Two Forms of WECC Composite Load Model Formation

To more authentically mimic the real WECC grid, the load profile of the minni-WECC system,
tabulated in Table 9.4, is created by referring to WECC climate zone definitions and load composition
data from load model data tool (LMDT). A WECC 2020 Heavy Summer planning case (at 6pm) is
considered for load model generation and simulation.
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Table 9.4 Load Composition for Minni-WECC Load Models

Bus Load P Load Q
No. Bus Name (MW) (MVAr) FmA FmB FmC FmD Fel Fst
8 "BCH-8" 4,400 1,100 0.12 0.14 0.05 0.17 0.16 0.36
11 “SEA-LOAD” 5400 1,350 0.2 0.25 0.3 0.01 0.2 0.04
16 “ORE-16" 3,600 900 0.19 0.14 0.03 0.2 0.15 0.29
21 “ORE-21" 900 225 0.2 0.35 0.35 0.01 0.05 0.04
26 “ORE-26" 450 113 0.2 0.35 0.35 0.01 0.05 0.04
29 “BDY-GEN” 1,575 394 0.2 0.35 0.35 0.01 0.05 0.04
36 “ORE-36" 900 225 0.23 0.15 0.06 0.25 0.12 0.19
43 “SFO-LOAD” 13,240 4,060 0.19 0.14 0.03 0.2 0.15 0.29
50 “SC-LOAD” 11,050 2,763 0.19 0.14 0.03 0.2 0.15 0.29
55 “SDG-55" 3,485 871 0.06 0.09 0.04 0.2 0.21 0.4
56 “LAS-LOAD” 6,800 1,700 0.06 0.09 0.04 0.2 0.21 0.4
64 “PHX-LOAD” 12,060 3,015 0.17 0.16 0.06 0.27 0.11 0.23
70 “SLC-LOAD” 5,850 1,463 0.15 0.16 0.06 0.25 0.12 0.26
73 “COLO-73” 8,100 2,025 0.15 0.16 0.06 0.25 0.12 0.26
78 “IDA-78” 2,700 675 0.2 0.15 0.06 0.21 0.13 0.25
95 “FC-G1” 2,700 675 0.13 0.12 0.06 0.12 0.2 0.37
109 “NEV-109” 1,400 350 0.08 0.16 0.03 0.47 0.09 0.17
112 “SC-112” 13,175 3,294 0.17 0.16 0.06 0.27 0.11 0.23
120 “ALB-LOAD” 8,200 1,925 0.2 0.15 0.06 0.21 0.13 0.25

A three-phase-to-ground fault is applied at Bus 82 and lasts for 0.12 s. The simulation results are
presented in Figure 9.11 - Figure 9.13. For the composite load model formulated by individual
components, Motor A is represented by PSLF Motorld model and has two progressive protection
schemes, which are contactor and controller protections. In the upper subplots of Figure 9.11 and Figure
9.12, the fractions of Motor A not tripped by contactor or controller are plotted. The aggregate fraction of
untripped Motor A in the individual component -based composite load model is depicted by green line in
the lower subplots of Figure 9.11 and Figure 9.12, while the black line represents the untripped Motor A
in PSLF cmpldw model.
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Figure 9.11 Fraction of Motor A Not Tripped in the Formulated Composite Load Model (idv) and PSLF

Built-In Composite Load Model (cmpldw) at Bus 8
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Figure 9.12 Fraction of Motor A Not Tripped in the Formulated Composite Load Model (idv) and PSLF

Built-In Composite Load Model (cmpldw) at Bus 11
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Figure 9.13 shows the voltages at Bus 82 and two adjacent buses (Buses 8 and 11), it can be seen that
with the composite load model formulated by individual components, the post-fault voltage magnitudes
are higher than that with PSLF built-in composite load model (cmpldw). This is because the progressive
tripping mechanism featured by aggregate contactor and controller protection demonstrates higher level
of load tripping compared to traditional 2-level voltage-dependent tripping mechanism in PSLF
CMPLDW model (see lower subplots of Figure 9.11 and Figure 9.12).
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Figure 9.13 Voltages at Buses 82, 8, and 11 for Simulation Scenarios with the Two Forms of Composite
Load Model Formation
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10.0 Price Responsive Aggregate Load Model Development
Plan

The earliest type of demand response in the electricity sector came in the form of time-based rates
(TBR) which were heavily debated at the dawn of the industry [94]. However, because of the cost of
metering to capture electricity consumption at the necessary level of time differentiation was so high,
offering such time-based rates to customers and achieving the desired level of demand response was
simply not cost effective. It wasn’t until the 1970s when utilities in the Western United States saw
metering costs come down enough to implement time-of-use rates for their largest commercial and
industrial customers. For example, in 1976 the California Public Utility Commission ordered their three
major investor-owned utilities to implement mandatory time-of-use for customers with demands greater
than 500 kW [95].

As an alternative to time-based rates, utilities began to consider in the 1950s and 60s the merits of
providing rate discounts for the ability to directly interrupt large industrial customer’s load [96]. These
incentive-based programs began to be offered by utilities to commercial customers starting in the 1980s.
The first Pacific Northwest Power Plan (1983) explicitly identified demand response as a load modifying
resource used by a number of utilities in the region to provide demand response for resource adequacy
purposes [97].

With recent utility investments in Advanced Metering Infrastructure (AMI) and interval meters, more
and more customers are becoming empowered to make decisions that will influence how the grid is
operated in response to price and/or control demand response (DR) signals. California regulators recently
ordered the state’s investor owned utilities to transition their residential customers to a time-of-use rate by
2019 [98]. In addition, regulators, system planners and system operators throughout the Western
Interconnection are increasingly appreciating the role that AMI-enabled demand response resources can
play in providing both bulk and distribution system services by responding to these signals.

As more and more customers participate in time-based rates and incentive-based programs, the
underlying composition of load will likely change. Electricity customers respond to such DR
opportunities by using end-use devices differently. For example, research has shown that customers with
programmable communicating thermostats exhibit substantially greater per customer load reductions to
critical peak events that those without such control technology [99]. As such, models that forecast the
consumption patterns of end-use devices based on observed load levels will need to evolve. Namely, they
must account for differences in the level and timing of electricity consumed by end-uses in response to
these new demand response opportunities.

In this Grid Modernization Lab Consortium (GMLC) project, PNNL is responsible for developing a
model on how the power system experiences Fault Induced Delayed Voltage Recovery (FIDVR) events.
LBNL is responsible for developing a component of this model that will serve as an input. This model
component of response needs to focus on DR opportunities that are coincident during times when the
power system is experiencing FIDVR events.

