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I. ABSTRACT 

In this paper, we compare three approaches used for continuous transfer of real-time 

synchrophasor data: IEEE C37.118.2-2011, IEC TR 61850-90-5 and a new protocol being 

developed under the Department of Energy (DOE) project DOE-OE-859 called the Streaming 

Telemetry Transport Protocol (STTP). STTP is currently being advanced as a potential third 

standard protocol via the IEEE Power Engineering Society STTP P10 Work Group (P2664). 

Each of these three synchrophasor protocols is described in detail in this paper along with the 

basis for their operating characteristics using Internet Protocol (IP) transport. 

The dominant protocol for the exchange of synchrophasor data is IEEE C37.118, both in 

the U.S. and internationally. The most recent IEEE C37.118 standard is broken into two parts 

where IEEE C37.118.1-2011 (Part 1) defines the normative synchrophasor measurement 

requirements and IEEE C37.118.2-2011 (Part 2) defines the protocol’s data transmission 

format. Both the IEC TR 61850-90-5 and the emergent STTP specifications only address 

synchrophasor data transmission; therefore, this paper focuses on comparing the data 

transmission protocol elements of these standards. 

The primary dimensions of comparison of these three protocols explored in this paper are: 

structure, efficiency, susceptibility to data loss, scalability, security, and other operability 

functionality. Additionally, though not specifically relevant to synchrophasor data telemetry, 

the three protocols are evaluated with respect to flexibility for transporting non-synchrophasor 

precise-time data streams. 
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II. INTRODUCTION 

Standardized data communication protocols are needed to transfer time-synchronized 

voltage and current phasor measurements made by substation devices, such as phasor 

measurement units (PMUs), to upstream systems and analytic tools [1]. Each of these 

“synchrophasor” measurements is associated with a time stamp that is acquired from a precise 

time source, such as a Global Positioning System (GPS) clock [2]. By making synchrophasor 

measurements at multiple locations on the grid then combining and time-aligning these 

measurements, a wide-area coherent data set is created to enable power system analysis and 

control [3]. 

PMU functionality is built into many intelligent substation electronic devices including 

digital relays and fault recorders but can also exist as hardware dedicated to the task. Substation 

devices that have PMU functionality sample voltages and currents using potential transformer 

(PT) and current transformer (CT) inputs, at high sampling rates (up to many kilohertz). This 

rapidly sampled data is used to produce derived synchrophasor measurement values at a lower 

streaming data rate, typically 30 samples per second in the U.S. The algorithms used to calculate 

the derived synchrophasor quantities are prescribed in detail in the IEEE C37.118.1-2011 

standard and its IEEE C37.118.1a-2014 amendment [4]. 

In this document, three protocols identified as the most widely used for the transfer of 

synchrophasor data, IEEE C37.118.2-2011, IEC TR 61850-90-5 and STTP / IEEE P2664 
1, will 

be described so that they can be compared from the perspective of (1) structure, (2) efficiency, 

(3) susceptibility to data loss, (4) scalability, (5) security, and (6) other operability functionality. 

An overview of how these protocols emerged follows. 

A Brief History of Synchrophasor Protocols 

The first standard synchrophasor protocol, IEEE 1344, was created in 1995 based on the 

original development at Virginia Tech. This protocol included time synchronization and 

measurement standards defined around sample timing. Its simple structure was loosely based 

on COMTRADE and focused on the delivery of data from a single measurement device to the 

control center. This simple protocol was extended with an interim protocol called PDCstream 

                                                 

 
1 Although at the time of writing STTP / IEEE P2664 is still being developed, it is based upon the existing 
Gateway Exchange Protocol (GEP) which is in wide use for the exchange of synchrophasor data. 
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developed by Western Electricity Coordinating Council (WECC) utilities which added data 

quality indications and allowed exchange of data from multiple measurement devices between 

phasor data concentrators (PDCs) and higher-level applications. 

The next synchrophasor standard, IEEE C37.118, was completed in 2005. It introduced 

the total vector error (TVE) concept for evaluating measurements, established steady-state 

performance requirements and extended the data communication profile using concepts from 

IEEE 1344 and PDCstream, such as being able to combine data received from multiple devices 

into a single larger frame of data. As was the case with IEEE 1344, the IEEE C37.118 protocol 

was crafted to fill what was at the time a major gap in utility deployment of synchrophasor data 

systems – the need for an efficient protocol to support the reliable communication of high-

volume (relative to other substation data flows) synchrophasor data from the measurement 

device to the control center. 

In 2009, the IEEE made a request to the IEC for an IEEE C37.118 dual logo but the 

request was declined by the IEC because of a preexisting protocol technology, i.e., 

IEC 61850-9-2, which could convey synchrophasor information. Following this, a joint task 

force was formed between the IEEE and IEC which worked on methodologies and agreements 

that led to changes in IEEE C37.118 and the ultimate creation of IEC TR 61850-90-5. 

To facilitate harmonizing the IEEE and IEC work, IEEE C37.118 was split into two parts 

before further development. Part 1 focused on the metrology of synchrophasor measurements 

and added requirements for dynamic operating conditions, frequency, and rate of change of 

frequency. Part 2 focused on defining the protocol’s binary data format. Both revisions were 

completed in 2011. Although Part 2 added new communication functionality, such as a new 

configuration frame format, its development was limited so that it would be backwards 

compatible with the original, then widely deployed, 2005 standard. 

The IEC 61850-90-5 technical report was completed in 2012. Given what at the time was 

the ubiquitous use of IEEE C37.118, the IEC standard included technical documents to facilitate 

migration from IEEE C37.118 to 90-5. These documents addressed updates to the IEC 61850-

6 standard so that the existing IEEE C37.118 configuration frame could be used to define 

measurements being published in 90-5. The documents also included information on the use of 

Generic Object-Oriented Substation Event (GOOSE) messages and Sampled Values for 

synchrophasor data as prescribed in the umbrella IEC 61850 standard. The first implementation 
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of the IEC TR 61850-90-5 protocol was deployed at Pacific Gas and Electric Company (PG&E) 

between GE Multilin N60 and openPDC systems [5]. 

In 2014, as part of the DOE funded Secure Information Exchange Gateway (SIEGate) 

Project (DE-OE0000536), a new protocol called the Gateway Exchange Protocol (GEP) was 

introduced to handle an expanded set of requirements for the secure exchange of the data 

necessary to support real-time (i.e., current day) grid operations. This real-time data exchange 

requirement included synchrophasor data, SCADA data, and file-based data. The GEP protocol 

allowed SIEGate to control access to data at an individual measurement, or point, level. In 

addition, GEP was focused on control-center-to-control-center communications and was 

designed for very high-volume data flows. 

Although GEP was open source and in common use by utilities, the protocol was not a 

formal standard and did not have wide multi-vendor adoption. In 2017, the DOE funded the 

Advanced Synchrophasor Protocol (ASP) Development and Demonstration Project (DE-

OE0000859) to create a new protocol, extending and improving on GEP, with the goal of 

standardizing the protocol. Like GEP, the new protocol was optimized for the demands of 

transporting high-volumes of streaming synchrophasor data, however, it was not limited to 

synchrophasor data as the protocol allows for the transmission of any information that can be 

represented longitudinally, e.g., time-series data. The new protocol was called the Streaming 

Telemetry Transport Protocol (STTP), so named to emphasize its generalized applicability to 

the transfer of streaming data. 

In 2018, the IEEE Power Engineering Society P10 STTP Working Group was established 

to develop a project authorization request (PAR) to put STTP on a path for standardization. The 

PAR was approved by the IEEE-SA New Standards Committee on September 27, 2018 and 

given a proposed IEEE standard number of P2664.  
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III. COMMUNICATIONS BACKGROUND 

All synchrophasor protocols require an underlying communications transport layer. 

Protocol operation and data transmission quality are directly affected by the transport layer 

behavioral specifics; therefore, consideration of transport layer properties and behaviors is a 

crucial factor in understanding a protocol’s design and operation. 

Internet Protocol 

The Internet Protocol (IP) is by far the most common protocol for the transmission of 

most any kind of data. The physical medium supporting IP is designed for general purpose 

transfer of data between any number of networked devices. Transport of variable sized blocks 

of data is supported in IP by breaking the data into smaller fragments called “data packets”. IP 

supports a variety of higher-level transport protocols to control the behavior of the transmission 

of data packets over a network. For synchrophasor protocols, the most common high-level 

protocols for IP are the transmission control protocol (TCP) and the user datagram protocol 

(UDP) 2, each of which behave differently when dealing with data packet loss. Consequently, 

many of the impacts a large frame of synchrophasor data has on an IP network as well as its 

probability of it being delivered without loss is dependent upon the high-level transport protocol 

used to send the frame of data. 

For IP, a block of data that exceeds the negotiated maximum transmission unit (MTU) 

size, i.e., the maximum size of a data packet, will be divided into multiple fragments where 

each fragment is an ordered data packet, see Figure 1. The typical MTU size for Ethernet 

networks is 1,500 bytes [6], however, the actual bytes available to the payload will be less than 

the MTU size since a portion of the data packet, the “header”, is used by the IP protocol itself 

to identify packet source and destination information. As an example, if a frame of 

IEEE C37.118.2-2011 data is 1,914 bytes – the approximate size of a configuration frame with 

four average sized PMUs – it will take at least 2 IP data packets to send the frame. If a frame of 

data is 65,536 bytes, the absolute largest frame size allowed by either IEEE C37.118.2-2011 or 

IEC TR 61850-90-5, it will take at least 44 IP data packets to send. 

                                                 

 
2 These protocols are often labeled as TCP/IP and UDP/IP for high-level protocol over Internet Protocol 
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Figure 1. Packet Fragmentation 

Data packets can only be transmitted over a physical network connection one packet at a 

time. When two or more data packets arrive for transmission at the same time on any physical 

network media, the result is a “collision”. When a collision occurs, only one packet gets sent 

and the others are “dropped” [7]. Network collisions are not common on modern network 

infrastructure because of the increasing use of full-duplex and switch-based technology [8]; 

however, with heavy IP network traffic, data packet loss still occurs [9].  

Non-collision-based data transport issues can occur when several devices are 

simultaneously transmitting data at high speed thereby putting a specific piece of supporting 

network equipment in a position where it cannot send all the traffic to the destination port. The 

reasons for the large data transport latency or for the dropped packets are typically CPU 

contention and memory limitations for data buffering3. 

Because data packets can (and will) be dropped, IP is inherently unreliable. If any data 

packet existing as an ordered fragment of a larger data block gets dropped, the original data 

block can no longer be reconstituted on the receiving machine. It is the higher-level IP protocols, 

e.g., TCP, that handle the retransmission of dropped packets to ensure reliable delivery of a 

block of data. Because of the protocol design of IEEE C37.118.2-2011 and IEC TR 61850-90-

5, without retransmission dropped data packets result in loss of the entire original data block. 

                                                 

 
3 Switch technology can also allow for a pause frame that is used for flow control at the Ethernet layer, however, 
if the buffers are at capacity the result is still the same, dropped packets. 
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With retransmission, a large data block will be reliably delivered, but retransmissions can have 

a negative impact on latency. 

TCP/IP - The TCP protocol for IP is focused on reliability – assuring the data packet order 

and integrity of the originally published block of data. The protocol guarantees that, even as 

packets are dropped, data packets get retransmitted and are inserted into their original order so 

that a received block of data exactly matches what was sent. Retransmission of data packets 

increases delivery latency and subsequent data blocks are held-up in memory on the receiving 

device until all prior blocks have been received to maintain packet order. This process requires 

“acknowledgement of delivery” and includes error checking. 

As a TCP connection is set up between two systems, one system is considered a client 

initiating a connection and the other a server listening for a connection. This creation of a 

connection between a server and client is called handshaking and is used to establish a unique 

communications path between the server and client systems. Reliable data delivery in a 

heterogenous network environment is an absolute requirement for many data transfer use cases, 

hence TCP/IP’s popularity. However, all these activities to assure reliable data delivery result 

in TCP being considered a “heavy-weight protocol”. 

In the case of synchrophasor data transmission, TCP is the protocol of choice when data 

completeness is valued over timeliness of delivery, e.g., for transmission of data to a permanent 

archive. Even with the possibility of increased latencies, many utilities select TCP as their 

synchrophasor data transport of choice and often overprovision network resources to reduce 

packet retransmission to assure low-latency, reliable data delivery. 

UDP/IP - The UDP protocol for IP is focused on timely data delivery at the expense of 

reliability. The protocol employs no functionality to assure the proper order of data packets nor 

does it include functionality to retransmit dropped packets. There is also no provisioning for 

flow control, congestion control or handshake mechanisms. The lack of handshake negotiation 

between the sender and receiver results in UDP being considered a “connectionless” protocol. 

In short, UDP is a “fire-and-forget” protocol. In comparison to TCP, the UDP protocol is simple 

and is consequently considered a “light-weight protocol”.  

The UDP protocol is not as popular as TCP since it allows for data loss; however, UDP 

packet losses on a network are measurable [10]. If measured losses are low and the use case for 

the data transfer can tolerate some amount of loss, then the UDP protocol is an attractive 
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approach. Unlike TCP, by not retransmitting data packets UDP does not suffer with increased 

transmission latencies during times of high network stress. 

Another cause of UDP data loss is improper buffer sizing as managed by the operating 

system socket implementation. Unlike losses that occur due to collisions or network stress, the 

configurable sized UDP buffer physically located on a sending or receiving system is used to 

temporarily hold UDP data until it can be processed – when this buffer is full, any further 

incoming or outgoing data will be dropped. This data loss occurs at the application level and 

often results in a mystery data loss diagnosis for those certain that the data was received from 

a wire analysis but never entered the protocol parser. For data that is continuously transmitted 

over UDP, creating a properly sized socket buffer, for both receive and transmit, is an important 

configuration option to reduce data loss. 

In the case of synchrophasor data transmission, UDP is the protocol of choice when 

timeliness of delivery is valued over data completeness such as may be the case for a time-

sensitive analytic engine. Even with the possibility of data loss, many utilities select UDP as 

their synchrophasor data transport of choice to ensure low-latency data delivery. For example, 

analytics results that provide operational insights during rapidly changing system conditions 

need up-to-date data – for this use case, operator reaction to delayed information could have 

unintended harmful consequences. 

UDP Multicast - The UDP protocol for IP includes a feature for group-based data 

transmission called multicast. UDP multicast uses as a special IP address range reserved for 

traffic that is designed to broadcast a sole source stream to multiple destinations; a typical use 

case being the transmission of media streams, e.g., radio or live video. Multicast streams are 

handled by routers in a local network. By default, most routers will not allow UDP multicast 

traffic to cross into other network segments without explicit configuration, so its use within a 

routable network infrastructure must be a planned activity. 

In the case of synchrophasors where the source data stream will have benefits when shared 

by multiple parties, UDP multicast is often used. A common use case is to use a single combined 

data stream of all available synchrophasor data and distribute the combined data stream to 

multiple receiving applications [11], e.g., in a laboratory environment. However, the 

distribution of data in this fashion means that all applications receive all data, which is not 

always an efficient use of bandwidth. Multicast deployments are best suited to single, smaller 

streams of data allowing sole source data streams to be distributed to multiple parties, e.g., data 
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from a single device in a substation with limited network bandwidth being transmitted to 

multiple systems at a control-center in a network with ample bandwidth availability. 

The challenge with traditional multicast, i.e., “any-source” multicast, for synchrophasor 

data is that any party can initiate a publication on a specific multicast IP address/port “endpoint” 

combination. When two or more parties start publishing on the same multicast endpoint, 

subscribers to the endpoint will receive all data from all sources; current frame-based 

synchrophasor protocols are not designed to work with interleaved data frames with different 

configurations from multiple sources. To alleviate this potential issue, multicast synchrophasor 

implementations typically operate with “source-specific” multicast, also called Protocol 

Independent Multicast Source-Specific Mode (PIM-SSM) as defined in Internet Group 

Management Protocol Version 3 (IGMPv3) [12]. Put simply, the source-specific multicast mode 

requires that the subscriber identify the source IP address of the desired publisher when 

initiating a subscription. Using the source IP address, the router can intelligently route only the 

desired data to the subscriber. 

Serial Communications 

Unlike IP, serial communication is not used as a general-purpose data transport, instead it 

is used to transfer data between two physical devices, i.e., it is a point-to-point communications 

protocol. Serial communications technology has advanced significantly over the years with 

standards such as the universal serial bus (USB) and the high-definition multimedia interface 

(HDMI) coming into common use in general purpose computing [13].  

Although almost non-existent in modern telecommunication and computing centers, the 

1960’s era universal asynchronous transmitter and receiver (UART) protocol paired with the 

RS-232 electrical standard [13] [14] in still in wide use in the electric power industry. UART 

with RS-2322 is a simple data transmission technology that incorporates two separate wires for 

transmitting and receiving data [15]. RS-232 communication media and modulation methods 

limit data transmission to 100s of kilobits per second. 