Within the Western Electricity Coordinating Council (WECC) footprint, there are a myriad of
different time-based rates (TBR) and incentive-based programs (IBP) currently available to customers
from different classes (i.e., residential, commercial and industrial) that fall under the umbrella of DR
Opportunities (see Table 10.1 and Table 10.2).
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Table 10.1 Count of Participants by Customer Class, DR Opportunity and State in WECC [100]

Commercial & Industrial Customers

Residential Customers

State DLC
AZ 35 496 3,138 10,116 761,629 711
CA 21,943 | 1,704 5839 | 1,377 257 | 131 2,479 91 | 498,360 | 93,924
CO 439 307 2,217 8,747 155,923
ID 2296 104 37,259
MT 27 267
NE 1,231
NM 70 630 4012 35,000
NV 0 2 75,000
OR 46 7 764
SD 3,423 223
uT 950 98 4 107,054
WA 8 241 563
wY 49 1,161
Total | 28,021 | 4,955 9,158 | 1,377 13,539 | 131 | 778,032 | 1,069 | 875,146 | 128,924

DLC = Direct Load Control; INT = Interruptible; LACR, EDR & PTR = Load Acting as a Capacity
Resource, Emergency Demand Response and Peak-Time Rebate; DBBB = Demand Bidding Buy Back;
CPP = Critical Peak Pricing Rate; TOU = Time-of-Use Rate; RTP = Real-Time Pricing Rate

Table 10.2 Potential Peak Demand Reduction (MW) by Customer Class, DR Opportunity, and State in

WECC [100]

Commercial and Industrial Customers

Residential Customers

AZ 13 190 157 1

CA 76 | 660 1,057 80 1 15 3 536 110
CO 32 56 44 8 17 161

ID 314 380 24

MT 2

NE 77

NM 52 2 2 38
NV 130

OR 6 14 1

SD 4 2

uT 339 4 110

WA 20 1 1 1

WYy 11 14

Total 542 | 1,061 1,770 80 25 15 193 1 964 148

DLC = Direct Load Control; INT = Interruptible; LACR, EDR & PTR = Load Acting as a Capacity
Resource, Emergency Demand Response and Peak-Time Rebate; DBBB = Demand Bidding Buy Back;
CPP = Critical Peak Pricing Rate; TOU = Time-of-Use Rate; RTP = Real-Time Pricing Rate
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When this historical perspective is joined with DR Opportunity potential data developed on a
prospective basis by the Northwest Power and Conservation Council to inform their own long-term
planning efforts (i.e., Seventh Power Plan), it is possible to winnow down the list of DR Opportunities
that will likely have the highest penetration and impact during FIDVR events over the next several years
(see Table 10.3).

Table 10.3 Major WECC Regional DR Opportunities for Price Responsive Load Model [100] [101]

Municipal,
Agricultural &

DR Opportunity Residential Commercial Industrial
TOU o [ ] [
LACR & PTR &
EDR [ [ [
DLC - PCT, A/C,
WH [ o
INT [ J

TOU = Time-of-Use Rate; DLC = Direct Load Control; PCT = Programmable Communicating
Thermostat; A/C = Air Conditioning; WH = Water Heater; INT = Interruptible; LACR, EDR & PTR =
Load Acting as a Capacity Resource, Emergency Demand Response and Peak-Time Rebate

The interest is ultimately to determine what end-uses are likely impacted by these different DR
Opportunities during FIDVR events (see Table 10.4). The regional assessment of DR Opportunities in the
Western Interconnection [101] along with a bottom-up DR Potential study undertaken recently by LBNL
for the California Public Utility Commission provide just this type of data [102]. In the latter case, what
that report revealed was that for many of these DR Opportunities going forward, the recent trend towards
exercising more utility control over customer devices (e.g., PCT) has been significantly challenged by
communications problems between the utility’s demand response management system (DRMS) and the
end-use device to be controlled. If the utility is responsible for communicating with a device for which
customer payment is predicated on successful delivery of a control signal, then the customer has a viable
argument for getting paid if it is the utility’s communication problem that precluded a customers from
participating in an event. As such, Alstone et al. [102] assumed that Direct Load Control programs with
utility-controlled end-uses via radio, not WiFi, will increasingly become the standard program — a shift
back to programs our industry has largely moved away from for the past 10 years or so.

Table 10.4 Major End-Uses Affected by DR Opportunities by Customer Class [101] [102]

Municipal, Agricultural &

Residential Commercial Industrial
Space Cooling | Space Cooling | Irrigation Pumping
Space Heating | Space Heating | Water Distribution Pumping

Water Heating | Indoor Wastewater Pumping & Processing
Lighting
Pool Pump Ventilation Industrial Processes

The end result of this trend is that it is our assessment that the response to each DR Opportunity will
either be exclusively from utility-control of customer end-uses or from customer-control of these same
end-uses. As such, we assume that utility-control of residential and commercial customers’ end-uses will
occur via DLC programs, utility-control of industrial customers’ process loads will happen via
Interruptible programs, whereas all other DR rates and programs will have customer-control of end-uses.
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Under utility-control, we will assume there will be little to no opportunity for override. Such will not be
the case for customer-control end-uses, where override of any control signal is likely and should result in
a reduction (i.e., derating) in the total number of end-uses actually responding to a price, event or control
signal.

Figure 10.1 (a)-(c) capture the relationship between customer class, major DR opportunity and the
end-use or process load that will be affected. In addition, the figure shows how the electricity
consumption of that end-use is likely to be affected before, during or after the peak (rate) or event period.

Residential

Higher before
DLC event

Lower during
peak or event

Higher after
DLC event

Lower during

Water Heater
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Figure 10.1. Relationship between Major DR Opportunity and Change in End-Use Electricity

peak or event

Consumption by Customer Class

139



The peer-reviewed literature on customer price response to TOU, both at the residential, commercial
and industrial level is rather sparse; although there have been a number of pricing pilots more recently
which have been evaluated and reported but have not gone through the peer review process. Berkeley Lab
focused the literature review on North American experience with time-of-use rates, but where the
literature was thin (e.g., industrial customers) more international experience was considered.

With recent utility investment in advanced metering infrastructure (AMI) and the associated benefits
often cited in the business case concerning the ability to introduce more time-based rates, there is a fair
amount of recent literature on residential customer response to time-of-use rates. However, most of it
does not differentiate by end-use, as is suggested by Figure 10.1 which we would like to have. As will be
discussed in more detail below, Berkeley Lab has an ability to analyze the results of a residential TOU
pricing pilot that was active during the summer to derive elasticity estimates for those predicted to have
central air conditioning as well as those without central air conditioner (CAC).* As for the other customer
classes and end-uses identified in Figure 10.1, we will use the existing literature to inform how the Price
Responsive Load model will need to accept inputs and how it should apply those inputs to derive impact
estimates in response to time-of-use rates.

The most recent analyses of price response by small commercial customers to time-of-use rates
comes from Ontario [103], Connecticut [104], and California [105]. All three sets of analyses found no
statistically significant elasticity estimates in response to TOU.?> The California Statewide Pricing pilot
[105] also included medium sized commercial customers, where they did find a statistically significant
response to TOU. However, the analysis did not differentiate by customers with and without end-uses,
like HVAC systems. With respect to the largest commercial customers, the only literature that could be
found comes from a pricing experiment back in the mid-1980s [106] which found no statistically
significant elasticity estimates.

At the industrial customer level, there is substantial diversity in the business practices and end-uses
that could be modified in response to a time-of-use rate. ICF International [107] summarized the recent
empirical evidence of industrial customers’ response to TOU showing there is a range of elasticity
estimates which have emanated from evaluations over the past several decades. However, the report does
not provide detailed breakouts by business type (e.g., North American Industry Classification System).

Overall, what this literature review also found is that the Price Responsive Load model will need to
accept inputs for two different types of elasticities: Own-Price and Substitution. Since their definition is
different, each will need to be used differently to derive impact estimates of price-responsive load in the
model.

An own-price elasticity focuses on electricity consumption in one period and how a customer will
alter that consumption based on a change in the price of electricity in that same period, as follows:

! Faruqui and Sergici (2010) [114] is the only reference LBNL could find that provided any elasticity estimates
for residential customer response to time-based rates during the winter. However, it is from a 2006 study out of
Australia and the original source material is unavailable. So its applicability to the US experience may be dubious.

2 One has to go back to the late 1990s (Aigner et al., 1994 [133]; Ham et al., 1997 [115]) or into the mid 1980s
(Aigner and Hirschberg, 1985 [106]) to find the last domestic instance of statistically significant estimates of price
elasticities for this customer class. Even within the former experiment, the authors only found statistically
significant elasticities for customers without electric HVAC systems or without electric water heating. In the latter
case, they only found statistically significant elasticity estimates during the summer but not during the winter.
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(a5 9% —aness)
_ L e 10.1
o= [(TOU—Base) (10.1)

Ppeak Ppeak

Ppea
Where q is the quantity consumed during either a single hour in the peak period (kWh/hr) or
throughout all the hours in the peak period (kwh), and p is the price of electricity charged during the peak
period $/kWh). Depending on what rate the customer is facing, the analysis could be performed to
simulate either; a) what the customer’s load would have been had they faced the TOU rate since they are
facing some other (Base) rate; or b) what the customer’s load would have been had they faced the Base
rate since they are facing the TOU rate. It is simple enough to rearrange the above equation to derive
estimates of either value for g.

A substitution elasticity focuses on measuring how the ratio of electricity consumed in two periods
changes based on a change in the price ratio in those two same periods, as follows:

r TOU Base 1
( dpeak dpeak >

TOU Base
doffpeak 9offpeak

Base
qpeak

5} Fpea

_ of fpea i

n=r TOU Base 7 (10'2)
< ppeak ppeak )

TOU Base
Poffpeak Poffpeak

Base
Ppeak

Base
poffpeak

In this case, q represents total energy (kWh) consumed in the peak or off-peak period. So, for
simulation purposes, one needs to rearrange the formula to derive estimates of the ratio of peak-to-off-
peak electricity consumption forecasted in response to TOU (if the customer is currently facing some
other Base rate design) or Base (if the customers is currently facing a TOU rate design).

The challenge with using a substitution elasticity is that the analyst doesn’t know if the change in the
electricity consumption ratio is due to changes (i.e., reductions) in peak period electricity, changes (i.e.,
increases) in off-peak period electricity, or some combination of the two. More recently the substitution
elasticity has been jointly estimated with a daily elasticity to assess if some quantity of electricity is
changed over the entire day in response to the change in price (e.g. [105]). This allows for an ability to
allocate the change in the ratio of electricity use between peak and off-peak consumption. However,
recent empirical evidence suggests there is no statistically significant daily response to the change in price
for commercial customers [105]. As such, an analyst would assume that the change in the peak electricity
consumption (kWh) is equal to the change in the off-peak electricity consumption (kWh). This can be
easily derived by replacing the value of g™ in the above formula with g% +/- Aq™V, where the latter
represents the identical kWh change in peak or off-peak electricity consumption from the Base
consumption. From there, the analyst can rearrange terms to solve for Aq™".

Using the results of the literature review, coupled with our own analysis detailed below, Berkeley Lab
will provide own-price or substitution elasticity estimates by April 1, 2018 for as many of the customer
class and end-use combinations found in Table 10.5, as possible. These will serve as inputs to PNNL’s
Price Responsive Load model. Where unique estimates cannot be found in the literature by customer
class, season, end-use, etc., Berkeley Lab will collapse the categories to best reflect the analysis which
was performed to produce those elasticity estimates in the first place.
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Table 10.5. Elasticity Estimates by Customer Class, Retail Rate, Season and End-Use

Customer Class Retail Season End-Use
Rate

Residential TOU Summer HVAC

Residential TOU Non-Summer HVAC

Residential TOU Summer Non-HVAC

Residential TOU Non-Summer Non-HVAC

Commercial - Small (<50 kW) TOU Summer HVAC

Commercial - Small (<50 kW) TOU Non-Summer HVAC

Commercial - Small (<50 kW) TOU Summer Non-HVAC

Commercial - Small (<50 kW) TOU Non-Summer Non-HVAC

Commercial - Medium (50-200 | TOU Summer HVAC

kW

Cor31mercial - Medium (50-200 | TOU Non-Summer HVAC

kW

Cor%mercial - Medium (50-200 | TOU Summer Non-HVAC

kW

Cor?wmercial - Medium (50-200 | TOU Non-Summer Non-HVAC

kW

Corr)1mercial - Large (>200 kW) | TOU Summer HVAC

Commercial - Large (>200 kW) | TOU Non-Summer HVAC

Commercial - Large (>200 kW) | TOU Summer Non-HVAC

Commercial - Large (>200 kW) | TOU Non-Summer Non-HVAC

Industrial TOU

10.1 Berkeley Lab Residential Hourly Impact Analysis

As discussed above, Berkeley Lab will be performing its own analysis to derive elasticity estimates
for residential customer response to time-of-use rates. This section discusses the work that has been done
to date to inform how those elasticities should be estimated.

The hourly average load impact for treatment groups in the Sacramento Municipal Utility District’s
(SMUD) Smart Grid Investment Grant funded consumer behavior study that differed by enrollment
approach (i.e., default or voluntary) and retail rate design (i.e., TOU or CPP) were estimated using a
difference-in-differences (DID) instrumental variables (IV) regression employing a Two-Stage Least
Squares (2SLS) joint estimation technique. While whether or not a household actually experienced the
study’s TOU or CPP electricity rates was not random (i.e., because of self-selection in or out of
treatment), the assignment to a treatment group was random. We can therefore use assignment to
treatment (or “encouragement” as it’s known in the literature) as an instrument for actual treatment (i.e.,
exposure to the treatment time-of-use rate).

A separate regression is run for each rate and enrollment approach treatment group as follows:
Treat; = a + YEncouraged; + yPost, + €; (10.3)
Vie = BeTreat; +y; + 1, + & (10.4)

Where y; represents hourly electricity consumption for household 7in hour ¢ Post; takes the value 1 for
any time after the first date that the treatment rate went into effect (regardless of whether household i was
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in treatment or control); Encouraged; takes the value 1 for any customer who was randomly chosen to
be encouraged to take up treatment; Treat; takes the value 1 for any customer who was encouraged and
decided to take up the treatment; and f3; is the variable of interest - the local average treatment effect for
the average household during the estimated hour ¢ of the treatment period Post:. €;; is the error, clustered
at the household level.

The hourly average load impact estimates generated using this methodology for the different
treatment groups are shown in Figure 10.2 (voluntary TOU all weekday non-holidays).?

0.2
0.1
0
-0.1
-0.2
-0.3
-0.4

-0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

treat ciL ciu treat w p<.05

Figure 10.2 Hourly Average Load Impact Estimates for Voluntary TOU Treatments over all Weekday
Non-holidays

10.2 Residential Demand Model Specification

The literature is replete with examples where residential demand models for electricity under a time-
of-use rate design are estimated with a Constant Elasticity of Substitution (CES) specification, that
assumes substitution between peak and off-peak electricity consumption, under non-or quasi-
experimental conditions (e.g., [108] [109] [110] [111] [112]). However, given our experimentally derived
load impact results in Figure 10.2 during the off-peak period which are very small and only statistically
significant during a few of the overnight hours, we do not believe an application of a demand model that
employs such an assumption (i.e., substitution between peak and off-peak electricity) is warranted. In
fact, it is an assessment that imposing such an assumption (i.e., there exists substitution between peak and
off-peak electricity) will result in a biased elasticity estimate.*

3 All points on the graph in yellow represent statistically significant load impact estimates.

4 In the work of Goldman et al [134], the authors develop a model based on Patrick’s work [135] that adjusts the
estimated substitution elasticity, derived from a CES specification, to account for behaviors that suggest foregoing
of peak period electricity consumption instead of shifting that consumption to the off-peak period in order to derive
more accurate peak period impact estimates. Numerical analysis using a simple bench model indicates such an
approach produces identical load impact estimates as those that would be derived using a demand model
specification that does not assume substitution but does so with a more accurate elasticity estimate.
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Instead, we propose to leverage our RCT experimental design to estimate own-price demand
elasticities. We do not assume anything about cross-hourly substitution. As such, we use a log-log
specification, which implies a constant own-price elasticity of demand (i.e., a percentage change in price
at a low price level would result in the same percentage change in quantity as for a high price level).