In environments where the infrastructure for serial communications already exists, 

electric utilities sometimes opt to use this infrastructure for the transmission of synchrophasor 

data. A common use of serial communications for synchrophasor data is inside substations 

between the measurement device and local communications or aggregation appliances.  
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IV. PROTOCOL DATA CHARACTERISTICS 

Synchrophasor protocols are characteristically limited to a set of standard data types, 

groupings, publication frequencies, and serialization formats. The following paragraphs 

provide detail on the common data characteristics for synchrophasor protocols. 

Types of Measured Quantities 

All synchrophasor protocols define a specific format for the representation of time and 

the measured or calculated values that are associated with a given timestamp. These values 

include electrical system values, i.e., the “synchrophasor measurements”, and scalar power 

system measurements, such as frequency, and binary flags that represent asset, metering, or 

data quality state. 

All three protocols recommend that synchrophasor timestamp values be provided in 

Coordinated Universal Time (UTC) with accuracy requirements defined in the 

IEEE C37.118.1-2011 standard. To produce measurement timing with sufficient accuracy to 

meet the standard, measurement systems require a precise and reliable time source such as a 

GPS clock. The actual bitwise serialization of timestamp values with included sub-second detail 

is protocol specific and typically idiosyncratic. 

Synchrophasor measurements include “phasor values”, as either a voltage or a current, 

which are described as a tuple of two floating-point or integer quantities. A phasor is a complex 

equivalent of a simple cosine wave quantity where the complex modulus (in polar format) is 

the cosine wave amplitude and the complex angle is the cosine wave phase angle. A phasor 

measurement is an estimate of the actual angle calculated from many samples using the GPS 

common time signal as the reference for the measurement. As such, phasor measurements from 

all sites are considered synchronized and have a common phase relationship. The tuple that 

represents the complex phasor value have either a polar representation (a magnitude and an 

angle) or a rectangular representation (real and imaginary values). The actual coordinate 

representation used is denoted in the protocol configuration which defines metadata for the 

measured values. Although a typical substation measurement device will have three physical 

PT and CT inputs for an individual transmission line, it is common for a substation measurement 

device to be configured to restrict the reported voltage and current phasor values to only the 

computed positive sequence values. 
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Synchrophasor protocols also include formats for an estimated frequency value along with 

a value that represents the rate-of-change of the frequency (ROCOF). Frequency values are 

often transmitted as an offset, i.e., difference, from the nominal frequency. 

The specifications allow for other optional timestamped measurements. These 

measurements are categorized as either a floating-point quantity, called an analog value, or a 

set of binary states (bits), called a digital value, which consists of 16 distinct state measurements 

per value. Analog values are typically used to carry meter-calculated data, such as real and 

reactive power. Digital values are a group of Boolean values that typically record the state of 

power system equipment such as a switch, breaker, or alarm state. 

Finally, a single integer value, overloaded to contain a set of 16 “status flags” (bits), is 

specified to provide information on the state of metering such as the quality of the measured 

values, and known accuracy of the time source, among others. 

Data Publication Rate 

Synchrophasor protocol standards define a set of expected data publication rates with the 

actual publication rate being a major element of substation device configuration. The most 

widely used publication rate for synchrophasor data in the U.S. is 30 reports per second – also 

called samples per second. However, some utilities have configured substation devices to 

publish synchrophasor data at 60 or 120 samples per second. A hybrid approach is also used 

where the substation device is publishing locally within the substation at a high rate and that 

synchrophasor data is then down-sampled prior to communication to the control center. Other 

less common synchrophasor publication rates include 10, 12, 15, 20, 25, 50, 100, 240 and 480 

samples per second. Selectable rates are a multiple of 50 or 60, the common nominal frequency 

rates of power systems. 

Measurement Groupings 

As standards for substation to control-center communication, IEEE C37.118.2-2011 and 

IEC TR 61850-90-54 are device-centric protocols and as such it is natural for these protocols to 

create groups of measurements organized by substation measurement device. These device-

                                                 

 
4 Although the use case for data transport of IEC TR 61850-90-5 matches that of IEEE C37.118.2-2011 per 
implementation agreement, technically 90-5 can be configured to transport any sequence of defined measured 
values, however, all the values in the group must be for the same measured timestamp. 
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centric protocols also support multiple data groups – i.e., data from multiple devices – within a 

single data stream. 

Since PMU functions are typically an addition to existing functionality in mainstream 

substation measurement devices, the phasor measurements available for publication from a 

device are usually limited to the physical PT and CT inputs of the device. For example, a 

protective relay will normally have 3-phase voltage and current measurements available for a 

single transmission line; however, a DFR will typically measure all 3-phase currents and 

voltages for every transmission line in the substation5. Regardless of the number of 

measurements or the number of transmission assets monitored, the typical paradigm of 

measurement grouping is by measurement device. Both the IEEE C37.118.2-2011 and the IEC 

TR 61850-90-5 synchrophasor standards are designed to operate on sets of data grouped by 

measurement device, e.g., a PMU, and are consequently considered “device-centric” protocols. 

The STTP protocol is instead a “measurement-centric” protocol. STTP focuses on individual 

measured values without imposing time-alignment restrictions, or device-centric notions, 

allowing measurement groupings, i.e., “subscriptions”, to be based on application need rather 

than imposing the use of predefined high-level groupings. As an example, the groups can be 

category driven, e.g., all available frequencies, with the availability of measurements changing 

dynamically, increasing or decreasing while data continues to stream, as source data made 

available to the publisher changes. 

Measurement Serialization 

Software that takes newly acquired measurements and groups them together into a 

serialized package to prepare it for transport is called a “protocol generator”. Unless otherwise 

specified, serialization of synchrophasor measurement quantities by a protocol generator into a 

protocol’s specific binary format always uses network bit ordering, known as big-endian 

encoding. Most host computers manage numeric quantities with little-endian encoding; 

therefore, the bits of the values to be transmitted are typically reversed during the serialization 

process.  

                                                 

 
5 Data grouping illusions often develop where a group of synchrophasor data is associated with all data from a 
substation or a single transmission line. If modeling of synchrophasor data develops on a device-equals-line or 
device-equals-substation notion, this can lead to modeling issues when devices that monitor phasors measured on 
individual or multiple lines are later added to the system. 
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V. DATA FRAMING 

Synchrophasor protocols are implemented by software applications from the perspective 

of being either a data stream producer or a data stream consumer. As mentioned above, the data 

stream producer application implements a “protocol generator”. The consuming application 

implements a data stream deserializer called a “protocol parser”. The source applications 

hosting protocol generators will compose a block of data, which is held in memory and 

structured according to the protocol semantics, with the intent to transmit the data to one or 

more receiving applications. The data has structure in the sense that it exists as a collection of 

simpler primitive data types where each of the data elements is given a name and sequence to 

provide useful context and meaning. 

The actual binary format of the data being sent will vary based on the specific protocol 

used. In the case of IEEE C37.118.2-2011 and IEC TR 61850-90-5, data will be structured into 

logical blocks called “frames”. A frame exists as a serialization of ordered bytes representing 

the desired data to be transmitted, typically for a given timestamp, where the layout of the frame 

is organized in a logical fashion to accommodate later deserialization by a protocol parser. The 

kind of data in the frame determines its type, for example, a “configuration” frame holds meta-

data, such as the order and names of measurements being transmitted – and a “data frame” 

contains measured synchrophasor values in the order specified by the configuration frame, as 

well as the precise timestamp of measurement for the contained values. 

Checksums 

For synchrophasor protocols that are designed to be communication transport neutral, 

such as IEEE C37.118.2-2011 which can be used over serial and IP, a cyclic redundancy check 

(CRC) checksum is computed over the frame of data to be transmitted and added to the end of 

the frame. The synchrophasor protocols often refer to the checksum as a “checkword” since the 

typical size of the sum is 16-bits, i.e., a “word”. The checksum value is used to validate frame 

data integrity by the data parser and is particularly useful in detecting transport errors in 

connectionless data streams, e.g., UDP. It is also useful for serial connections since noise errors 

can occur during communication making the channel data susceptible to errors. When error 

correction over a lossy data connection is relegated to the application layer, a protocol-included 

CRC to check data validity is important. 
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Even though Internet Protocol already includes checksum values for every data packet, a 

frame of synchrophasor data can span many IP data packets. While uncommon, IP packets can 

arrive out of order6, in this case the frame-based checksum also allows the protocol parser to 

detect out of order packets [16]. 

Synchronization Bytes  

Connectionless transport protocols, like serial and UDP/IP, provide no direct protocol-

level support for framing source data7. As a result, the synchrophasor protocols for 

connectionless transport protocols must be designed so that the start of a frame of data can be 

recognized. Marking the beginning of a frame is accomplished with a “synchronization byte” 

(or bytes). A synchronization byte is a generally unique byte8 used to orient the protocol parser 

to the beginning of a frame. Although it is possible for the synchronization byte to appear as 

part of valid normal data within a data frame, in these cases the protocol parser will determine 

that this is not the beginning of the frame for other reasons, e.g., an invalid checksum, and then 

move on to the next synchronization byte to reattempt start-of-frame orientation. 

When using TCP/IP, data transfer begins only after a connection has been established. As 

a result, the first received byte in a data packet will be the synchronization byte and data will 

remain aligned. From the perspective of the protocol parser using the TCP transport protocol, 

the synchronization byte is not necessary but is commonly used as additional validation of data 

alignment. 

Frame Concentration 

The IEEE C37.118.2-2011 and IEC TR 61850-90-5 standards define data frames such 

that the content from multiple frames, e.g., those received from multiple PMUs, can be 

conflated together for a given timestamp. In this way, once frames of data have arrived from 

                                                 

 
6 TCP automatically manages out of order packets, but UDP does not. Out of order packets do not tend to occur 
very often on intranets with switch-based hub and spoke networks, but are more common on meshed and MPLS 
networks, i.e., in environments that support and use multi-path, parallel routing [16]. 

7 If data is already publishing, serial connections can be established anywhere in a stream once connected. 
UDP/IP can drop packets, so the first data packet received upon connection may not be the first in a frame. 

8 A byte is considered generally unique in context of all the bytes typically sent by the protocol, but not 
guaranteed to be unique, e.g., p-value < 2%. 
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multiple source devices (where all data was measured at a given timestamp) one super frame 

can be created to hold the data from all sources. The operation of combining frames together 

for the same timestamp is called “concentration”. The function of concentrating data arriving 

from distributed locations requires that the system must wait for all expected data to arrive. 

Since data may never arrive, a timeout must be specified so that operations can eventually 

continue. This wait timeout is often referred to as the concentration “wait time”9.  

The functionality of concentration for synchrophasor data is typically handled by a 

“phasor data concentrator” (PDC) [17]. A PDC requires configuration to specify the incoming 

synchrophasor data streams that will be concentrated as well as the measurements that will be 

part of outgoing data streams. Other PDC configuration is also required, such as a concentration 

wait time value based on the most delayed inputs. 

The process of concentrating multiple frames together into a compact binary data block 

can often be an effective and bandwidth efficient way to send large amounts of synchrophasor 

data. However, as the frames of synchrophasor data become larger, the process of serialization 

and deserialization becomes costlier in terms of both memory allocation and CPU utilization. 

Additionally, and importantly, there are also penalties that occur with large frames at the 

network transport layer. 

  

                                                 

 
9 Some synchrophasor concentrator implementations instead refer to “wait time” as “lag time”. This name is 
used to harmonize nomenclature with the other common concentration parameter called “lead time” which refers 
the allowed future-time reasonability validation that occurs when incoming timestamps are compared to the local 
system clock. 
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VI. LARGE FRAME IMPACT ON IP 

Synchrophasor data is commonly transported over IP using the TCP and UDP transport 

protocols – both individually and in combination. Deployments that use both protocols 

simultaneously are characteristically configured such that the reliable TCP channel is used for 

transmission of commands and configuration and the UDP channel is reserved for transmission 

of synchrophasor measurement values where some loss can be tolerated.  

Regardless of transport protocol, as a contiguous set of data (i.e., a data frame) is sent that 

is large enough to require fragmentation into multiple IP packets, the loss of any packet requires 

either the individual packet be resent as the dataset is being assembled or the retransmission of 

the entire dataset. Continual retransmissions can adversely impact latency and throughput and 

retransmission of the entire data set is particularly impactful [18]. Continuous transmission of 

large frames of data over IP causes increased network stress which compounds packet loss [9]. 

For these reasons, other popular general-purpose data serialization technologies, such as Google 

Protocol Buffers and Apache Thrift, recommend against the use of large data frames [19] [20].  

The adverse impact of large data frames differs based on the high-level protocol being 

used, e.g., TCP or UDP. Therefore, the selection of an appropriate high-level protocol for a 

given use case is an important consideration for synchrophasor data transport reliability. 

Large Frame Impacts using TCP 

The most common Internet protocol, TCP/IP, creates an index for each network packet 

being sent for a frame of data and verifies that each packet is successfully delivered. TCP/IP is 

a “reliable protocol” in that it retransmits packets as many times as needed to assure delivery. 

However, because retransmission can increase latency, concentration of data frames that 

timeout can effectively cause the source data to never arrive at its destination. 

Since each packet of data for the transmitted frame is sequentially ordered, TCP can fully 

reconstruct and deliver the original frame once all the packets have arrived. However, 

continuous streaming of large frames of data causes network hardware supporting TCP to suffer 

with increased memory allocation and computational burden, increasing data loss and 

retransmissions, which can lead to network slowdown. One unique distinction for IP based 

protocols is that at some level these issues will affect every element of the interconnected 

network infrastructure between the source and sync of the data being exchanged. 
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Another critical impact that is unique to TCP is that retransmissions of dropped packets 

can induce cumulative time delays [21], especially as large data frames are published at rapid 

rates as is the case for synchrophasor data. Time delays are also exacerbated during periods of 

increased network activity which induces congestion and a higher rate of collisions or buffering 

– the effects on latency being pernicious. Real-time synchrophasor data must be accurate, 

dependable, and timely to be useful for grid operators [22]. 

Large Frame Impacts on UDP 

The other common Internet protocol used for synchrophasor data is UDP/IP. Transmission 

of data over UDP differs from TCP in that UDP does not retransmit lost packets nor does it 

make any attempt to maintain the order of the transmitted packets. As such, UDP is considered 

a lossy data transmission protocol. 

Even with the unreliable delivery caveats, UDP is still limited to packet sizes as defined 

by the MTU. Any packet larger than the MTU size must be fragmented – i.e., split into multiple 

smaller packets as described in section III. Like the TCP communication protocol, UDP 

attempts to reconstruct and deliver the originally transmitted frame of data; however, if even a 

single network packet is dropped, the entire data frame is lost and any packets that were already 

accumulated are discarded. In other words, there are no partial frame deliveries – frame 

reception with UDP is an all or nothing operation. 

As was described for TCP, use of UDP results in similar stress on network equipment as 

data frame sizes increase requiring memory allocation and computational processing. The more 

problematic impact of large data frames with UDP is that the increased number of network 

packets needed to send a large frame increases the probability of dropping one of the individual 

packets in the frame. Since the loss of any one packet results in the loss of the entire frame of 

data, as frame sizes increase so does overall data loss. 

  



22 

 

VII. IEEE C37.118.2-2011 PROTOCOL OVERVIEW 

The 2011 version of the IEEE C37.118 standard, including the later amendment in 2014 

to cover performance requirements, is broken into two parts. Part 1 defines the measurement of 

synchrophasors, frequency, and rate of change of frequency under all operating conditions and 

it specifies methods for evaluating these measurements and requirements for compliance with 

the standard under both steady-state and dynamic conditions. Part one also defines requirements 

for time tags and synchronization.  

Part 2 of IEEE C37.118 defines methods for the real-time exchange of synchrophasor data 

and specifies the messaging format, including message types, contents, and their use. The 

standard defines a simple and direct method of data transmission using an open access method 

to facilitate development and use of synchrophasors. It is Part 2 of the IEEE C37.118 standard 

that is the focus of this document.  

Protocol Summary 

The IEEE C37.118.2-2011 standard defines a method for exchange of synchronized 

phasor measurement data between electronic power system devices. The protocol specifies the 

messaging structure including types, use, contents, and data formats for real-time 

communication between PMUs, PDCs, and other applications.  

Its simplicity and efficiency help to make the IEEE C37.118.2-2011 standard the most 

widely used protocol used to exchange synchrophasor data among measurement, data 

collection, and application equipment – including visualization systems, time-series data 

historians, PMUs and PDCs. 

Protocol Structure 

All data sent or received by the IEEE C37.118.2-2011 protocol is formatted into binary 

frames. The standard defines four frame types: command frame, configuration frame, data 

frame and header frame. Each frame type includes a common set of header values. 
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Common Header - Each of the frame types sent or received by the IEEE C37.118.2-2011 

protocol include a common set of values at the start of each frame as shown in the table below: 
 

Field Byte Size Description 

SYNC 2 Sync byte followed by frame type and version number 

FRAMESIZE 2 Number of bytes in frame (UINT16) 

IDCODE 2 Stream source ID number (UINT16) 

SOC 4 SOC time stamp (UINT32) 

FRACSEC 4 Fraction of Second and Message Time Quality 

Table 1. Common Header Fields 

Command Frame - A command frame is used to control protocol behavior for an 

IEEE C37.118.2-2011 connection. Unlike other frames which are typically transmitted to a 

client which is handling protocol parsing, a command frame is sent to a server which will be 

primarily handling protocol generation. In the context of typical request / reply style 

communications paradigms, the command frame can be considered a request and all other 

frames the replies. Examples of available commands include begin transmission of data frames 

(CMD = 2), stop transmission of data frames (CMD = 1), send a configuration frame (CMD = 

5 for CFG-2), and send a header frame (CMD = 3). Below are the elements of a command 

frame that exist beyond the common header: 
 

Field Byte Size Description 

CMD 2 Command being sent to the server (PMU/PDC) 

EXTFRAME 0-65518 Extended frame data – FRAMESIZE controls length 

CHK 2 CRC-CCITT 

Table 2. Command Frame Fields 

Configuration Frame - A configuration frame in the IEEE C37.118.2-2011 protocol 

contains information for processing a synchrophasor data stream; this includes the sequence of 

the data contained in data frames – as a result, a configuration frame must be received and 

processed by a protocol parser before any data frames can be fully parsed. The standard defines 

three configuration frame types labeled CFG-1, CFG-2 and CFG-3. The first two configuration 

frame types, i.e., CFG-1 and CFG-2, are structurally identical – they only differ in usage 
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context. CFG-1 is used to relay all the data that a device has to offer where CFG-2 reports the 

current active configuration, i.e., what is being reported in the data frames. Consequently, from 

the perspective of a protocol parser, it is CFG-2 that is required. The last configuration frame 

type, CFG-3, includes more meta-data information as well as the ability to span multiple frames. 

CFG-3 is optional, i.e., protocol generators can opt not to implement this frame type – as a 

result, protocol parsers cannot depend on its existence. Below are the elements of a 

configuration frame (for CFG-2) that exist beyond the common header: 
 

 Field Byte Size Description 

 TIME_BASE 4 Resolution of FRACSEC time stamp 

 NUM_PMU 2 Number of PMUs in the data frame (UINT16) 

┌ STN 16 Station Name―16 bytes in ASCII format 

│ IDCODE 2 Data source ID identifies source of each data block 

│ FORMAT 2 Data format within the data frame 

│ PHNMR 2 Number of phasors (UINT16) 

│ ANNMR 2 Number of analog values (UINT16) 

│ DGNMR 2 Number of digital status words (UINT16) 

│ 

│ 

│ 

│ 

│ 

CHNAM 16 × 

(PHNMR + 

ANNMR + 

16 × 

DGNMR) 

Phasor and channel names―16 bytes for each phasor, 

analog, and each digital channel (16 channels in each 

digital word) in ASCII format in the same order as they 

are transmitted 

│ PHUNIT  4 × PHNMR Conversion factor for phasor channels 

│ ANUNIT 4 × ANNMR Conversion factor for analog channels 

│ DIGUNIT  4 × DGNMR Mask words for digital status words 

│ FNOM 2 Nominal line frequency code and flags 

└ CFGCNT 2 Configuration change count 

 Repeat Fields  Repeat fields STN to CFGCNT for NUM_PMU times 

 DATA_RATE 2 Rate of data transmissions 

 CHK 2 CRC-CCITT 

Table 3. Configuration Frame (CFG-2) Fields 
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Data Frame - A data frame in the IEEE C37.118.2-2011 protocol is used to transmit 

synchrophasor measurement data10 and a set of status bits for each of the included data blocks. 

The sequence of items defined in a data frame are outlined in the configuration frame, 

specifically CFG-2 – as a result, the configuration frame must be received before data frames 

can begin to be parsed. Below are the elements of a data frame that exist beyond the common 

header: 
 

 Field Byte Size Description 

┌ STAT 2 Bit-mapped flags defining current state and quality info 

│ 

│ 

│ 

PHASORS10 4 x PHNMR 

or 

8 x PHNMR 

Phasor estimate value tuple 

4-bytes per tuple (2 per value) in scaled integer format 

8-bytes per tuple (4 per value) in floating-point format 

│ FREQ 2 or 4 Frequency value (2-bytes scaled / 4-bytes floating-point) 

│ DFREQ 2 or 4 ROCOF value (2-bytes scaled / 4-bytes floating-point) 

│ 

│ 

│ 

ANALOG 2 × ANNMR 

or 

4 x ANNMR 

Analog value 

2-bytes per value in scaled integer format 

4-bytes per value in floating-point format 

└ DIGITAL 2 x DGNMR Digital data, 16-bit flags per value 

 Repeat Fields  Repeat fields STAT to DIGITAL for NUM_PMU times 

 CHK 2 CRC-CCITT 

Table 4. Data Frame Fields 

Header Frame - The payload for a header frame in the IEEE C37.118.2-2011 protocol is 

expected to be free-form, human readable information. A header frame is designated to provide 

ancillary information from a device that is measuring and publishing synchrophasor 

                                                 

 
10 Phasors can be in polar (angle / magnitude) or rectangular (real / imaginary) format as specified in the 
FORMAT field in the configuration frame. Angle values are always represented as radians. 
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measurements, e.g., its data sources, filtering algorithms in use, etc. Below are the elements of 

a header frame that exist beyond the common header: 
 

Field Byte Size Description 

CMD 2 Command being sent to the server (PMU/PDC) 

EXTFRAME 0-65518 Extended frame data – FRAMESIZE controls length 

CHK 2 CRC-CCITT 

Table 5. Header Frame Fields 

Protocol Timestamp Format 

Timestamps in IEEE C37.118.2-2011 are encoded as a 4-byte second-of-century, i.e., the 

32-bit SOC value defined in the common header of all frames, and a 24-bit fraction of second, 

i.e., the lower 24-bits of the 32-bit FRACSEC value as defined in the common header. The 

second-of-century epoch is UNIX based representing the number of seconds since midnight on 

1/1/1970 UTC. For non-data frames, the timestamp used is always provided in whole seconds 

without any fractional value. For data frames, timestamps include fractional time. Calculation 

of fractional time requires the use of the time base, i.e., the lower 24-bits of the 32-bit 

TIME_BASE value defined in the configuration frame. Time, including sub-second fraction, 

can be calculated using an expression like the following: 

 

Timestamp = SOC + (FRACSEC & 0xFFFFFF) / (TIME_BASE & 0xFFFFFF) 
 

Using the full 24-bits of the available fractional time base, the minimum fractional time 

interval that can be represented is 59.6 nanoseconds. 

Protocol Security 

No native security options are provided in the IEEE C37.118.2-2011 protocol. Since IEEE 

C37.118 is an application level messaging system, security must be provided by the underlying 

communications transport used to carry the messages. Some IEEE C37.118 device 

implementations do enforce a password-like feature such that no responses will be provided for 

command requests not specifying a matching IDCODE in the header of the provided command 

frame. However, this is limited to the maximum of 65,536 values per the 16-bit IDCODE field. 
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In lieu of native security options, some production implementations of IEEE C37.118 

needing security have instead opted to deploy a virtual private network (VPN) between sources 

and syncs needing to exchange data thus creating a secure network tunnel for all network traffic 

flowing between the two endpoints. 

Data Integrity - The IEEE C37.118.2-2011 standard employs the use of a CRC-CCITT [1] 

based checkword in its protocol implementation so that reconstitution of a frame of data at the 

application layer can be validated even when transported over an unreliable data transport, e.g., 

UDP or serial. Additionally, to help accommodate protocol parsing alignment when using 

connectionless transports, IEEE C37.118 also publishes a synchronization byte, i.e., value 

0xAA, at the beginning of each of its frames – this is the first byte of the SYNC value defined 

in the common header of all frames. 

Bandwidth Utilization 

Application of compression techniques notwithstanding, e.g., those defined in STTP, the 

raw binary format of IEEE C37.118.2-2011 data frames is the most compact option available 

for the transmission of synchrophasor measurement data11 [23] [24]. In addition, to help send 

more data over channels with limited bandwidth, e.g., a serial connection, the IEEE C37.118 

protocol includes a mode of operation to send scaled integers instead of floating-point values. 

This mode optimizes payload size at the expense of less data resolution12 to further reduce the 

required communications bandwidth, i.e., transmission of scaled 2-byte 16-bit integer values 

versus 4-byte 32-bit floating-point values. 

  

                                                 

 
11 This assertion assumes that the configuration frame is only sent once per session.  In deployments where the 
configuration frame gets broadcast on a periodic schedule, e.g., once per minute in a unicast only environment, 
bandwidth utilization will increase. 

12 For PMU devices that use a 16-bit A/D converter for source measurements, the integer-based scaling 
optimization may result in no loss of precision when scaling factors are properly configured. 
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VIII. IEC TR 61850-90-5 PROTOCOL OVERVIEW 

The 2012 version of the IEC TR 61850-90-5 standard was developed to extend the widely 

used IEC 61850 communications protocol suite to include normative options for the 

transmission of synchrophasor data. Use of the IEC TR 61850-90-5 synchrophasor protocol is 

often a consideration for environments where IEC 61850 is already the primary 

communications protocol in use, e.g., within a substation, so that tools, processes, and standard 

naming conventions already provided by IEC 61850 can be leveraged. 

The 90-5 technical report addition to IEC 61850 protocol is based on established practice 

and usage of IEEE C37.118 [25] with added native security options, see IEC 62351. The 90-5 

standard focuses on using existing elements of the IEC 61850 protocol stack for publication of 

synchrophasor data but not on how the data is measured – instead, normative references to 

IEEE C37.118.1-2011 are included for the handling of synchrophasor metrology. 

The 90-5 standard employs use cases to establish the protocol requirements and, building 

on tools and elements available in the existing IEC 61850 protocol stack, uses modeling to 

establish logical devices, nodes, and communications [26]. The protocol stack is used to define 

mappings to common synchrophasor functions, for example, a PMU is mapped to an IEC 61850 

MMXU or MSQI logical node, and a PDC is an IEC 61850 proxy-server or gateway. The 

existing protocol stack is also utilized for the actual transmission of synchrophasor 

measurements by using IEC 61850 Generic Object-Oriented Substation Event (GOOSE) 

messages or Sampled Values, both of which now support routable implementations over IP13.  

Protocol Summary 

The goal of IEC TR 61850-90-5 is to standardize communications protocols and 

interfaces for synchrophasor data in environments where IEC 61850 is already deployed, such 

as a substation, where equipment interoperability can lower equipment acquisition and 

installation costs.  

The availability of standard object models provided through the IEC 61850 protocol is 

intended to lower substation engineering and design costs by enabling automated system 

engineering tools and processes and new substation designs. The design of IEC 61850 enables 

                                                 

 
13 IEC 61850 GOOSE and Sample Value broadcasts were previously restricted to a local subnet [25]. 
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in-substation wireless (no copper wires) communications that will lower substation 

construction and commissioning costs by reducing or eliminating relay-to-relay wiring. 

IEC TR 61850-90-5 adds asset security inherited from IEC 61850 that incorporates the 

IEC 62351 cyber-security standard and transmits waveform samples in real-time, enabling 

high-speed data services that can support real-time protection and control actions. Using UDP 

multicast, IEC TR 61850-90-5 enables the use of single measurements (e.g., CT and PT 

transducer signals) by many users or devices and applications, which enhances efficiency and 

redundancy and reduces equipment connection and wiring costs [27]. 

Devices defined with IEC 61850 also have standard object naming conventions that are 

self-describing and discoverable by other IEC 61850 devices and controllers – this is expected 

to reduce the cost and time required for design, specification, configuration, testing, 

commissioning, and maintenance. 

Protocol Structure 

All data sent or received by the IEC TR 61850-90-5 protocol is formatted into binary 

frames. The 90-5 standard defines an IEC 61850 based implementation for a frame of data on 

a given session using either GOOSE or Sampled Values, referred to here as a data frame. The 

90-5 protocol also allows for native protocol options for defining the configuration, i.e., names 

and sequences of values defined in a data frame using Substation Control Language (SCL) [26] 

as described in IEC 61850-6-1. To support transitional environments for synchrophasor 

implementations wanting to switch to IEC TR 61850-90-5, many 90-5 protocol 

implementations also support use of the IEEE C37.118.2-2011 configuration frame and a 

limited set of the IEEE C37.118.2-2011 command frame functionality. Since the configuration 

and command frames for IEEE C37.118 have been defined prior and describing SCL in detail 

is beyond the scope of this document, this overview focuses only on the structure of IEC headers 

and footers and the 90-5 data frame payload.  

Sampled Value Tag Encoding - The transport options available for data frames in the 

IEC TR 61850-90-5 protocol are GOOSE and Sample Values – both of which use ANS.1 Basic 

Encoding Rules (BER) for serializing a Tag, Length, and Value (TVL) triplet. Serialization of 

a TVL triplet employs the use of byte-based markers to identify a distinct quantity. These 

markers are called “tags” and can represent data of any type, e.g., an integer value or a string. 

The format of the tags is a one-byte value representing the tag’s identification, followed by an 
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encoded tag length representing the length of the value, followed by the actual bytes of the 

value. The length is encoded using a custom algorithm that operates in an analogous manner to 

the common 7-bit integer variable length encoding algorithm but optimized for lengths that are 

less than 128 bytes in size. For example, given an array of bytes to hold the encoded length, 

“buffer”, an integer-based “length” representing the size of the value to encode and an integer-

based current “index” into the buffer, an implementation of the custom TVL triplet tag length 

encoding algorithm in C could look like the following: 

 
            if (length > 0x7F) 
            { 
                if (length > 0xFF) 
                { 
                    // 16-bit length value 
                    buffer[index++] = 0x80 | 2; 
                    buffer[index++] = (length & 0xFF00) >> 8; 
                    buffer[index++] = length & 0x00FF; 
                } 
                else 
                { 
                    // 8-bit length value > 127 
                    buffer[index++] = 0x80 | 1; 
                    buffer[index++] = length & 0xFF; 
                } 
            } 
            else 
            { 
                // 8-bit length value < 128 
                buffer[index++] = length & 0xFF; 
            } 

 

This algorithm allows a variable length, e.g., the length of a string, to be serialized into 1, 

2, or 3 bytes. Since the algorithm’s maximum encoding size, i.e., 3 bytes, is greater than the 

size it would take to naturally encode a 16-bit integer, i.e., 2 bytes, its use presumes a nominal 

use-case where lengths are usually expected to be less than 128. For example, lengths are 

encoded into 1 byte when length values are less than 128 – this represents a serialization size 

optimization for length-prefixed string encoding if length values are expected to be typically 

less than 128. 

IEC Headers - The IEC TR 61850-90-5 data frame and the associated IEC standard 

headers are part of an overall IEC 61850 session structure. This structure is more complex and 

dynamic than the simpler frames defined in IEEE C37.118.2-2011 and hence are larger in size. 

These IEC structures define a wrapping architecture to allow all the various kinds of IEC 61850 
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information to be exchanged as payload while simultaneously supporting multiple contexts, 

security implementations and routing options. Instead of being fixed, the structure is container 

based and defined as a hierarchy of levels representing layers of implementation that can adjust 

as needed to accommodate diverse types of data exchanges. Below are the elements that make 

up the header, applied in the context of a data frame for routable Sampled Value messages 

(content beyond APDU_LEN would differ for GOOSE14): 
 

    Field15 Byte Size Description 

┌    LI 1 Length identifier for Transport Unit (0x01) 

│ 

└    TRANS_TYPE 1 Transport Unit Type Marker 

(Connectionless = 0x40) 

    
SESSION_TYPE 1 Session Type Marker 

(Tunneled = 0xA0, GOOSE = 0xA1,  

Sampled Value = 0xA2) 

┌    LI 1 Length Identifier (0x18) 

│    COM_HDR 1 Common Header (0x80) 

│ ┌   LI 1 Length Identifier (0x16) 

│ │ ┌  SPDU_LEN 2 SPDU Length (UINT16) 

│ │ │  SPDU_NO 2 SPDU Sequence Number (UINT16) 

│ │ │  VERSION 2 Version Number (0x01) 

│ │ │  KEY_TIME 4 UNIX SOC Time of Current Key (UINT32) 

│ │ │  NEXT_KEY 2 Time of Next Key (UINT16) 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

 
SEC_TYPE 1 Security Algorithm Type Marker 

(None = 0x00, AES128 = 0x01, 

AES256 = 0x02) 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

│ 

 
SIG_TYPE 1 Signature Algorithm Type Marker 

(None = 0x00, SHA80 = 0x01, 

                                                 

 
14 GOOSE messages are several times larger than those for Sampled Values, so this document focuses on the 
smaller Sampled Values implementation, especially as it relates to bandwidth comparisons with other protocols. 