As with the average load impacts estimates, our efforts to estimate the own-price demand elasticity
for treatment groups that differed by enrollment approach (i.e., default or voluntary) and retail rate design
(i.e., TOU or CPP) were estimated using a difference-in-differences (DID) instrumental variables (1V)
regression employing a Two-Stage Least Squares (2SLS) joint estimation technique and using assignment
to treatment as an instrument for actual treatment.

There was a price change between the summer of 2011 (i.e., pre-treatment period) and 2012 (i.e., the
first of two summers of the study). Since we are interested in using pre-treatment data to account for
starting differences in electricity consumption between treatment and control cells, the demand model
specification must first account for this change in price before attempting to isolate the specific change in
price that occurred when treatment customers were exposed to the TOU or CPP rates during the study.
To do so, a dummy variable is used to account for any marginal impact associated with the price increase
that occurred between 2011 and 2012 and then directly measure the price difference between the tier and
TOU or CPP rate in any given hour of 2012 and 2013. The final specification is as follows where a
separate regression is run for each treatment group and time period:

Table 10.6 Own-Price Elasticity Estimation Groupings

Voluntary Enrollment Approach Default Enrollment Approach

Peak Period (weekday, non-holidays) Peak Period (weekday, non-holidays)

Treat; = a + 9Encouraged; + yPost; + €;; (10.5)
In(y;) = a + yPost, + pTreat, + BIn(AEncouragedPrice;;) * Treat, * Post; + &;;  (10.6)

Where y; represents hourly electricity consumption for household 7 in hour ¢ Post, takes the value 1 for
any time after the first date that the treatment rate went into effect (regardless of whether household i was
in treatment or control); Encouraged; takes the value 1 for any customer who was randomly chosen to
be encouraged to take up treatment; Treat; takes the value 1 for any customer who was encouraged and
decided to take up the treatment; AEncouragedPrice;; represents the difference in the price of electricity
that each household i was encouraged to take up during time period t and the price of electricity that the
control group experienced during the time period t; and g is the variable of interest — the own-price
demand elasticity during the treatment period Post; ¢;; is the error, clustered at the household level.

The tiered nature of SMUD’s residential rates results in a simultaneity problem that must be
addressed during the estimation process for control customers in all hours. We assessed the average
electricity consumption of the relevant control group to determine the applicable tier for the average
control customer. The end result is that the average control customer faces only the Tier 1 usage price
since their average consumption (kWh/month) is below the base usage threshold of 700 kWh. As such, the
Tier 1 usage price for control group customers is applied in the estimation process of Equation (10.4)
based on their status of Low Income (EAPR) or not.

Demand elasticities will be further estimated based on predictions of whether or not the customer
owns and operates an electric air conditioning system using a predictive model developed in [113].

In(y;;) = a + yPost, + pTreat, + nCAC;; + BT"°* In(AEncouragedPrice;,) * Treat, * Post, +
+BAC In(AEncouragedPrice;;) = Treat, * Post, * CAC;; + &;¢ (10.7)
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Where CAC; takes a value of 1 if the customer is predicted to own a central air conditioning system, 0
otherwise; pT¢4t is the own-price elasticity for those not predicted to own a central air conditioning
system, and S¢4C is the marginal effect on the estimated own-price elasticity from being predicted to
own a central air conditioning system.

10.3 LBNL Recommended Values for Price Elasticities
The LBNL recommended values for price elasticities are listed in Table 10.7.
Table 10.7 LBNL Recommended Values

Own-
Own- Price
Price = Elasticity
Retail End-  Elasticity (Off- | Substitution
Class Rate  Season @ Use (Peak) Peak) Elasticity Comments/Source
Residential TOU = Summer HVAC -0.248 0 NA LBNL research funded
Non- by this GMLC project
Hot created the elasticity
Day® estimate.
Residential | TOU = Summer HVAC -0.328 0 NA ' Ibid
Hot Day
Residential  TOU  Non- HVAC 0 0 NA  Faruqui and Sergici [114]
Summer provide an own-price
elasticity estimate of -
0.47 for residential
customer response in
Australia to TOU during
the winter time. Given
the magnitude of the
estimate in relation to
LBNL research, coupled
with lack of details
surrounding its
estimation, we are
recommending it not be
used.
Residential | TOU = Summer Non- -0.186 0 NA ' LBNL research funded
Non- HVAC by this GMLC project
Hot Day created the elasticity
estimate.
Residential TOU = Summer Non- -0.251 0 NA  Ibid

Hot Day HVAC

> The segmentation by “Hot Days” and “Non-Hot Days” is intended to capture the fact that on hot days,
residential customers’ use of HVAC is likely to be higher. So, the elasticity value on such days is likely to differ, for
such customers, than those on non-hot days.
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Residential

Commercial
- Small
(<50 kw)

Commercial
- Small
(<50 kw)
Commercial
- Small
(<50 kw)

Commercial
- Small
(<50 kw)

TOU

TOU

TOU

TOU

TOU

Non-
Summer

Summer

Non-
Summer

Summer

Non-
Summer

Non-
HVAC

HVAC

HVAC

Non-
HVAC

Non-
HVAC
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NA

Faruqui and Sergici [114]
provide an own-price
elasticity estimate of -
0.47 for residential
customer response in
Australia to TOU during
the winter time. Given
the magnitude of the
estimate in relation to
LBNL research, coupled
with lack of details
surrounding its
estimation, we are
recommending it not be
used.

CRA International [105]
and Faruqui et al. [104]
didn't find any
statistically significant
elasticities and did not
differentiate by HVAC or
control of HYAC. Ham
et al. [115] found no
statistical significance of
any elasticity with
electric HVAC.

Ibid

CRA International [105]
and Faruqui et al. [104]
didn't find any
statistically significant
elasticities and did not
differentiate by HVAC or
control of HYAC. Ham
et al. [115] found
statistical significance of
any elasticity without
electric HVAC but that
was 20 years ago.

Ibid



Commercial
- Medium
(50-200
kW)

Commercial
- Medium
(50-200
kW)
Commercial
- Medium
(50-200
kW)
Commercial
- Medium
(50-200
kW)
Commercial
- Large
(>200 kw)
Commercial
- Large
(>200 kw)
Commercial
- Large
(>200 kW)
Commercial
- Large
(>200 kw)
Industrial

TOU

TOU

TOU

TOU

TOU

TOU

TOU

TOU

TOU

Summer

Non-
Summer

Summer

Non-
Summer

Summer

Non-

Summer

Summer

Non-
Summer

HVAC

HVAC

Non-
HVAC

Non-
HVAC

HVAC

HVAC

Non-

HVAC

Non-
HVAC

NA

NA

NA

NA

NA

NA

NA

NA

NA
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NA

NA

NA

NA

NA

NA

NA

NA

NA

-0.0493

-0.0493

-0.0493

-0.0493

NA

Jessoe and Rapson [116]
found no statistically
significant load impact
for default, but our
residential default effect
analysis says this should
not be surprising. CRA
International [105] found
statistically significant
elasticity but did not
differentiate by HVAC or
not.