15 The field names presented here are intended to establish an identifiable reference to a sequential point in the 
IEC TR 61850-90-5 data frame to assist with locally describing structural relationships and repeating data 
sections.  The chosen name does not necessarily match field names otherwise defined in the IEC standard. 
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│ │ │ SHA128 = 0x02, SHA256 = 0x03, 

AES64 = 0x04, AES128 = 0x05) 

└ └ │  KEY_ID 4 Index into Key Table (UINT32) 

  │ ┌ PAYLOAD_LEN 4 Length of Payload (UINT32) 

  
│ 

│ 

│ 

│ 
PAYLOAD_TYPE 1 Payload Type Marker (UINT8) 

(GOOSE = 0x81, Sampled Value = 0x82) 

  
│ 

│ 

│ 

│ 
SIMULATION 1 Simulated Data Marker 

(No = 0x00, Yes = 0x01) 

  │ │ APPID 2 Application ID (UINT16) 

  │ │ ┌ APDU_LEN 2 APDU (Payload) Length (UINT16) 

  │ │ │ TAG_SVPDU 1 Sampled Value Protocol Tag (0x60) 

  │ │ │PAYLOAD_SIZE 3 Encoded Payload Size (UINT16) 

  │ │ │TAG_NOASDU 1 Number of ASDU’s Tag (0x80) 

  │ │ │   NOASDU 2 Encoded ASDU Count (UINT8) 

  │ │ │TAG_SQASDU 1 Sequence of ASDU Length Tag (0xA2) 

  │ │ │ SEQ _ASDU 3 Encoded Sequence Length (UINT16) 

  │ │ │   Payload  (See Data Frame) 

Table 6. IEC Header Fields 

 

IEC Footers - The IEC footers directly follow the payload as described for a data frame. 

The footer elements close the hierarchy of containers that remained open in the header before 

the data frame payload. Below are the elements that make up the footer: 
 

    Field Byte Size Description 

  │ └ └   Payload  (See Data Frame) 

  │  SIGNATURE 1 Signature Marker (0x85) 

  │  HMAC_LEN 0 or 2 HMAC Length (UINT16) 

  

└ 

 

HMAC 0 to 33 Hash-based Message Authentication Code, 

Length based on SIG_TYPE: 

None = 0, SHA80 = 11, SHA128 = 17,  

SHA256 = 33, AES64 = 9, AES128 = 17 

Table 7. IEC Footer Fields 
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Data Frame - The data frame of IEC 61850-90-5 is unique in the sense that it can repeat 

any number of past datasets within the current frame. This capability was added to help reduce 

overall data loss over a connectionless transport, e.g., UDP, by making sure that the current set 

of synchrophasor measurements, at timestamp T, can also include one or more earlier sets of 

measurements, such as, measurements at T - 2 and T - 1. Including past datasets in each frame 

with a large configuration can negatively impact data quality16, however, the number of past 

datasets to send within each data frame is adjustable through configuration. The current data 

set, i.e., T - 0, is always the last data set in the frame. 

The order of the actual synchrophasor measurement data in a frame of IEC TR 61850-

90-5, regardless of GOOSE or Sampled Value implementation, is structurally in the same order 

as data defined in the IEEE C37.118.2-2011 protocol. Even though the data is in the same 

sequence, unlike IEEE C37.118, the data formats are fixed, i.e., all data values are delivered in 

32-bit floating-point (no scaled integers) and phasors are in polar format (angle, in degrees17, 

and magnitude value – no imaginary option). Below are the elements that make up the data 

frame in Sampled Value format: 
 

                                                 

 
16 Larger frame sizes can have a negative impact on the quality of data transmissions over UDP/IP, see prior 

section LARGE FRAME IMPACT ON IP. For smaller frame sizes, repetition of past datasets over UDP can 

have the net effect of reducing overall data loss at the expense of increased bandwidth and processing costs, as 

incurred due to the need to ignore duplicate data. 

17 This differs from IEEE C37.118 where polar formatted phasor angles are always represented in radians. 
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  Field Byte Size Description 

┌  TAG_ASDUSQ 1 ASDU Sequence Length Tag (0x30) 

│  ASDU_SEQLEN 3 Encoded Sequence Length (UINT16) 

│  TAG_MSVID 1 Multicast Sampled Value ID Tag (0x80) 

│ 

│ 
 MSVID18 Variable Encoded Length-Prefixed Multicast 

Sampled Value Identifier (STRING) 

│  TAG_SMPCNT 1 Sample Count Tag (0x82) 

│  SAMPLE_CNT 3 Encoded Sample Count (UINT16) 

│  TAG_CONFREV 1 Configuration Revision Tag (0x83) 

│  CONF_REV 3 Encoded Configuration Revision (UINT16) 

│  TAG_REFRTM 1 Refresh Timestamp Tag (0x84) 

│  REFR_TM 9 Encoded Refresh Timestamp (UINT64) 

│  TAG_SMPSYNC 1 Sample Synchronized Tag (0x85) 

│  SMP_SYNC 2 Encoded Sample Synchronized (UINT8) 

│ 

│ 

┌ 

│ 
STAT 2 Bit-mapped flags defining current 

 state and quality info 

│ 

│ 

│ 

│ 
PHASORS 8 x PHNMR Phasor estimate value 2-part tuple 

8-bytes per tuple (4-bytes per value) 

│ │ FREQ 4 Frequency value 

│ │ DFREQ 4 ROCOF value 

│ │ ANALOG 4 x ANNMR Analog value (4-bytes per value) 

│ └ DIGITAL 2 x DGNMR Digital data, 16-bit flags per value 

└  Repeat Fields  Repeat fields STAT to DIGITAL for NUM_PMU times 

 

 
Repeat Fields  Repeat fields TAG_ASDUSQ to DIGITAL for 

NOASDU times (i.e., repeat for each included past 

data set plus the current one) 

Table 8. 90-5 Data Frame Fields 

                                                 

 
18 According to the established implementation agreement for interoperability with IEEE C37.118, the MSVID 
field will contain an ID code and station name separated by an underscore that will map to the IEEE C37.118 
configuration frame IDCODE and STN fields. 
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Protocol Timestamp Format 

Timestamps in IEC TR 61850-90-5 are encoded as a 4-byte second-of-century, i.e., the 

higher 32-bits of the 64-bit REFR_TM value defined in the data frame, and a 24-bit fraction of 

second, i.e., the lower 24-bits of the 64-bit REFR_TM value – the remaining 8-bits are reserved 

for time-quality flags. The second-of-century epoch is UNIX based representing the number of 

seconds since midnight on 1/1/1970 UTC. Calculation of fractional time in 90-5 uses a constant 

divisor value of 16,777,216. Time, including sub-second fraction, can be calculated using an 

expression like the following: 

 

Timestamp = (REFR_TM & 0xFFFFFFFF00000000) +  

(REFR_TM & 0x00000000FFFFFF00) / 16777216 
 

The minimum fractional time interval that can be represented is 59.6 nanoseconds. 

Protocol Security 

The IEC TR 61850-90-5 standard works with the pre-existing IEC 61850 security 

options, as defined in IEC 62351-9, to allow the secure transport of synchrophasor 

measurements. The security options make use of digital signatures, exchanged between 

authenticated parties, to ensure only authenticated users have access to the desired data and 

specifies the use of the Group Domain of Interpretation (GDOI) protocol19 to handle distributed 

security with UDP multicast with group authentication of broadcast packets using the shared, 

group key. 

When two parties have already authenticated and exchanged keys using native 61850 

security options20, the appropriate key, as referenced by the KEY_ID field in the IEC headers, 

will be used to decrypt the payload contents defined in the data frame. This implementation 

works to protect streaming data even in UDP multicast environments where any recipient can 

use standard multicast mechanisms to receive a stream of the synchrophasor data but must 

                                                 

 
19 For more information on the GDOI protocol see RFC 3547 and RFC 6407. 

20 This is normally handled with the use of a group controller / key server, also known as a key distribution 
center (KDC), used to provide symmetric key coordination between multiple parties, e.g., publishers and 
subscribers. 
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properly authenticate and receive the needed keys from the publishing source (or its proxy) 

before the data can be decrypted. 

Data Integrity - The IEC TR 61850-90-5 standard optionally employs the use of a Hash-

based Message Authentication Code (HMAC) style checksum in its protocol implementation 

so that reconstitution of a frame of data at the application layer can be validated when 

transported over an unreliable data transport, e.g., UDP. Several variants of HMAC algorithms 

are supported to accommodate the desired balance between accuracy of the checksum and cost 

of the calculation. 

The 90-5 protocol does not specifically dedicate a common synchronization byte in its 

IEC headers, however, the first byte of any header should be a length indicator (LI) for the type 

of transport unit marker that follows – which will always be 1 byte. As a result, the first LI will 

always be 0x01 and this value is immediately followed by the connectionless transport unit 

marker of 0x40 – these values, in sequence, can be used in lieu of a specified synchronization 

byte and be searched to help find the start of a data frame when establishing a new parsing 

session over a lossy protocol. Since many implementations of 90-5 also have transitional 

support for IEEE C37.118 configuration and command frames, the synchronization byte of 

0xAA can be used as well when searching for these frame types. 

Bandwidth Utilization 

Compared to IEEE C37.118.2-2011, the IEC standard headers add overhead that increase 

overall bandwidth requirements for IEC TR 61850-90-5 data frames [23] [28]. The IEC header 

in 90-5 is 45 bytes; then, each data frame contains a prefix of an additional 45 or more bytes 

before the actual synchrophasor data begins. Moreover, when the feature to repeat past data sets 

within the current frame is enabled, frame size will grow by data frame size with the configured 

NOASDU value as the coefficient – which tends to be quixotic for any sizable dataset16. 

Accordingly, enabling use of multiple prior ADSU data sets per frame should only be 

considered for smaller synchrophasor measurement sets. However, the common deployment 

use case for 90-5, where the protocol is utilized in a substation within a larger existing IEC 

61850 ecosystem, typically already represents a limited, smaller synchrophasor measurement 

footprint – as such, enabling the prior data set feature in environments with smaller data sets 

could yield the functionality’s original intention of reduced data loss under ideal network 

conditions at the cost of increased bandwidth. 
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IX. STTP PROTOCOL OVERVIEW 

The Streaming Telemetry Transport Protocol (STTP) is being developed under the DOE 

Advanced Synchrophasor Protocol (ASP) Development and Demonstration Project (DE-

OE0000859). This two-year project began on May 1, 2017 and includes 25 collaborators with 

the objective to document and demonstrate STTP and to work with standards bodies to put 

STTP on a track for consideration as a standard protocol. 

The proposal to DOE for the ASP project argued that a new standard protocol is needed 

to overcome the issues being encountered in large-scale synchrophasor data system 

deployments using existing protocols – specifically with issues of scalability, data loss, 

bandwidth utilization, data access control, transport security options and cost of configuration 

management.  

STTP leverages the successful design elements of Gateway Exchange Protocol (GEP) that 

was developed under DOE funded Secure Information Exchange Gateway (SIEGate) Project 

(DE-OE0000536). GEP was developed for the secure exchange of data necessary to support 

real-time (i.e., current day) grid operations. The real-time data exchange requirement includes 

synchrophasor data, SCADA data and file-based data. Although GEP is open source with a 

permissive license21 and is widely used by utilities, multi-vendor adoption has been slow. 

Moreover, regardless of benefits, GEP is not a standard, just an open protocol. Through the ASP 

project, STTP will build on GEP’s successful features and is on track to become a new standard, 

IEEE 2664. 

Protocol Summary  

STTP is a data measurement centric, publish/subscribe transport protocol that can be used 

to securely exchange time-series style data and synchronize metadata among applications. The 

protocol supports sending real-time and historical data at full or down-sampled resolutions. 

When sending historical data, the replay speed can be controlled dynamically for use in 

visualizations to enable users to see data faster or slower than recorded in real-time. 

The wire protocol defined by STTP is targeted for packet-based transport protocols, 

specifically Internet Protocol. STTP implements a publish/subscribe data exchange model using 

                                                 

 
21 SIEGate and the GEP protocol are licensed using the MIT license, a short and simple vendor permissive 
license with conditions only requiring preservation of copyright and license notices. 
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simple commands with a compressed binary serialization of data points. The protocol does not 

require a predefined or fixed configuration - that is, the identifiable data point values arriving 

in one data packet can be different than those arriving in another. Each packet of measurement 

data consists of a collection of data values where each value is defined by a compact structure 

containing an identifier; a timestamp or sequence index; a value; and any associated asset state 

or data quality flags. 

STTP is implemented using two different communication channels. STTP calls the first 

the “command channel” and the second the “data channel”. In IP based communication, each 

of these channels is handled by one or more IP endpoints for sending and receiving data (called 

a “socket”) where the IP transport protocols for these channels can vary based on need. The two 

most common configurations are: (1) a single TCP transport for both the command and data 

channel, i.e., traffic for both channels share the same socket, and (2) a TCP based command 

channel with a UDP based data channel. 

The command channel is used to reliably negotiate session specific required 

communication, state, and protocol parameters. The command channel is also used to manage 

authentication with other STTP instances, exchange metadata on available data points, and 

request specific data points for subscription. The data channel is primarily used to send 

compact, binary encoded packets of data points.  

Protocol Structure 

Since at the time of writing development of STTP is still a work in progress, some of the 

serialization details described here may differ from those published when the protocol 

specification is complete22. Furthermore, the process of STTP standardization, through the 

IEEE P10 working group for P2664, is certain to result in changes to the specification as the 

group of collaborators expand as part of the standardization process. However, the fundamental 

invariable tenets of STTP, based on the successful design elements of GEP, are well defined 

and production-proven. These are:  

 Simple command and response architecture 

                                                 

 
22 Documentation is focused on serialization details of the beta deliverable of STTP which still closely match 
those of GEP. However, many protocol improvements are expected that could affect serialization, see the current 
STTP specification document and test implementation for more information: https://github.com/sttp/. 
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 Publisher capability to control both data and metadata accessibility for individual 

subscribers at the measurement level 

 Subscribers limited to only the data and metadata they are authorized to receive 

 High-volume, high-speed, compact transfer of time-series data from publisher to 

subscriber with minimal loss through controlled packet sizing 

 Ability to encrypt data, specific to subscriber, and use rotating keys 

All STTP protocol traffic is composed of simple commands and responses that can each 

optionally carry a payload. Typically, a subscriber will issue commands and a publisher will 

answer with responses. Commands from the subscriber include a command type, an optional 

payload length and optional payload bytes. Responses from the publisher include a response 

type, an in-response-to command type, optional payload length and optional payload bytes. 

Often the response type will simply indicate success or failure with an associated message, 

otherwise the response type will indicate that a specific payload format is in use, e.g., a data 

packet. 

Payloads with Strings - Some of the payloads of command and response messages will be 

a string or will contain strings. In STTP, all strings are encoded in natural order from left to 

right, using the character encoding method established in the initial DEFINE OPERATIONAL 

MODES command, e.g., UTF-8 or UTF-16, see Table 10. STTP Command Types. 

STTP Commands - The subscriber command message consists of a command type, an 

optional payload length, and any payload bytes. The elements that make up the STTP command 

message are described in the table below: 
 

Field Byte Size Description 

COMMAND 

TYPE 
1 Command type – see Table 10. STTP Command Types 

PAYLOAD 

LENGTH 
0 or 4 

Number of bytes of payload, if specified 

command type includes payload (INT32) 

PAYLOAD VARIABLE Actual bytes of payload, if any 

Table 9. STTP Command Message Fields 

The STTP command message types that can be sent by a subscriber and received by a 

publisher are shown below in Table 10. STTP Command Types. Note that after sending a 
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solicited command message to the publisher, the subscriber will normally receive a 

SUCCEEDED or FAILED response message along with an associated message in the payload, 

i.e., a string of text, detailing the success or failure of the command operation. The payload type 

for other response successes will be based on the response type. For example, the publisher 

response for a successful METADATA REFRESH command will be a serialized dataset of the 

available publisher metadata specifically allowed for the subscriber. The payload content for 

failed responses will always be a string of text representing the error message. Many command 

types also require a payload which is specific to the requested command, these are described in 

APPENDIX C – STTP COMMAND PAYLOADS. 
 

Command  Type Description  Payload 

METADATA 

REFRESH 

0x01 Requests that the publisher send an updated set of 

metadata so that the subscriber can update its dataset. 

The successful response message type is a dataset 

containing the server device and measurement 

metadata. Devices and measurements contain GUIDs 

that are used to uniquely identify metadata in local 

repository allowing datasets to be merged as received 

from multiple subscriptions.  

Optional 

SUBSCRIBE 0x02 Requests a subscription of streaming data from the 

publisher based on a provided connection string. The 

connection string contains parameters that specify the 

desired measurements and control if the subscription is 

for real-time or historical data, when supported. It is not 

necessary to stop an existing subscription before 

requesting a new one. The successful response is a 

message indicating the total number of allowed 

measurements. Upon successful subscription the 

subscriber will also receive an UPDATE SIGNAL INDEX 

CACHE response that will allow parsing of newly 

subscribed measurement data.  

Yes 

UNSUBSCRIBE 0x03 Requests that the publisher stop sending streaming data 

to the subscriber. This command cancels the current 

subscription.  

No 

ROTATE CIPHER 

KEYS 

0x04 Requests that the publisher send a new set of cipher 

keys for encryption of information transmitted on the 

data channel. The response will include two keys (an old 

one and a new one) to accommodate any time-slew with 

transitioning from one key to another. To protect 

symmetric key exchange, this command should only be 

used in conjunction with a TLS-based command channel.  

No 
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UPDATE 

PROCESSING 

INTERVAL 

0x05 Requests that the publisher update its historical data 

replay processing interval with the specified value in 

milliseconds – this only applies for a subscription setup 

to replay historical data, not to a real-time stream. 

Except for the values of -1 and 0, this value specifies the 

desired processing interval for data, i.e., basically a delay, 

or timer interval, over which to process data. A value of -

1 means to use the default processing interval while a 

value of 0 means to process data as fast as possible. 

Yes 

DEFINE 

OPERATIONAL 

MODES 

0x06 Defines the protocol version and operational modes for a 

subscriber connection. As soon as a connection with a 

publisher is established, this command defines the 

server operational modes used for subscriber and 

publisher communication (e.g., compression options or 

text encoding style). This command can only be used 

only once per connection and must the first command to 

be sent by the subscriber to the publisher.  

Yes 

CONFIRM 

NOTIFICATION 

0x07 This command is sent to a publisher to confirm that a 

NOTIFY response was received. This is used to verify 

delivery of critical messages from publisher to subscriber, 

e.g., a control operation. 

Yes 

CONFIRM 

BUFFER BLOCK 

0x08 This command is sent to a publisher to confirm that a 

BUFFER BLOCK response was received. This is used to 

verify delivery of a data blocks that may require 

continuity and sequencing, e.g., a file data block. 

Yes 

Table 10. STTP Command Types 

STTP Responses - The publisher response message consists of a response type, an in-

response-to command type, payload length and actual payload bytes. The in-response-to 

command type is required even if the response is unsolicited. In Table 11 below the elements 

that make up the response message are described: 
 

Field Byte Size Description 

RESPONSE 

TYPE 
1 Response type – see Table 12. STTP Response Types 

IN RESPONSE 

TO COMMAND 

TYPE 

1 
The in-response-to command type – see  

Table 10. STTP Command Types 

PAYLOAD 

LENGTH 
0 or 4 

Number of bytes of payload, if specified 

response type includes payload (INT32) 

PAYLOAD VARIABLE Actual bytes of payload, if any 

Table 11. STTP Response Message Fields 
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The size of the payload, if any, are specific to the response type. For example, in the case 

of a data packet response, the payload will contain serialized measurements. Although the 

subscriber commands and publisher responses will be on two different paths, the value code 

used for response types are defined as distinct from those used for command types to make it 

easier to identify values from a wire analysis. Normally response messages are issued in 

response to subscriber commands, however, they may also act like commands sent by the 

publisher to the subscriber that were not necessarily solicited – regardless, they are still referred 

to here as responses for clarity in communicating data flow direction. Many response types also 

require a payload which is specific to the specified response, these are described in APPENDIX 

D – STTP RESPONSE PAYLOADS. 
 

Response  Type Description  Payload 

SUCCEEDED 0x80 Informs the client that its solicited server command 

succeeded, a success message payload follows. 
Yes 

FAILED 0x81 Informs the client that its solicited server command 

failed, a failure message payload follows. 
Yes 

DATA PACKET 0x82 Informs the client that a data packet follows. Yes 

UPDATE SIGNAL 

INDEX CACHE 

0x83 Requests that the client update its runtime signal index 

cache with the one that follows. 
Yes 

UPDATE BASE 

TIMES 

0x84 Requests that client update its runtime base-

timestamp offsets with those that follow. 

Yes 

UPDATE 

CIPHER KEYS 

0x85 Requests the client update its runtime symmetric 

encryption keys with those that follow and use the 

keys to decrypt data. This only applicable when the 

data channel is using a UDP socket. Keys should only be 

transferred used in conjunction with a TLS-based 

command channel. 

Yes 

DATA START 

TIME 

0x86 Provides the start time of data being processed from 

the first measurement. 
Yes 

PROCESSING 

COMPLETE 

0x87 Provides notification that historical replay processing 

has completed, established with via temporal 

constraints parameters, i.e., StartTimeContraint and 

StopTimeConstraint connection string parameters. 

No 

BUFFER BLOCK 0x88 Informs the subscriber of a buffer block (included in 

payload). This works with a specially defined 

measurement, still requiring subscription, that allows a 

free form transfer of data that does not conform to a 

time-series value. Data in block must still be 

partitioned to fit within a minimal number of network 

packets. Subscriber will be required to acknowledge 

reception of BUFFER BLOCK with a CONFIRM BUFFER 

Yes 
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BLOCK command since blocks may exist as a sequence 

of packets and require retransmission when used over 

a lossy communications transport, e.g., UDP. 

NOTIFY 0x89 Informs the subscriber of a critical notification 

(included in payload). This works with a specially 

defined measurement, still requiring subscription, that 

allows subscriber to receive messages with verified 

delivery. Since message is considered critical, 

subscriber must respond with a CONFIRM 

NOTIFICATION command since message may require 

retransmission when used over a lossy 

communications transport, e.g., UDP. 

Yes 

CONFIGURATION 

CHANGED 

0x8A Provides a notification that the publisher's source 

configuration has changed, and that client should make 

a request to refresh metadata. 

No 

NO OP 0xFF Informs the subscriber that communications channel is 

still active. Since it is possible for the command 

channel to remain quiet for some time, this command 

allows a periodic test of continued connectivity. 

No 

Table 12. STTP Response Types 

 Protocol Timestamp Format  

Timestamps in STTP are encoded as a 64-bit integer representing the number of 100-

nanosecond intervals since 0/0/0001, often referred to as a tick. This provides a very high-

resolution timestamp, accurate to one ten-millionth of a second with a long year-range, 

specifically: 00:00:00.0000000 UTC, January 1, 0001 to 23:59:59.9999999 UTC, December 

31, 9999, exactly one 100-nanosecond tick before 00:00:00.0000000 UTC, January 1, 10,000 

– Gregorian calendar. The 64-bit timestamp is rarely transmitted in its full form since most of 

the bits representing the time change slowly, see STTP Data Compression. 

Protocol Security 

STTP requires the use of a TCP-based command channel for actions such as a 

subscription. The TCP-based command channel is used to reliably negotiate session specific 

required communication, state, and protocol parameters. It is also used to authenticate with 

other STTP communications appliances, exchange metadata on points and request points for 

subscription. This same channel is also used to apply transport layer security (TLS) for 

publisher/subscriber authentication using public-key cryptography and secure communications. 

TLS uses X.509 identity certificates for authentication, strong identity verification and 

encryption. STTP publishers can use a locally accessible subscriber certificate to validate the 
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identity of a subscriber connection, this can be done in conjunction with a mutually trusted 

certificate authority or managed privately. 

STTP is configurable to allow use of private, i.e., self-signed, certificates in highly 

isolated environments. In the absence of key management infrastructure, such as deployments 

with no Internet access or mutually accessible certificate authority, STTP can use self-signed 

X.509 identity certificates that are securely exchanged between publisher and subscriber, out-

of-band, i.e., not on the same communications channel used for data exchange. 

When the data is optionally enabled over a UDP socket, the data transmitted on this 

channel can be encrypted using symmetric encryption keys that are dynamically exchanged 

over the existing TLS secured TCP-based command channel. When UDP is not used, the data 

channel information is transmitted over the existing command channel TCP socket. 

STTP also incorporates access control at the measurement level. Subscriptions allow for 

dynamic data and metadata exchange with availability change notifications and the ability to 

automatically update streaming data values. However, all data and metadata available to a 

subscriber are subject to publisher discretion and can be changed even when a subscription is 

active. Although STTP can be configured without its security features enabled, the publisher 

can always decide if it will allow unsecured connections or data access to unrecognized 

subscribers. Applications implementing STTP publisher functionality will need to log changes 

to configuration and administrative actions, which includes data access control, to facilitate 

compliance with the North American Electric Reliability Corporation (NERC) CIP standards. 
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Although STTP can be used over a VPN tunnel to provide security, there may be benefits 

in many deployments to directly using a TLS implementation instead. For one, in order for a 

publisher to strongly validate the identity of a subscriber, an X.509 certificate will be required 

even if a VPN tunnel is used to exchange data. As seen in Table 13 - Comparison of STTP / 

VPN to STTP / TLS Security below, STTP over TLS is an alternative to the use of VPN for 

securing the transfer of streaming utility operating data. 
 

STTP / VPN APPROACH STTP / TLS APPROACH 

Security managed at the network interface 

level 

Security managed at the application layer 

with flexible pairwise, i.e., per publisher / 

subscriber, security 

Traffic protected only if it reaches the VPN 

tunnel – susceptible at previous levels 

Traffic is encrypted from source minimizing 

internal exposure 

VPN failure can result in (1) unencrypted 

data flows, or (2) failure of data flows 

Connection failure results in automatic 

retries, renegotiating keys at each attempt 

Network issues may require human 

intervention to restart data flows 

Network issues cause data flows to be 

automatically reestablished 

Table 13 - Comparison of STTP / VPN to STTP / TLS Security 

Data Integrity - Unlike the IEEE C37.118.2-2011 and IEC TR 61850-90-5 standards 

which employ the use of an additional checksum in their protocol implementation, STTP, which 

is only designed for IP based transport, does not include checksums in its payload since, (1) 

checksums are already applied at the IP transport layer, and, (2) because payload sizes are 

targeted to fit within a minimal number of data packets, ideally just one. Since STTP is an IP 

only protocol and existing data packet checksums are already validated by operating system IP 

implementations, no extra time or space is allocated to an additional application layer checksum 

value. 

Bandwidth Utilization 

Compared to frame-based protocols which include a single timestamp per frame of 

simultaneously measured data and define a fixed order to identify measurements, the raw binary 

format for an equivalent group of STTP measurements, where each serialized measurement has 

its own timestamp and identification, will be always larger. However, production deployments 
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of STTP never send data in a raw binary form, instead, data is always compressed before 

transmission. Compression techniques result in TCP based deployments being smaller than 

IEEE C37.118.2.2011 and UDP based deployments being on-par with IEC TR 61850-90-5 

deployments. 

STTP Data Compression 

Synchrophasor data is comprised of periodic measurements that are recorded at a data 

sampling rate that is sufficiently high to infer the gradient of change of this data, as such, 

synchrophasor data is a suitable candidate for compression. Compression algorithms are 

typically classified into two categories, “lossless” and “lossy”.  

As their names infer, lossless compression allows reconstruction, i.e., “inflation”, of the 

compressed data back to the original source data with full fidelity; whereas inflation of data 

compressed using a lossy compression algorithm will produce data that is only an 

approximation of the original data. In terms of computational costs, lossy compression is 

typically less expensive than lossless compression. 

The field of computer science is replete with algorithms for data compression, lossless 

and lossy, each of which offer tradeoffs in the needed time required to compute the greatest 

reduction in size. The more CPU time that can be invested into the computation, the better the 

size reduction; however, the results from increased time investment are non-linear and subject 

to diminishing returns. Since synchrophasor data is recorded at a high sampling rate and any 

additional computational activity, like compression, will subsequently increase delivery latency, 

the available time investment for compression is small and any selected algorithm must be fast 

and computationally inexpensive. 

Although use-cases could be envisioned where a lossy compression algorithm could be 

tolerated, STTP instead always uses a lossless compression algorithm so that the original data 

is retained in its full fidelity. The choice of the best lossless compression algorithm to apply 

depends on the nature of the transmission protocol selected. 

When a TCP socket is being used for data channel traffic, it can be assumed that there will 

be no data packets dropped over a given connection between a publisher and subscriber, as a 

result, a compression algorithm that works across a longer window of gradually changing 

waveform data can be selected. When a UDP socket is being used for data channel traffic, the 

lossless compression algorithm will have no choice but to focus on compression of the data for 



47 

 

an individual packet, not across multiple packets – this is because with UDP, packets can be 

dropped and the process of lossless inflation of compressed data with common algorithms does 

not tolerate loss. 

An additional compression issue exists with attempting to optimize data packet 

utilization. With the target compressed size being one network data packet, there can be 

complications with trying to estimate and balance the total amount of uncompressed source data 

that will to go into a single compressed data packet as compression ratios depend entirely on 

the compressibility of the source data with selected compression algorithm. This is often less 

of a concern for TCP since compressed source data can be easily partitioned into the desired 

target data packets, but for UDP, the choice is to instead take a conservative approach and try 

to minimize the number of target frames based on typical compression ratios for the target data 

and given number of source measurements. 

STTP TCP Compression 

The current compression algorithm developed for STTP when used over TCP is called 

Time Series Special Compression (TSSC). Although this is the current compression algorithm 

in use, it is expected that new algorithms may be developed in the future with better applicability 

for given use cases, as such STTP requires the flexibility to accommodate new algorithms that 

can be specified and negotiated when a connection is established without requiring changes to 

the protocol, see Define Operational Modes Command Payload. 

Since STTP can transport most any kind of data, applying a compression algorithm that 

is used for general purpose data might seem ideal. However, most commonly available lossless 

streaming compression algorithms, e.g., LZ4, tend to perform worse than simply applying the 

ubiquitous Gzip algorithm over a single data packet. However, with a little insight into the data 

being processed it is possible to apply streaming compression rules to specific data elements 

longitudinally and, based on the nature of the data, produce exceptionally good compression 

ratios with minimal CPU impact. 

TSSC takes each of the elements of a data packet, see Data Packet Response Payload, and 

handles each data type with separate compression algorithms, creating parallel compression 

streams for each data element in the data packet. The nature of the data element being 

compressed then infers the necessary compression algorithm tuning to produce the best results. 

As an example, with a typical subscription, timestamps tend to be near each other, normally 
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varying by no more than a few seconds. For the 64-bit timestamps in STTP, this means the data 

variation may only occur in the bottom 16 of the total 64 bits of the timestamp. With the bulk 

of the bits repeating invariably, the total bit set needs to be only transmitted once or on 

substantial change, then only the changing bits need to be sent. Additionally, if the timestamps 

vary less, the algorithm can automatically adjust and send even fewer bits. This same type of 

pattern works well for identification numbers, which are finite in number, and state flags, which 

vary little. Data values, however, need special attention. 

Data value elements for a given data packet can seem to be quite random, however, many 

values change slowly over time, from packet to packet. For example, a measured frequency 

value tends to change only incrementally over several data packets; in fact, other frequencies 

in the same subscription may only differ by just a few bits. With this knowledge a table of 

various base values can be maintained that represent the unvarying bits of many types of 

measurements. Now only the changed bit values need to be encoded into the stream with enough 

detail, such as which table entry to use, so that the stream can be losslessly reinflated upon 

reception. 

The actual data going in the data packet payload will now be a chunk of the compressed 

data stream instead of individual serialized measurements as described in the Data Packet 

Response Payload. The STTP API will simply now target chunk sizes to meet configured 

maximum packet size, still fragmenting at the application layer to eliminate the need for buffer 

reconstruction at the network layer thereby reducing latency.  

In practice for synchrophasor data this algorithm has negligible impact on memory and 

CPU and produces data compression that reduces STTP bandwidth consumption to less than 

that required by IEEE C37.118 for the same data. However, since the algorithm depends on the 

evolving states of data over time it can tolerate no intermediate data loss, so a TCP data transport 

channel is required to use this algorithm. 

STTP UDP Compression 

Using UDP for data transmission means the possibility exists for data packet loss and, at 

present, lossless compression algorithms do operate with this caveat. Consequently, the current 

best option is to apply compression over an individual data packet, ignoring gains that might be 

acquired over several packets.  However, since compressed data is expected to be smaller than 
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the source data, some tuning can go into how much source data can be used to create the 

configured maximum packet size. 

The current algorithm used for STTP over UDP is the common Gzip algorithm. 

Application of the compression takes the simple approach of serializing the data packets as 

normal, see Data Packet Response Payload, then applying Gzip compression over the payload. 

In practice for synchrophasor data this algorithm has minimal impact on memory and CPU and 

produces data compression that reduces overall STTP bandwidth consumption; however, even 

after compression the size is still more than required by IEEE C37.118 for the same data, 

although comparable to IEC TR 61850-90-5. 

The current simple Gzip compression operation does not produce the notable results like 

those seen with TSSC. However, since a TCP based command channel is always available with 

STTP, it is likely that a variation of the TSSC algorithm, using a persistent compression table 

maintained reliably over the command channel, could be developed to produce much better 

compression ratios when using UDP, perhaps on par with those seen in a TCP only connection.  
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X. PLANNED TESTING  

Bench testing by project participants of the three protocols is planned as part of the ASP 

project in early 2019. The tests will be conducted on a common set of hardware with a private 

network. Tests will be executed for scalability, data loss and performance in terms of bandwidth 

utilization, CPU loading and memory impact. Where necessary, such as with tests for data loss, 

varying levels of network traffic will be induced on the private network to simulate loading 

conditions that normally exist in heterogenous IP networks treated as a shared resource. An 

open source load generator will be used for this testing. 

Scalability Testing - Scalability will test maximum data throughput for all protocols, on 

their own terms, and measure impact on CPU and memory. For example, a nominally sized 

PMU will be used with IEEE C37.118 to test 10, 100 and the maximum number of PMUs that 

will fit into a frame and still operate reliably. IEC 61850-90-5 will do the same test, but for 

varying numbers of ASDU counts (i.e., protocol-specific feature that includes past data sets for 

current frame in an attempt stave off data loss) from 0 to 4 – note that the maximum number of 

PMUs will go down per increase in ASDU. STTP will be tested for the same nominally sized 

PMUs, at comparable scales, but also continuing to increase scale until hardware limitations 

prevent further reliable throughput.  