Ibid

Ibid

Ibid

Aigner et al. [106] found
no statistically significant
elasticity estimates.

Ibid

Ibid

Ibid

Literature too thin and
not detailed enough (see
[107]).



11.0 Load Model Calibration and Validation

Load model calibration is a complicated issue because of the accuracy of the load model itself and the
power consumption uncertainties reflected in the measurement data [117] [118]. In addition, the WECC
composite load model (CMPLDW model in PSLF) has more than 100 parameters and the model itself is
non-linear, which presents additional difficulties to the model calibration. This chapter will present a load
model validation framework and two approaches to calibrate WECC composite load model parameters to
match the performances with real micro-PMU measurement data or detailed EMT-level simulation data
given the measurement data is not available.

11.1 Trial and Error Approach

In this sub-chapter, the distribution-level PMUs information is used for composite load model
validation (see Figure 11.1) [119]. Micro-PMUs were deployed by LBNL on several distribution feeders,
and multiple system events were captured by these devices. Disturbance records “play-in” capabilities
have been implemented by all major power system modeling packages, including GE PSLF, which is
used in this study [5]. The play-in method has demonstrated very high efficiency for power plant model
validation, and it has been used by many system planning and operating entities, as well as the research
community [120] [121]. Similar approaches can be used to calibrate and validate composite load model
by playing-in micro-PMU measurements into a GE PSLF composite load model [122]. Mitsubishi
Electric also conducted an analysis of the parameter sensitivities for the CMPLDW model. The most
sensitive parameters under different conditions were identified in the report [123].

A trial-and-error approach based on engineering judgement is proposed in this sub-chapter to
benchmark the several sensitive load model parameters generated by LMDT program and is implemented
in the prototype of load model validation tool, which would be a supplement to the LMDT application.

Micro-PMUs _
data stream \ Interface |
Date, Time,
Climate zone Event < o
' records “Validation
A 4 | \
LMDT Model Play-In \ 4
parameters \ 4 Model
P .dyd I—P PSLF | based
A response
~, Model ' |
'Calibration;

Figure 11.1 Composite Load Model Validation Concept
11.1.1 Description of Micro-PMUs

The micro-PMU data used for this work comes from a number of utility pilot deployment feeders
with a customer composition of primarily residential and commercial loads. Three-phase voltage and
current phasors are recorded at a rate of 120 Hz [124]. The structure of the micro-PMU system to collect
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distribution network measurements is shown in Figure 11.2 [125]. Frequency events are identified via a
threshold approach and data are post-processed to obtain their sequence representation for “play-in” in
PSLF. Voltage events are detected via a threshold approach and grouped together using k-means
clustering where the Euclidean distance between events, with their respective means subtracted, is used as
a measure of similarity [126].
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Figure 11.2 Distribution PMU System Configuration [125]

11.1.2 Load Model Validation Process

In this section, the load model data tool (LMDT) and a prototype of load model validation tool will be
presented. The theories and implementations of load model calibration process, as a part of the load model
validation tool (see Figure 11.1), will be discussed in detail.

Load Model Data Tool

The load model data tool was developed by PNNL in collaboration with Bonneville Power
Administration (BPA) and WECC modeling and validation working group (MVWG) [3]. The LMDT is a
standalone open source Windows application that generates composite load model parameters taking into
account climate zone and seasonal information, operating hour and feeder type. The LMDT uses base case
power flow conditions and supplemental load shape data to generate the dynamic records in GE PSLF and
Siemens PTI PSS/E format. To create composite load dynamic records the user also needs to specify the
percentage of different types of load (e.g., residential, commercial, industrial, etc.) connected to the feeder.
The process of composite load model creation is illustrated in Figure 11.3.
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Figure 11.3 Composite Load Model Creation
Load Model Validation Tool

The load model validation tool, which could be interfaced with the LMDT tool, can automatically
identify PMU data information, generate the PSLF dynamic simulation parameter records of CMPLDW
model according to the seasons, hours and locations of PMU measurements, and run dynamic simulations
to calibrate and validate the composite load model in a batch mode. The GE PSLF controllable voltage
source model is utilized to play in voltage and frequency measurements from PMU. The simulated active
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power waveforms at the load side are compared with the PMU measurement data to validate the calibrated
CMPLDW model.

The micro-PMU event data can be outputted in comma separated values (CSV) format. A Python
script is developed to read in the list of event data files, parse the file names to extract the information of
the month, date and hour of the measurements, and retrieve the initial bus voltage, load active and reactive
power to adjust the power flow case file. The LMDT tool generates dynamic simulation parameters of
CMPLDW model for each event based on the extracted measurement timestamp and specified
geographical locations [3]. Meanwhile, each of the event files is accessed through PSLF engineering
process control language (EPCL) script. The EPCL script launches dynamic simulations to feed the
measured voltage and frequency time series into the controllable voltage source and monitors the simulated
active and reactive power at the composite load side. The entire process is depicted by Figure 11.4.
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Output

Figure 11.4 Implementation of Load Model Validation Tool

i=i+1

Load Model Calibration Process

The generated raw parameters of composite load model sometimes do not match the measurement data
ideally. The calibration of the load model is essential in increasing the accuracy of the LMDT-generated
CMPLDW model as shown in Figure 11.4. In this section, a trial-and-error approach is used to benchmark
a CMPLDW model at an individual location in the WECC network, where measurement data are available.

Reactive power compensation is usually activated in the composite load model and affects the
calibration accuracy. When it comes to the load model calibration, it is more meaningful to adjust the
model parameters to match the active power of the load model with the measurement data. To properly
calibrate the CMPLDW model, a priority list of parameters is selected based on sensitivity analysis [123].
The priority list used in this sub-chapter is presented in Table 11.1.
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Table 11.1 Priority List of Parameters

Priority | Parameter Name Description
1 FmA Motor A fraction of load P
2 FmB Motor B fraction of load P
3 FmC Motor C fraction of load P
4 FmD Motor D fraction of load P
5 Fel Electronic load fraction of load P
6 Vstall Stall voltage of Motor D
7 Tstall Stall time delay of Motor D
8 Rstall Stall resistance of Motor D

To reduce the computational burden of the calibration process, the parameters in the priority list are
tuned by pairs and in sequence, e.g. tuning (FmA, FmB) first and then (FmC, FmD). The calibration
process starts with adding generated deviations to the original values of the first two parameters in the
priority list, as shown in (11.1) and (11.2), run the simulation, and post-process the data by calculating the
mean squared error (MSE) between the simulated and measured time series of power. The distribution of
the deviations is illustrated in Figure 11.5, in which the coordinates of each small circle represent the
deviations for parameters X and Y.

X =(1+AX)X (11.1)

orig

Y =(1+AY)Y,

orig

(11.2)

where Xorig and Yorig are the original values of parameters X and Y. AX and AY are unitless deviations. In
this section, it is considered that AX, AY € [-0.9, 5.0].
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The simulation is performed for each pair of deviations to generate the same number of output files as
the number of deviation pairs. The output files recording the simulated and measured time series of power
are accessed to compute the MSE. After all the deviation pairs are gone through, the minimum MSE is
found along with the index of the output file (or the deviation pair), as expressed by (11.3) and (11.4).

iective = mi (+)
Obijective = krgrﬂl!hr}](MSE ) (11.3)
subject to: MSE™) = %Z?‘l[ﬂﬁ&ured (1)~ P e (i )]2 (11.4)

where, k represents the index of the output file (or deviation pair). M indicates the total number of output
files, equal to the total number of deviation pairs. N is the total number of simulation or measurement data
points in an event.