Ignoring size limitations on the IEEE C37.118 configuration frame 2, because the optional 

configuration frame 3 can span multiple frames, limits for a data frame of IEEE C37.118 and 

IEC TR 61850-90-5 are restricted to 65K bytes. As a result, conclusions similar to the 

indications found in PeakRC testing [24] of GEP and IEEE C37.118 is expected once tests are 

complete, specifically that STTP will scale to hardware limits, typically 3-5 million points per 

second depending on hardware, but the 65K limit on IEEE C37.118 and IEC TR 61850-90-5 

frames limit data throughput to no more than ~200,000 points per second. 

CPU / memory comparisons for all protocols will use the smallest number in the set of 

max-number of nominally sized PMUs that can be supported by each protocol, as discovered 

per testing, and compare impacts. As part of scalability testing, comparisons should highlight 

impacts of STTP compression on memory and CPU loading. Conclusions like the results found 

in PeakRC testing are expected once tests are complete, specifically that compression does not 

adversely affect CPU or memory loading. 

Data Loss Testing - Data losses will be tested using both TCP only and TCP with UDP. 

Including TCP only may seem unnecessary since no data loss is expected, however, previous 
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tests with PeakRC have shown that losses over TCP can still be incurred because of failure to 

receive all expected data in a configured wait-time – as time allows, multiple TCP tests with 

varying wait-times will be executed to show the level at which wait-time lengths produce no 

loss. 

UDP tests are expected to highlight data loss minimization effectiveness of STTP. All 

tests will be executed with varying pre-existing network loads ranging from 0% to 90%. 

Multiple tests will be executed for varying scalability options – at a minimum three 

representative tests for small (10 PMUs), medium (50 PMUs) and large (200 PMUs) 

infrastructures. A traffic impact test of data loss for STTP will also be conducted to show how 

preexisting network loads affect STTP scale and overall loss (UDP only). 

Efficiency Testing - Bandwidth utilization will be tested using both TCP only and TCP 

with UDP. In the case of TCP only, STTP compression options show bandwidth performance 

benefits over IEEE C37.118. Conclusions similar to the results found in PeakRC testing are 

expected once tests are complete, specifically that when compression is enabled, STTP over 

UDP is expected to perform worse, ~1.8x, than IEEE C37.118, but on par with IEC TR 61850-

90-5; and STTP over TCP is expected to perform better that IEEE C37.118, a ~30% reduction. 

Virtual Machine Testing - In addition to the tests that will be executed on standalone 

machines, a subset of the tests, specifically related to scalability and data loss, will also be run 

on virtual machines (VMs) to ascertain the impact that this technology can have on these 

protocols. As VMs are a quite common deployment option for IT environments, these tests will 

highlight any possible negative impacts VMs can have on the reliable transmission of 

synchrophasor data. VM testing will execute on host hardware where other active VMs will be 

varied in number and CPU loading on the same host machine. 
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XI. COMPARISON CONCLUSIONS 

This section includes data from the PeakRC testing that compared IEEE C37.118 and 

GEP, using TCP and UDP, that was conducted in September of 2016 [24].  Testing was 

conducted at Peak Reliability (PeakRC) in the Vancouver and Loveland operations centers. To 

simulate a range of operating conditions, the performance of the protocols was evaluated at 

three data volumes: (1) small scale – simulating a phasor data flow from one of PeakRC’s 

smaller phasor data contributors, (2) medium scale – simulating a phasor data flow from one of 

PeakRC’s bigger phasor data contributors, and (3) large scale – the aggregated PeakRC 

synchrophasor data stream from all its members. To assure that the protocols were evaluated 

under identical conditions, all tests were executed simultaneously, side-by-side. Multiple 2-hour 

tests were run for each data volume to verify that the results were repeatable. 

Structure 

The IEEE C37.118.2-2011 and IEC TR 61850-90-5 are frame based. While efficient at all 

data volumes and effective with small data volumes, when used at scale (e.g., for systems 

involving hundreds of PMUs) the frame-based nature of these protocols present network design 

and operational challenges that the protocols were never designed to handle. Large frame sizes 

can also have adverse effects on data completeness; as more devices are concentrated into a 

single frame of data, the larger frame sizes contribute to higher overall data losses. 

STTP is measurement based without a fixed configuration, i.e., the identifiable data 

arriving in one packet of STTP data will differ from the identifiable data arriving in the next 

packet and timestamps of data included within a data packet are not necessarily time-aligned. 

With STTP, data is partitioned at the application layer to minimize network fragmentation at 

the communications layer. Ideally the number of values sent per partitioned data packet are the 

total that will conveniently fit into one network packet, i.e., MTU size minus required headers. 

By reducing network fragmentation, the loss of a single packet over UDP does not constitute 

the loss of an entire frame of data and retransmission of the packet over TCP is not inducing 

increased latency and equipment stress due to frame reconstruction. 
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Efficiency 

Because of the extra information required to be transmitted per measurement, the natural 

(raw) bandwidth requirements of STTP will be higher than a fixed format frame-based protocol 

such as IEEE C37.118; however, production STTP deployments are always configured with 

lossless compression. When STTP is used over UDP, each group of measurements is 

compressed before transmission making the bandwidth requirements more comparable to IEEE 

C37.118 and other synchrophasor frame-based protocols. Testing showed that after packet-level 

compression, STTP/UDP is roughly 1.8 times larger than IEEE C37.118 for the same data. 

However, when using STTP over TCP, stateful compression is used which allows for better 

time-series based compression over many groups of data resulting in the total bandwidth 

requirement for STTP/TCP being less than IEEE C37.118. Test results show that STTP is at 

least 30% smaller than IEEE C37.118 for the same data when using TCP, see Figure 2 below.  

Figure 2. Bandwidth Utilization, IEEE C37.118 vs. GEP 

The IEC TR 61850-90-5 protocol has been demonstrated as an alternative to IEEE 

C37.118.2-2011 [27]. Like IEEE C37.118, the 90-5 protocol is frame-based and for the same 
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data and has a larger frame size than IEEE C37.11823. The 90-5 protocol also includes a feature 

to repeat past datasets in the current frame to help reduce overall loss when used over UDP, 

however, this feature should be used judiciously because for large data sets this coefficient 

quickly causes frame growth which will contribute to increased data loss. Therefore, any 

existing scalability issues encountered with IEEE C37.118.2-2011 will be exacerbated with IEC 

61850-90-5.  

Since STTP always applies compression to achieve desired bandwidth utilization, there 

are legitimate concerns on the impact the compression algorithms will have on both CPU 

loading and memory utilization. However, since there is no concentration involved with STTP 

the impacts are significantly less than those compared to IEEE C37.118.2-2011 and IEC TR 

61850-90-5 mainly because no frames are being constructed and held in memory, see Figure 3 

and Figure 4 below. 

Figure 3. CPU Utilization, IEEE C37.118 vs. GEP 

                                                 

 
23 At least 90-bytes more per frame when ASDU count is zero. 
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Figure 4. Memory Utilization IEEE C37.118 vs. GEP 

Susceptibility to Data Loss 

To address the challenges with data loss caused by large frame sizes inherent to the 

standard IEEE C37.118.2-2011 and IEC TR 61850-90-5 synchrophasor protocols, some utilities 

have opted to implement purpose-built, dedicated networks exclusively used for synchrophasor 

traffic [29]. Companies that have not implemented purpose-based networks have also used non-

critical network infrastructure, including the internet, to share synchrophasor data due to the 

fear of over using bandwidth on their respective wide area networks. Although a dedicated 

network is ideal at reducing data loss (minimizing simultaneous network traffic results in fewer 

collisions), most networks are a shared resource for many kinds of heterogeneous traffic – in 

these networks, the continual streaming of large frames of synchrophasor data result in an 

increased probability of UDP frame loss, or in the case of TCP, increased communication 

latency due to the higher than normal data packet retransmission rates. Over provisioning of 

bandwidth on shared networks is a common approach used to resolve issues with sending data 

with large frame sizes. 
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In tests conducted by PeakRC, measured overall data loss for the transmission of all of its 

synchrophasor data using IEEE C37.118 over UDP averaged over 2% when using a data rate 

of 30 frames per second and more than 3,100 data values per frame, see Figure 5 below. 

Figure 5. Data Loss IEEE C37.118 vs. GEP 

The results from PeakRC testing show that using STTP results in less synchrophasor data 

loss as compared to other protocols, however, the loss is only significant at scale, i.e., for larger 

data sets. For the PeakRC large data volume test with UDP with 3,145 measurements published 

at 30 samples per second, IEEE C37.118 was measured to have 2.1% data loss vs. 0.14% for 

STTP. Although the data loss for STTP in the smaller datasets is about 6 times less for each, 

0.31% data loss vs. 0.04% for the medium data volume and 0.12% data loss vs. 0.02% for the 

small data volume, the losses are still fractional. Consequently, only when the number of 
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measurements included in a frame start to create frame sizes that require 20 or more network 

fragments for IP transmission do the losses become significant, see Figure 6. 

Figure 6. IEEE C37.118 Frame Size as a Function of Signals per PMU 

Scalability 

Both IEEE C37.118.2-2011 and IEC TR 61850-90-5 have a data frame size ceiling of 65K 

bytes – this creates a limit for information that can be exchanged between two parties in a single 

session. For example, with a synchrophasor stream that is publishing data at 30 samples per 

second, the maximum throughput is about 200,000 measurements per second24. The 65K byte 

limit, as referenced in Zone 4 of Figure 6, means that no more than about 6,700 uniquely 

identifiable measurements can be published in one stream25. In contrast, STTP does not require 

a fixed configuration nor does it specify a maximum limit on the number of identifiable 

measurements that can be exchanged – as such, STTP will scale to much higher volumes for 

data exchange, up to hardware limitations. Current STTP implementations are limited only by 

CPU processing power used to serialize data. On testing with pedestrian hardware, systems are 

able to scale from 3 to 5 million measurements per second depending on hardware capabilities. 

                                                 

 
24 Increasing the samples per second will increase the throughput, but not the total number of distinctly identified 
measurements in a configured frame. 

25 In IEEE C37.118.2-2011 using scaled integers, i.e., 2-byte word values instead of 4-byte floating-point values, 
the total measurements would be doubled to 13,400 measurements. 
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At 3 million measurements per second, assuming all input sources are streaming at 30 samples 

per second, a system could support 100,000 distinct identifiable measurements in a single 

stream. Multi-core server systems should be process 10 to 20 times as much, based on increased 

core counts, as the constraint is processing based, not network hardware constrained and plenty 

of remaining bandwidth overhead will exist on Gigabit network infrastructures even at these 

higher data processing volumes. As an example of need, at current growth rates synchrophasor 

implementations at the ISO level, with data being received from both members and peers, data 

volumes could easily approach 25,000 or more distinct measurements within the next few years. 

Current synchrophasor deployments at ISO levels are aware of the limits when using 

IEEE C37.118.2-2011 and IEC TR 61850-90-5; their use forces the creation of multiple streams 

of data once a frame (typically the configuration, the larger of the frames) reaches its 65K limit. 

Although creation of multiple streams is a viable option when needing to send all data between 

two parties using an existing protocol, it is not ideal. Each new stream will need to be on a 

unique port and new firewall paths will need to be opened and established for each unique 

stream. 

Security 

Since the IEEE C37.118.2-2011 protocol has no native security options, this is often a 

cited reason for using IEC TR 61850-90-5 as an alternative protocol. Certainly in lieu of native 

security options, many implementations of IEEE C37.118 have instead opted to deploy a VPN 

between sources and syncs needing to exchange data. 

The IEC TR 61850-90-5 standard works with the pre-existing IEC 61850 security 

options, specifically IEC 62351-9. These security options make use of digital signatures 

ensuring only authenticated users have access to the desired data using the GDOI protocol. 

GDOI handles security with UDP multicast security using a shared, group key. This security 

implementation works out well since IEC TR 61850-90-5 is normally deployed over UDP 

multicast. For GDOI to function properly, a centrally accessible KDC – i.e., a KDC accessible 

to both publishers and subscribers – must be available. One of the challenges here is the 

necessity of establishing a centrally accessible KDC, especially when synchrophasor data will 

be traversing CIP security zones where each higher security zone will not allow the ingress of 

connections – ultimately this requires that the KDC be in the least secure zone. 



59 

 

Security in STTP uses standard TLS over TCP. When a UDP channel is enabled, 

symmetric keys are exchanged over the TLS secured channel to secure the UDP traffic where 

the keys are specific to each subscriber. If desired and allowed by the publisher, multicast 

scenarios can also be supported; in this case each subscriber to the multicast stream would each 

receive the same shared keys after successfully establishing a TLS connection to the publisher. 

The certificates used in the STTP TLS connections are also used to authenticate and strongly 

identify subscribers. STTP adds an additional level of security not offered by the other 

synchrophasor protocols being compared, i.e., measurement-level access control per subscriber 

as controlled by publisher configuration. In this way a specific subscriber will only have access 

to data as explicitly authorized by a subscriber. Finally, to accommodate traversal of CIP 

security zones, STTP supports reverse connection options. A reverse connection allows 

publishers in a higher security zone to be configured to connect out to subscribers in a lower 

security zone, which is necessary because initiating a connection in the other direction is 

otherwise not allowed. Through configuration, a subscriber with a listening socket in a reverse 

connection will validate the connecting publisher’s TLS certificate, but once the connection is 

established, all other functions proceed as normal. 

Non-Synchrophasor Data Transport 

The IEEE C37.118.2-2011 and IEC TR 61850-90-5 both accommodate the transmission 

of other, non-synchrophasor data using “analog” values, such as calculated data. Transmission 

of analog values is always within an existing frame along with other synchrophasor data at a 

specific timestamp. Publication of extra data at predefined timestamp creates a caveat that the 

analog values, ideally, should be published at the same rate as other synchrophasor data. 

Otherwise, if the publication frequency, i.e., the rate of calculation or measurement, of an analog 

value is less than the configured publication frequency of the host frame, a sentinel value will 

need to occupy the space in the frame for publication periods with no measurement, e.g., a not-

a-number (NaN) value. Publishing a sentinel value means that bandwidth is being unnecessarily 

consumed in cases where there is no data. Also, using a sentinel value can create a dilemma for 

meaning as NaN may represent a valid result for a calculated analog value. If the publication 

frequency of an analog value is higher than the configured publication frequency of the host 

frame, then the measured values will need to be down-sampled into the target frequency. In 
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either case, when the publication frequencies differ, the situation for analog value transport in 

a frame-based protocol is not ideal. 

By contrast, in STTP each individual measurement can have its own publication 

frequency. This is easily accommodated because each STTP data packet does not have a fixed 

configuration and every measured value has its own associated identification, timestamp, and 

quality flags, see Data Packet Response Payload. The per measurement quality flags allow for 

an unambiguous representation of a value’s meaning – that is, the value is always exactly what 

is measured or calculated with no sentinels required and the flags convey known state about the 

analog value, such as its quality or the accuracy of the timestamp. 

Other Operating Functionality 

Existing frame-based synchrophasor protocols only have prescriptive methods for the 

management of measurement metadata. While this prescriptive method can be well-suited for 

substation-to-control-center use, it becomes difficult to manage as measurement metadata that 

spans multiple analytic solutions and control centers, for example, inter-company data 

exchange where it becomes difficult to describe data when measurements with shared 

configuration owners or in a wide-area context, due to merging complexities. To help with 

merging disparate data sources, STTP allows for extensible metadata sets so that industry 

specific information about the data being exchanged can be included and all STTP metadata is 

identified with 128-bit statistically unique GUID values to support dataset conflation, see 

APPENDIX B – STTP METADATA. 
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Protocol Comparison Summary 

A table summarizing features of the three compared protocols is provided below: 

FEATURE 
IEEE 

C37.118 
IEC 61850 

90-5 
STTP 

Structure Frame Frame Dynamic 

Efficiency Good Fair 
Excellent - TCP 

Fair - UDP 

Data Loss (low volume) None - TCP None - TCP None 

Data Loss (high volume) 
Low - TCP26 

Some - UDP27 
Low - TCP 

Some - UDP 
None - TCP 

Minimal - UDP 

Scalability Fair Fair Excellent 

Encryption No Yes Yes 

Extensible Metadata No     No28 Yes 

Multicast Supported Yes Yes Limited 

Table 14. Protocol Comparison Summary 

 

 

                                                 

 
26 Latencies with large data sets when using concentration can cause timeout expirations such that source data 
will to not be included in final output stream thus inducing some data loss even when using TCP. 