The entire flow chart implementation of load model calibration is depicted in Figure 11.6. The
calibration process then proceeds to the adjustment of the next two parameters in the priority list. Before
starting to play in deviations for the next two parameters, the previous two parameters need to be updated
by adding the pair of deviations found to generate the minimum MSE in the previous tuning cycle. After
the update on the values of the previous two parameters, the same process is followed to find the minimum
MSE and the corresponding deviation pair by tuning the next two parameters. During this approach, the
difference between the simulated and measured active power keeps decreasing after each tuning cycle.
Finally, after all the parameters in the priority list are adjusted in sequence, the final MSE between the
simulated and measured active power data is largely reduced.
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11.1.3 Simulation Results

To generate the parameters of CMPLDW model from the LMDT tool, the measurement time, climate
zone and feeder mix information needs to be entered. In this sub-chapter, the local times of the events are
indicated in the file names of the data. The climate zone, as per LMDT tool, is Desert Southwest (DSW)
[3]. The feeder is a residential feeder with a mix of 72% residential load and 28% commercial load.

The CMPLDW model to be calibrated is connected to a controllable voltage source, which the voltage
magnitude and frequency can be played in. The connection is shown in Figure 11.7.

\ P, Q

N —

G ) CMPLDW
ST

Z=0.0001 + 0.001] pu

Figure 11.7 Schematic for Load Model Calibration

Three events of frequency droop were captured by micro-PMU along with corresponding voltage,
active and reactive power measurements at substation level. The CMPLDW model at the same substation
is benchmarked using the proposed method to match simulated active power with measurement data for
each event, resulting in three sets of calibrated parameters listed in Table 11.1.

The simulation results of calibrated model are presented in Figure 11.8 - Figure 11.10, comparing the
measured active power, originally simulated active power, and simulated active power after tuning
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parameters. It can be concluded from these figures that the simulated power after model calibration is
more approximate to the measured active power. The uncertainties of power consumption and the lack of
high-quality measurement data still pose difficulties to load model validation. The load model validation
tool builds up a platform to utilize real PMU measurements to validate the simulation model. The
empirical model calibration methodology utilized in this sub-chapter is easier to implement and harness
compared to advanced algorithms of parameter calibration [127].
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Figure 11.9 An Example of the Load Model Calibration (Event 2)
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Event 3: Played-in Frequency
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Figure 11.10 An Example of the Load Model Calibration (Event 3)

The model parameters before and after calibration are presented in Table 11.2. It is noted that the
original CMPLDW parameters generated by LMDT tool are based on load aggregation of measured or
surveyed data at feeder level [6]. Previously, the simulation results using the original parameters were not
validated against measurement data. Founded on the original LMDT-generated parameters, the model now
can be benchmarked against feeder-level measurement data (if available) following the calibration process
described in this sub-chapter. The results of the model calibration would be used to update the LMDT-
generated parameter records.

Table 11.2 Calibrated Parameters of the Composite Load Model

FmA FmB FmC FmD Fel Vstall Tstall Rstall
Event 1: Original Parameters

0.09 0.065 |0.029 |0.081 |0.195 | 0.6 0.033 |01
Event 1: Calibrated Parameters

0.036 |0.007 |0.012 |0032 |0195 |0.6 0.033 | 0.1
Event 2: Original Parameters

0.057 0.048 0.043 0.041 0.237 0.6 0.033 0.1
Event 2: Calibrated Parameters

0.091 |0.288 |0.069 |0.246 |0.024 | 0.6 0.033 | 0.1
Event 3: Original Parameters

0.043 0.068 0.018 0.147 0.146 0.6 0.033 0.1
Event 3: Calibrated Parameters

0.009 |0.26 0.003 |0.324 | 0429 |06 0.033 | 0.1
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Table 11.3 shows the numerical performance of the model calibration in supplement to the graphs
shown in Figure 11.8 - Figure 11.10. It can be seen from Table 11.3 that with model calibration, the
calculated MSE of simulated active power time series against measurement data is smaller than that
without model calibration. The model calibration process further reduces the difference between the
simulation results and the measurement data.

Table 11.3 Numerical Comparison of Results

Event # dyd Record MSE Of Psimu|ated VS. Pmeasured (Xlo—s)
Original 1.814
Event 1
Calibrated 0.616
Original 0.986
Event 2
Calibrated 0.666
Original 5.533
Event 3
Calibrated 2.494

11.1.4 Summary

A methodology and a set of software applications have been developed for composite load model
parameter estimation and validation. Simulation results based on actual distribution feeders synchro-
phasor measurements confirmed the efficiency of the proposed method and developed tools. The
proposed load model calibration method in this sub-chapter results in some improvements in the accuracy
of load modeling. In the future, advanced parameter estimation algorithms need to be developed to
perform more precise model calibration based on the LMDT-generated dynamic simulation parameters of
CMPLDW using micro-PMU data.

11.2 Machine Learning Approach

A simulation model is used to generate more data for training the machine learning model since
insufficient measurement data are accessible.

11.2.1 PSCAD Model
Model Details

The model of the whole system is described in Figure 11.11. In the model, six commercial buildings
are supplied by two distribution taxonomy feeders. The six commercial buildings include hotel, medium
retail, large retail, school, warehouse and supermarket. In each commercial building, different functional
motors are modeled to drive corresponding mechanical loads. The detailed description of the feeder and
building models is explained in [63] and not repeated here. Since there are no publicly available time-
series measurements from utilities, the intention that we model this distribution system in PSCAD
simulation is to use it as a testbed to glean response data that could be used to train and validate the
WECC composite load model representing a commercial distribution system.
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22 Line continuation

Figure 11.11 Overall System Model and Feeder Configuration
Creating Voltage Dip Scenarios

A controllable voltage source is modeled at the feeder head to represent external power grid as shown
in Figure 11.11. Various voltage dip scenarios are created to emulate the impacts of external grid faults by
configuring the *‘Dip Creater’ component at the feeder head. The *dip’ or fault can be characterized using
the following parameters as shown in Figure 11.12. The range of the parameters are shown below:

e t;: dropping interval is chosen from values 0.01, 0.02, 0.03, 0.04 s.

o ty: depression interval is chosen from values corresponding to {3, 4, 5, 6, 7, 8, 10, 12, 16, 20}
cycles

e t3: rising interval is chosen from values corresponding to {1, 2, 3, 4} cycles
¢ Vi: voltage magnitude before dip is fixed at 1 p.u.

o V3 voltage magnitude during depression is chosen from {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0}
p.u.

e V3 voltage magnitude after depression is fixed at 0.9 p.u.