27 Measured to be at 2% during PeakRC testing [24]. 

28 SCL can be mapped to CIM giving deep insights into utility infrastructure, however, the protocol does not 
allow for the exchange of dynamic datasets that may be required for other industries. 
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XIII. APPENDIX A – STTP FILTER EXPRESSIONS 

Subscribers use filter expressions to condense XML-based datasets, e.g., metadata, 

provided by STTP publishers to a desired set of information. The metadata defined by STTP is 

in tabular format – such as the data from tables in a database – so the syntax used for filter 

expressions is like that defined in Structured Query Language (SQL). Filter expressions focus 

on operations that work in a similar fashion to the SQL expression syntax associated with the 

WHERE clause in a SELECT statement but does not implement the full set of SQL language 

options for the clause.  

Limited Implementation Requirements 

The purpose of a filter expression is to reduce the set of available metadata down to the 

desired set of values, as such, any of the more complex SQL WHERE expression operations, 

like those that use aggregation functions or parent-child foreign-key relationships, need not be 

implemented. 

At a minimum, filter expressions should allow string literals demarked by single quotes, 

e.g., 'String Literal', and numeric literals. Expressions should also support comparison 

operators of =, <>, <, <=, >, and >=, where strings comparisons operate as case-insensitive in the 

locale of the host system. A SQL LIKE expression should so also be supported with an * or % 

representing a wildcard for pattern matching that can be at the beginning of a pattern '*value', 

at the end 'value*', or at both '*value*'. A wildcard in the middle of a pattern 'va*lue' is not 

allowed. Boolean operators AND, OR and NOT should be supported to allow concatenation of 

expressions. The NOT operator has precedence over the AND operator and it has precedence over 

the OR operator. Other operators, such as standard SQL arithmetic operations are encouraged, 

but not required. 

Implementations of STTP are encouraged not to pass filter expressions along to an actual 

database engine for parsing since this could introduce security issues on the host database 

related to SQL injection. Instead implementations should a use a custom SQL expression parser, 

with limited implementation, against a read-only or in-memory dataset. 
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Syntax 

The filtering syntax uses the custom key word FILTER instead of the standard SQL SELECT 

so that it is clear to the user that the operation is not a standard SQL operation and hence 

restriction to capabilities of the expression may apply. The structure of an expression should be 

as follows: 
 

FILTER <TableName> [TOP n] WHERE <Expression> [ORDER BY <SortField>] 
 

The following table defines the options and clauses that make up the STTP filter expression: 
 

Keyword Example Description Required 

FILTER See Examples below Starts the filter expression Yes 

TOP n TOP 100 Selects only the first number of items No 

WHERE 
<Expression> 

WHERE 
SignalType='FREQ' 

SQL WHERE expression with limited 
functionality support 

Yes 

ORDER BY 
<ColumnName> 

ORDER BY 
SignalType 

Orders the results by the 
selected field 

No 

Table 15. STTP Filter Expression Structure 

Examples 

The following filter expression will request to subscribe to the first 20 measurements with 

the company name of BPA and signal type of frequency (FREQ): 
 

FILTER TOP 20 ActiveMeasurements WHERE Company='BPA' AND SignalType='FREQ' 

 

The following filter expression will request to subscribe to only positive sequence current 

and voltage phase angles: 
 

FILTER ActiveMeasurements WHERE SignalType IN ('IPHA','VPHA') AND Phase='+' 
ORDER BY PhasorID 

 

The following filter expression will request to filter incoming metadata to exclude 

statistics, such as might be used with the METADATA REFRESH command payload: 
 

FILTER MeasurementDetail WHERE SignalAcronym <> 'STAT'  
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XIV. APPENDIX B – STTP METADATA 

Metadata in STTP is XML data that is represented in a tabular format, specifically with 

an XML Schema (https://www.w3.org/TR/xmlschema-2/), much like that of data that can be 

found in a spreadsheet or table of data in a database, see Example Metadata below. Additionally, 

STTP allows for the transport of multiple tables of data in a single dataset, such as, a table of 

devices and measurements. This flexibility allows for the transport of any number of tables of 

metadata that may be required to describe measurements in enough detail to accommodate a 

given use case. Regardless, a minimum set of metadata is required for STTP to function, 

specifically all measurements need a unique GUID based identifier along with its data type, an 

alpha-numeric tag name, description, and last update timestamp. 

Metadata Tables and Fields 

The following tables detail the metadata that are currently used in STTP, specific for the 

utility industry, that allow for interoperability with other synchrophasor protocols such as IEEE 

C37.118. 

MeasurementDetail Table 

At a minimum, STTP will require a table of measurements in order to function. Of the 

fields in this table, only four fields are required, that is: SignalID, PointTag, Description and 

UpdatedOn. All other fields are optional from the perspective of STTP but may be required for 

an industry specific use case. 
 

Field Type Description Required 

SignalID Guid Unique UUID of this individual measurement Yes 

PointTag String Well formatted tag name for historians Yes 

Description String Detailed measurement description (free-form) Yes 

ID String Measurement key string, format: "source:index" No 

SignalReference String Frame-based protocol mapping field (type / index) No 

PhasorSourceIndex Integer Phasor ordered index, uses 1-based indexing No 

DeviceAcronym String Name of associated parent device (if any) No 

UpdatedOn DateTime Time of last meta-data update Yes 
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DeviceDetail Table 

The device table defines the devices, such as PMUs, that are the sources of measurements. 

This table is useful for mapping STTP to and from IEEE C37.118. 
 

Field Type Description 

Acronym String Alpha-numeric device, e.g., pmu/station name (all-caps) 

Name String User-defined device name / description (free-form) 

UniqueID Guid Device unique UUID (used for IEEE C37.118 CFG-3 frame) 

AccessID Integer ID code used for device connection / reference 

ParentAcronym String Original PDC name (none for direct connected devices) 

ProtocolName String Original protocol name 

FramesPerSecond Integer Device reporting rate, e.g., 30 fps 

CompanyAcronym String Original device company name 

VendorAcronym String Original device vendor name (if provided) 

VendorDeviceAcronym String Original vendor device name, e.g., PMU brand 

Longitude Float Device longitude (if reported) 

Latitude Float Device latitude (if reported) 

UpdatedOn DateTime Time of last meta-data update 

PhasorDetail Table 

The phasor table defines phasors, as described in IEEE C37.118, that are associated with 

devices. This table is required to construct a frame of data in IEEE C37.118 format using input 

measurements received from STTP. 
 

Field Type Description 

DeviceAcronym String Name of associated parent device (required) 

Label String Phasor label (16-characters) for CHNAM 

Type String Current (I) or Voltage (V) 

Phase String Phase, e.g., A, B, C, +, -, 0 

SourceIndex Integer Phasor ordered index, uses 1-based indexing 

UpdatedOn DateTime Time of last meta-data update 
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Example Metadata 

 
<?xml version="1.0" standalone="yes"?> 
<Metadata> 
  <xs:schema id="Metadata" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
    <xs:element name="Metadata"> 
      <xs:complexType> 
        <xs:choice minOccurs="0" maxOccurs="unbounded"> 
          <xs:element name="DeviceDetail"> 
            <xs:complexType> 
              <xs:sequence> 
                <xs:element name="NodeID" type="xs:string" minOccurs="0" /> 
                <xs:element name="UniqueID" type="xs:string" minOccurs="0" /> 
                <xs:element name="OriginalSource" type="xs:string" minOccurs="0" /> 
                <xs:element name="IsConcentrator" type="xs:boolean" minOccurs="0" /> 
                <xs:element name="Acronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="Name" type="xs:string" minOccurs="0" /> 
                <xs:element name="AccessID" type="xs:long" minOccurs="0" /> 
                <xs:element name="ParentAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="ProtocolName" type="xs:string" minOccurs="0" /> 
                <xs:element name="FramesPerSecond" type="xs:long" minOccurs="0" /> 
                <xs:element name="CompanyAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="VendorAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="VendorDeviceName" type="xs:string" minOccurs="0" /> 
                <xs:element name="Longitude" type="xs:decimal" minOccurs="0" /> 
                <xs:element name="Latitude" type="xs:decimal" minOccurs="0" /> 
                <xs:element name="InterconnectionName" type="xs:string" minOccurs="0" /> 
                <xs:element name="ContactList" type="xs:string" minOccurs="0" /> 
                <xs:element name="Enabled" type="xs:boolean" minOccurs="0" /> 
                <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" /> 
              </xs:sequence> 
            </xs:complexType> 
          </xs:element> 
          <xs:element name="MeasurementDetail"> 
            <xs:complexType> 
              <xs:sequence> 
                <xs:element name="DeviceAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="ID" type="xs:string" minOccurs="0" /> 
                <xs:element name="SignalID" type="xs:string" minOccurs="0" /> 
                <xs:element name="PointTag" type="xs:string" minOccurs="0" /> 
                <xs:element name="SignalReference" type="xs:string" minOccurs="0" /> 
                <xs:element name="SignalAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="PhasorSourceIndex" type="xs:long" minOccurs="0" /> 
                <xs:element name="Description" type="xs:string" minOccurs="0" /> 
                <xs:element name="Internal" type="xs:boolean" minOccurs="0" /> 
                <xs:element name="Enabled" type="xs:boolean" minOccurs="0" /> 
                <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" /> 
              </xs:sequence> 
            </xs:complexType> 
          </xs:element> 
          <xs:element name="PhasorDetail"> 
            <xs:complexType> 
              <xs:sequence> 
                <xs:element name="ID" type="xs:long" minOccurs="0" /> 
                <xs:element name="DeviceAcronym" type="xs:string" minOccurs="0" /> 
                <xs:element name="Label" type="xs:string" minOccurs="0" /> 
                <xs:element name="Type" type="xs:string" minOccurs="0" /> 
                <xs:element name="Phase" type="xs:string" minOccurs="0" /> 
                <xs:element name="DestinationPhasorID" type="xs:long" minOccurs="0" /> 
                <xs:element name="SourceIndex" type="xs:long" minOccurs="0" /> 
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                <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" /> 
              </xs:sequence> 
            </xs:complexType> 
          </xs:element> 
          <xs:element name="SchemaVersion"> 
            <xs:complexType> 
              <xs:sequence> 
                <xs:element name="VersionNumber" type="xs:long" minOccurs="0" /> 
              </xs:sequence> 
            </xs:complexType> 
          </xs:element> 
        </xs:choice> 
      </xs:complexType> 
    </xs:element> 
  </xs:schema> 
  <DeviceDetail> 
    <NodeID>8736f6c7-ad41-4b43-b4f6-e684e0d4ad20</NodeID> 
    <UniqueID>c8283c22-8aed-4a0d-bf9d-76111932afd9</UniqueID> 
    <IsConcentrator>false</IsConcentrator> 
    <Acronym>TESTDEVICE</Acronym> 
    <Name>Test Device</Name> 
    <AccessID>2</AccessID> 
    <ParentAcronym /> 
    <ProtocolName>IEEE 1344-1995</ProtocolName> 
    <FramesPerSecond>30</FramesPerSecond> 
    <CompanyAcronym>TVA</CompanyAcronym> 
    <VendorAcronym>ABB</VendorAcronym> 
    <VendorDeviceName>ABB-521</VendorDeviceName> 
    <Longitude>-89.8038</Longitude> 
    <Latitude>35.3871</Latitude> 
    <InterconnectionName>Eastern Interconnection</InterconnectionName> 
    <ContactList /> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:10.321-04:00</UpdatedOn> 
  </DeviceDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <ID>PPA:1</ID> 
    <SignalID>29b80c23-b76e-4f3d-a0bd-855b0f8ef08d</SignalID> 
    <PointTag>TVA_TESTDEVICE:ABBS</PointTag> 
    <SignalReference>TESTDEVICE-SF</SignalReference> 
    <SignalAcronym>FLAG</SignalAcronym> 
    <Description>Test Device ABB-521 Status Flags</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:11.477-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <ID>PPA:2</ID> 
    <SignalID>285dfa57-7b51-47b5-919b-b1dc7140d01a</SignalID> 
    <PointTag>TVA_TESTDEVICE:ABBF</PointTag> 
    <SignalReference>TESTDEVICE-FQ</SignalReference> 
    <SignalAcronym>FREQ</SignalAcronym> 
    <Description>Test Device ABB-521 Frequency</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:11.665-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
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    <ID>PPA:5</ID> 
    <SignalID>977747f8-056f-4fc6-88b2-f0cfb51ec139</SignalID> 
    <PointTag>TVA_TESTDEVICE-BUS1:ABBV</PointTag> 
    <SignalReference>TESTDEVICE-PM1</SignalReference> 
    <SignalAcronym>VPHM</SignalAcronym> 
    <PhasorSourceIndex>1</PhasorSourceIndex> 
    <Description>Test Device Bus 1 Positive Sequence Voltage Magnitude</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:12.227-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <ID>PPA:6</ID> 
    <SignalID>952ed494-377f-4be3-9151-86c78ead9231</SignalID> 
    <PointTag>TVA_TESTDEVICE-BUS1:ABBVH</PointTag> 
    <SignalReference>TESTDEVICE-PA1</SignalReference> 
    <SignalAcronym>VPHA</SignalAcronym> 
    <PhasorSourceIndex>1</PhasorSourceIndex> 
    <Description>Test Device Bus 1 Positive Sequence Voltage Phase Angle</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:12.415-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <ID>PPA:4</ID> 
    <SignalID>98c93a54-9435-48cf-987d-e897b793441a</SignalID> 
    <PointTag>TVA_TESTDEVICE:ABBDF</PointTag> 
    <SignalReference>TESTDEVICE-DF</SignalReference> 
    <SignalAcronym>DFDT</SignalAcronym> 
    <Description>Test Device ABB-521 Frequency Delta (dF/dt)</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-14T19:23:12.04-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <MeasurementDetail> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <ID>STAT:35</ID> 
    <SignalID>13f86d22-bf54-4ceb-b345-6a423118a1bc</SignalID> 
    <PointTag>TVA_TESTDEVICE!IS:ST1</PointTag> 
    <SignalReference>TESTDEVICE!IS-ST1</SignalReference> 
    <SignalAcronym>STAT</SignalAcronym> 
    <Description>Total frames received during last reporting interval.</Description> 
    <Internal>true</Internal> 
    <Enabled>true</Enabled> 
    <UpdatedOn>2018-03-20T22:12:26.933-04:00</UpdatedOn> 
  </MeasurementDetail> 
  <PhasorDetail> 
    <ID>12</ID> 
    <DeviceAcronym>TESTDEVICE</DeviceAcronym> 
    <Label>500 kV Bus 1</Label> 
    <Type>V</Type> 
    <Phase>+</Phase> 
    <SourceIndex>1</SourceIndex> 
    <UpdatedOn>2018-03-14T19:23:10.509-04:00</UpdatedOn> 
  </PhasorDetail> 
  <SchemaVersion> 
    <VersionNumber>8</VersionNumber> 
  </SchemaVersion> 
</Metadata>  
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XV. APPENDIX C – STTP COMMAND PAYLOADS 

The following are the payload definitions associated with specific STTP command types, 

see Table 10. STTP Command Types. 

Metadata Refresh Command Payload 

The payload for the METADATA REFRESH command is optional. If the payload length 

is zero, no filters are applied to the publisher metadata and all records that the subscriber is 

authorized to view will be returned in the dataset. When a payload is specified, i.e., the payload 

length is greater than zero, the payload allows the subscriber to provide text-based filtering 

expressions to reduce the metadata dataset provided by the publisher. For example, the 

subscriber may want to reduce the metadata to records for a certain company or signal type to 

reduce the number of records received. The format of the filter expression is defined in 

APPENDIX A – STTP FILTER EXPRESSIONS. Multiple expressions can be defined, each 

separated by a semi-colon. Below are the elements that make up the optional metadata refresh 

command payload: 
 

Field Byte Size Description 

EXPRESSION 

LENGTH 

4 Number of bytes in the expression 

EXPRESSION EXPRESSION 

LENGTH 

String-based filter expressions separated by semi-colons 

Table 16. Metadata Refresh Command Payload Fields 

Subscribe Command Payload 

The payload for the SUBSCRIBE command defines the desired data packet options and 

connection string expression used to start data streaming from the publisher. Requests for 
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measurements that do not exist or are not allowed by the publisher for the subscriber will be 

ignored. Below are the elements that make up the subscribe command payload: 
 

Field Byte Size Description 

DATA PACKET 

OPTIONS 

1 Currently a fixed value of 0x02 specifying compact 

measurement format, no synchronization29 

EXPRESSION 

LENGTH 

4 Number of bytes in the key/value pair 

connection string expression 

EXPRESSION EXPRESSION 

LENGTH 

String-based key/value pair connection string expression 

that defines desired subscription parameters, see Table 

18. Subscribe Command Connection String Parameters 

Table 17. Subscribe Command Payload Fields 

 

The connection string expression used in the subscribe command is formatted as a series 

of key/value pairs where an equals-sign (=) separates the key and value and a semi-colon (;) 

separates the pairs. The key names are not case-sensitive. The available keys and value types 

for the subscription are defined as follows: 
 

Key30 Value 

Type 

Description 

TrackLatestMeasurements Boolean Enables measurement down-sampling, speed 

controlled by PublishInterval. Defaults to false if 

not specified. 

PublishInterval Double The interval, in seconds, over which to deliver 

streaming data. Only applicable when 

TrackLatestMeasurements = true. 