Discrete values are selected from each of the above parameter sets to create a voltage dip scenario.
Considering all combinations of the parameters, a total of 1600 voltage dip scenarios are created. A piece
of Python API code was developed to control the batch simulation of the 1600 scenarios in PSCAD. For
each scenario, the voltage magnitude, active and reactive power responses at the feeder head are
monitored and outputted as time series into a csv file. Since the existence of reactive power compensation
in the grid which poses challenge to model validation, active power is used as the performance metrics to
calibrate the WECC composite load model against the detailed PSCAD feeder model.
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Figure 11.12 Parameters Defining a Fault Scenario

The results of several voltage dip scenarios are presented in Figure 11.13, which captures the real
power (Preeger), reactive power (Qreder) and voltage magnitude Vieeder at the feeder head.
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Figure 11.13 Feeder Response for Various Simulation Cases
11.2.2 Validation Framework
A. Autoencoder

An autoencoder takes an input x € R% and first maps it to the latent representation h € ]R{d'using a
deterministic function of the type h = fy = o(Wx + b) with parameters 6 = {W,b}. This coded
representation h is then used to reconstruct the input by reverse mapping of f:y = fgr = c(W'h + b")
with 8’ = {W',b'}. The parameters are optimized, minimizing an appropriate cost function over the
training set D,, = {(xq, to), .., (n, ) }-

B. Convolutional Autoencoder
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The Convolutional Autoencoder is intuitively similar to Autoencoder, except that the weights are
shared. For a mono-channel input x the latent representation of k-th feature map is given by h* =
a(x* wk + b"), where the bias is broadcasted to the whole map, o is an activation function and *
denotes the 1D convolution. A single bias per latent map is used as we want each filter to specialize on
features of the whole input (one bias per pixel would introduce too many degrees of freedom). The
reconstruction is obtained using y = o(ZkEH hk x Wk +c), where c is bias per input channel. H
identifies the group of latent feature maps, W identifies the flip operation over both dimensions of
weights. For example, the convolution of an m x m matrix with an n x n matrix may result in either a (m +
n—1) x (m + n — 1) matrix (full convolution) ora (m —n + 1) x (m — n + 1) (valid convolution). The

associated loss function to be minimized is E(8) = % ™ (x; — y1)?%. We have applied backpropagation

algorithm to compute the gradient of the error function with respect to the parameters. This can be

computed using the formula: aﬁ’iﬁ) = x * 6h* + h¥ x §y, where dy and Jk are the deltas of reconstruction

and hidden states, respectively. The weights are then updated using stochastic gradient descent.

C. Max-Pooling

For convolutional network, we introduce a max-pooling layer to obtain translation-invariant
representations. Max-pooling down-samples the latent representation by a constant factor, usually taking
the maximum value over non overlapping sub-regions. This helps improving filter selectivity, as the
activation of each neuron in the latent representation is determined by the “match” between the feature
and the input field over the region of interest. Here we introduce a max-pooling layer that introduces
sparsity over the hidden representation by erasing all non-maximal values in non-overlapping sub-
regions. This forces the feature detectors to become more broadly applicable, avoiding trivial solutions
such as having only one weight “on” (identity function). During the reconstruction phase, such a sparse
latent code decreases the average number of filters contributing to the decoding of each pixel, forcing
filters to be more general. Consequently, with a max-pooling layer there is no obvious need for L; and/or
L, regularization over hidden units and/or weights.

D. Preliminaries of Tensor Train (TT) Decomposition

Tensor Train (TT) decomposition [128] is a generalization of singular value decomposition (SVD)
from matrices to higher dimensional matrices or tensors. A d dimensional tensor (cA) is said to be in the
TT-format if for each dimension k = 1,2,...,d and for each possible value of the k-th dimensional index
jik =1, ...,n; there exists a matrix G [j,] such that all the elements of A can be written as a matrix
product, Ay, j2, -« ja) = G1UJ11G2j2] - Galjal- Al Gi k] are of dimension r1 X ri. roand rg equal 1,
in order to keep the matrix product scalar, for each element of A. The sequences {r }2_, is referred as
TT-ranks, and r denotes the maximal TT-rank, i.e., r = max{ro,rs,...,rd}-

Now, for a feedforward network of weight tensor A of dimension M.N = []%_, myn,, instead of
storing M.N elements during each training iteration, we will store TT-formatted {G,}¢_, of cumulative
dimension Y¢_, myn,r,_,7;. The dimensional reduction ratio (;), due to TT-decomposition, is defined
as = TEEUMEMWTEATE Given 2 dimensional tensor (d = 2) oA, of dimension (M = 70, N = 12), and the

szl{mknk}
maximal rank r = 2,n = 8;;0
factor 0.148.

E. Gated Recurrent Unit (GRU) Parameters Factorization

= 0.148, which indicates a reduction of computation complexity by a

In this section, we apply TT-format to represent a gated RNN. Among several RNN architectures
with gating mechanism, we choose GRU to be reformulated in TT-format because it has less complex
formulation and similar performance as LSTM. We call this model TT-GRU for the rest of this chapter.
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The single TT-GRU architecture is illustrated in Figure 11.14. Most of RNN equations are composed by
multiplication between the input vector and their corresponding weight matrix

y=Wx+Db (11.5)

where W € RM*N is the weight matrix, x € R¥ is the input vector, y € R is the output vector, and b €
RM is bias vector. To reduce the number of parameters significantly, we need to represent the weight
matrices with the factorization of higher-order tensor. First, we apply tensorization on the weight
matrices. Tensorization is the process to transform a lower-order dimensional array into a higher-order
dimensional array. In our case, we tensorize GRU weight matrices into tensors, using TT decomposition.
Given a weight matrix W € RM*N it can be represented as a tensor W € R™1XMzX..XMgxXny XNy X..xNq
where M = ¥¢_ . my, and N = ¥¢_, n,. For mapping each element in matrix W to tensor W, we define
one-to-one mapping between row-column and tensor index with bijective functions f;:Z, — Z¢ and
fiiZy - Z4. Function f; transforms each row p € 1,..,M into fi(p) = [i1(p),....ia(p)] and f;transforms each
column g € 1,..,N into fi(q) = [j1(qQ),....ja(q)]. Following this, we can access the value from matrix W(p, q)
in the tensor W with the index vectors generated by fi(p) and fj(q) with these bijective functions.

Now we apply TT decomposition for designing TT-GRU cell. As shown in Figure 11.14 we focus on
the following six dense weight matrices (Wr, Wz, Wq, Ur, U;, Ug). Weight matrices Wr, W,, W, € RM*N
are parameters for projecting the input layer to the reset gate, the update gate, the candidate hidden layer,
and Uy, U, U; € RM*M are respectively parameters for projecting previous hidden layer into the reset
gate, the update gate and candidate hidden layer. We factorize M = [[%_, m; and N = []¢_, n;, and set
TT-rank as {r, }¢_,. Subsequently all dense weight matrices (W, W,, Wy, Uy, U,, Uq) are replaced with
W, w,, Wy, U,,U,, U,) in TT-format. Tensors W,, W,, W,, U,., U,, U, are represented by a set of TT-

d
formatted cores { ,E')}k , Where g,g-) € R™k*MkXTk-1%Tk Using these cores, we can represent a TT-GRU
=1

cell (for more detailed explanation see [129]). Table 11.4 shows a comparison of a fully connected and a
TT layer (for a forward pass training scenario), where r and d are introduced in Section D of this sub-
chapter, and “O(.)’ represents complexity in the worst training scenario.

Label
b,, b, - Trainable biases

Wr ). (W, ), (Wq,.) —
Matrix product between
dotted variable and
Trainable weights

n - Plus operation

o — sigmoid function

- Hadamard product

tanh - tanh function

TT - Tensor train
operation

Figure 11.14 Single TT-GRU Architecture
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Table 11.4 Time and Memory Comparison between Fully Connected and TT-Layer

Type Time Memory
Fully connected | O(M.N) O(M.N)
TT-layer O(d? r*max(M,N)) O(r’max(M,N))

F. Partial Least Square (PLS)

The PLS is a dimensionality reduction technique which projects the high dimensional space onto a
latent space, where the covariance between the feature and its label is maximized. The PLS technique
works as follows. Let X € R™ be a matrix of independent variables representing the samples (activities)
in m-dimensional space, which is drawn from the convolution layers. Let y be the matrix dependent
variables denoting the class label in a k-dimensional space, where k represents the number of present fault
scenarios as described in Section B of this sub-chapter. The PLS projects X onto a new c-dimensional
space, X' € R¢, interms of X' = XW, where W is a weight matrix and can be computed, iteratively, using
the nonlinear iterative partial least squares (NIPALS) algorithm [130], see Algorithm 1 in Table 11.5.

The NIPALS algorithm computes a column of W at each iteration, which represents the maximum
covariance between X and y. X is normalized before passing through Algorithm 1 in Table 11.5.

Table 11.5 NIPALS Algorithm

Algorithm 1 NIPALS Algorithm

Input: X, y. ¢
Output: W

1: for a =1 to ¢ do

2. Initialize u € R™*1!

3:  while until u converges do

4 W, — %‘;‘” where w, € W
5 t, = Aw,
6

7

8

T
- P y t'ﬂ
Qa = JyTt,||

U = ydqa
: end while
9: Pa = XTta
10: X =X—t,pl
1: y=Y¥Y —tuqq
12: end for
13: return W

G. Proposed Framework

Our proposed framework is schematically shown in Figure 11.15. The top part represents the
proposed convolution based stacked autoencoder. Projection operation has been used to project output at
various layers of the stacked autoencoder using the Algorithm 1 in Table 11.5 and define a basis for the
temporal cells to identify parameters on. There are five temporal GRU cells which represent identified
parameters, which use basis identified from the actual active power to estimate the modeling parameters.
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Finally, all the modeling parameters are connected via a fully connected network for predicting the active
power. This proposed framework is trained in two stage, initially the stacked autoencoder is trained to
reconstruct the stack of active power and then the second stage of the training involves identifying the
time-varying parameters and subsequent estimation of the active power.

l

Projection 3

H_\\H\
P Projection 2
>

Data stack

Prediction of
Active power

FeedsrP, MW

Feeder MVAR

-

FeaderP MW FeederQ MVAR FeederV.pu

Figure 11.15 Schematic of the Whole Proposed Framework
11.2.3 Performance Results

In this sub-chapter, we will predict the following parameters: Rfdr, Xfdr, Xxf, FmA, FmB, FmC and
Bss in the WECC composite load model [5], which are explained in Table 11.6. The WECC composite
load model implemented in an open-source simulation tool is utilized to validate the developed load
calibration framework [131] [132]. It is noted that the Motor D, static load and electronic load models are
deactivated in the feeder provided in Figure 11.11 at the current stage of analysis to focus on predicting
parameters for aggregate feeder and transformer models and fractions of three-phase induction motors.

Table 11.6 Names of Predicted Parameters

Parameter Name Description
Rfdr Feeder equivalent resistance
Xfdr Feeder equivalent reactance
Xxf Substation transformer reactance
FmA Motor A fraction of load P
FmB Motor B fraction of load P
FmC Motor C fraction of load P
Bss Substation shunt capacitor susceptance
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Figure 11.16 shows the active power profile variation with feeder voltage value for six different
voltage dip scenarios. In Figure 11.16, dashed line shows the Viseeder-Preeder profile of predicted model and
the solid line shows the profile of detailed model for several selected voltage dip cases. Figure 11.17

compares the variation of active power profile with time for both detailed and predicted models.
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Figure 11.16 Performance Profile (Vreeder VS. Preeder) OF Predicted Composite Load Model (Dashed Line)
and Detailed Feeder Model (Solid Line)
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12.0 Conclusions and Future Works

This report summarizes the deliverables and research outcome of load modeling project led by PNNL.
The following task-wise key achievements and findings are highlighted in the Conclusions chapter:

A prototype of the next-generation nation-wide load composition model with wider categories and
diversity of loads is generated using three mathematical approaches, including weighted difference
method, cross-correlation method and machine-learning techniques. This work first updates the WECC
load composition model by using up-to-date NEEA residential-sector load shape data, and then leverages
the correlations between load composition data and national weather information (NOAA data) to
estimate the load shape dataset for the ElI and ERCOT systems. The resultant load shapes portray a
reasonable power consumption pattern for different climate zones in the EI and ERCOT grids. In the
future, corporation needs to be established with utilities in WECC, El and ERCOT to validate the
generated load composition model.

The development of aggregate motor protection profile is accomplished through literature review and
EnergyPlus simulation. The developed profiles of five protection categories for the four motor types in
WECC composite load model are presented. Meanwhile, to make this outcome compatible for use by
transmission simulators (e.g. PSLF and PSS/E), optimization-based and cross-categorical transfer
learning methods are proposed and implemented to transform the representation of five protection
diagrams into two-dimensional (fault duration and fault depth) space in a functional form. The generated
two-dimensional protection parameters can be directly used by the four motor components in the WECC
composite load model.

Three platforms based on different simulation tools are constructed for use in the validation and
calibration of composite load models. Detailed commercial and residential feeders and building (or house)
models that include different motors and motor protection schemes are implemented in PSCAD,
GridLAB-D and InterPSS. In addition, the simulation results of the commercial and residential feeder
models reveal that the system voltage profiles are improved with all the motors equipped with dedicated
protection schemes. In this report, the PSCAD feeder model is used as a surrogate for realistic distribution
system to generate active and reactive power response data to train and validate the machine-learning-
based composite load model calibration tool. In the future, the other developed platforms are anticipated
being used in the model calibration tasks to overcome the difficulty of data collection from the
distribution system operators.

PNNL actively maintains and updates the Load Model Data Tool (LMDT) program, which has been
used by multiple utilities including NERC, WECC, BPA, CAISO, SCE, PG&E, PacifiCorp. The most up-
to-date version supports the latest GE PSLF and Siemens/PTI PSS/E composite load models. These
models include PSLF CMPLDWG (composite load model with DG), PSS/E CMLDBLUZ2, and PSLF
_CMPLDW. The penetration of distributed energy resource (DER) models is also accounted for in the
current release of the LMDT program. The load model data tool has been improved to support data
generation for modular composite load models and distributed energy resources. In the future, the LMDT
tool is planned to be used in more DOE-funded projects to evaluate the bulk grid responses with varying
load and DER profiles. PNNL has also been working closely with utilities to promote LMDT program
and improve its features.

The latest PSLF motor model (MOTORLD) with progressive protection schemes is tested by PNNL
to align with industrial partners’ vision. A comparison between the trendy progressive protection scheme
and the traditional two-level protection scheme reveals that different implementations of protection
models could have significant impacts on the system’s dynamic behavior and transient stability. In the
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future, more research efforts should be devoted to the development, refinement and validation of
aggregate protection models that are suited for bulk system simulation.

In this GMLC project, LBNL presents a concept development of price-responsive aggregate load
model, which accounts for differences in the level and timing of electricity consumed by end-uses in
response to the new demand response opportunities. In the future, efforts could be put in to implement
this price-responsive model in transmission simulators.

A model without validation lacks credibility. PNNL proposes an empirical and a machine-learning
technique to calibrate the WECC composite load model. Both PMU measurement data and simulation
data are used to validate the model calibration algorithms. The accuracy of the composite load model is
improved after the model calibration process. The development of this calibration tool invokes the
attention that load models require benchmarking to more precisely simulate system performances in
transient stability analysis.
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