IncludeTime Boolean Determines if measurements should include 

timestamp. Defaults to true if not specified. 

                                                 

 
29 Future implementations of STTP will drop this value. GEP supports requests for a non-compact measurement 
format to receive measurements using a simple serialization, however, this option is never used in practice. 
Another GEP subscription option exists to request server-side pre-concentration of data which delivers 
measurements in time-sorted order – however, the publisher has the right to deny this, and by default does, 
because it induces extra memory and CPU burden per subscription. The decision made was that if subscribers 
need data in a time-sorted manner, it will need to be concentrated locally post reception. 

30 These key names are subject to change with ongoing STTP updates and improvements. STTP API 
implementations typically hide these key/value details through properties and configuration parameters. 
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ProcessingInterval 32-bit 

Integer  

Specifies the initial historical data replay 

processing interval to use, in milliseconds. Only 

applicable when StartTimeContraint and 

StopTimeConstraint are provided. A value of -1 

means to use the default processing interval and 

a value of 0 means to process data as fast as 

possible. Defaults to -1 if not specified. 

UseMillisecondResolution Boolean Requests that millisecond time resolution be 

used for subscription to use less space when 

encoding timestamps. Defaults to false if not 

specified. 

RequestNaNValueFilter Boolean Determines if values that contain not-a-number 

(NaN) should be published. Defaults to false if 

not specified, meaning values that NaN will be 

delivered to subscriber. 

InputMeasurementKeys String Defines the list of measurement identifiers or 

filter expression that the subscriber desires for 

subscription. When a list of identifiers is 

provided – either the GUID based signal ID, 

measurement key string, or point tag – the 

values are separated by a semi-colon. 

See APPENDIX A – STTP FILTER EXPRESSIONS for 

more details on filter expressions. 

StartTimeConstraint String When supported by the publisher, defines the 

start time, in UTC, for a subscription used to 

start a historical subscription. Time format can 

be absolute, e.g., 12-30-2000 23:59:59.033, or 

relative, e.g., *-20s meaning start twenty 

seconds before current time. For relative time 

specifications an “s” suffix is for seconds, “m” is 

for minutes, “h” is for hours and “d” is for days. 

StopTimeConstraint String When supported by the publisher, defines the 

stop time, in UTC, for a subscription used to 

mark the end of a historical subscription. See 

StartTimeConstraint for time format options. 

When historical replay is complete, subscriber 

will receive a PROCESSING COMPLETE response. 

Table 18. Subscribe Command Connection String Parameters 
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Update Processing Interval Command Payload 

The payload for the UPDATE PROCESSING INTERVAL command defines the new 

processing interval to apply to an ongoing historical data replay subscription. This command 

can be issued at any time while historical data is streaming back to the subscriber, this allows 

dynamic control of the speed of the replay. Except for the values of -1 and 0, the new value 

specifies the desired processing interval for data in milliseconds. Implementations of STTP use 

the interval to induce a delay in historical replay. A value of -1 means to use the default 

processing interval while a value of 0 means to process data as fast as possible. Below are the 

elements that make up the update processing interval command payload: 
 

Field Byte Size Description 

VALUE 4 New interval to apply (INT32) 

Table 19. Update Processing Interval Command Payload Fields 

Define Operational Modes Command Payload 

The payload for the DEFINE OPERATIONAL MODES command defines the desired 

protocol version and bit flags used to set up the desired communication rules between the 

publisher and subscriber. As soon as a connection with a publisher is established, the subscriber 

sends this command. The command can be used only once per connection and it must be the 

first command to the publisher. Any other commands received by the publisher before this 

command may cause a session termination since the connection may not look like a valid STTP 

protocol session. Below are the elements that make up the define operational modes command 

payload: 
 

Field Byte Size Description 

VALUE 4 Desired operational modes to use (INT32) 

See Table 21. Operational Modes – Bit Masks and Values 

Table 20. Define Operational Modes Command Payload Fields 

 

 



76 

 

Field Value Description 

VERSION MASK 0x0000001F Bit mask used to apply protocol 

version number (0 to 31) 

COMPRESSION 

MODE MASK 

0x000000E0 Bit mask used to set desired 

compression algorithms, see 

Table 22. Compression Algorithm Flags 

ENCODING 

MASK 

0x00000300 Bit mask used to set text encoding mode, see 

Table 23. Text Encoding Options 

COMPRESS 

PAYLOAD DATA 

0x20000000 Determines whether payload data is 

compressed when exchanged between 

publisher and subscriber 

COMPRESS SIGNAL 

INDEX CACHE 

0x40000000 Determines whether the signal index cache 

is compressed when exchanged between 

publisher and subscriber 

COMPRESS 

METADATA 

0x80000000 Determines whether metadata is 

compressed when exchanged between 

publisher and subscriber 

Table 21. Operational Modes – Bit Masks and Values 

 

Field Value Description 

GZIP 0x20 Enable GZip style compression – applies to METADATA REFRESH 

success response payload when COMPRESS METADATA flag is 

set, UPDATE SIGNAL INDEX CACHE payload when COMPRESS 

SIGNAL INDEX CACHE flag is set, and DATA PACKET payload 

when data channel operates over a UDP socket and  

COMPRESS PAYLOAD DATA is set 

TSSC 0x40 Enable TSSC style compression – applies to DATA PACKET 

payload when data channel operates over a TCP socket and 

COMPRESS PAYLOAD DATA is set 

NONE 0x00 No compression algorithms are selected 

Table 22. Compression Algorithm Flags31 

                                                 

 
31 Instead of requiring fixed bit flags for compression algorithms, future versions of STTP may instead use string 
values to specify the desired algorithm to use. Using a string name creates a more flexible algorithm negotiation 
option – the publisher need only respond with a failure if a requested algorithm is not supported, perhaps 
including a list of the supported compression algorithms. 
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Field Value Description 

UNICODE 0x000 Process strings using UTF-16 (a.k.a., Unicode) encoding 

BIG ENDIAN 

UNICODE 

0x100 Process strings using UTF-16 (a.k.a., Unicode) encoding where 

each 16-bit text character is serialized in big-endian order 

UTF8 0x200 Process strings using UTF-8 encoding 

ANSI 0x300 Process strings using ANSI encoding 

Table 23. Text Encoding Options 

Confirm Notification Command Payload 

The payload for the CONFIRM NOTIFICATION command defines the hash code, 

received in the NOTIFY response payload, used to inform the publisher that the notification 

sent to the subscriber was received. 
 

Field Byte Size Description 

VALUE 4 Notification hash to confirm (INT32)  

Table 24. Confirm Notification Command Payload Fields 

Confirm Buffer Block Command Payload 

The payload for the CONFIRM BUFFER BLOCK command defines the sequence 

number, received in the BUFFER BLOCK response payload, used to inform the publisher that 

the buffer block sequence was received. 
 

Field Byte Size Description 

VALUE 4 Buffer block sequence to confirm (UINT32)  

Table 25. Confirm Buffer Block Command Payload Fields 
  



78 

 

XVI. APPENDIX D – STTP RESPONSE PAYLOADS 

The following are the payload definitions associated with specific STTP response types, 

see Table 12. STTP Response Types. 

Succeeded Response Payload for Simple Commands 

The payload for the SUCCESS response defines the message content for a successful 

response to a solicited command. In the case of the SUBSCRIBE, UNSUBSCRIBE, and 

ROTATE CIPHER KEYS32 commands the payload will be a text message, suitable for logging, 

that provides details about the operation, e.g., how many points were successfully subscribed. 

Below are the elements that make up the payload for a simple response: 
 

Field Byte Size Description 

MESSAGE PAYLOAD 

LENGTH 

String-based response message 

Table 26. Success Response Payload Fields for Simple Commands 

Succeeded Response Payload for METADATA REFRESH Command 

The payload for the SUCCESS response for the METADATA REFRESH command is 

XML dataset containing all the metadata the subscriber is authorized to see33. The payload 

contents will be compressed if the GZip compression mode is enabled with the DEFINE 

OPERATIONAL MODES command when the connection is established, see Table 22. 

Compression Algorithm Flags. The content of XML metadata is extensible and subject to 

industry needs, however, at a minimum the fields as defined in APPENDIX B – STTP 

                                                 

 
32 The success or failure response to the ROTATE CIPHER KEYS is simply an operational confirmation to the 
solicited command. The subscriber will receive a second response, i.e., UPDATE CIPHER KEYS, that actually 
contains the new symmetric encryption keys – this is because UPDATE CIPHER KEYS can be unsolicited, i.e., 
the publisher can update the keys at any time. 

33 If the subscriber specified any filter expressions as part of the METADATA REFRESH command payload, 
these filter expressions will be applied and will reduce the metadata available in the dataset. 
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METADATA are available. Below are the elements that make up the payload for a simple 

response: 
 

Field Byte Size Description 

XML 

METADATA 

PAYLOAD 

LENGTH 

Compressed GZip or raw string-based response message 

that contains XML tables representing metadata. 

Table 27. Success Response Payload Fields for METADATA REFRESH Command 

Failed Response Payload 

The payload for the FAILED response defines the message content for a failed response 

to a solicited command. Any failed response will be a text message, suitable for logging, that 

provides details about the unsuccessful operation. Below are the elements that make the payload 

for a failed response: 
 

Field Byte Size Description 

MESSAGE PAYLOAD 

LENGTH 

String-based response message 

Table 28. Failed Response Payload Fields 

Data Packet Response Payload 

The payload for the DATA PACKET response defines the serialized time-series 

measurement values, i.e., the data, that are streaming back to a subscriber. The contents of the 

data packets are repeated binary encoding of an identifier, timestamp, measured value and flags 

(e.g., time and data quality) – that are in no fixed order, i.e., the measurements in one data 

packet may be different than those in the next. Data packet size is managed at the application 

layer such that only a finite group of measurements are sent at once – ideally one group with 

will fit neatly within a single network packet to reduce (or eliminate) data block fragmentation, 

see  
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LARGE FRAME IMPACT ON IP. The data packets are constructed to be easy to parse 

so that third party systems can easily consume and use data. The raw native format of the data 

packet response uses a compact serialization format to help conserve bandwidth. Below are the 

elements that make up the payload for a data packet response: 
 

 Field Byte Size Description 

 DATA PACKET 

FLAGS 

1 Defines a marker used to define the data packet 

payload format, e.g., if the content is compressed, 

see Table 30. Data Packet Flags 

┌ 

│ 

MEASUREMENT 

COUNT 

4 Number of measurements defined in 

data packet payload (INT32) 

│ 

└ 

DATA PACKET 

PAYLOAD 

PAYLOAD 

LENGTH - 5 

Format depends on if COMPRESS PAYLOAD DATA 

was specified in DEFINE OPERATIONAL MODES and 

selected compression algorithm, see Table 22. 

Compression Algorithm Flags 

 Encrypt Range  When UDP encryption is enabled with the UPDATE 

CIPHER KEYS command, data will be encrypted 

starting with MEASUREMENT COUNT field and 

include all of the DATA PACKET PAYLOAD 

Table 29. Data Packet Response Payload Fields 

 

 

Field Value Description 

COMPACT 0x02 Determines if data packet payload format 

 is using compact serialization 

CIPHER 

INDEX 

0x04 Determines which cipher index to use  

when decrypting data packet payload: 

Bit set = use odd cipher index (i.e., 1),  

Bit clear = use even cipher index (i.e., 0) 

COMPRESSED 0x08 Determines if data packet payload is compressed – actual 

compression format will be based on data channel socket and 

selected compression algorithm, a TCP socket will use TSCC 

and a UDP socket will use GZip 

Table 30. Data Packet Flags 
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Specifics of the compression of a data packet are covered in the STTP Data Compression 

section. The details that follow describe the native STTP encoding of time-series values. Each 

block of data to be published, i.e., the data packet response payload, consists of a collection of 

time-series values where each value is a serialized structure containing a 128-bit GUID-based 

identifier, a 64-bit high resolution timestamp, a 32-bit floating-point value, and one byte (i.e., 

8-bits) of associated quality flags, see Figure 7. The GUID-based identifier will be directly 

referenceable as a lookup key into the received metadata so that the measurement type, 

description, and other information can be used by a consuming application at runtime. The total 

data block size is dynamically configurable, this way it can be adjusted at run-time to 

accommodate varying network conditions to reduce packet fragmentation – but ideally, the data 

block size will target the current network MTU size minus headers so that one block of data 

will fit within one network packet.  

 
Figure 7. Serialized Measurement Structure 

 

To reduce the size of transmission of serialized measurements the 128-bit GUID is 

mapped to a 16-bit34 identifier established by the publisher during subscription, see Update 

Signal Index Cache Response Payload. Additionally, since publication of timestamps are near 

other timestamps in value, offsets are provided to the subscriber by the publisher to provide a 

                                                 

 
34 Future versions of STTP are expected to change this runtime identifier to a 32-bit value used with 7-bit 
encoding to allow subscriptions with more than 65K subscribed measurement values. 
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common base for timestamp values so that the size can be reduced. When the offset is 

unavailable or cannot be used (because it is out of range for the timestamp to be encoded), the 

full resolution timestamp will be sent. Below are the elements that make up the format of a 

compact measurement: 
 

Field Byte Size Description 

MEASUREMENT 

FLAGS 

1 Defines the compact measurement flags. These flags 

also include the base time offset, if it is in use, to 

designate the current base time offset index, see 

 Table 32. STTP Compact Measurement Flags 

SIGNAL INDEX34  2 Index from the Signal Index Cache table that maps to 

the 128-bit measurement GUID (UINT16) 

MEASUREMENT 

VALUE 

4 32-bit floating-point value of the measurement 

TIMESTAMP 0, 2, 4 or 8 Encoded timestamp: 

0 bytes if subscription does not include timestamps 

2 bytes UINT16 offset added to current time base if 

millisecond resolution has been selected 

4 bytes UINT32 added to current time base if not using 

millisecond resolution 

8 bytes when full timestamp encoding is needed, i.e., 

value outside range of current base time offset 

Table 31. STTP Compact Measurement Format 

 

Field Value Description 

BASE TIME 

OFFSET 

0x40 Determines if base time offset is  

active for current measurement 

TIME INDEX 0x80 Determines which base time offset index to  

use for current measurement (when active): 

Bit set = use odd time index (i.e., 1),  

Bit clear = use even time index (i.e., 0) 

DATA 

RANGE 

0x01 Marks measurement quality flags to 

show issue with the value range 
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DATA 

QUALITY 

0x02 Marks measurement quality flags to 

show issue with value quality  

TIME 

QUALITY 

0x04 Marks measurement quality flags to 

show issue with the time quality 

SYSTEM 

ISSUE 

0x08 Marks measurement quality flags to 

show a system related issue 

CALCULATED 

VALUE 

0x10 Marks measurement quality flags to 

show that value was calculated / derived 

DISCARDED 

VALUE 

0x20 Marks measurement quality flags to 

show that value was discarded while processing 

Table 32. STTP Compact Measurement Flags 

Update Signal Index Cache Response Payload 

The payload for the UPDATE SIGNAL INDEX CACHE response defines the lookup 

table that maps a 128-bit measurement ID to a 16-bit34 run-time used to reduce the size of a 

serialized measurement. Since the signal index cache is maintained per subscriber, this cache 

will only map the authorized measurements available to a subscriber, however, for the set of 

requested measurements the cache also includes a list of the measurements that publisher did 

not authorize. Generated run-time IDs are temporal, i.e., they only have context for the current 

session. A subscriber must accept updates to the signal index cache when provided by a 

publisher because changes in metadata and access rights can occur dynamically. To reduce race 

conditions, publisher should attempt to maintain as much continuity and uniqueness as possible 

with run-time IDs when dynamically updating the signal index cache as time-slew can occur 

between data transmission of measurements and reception of new signal index cache. Below 

are the elements that make up payload for the update signal index cache: 
 

Field Byte Size Description 

SIGNAL INDEX 

CACHE 

PAYLOAD 

PAYLOAD 

LENGTH 

Compressed GZip or directly serialized signal index 

cache, see Table 34. STTP Signal Index Cache Format 

Table 33. Update Signal Index Cache Response Payload Fields 
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 Field Byte Size Description 

 SIGNAL INDEX 

CACHE PAYLOAD 

LENGTH 

4 Number of bytes in the signal index cache payload 

(INT32) – this payload length is different from the 

response message payload length because 

message payload may be compressed 

 SUBSCRIBER ID 16 Defines the 128-bit GUID-based identifier that 

uniquely identifies the subscriber, typically 

implemented as a run-time reference to a 

validated certificate 

 REFERENCE 

COUNT 

 4 Total number of signal index references defined 

┌ 

│ 

SIGNAL INDEX34 2 Run-time measurement index that maps 

to a 128-bit GUID (UINT16) 

│ 

│ 

SIGNAL ID 16 Defines the 128-bit GUID-based identifier that 

uniquely defines the measurement  

│ 

│ 

SOURCE SIZE 4 Number of bytes in the source string for the 

measurement (INT32) 

│ 

│ 

SOURCE35 SOURCE 

SIZE 

String-based source of measurement 

as defined by the publisher 

└ SOURCE ID 4 Source identifier as defined by 

the publisher (UINT32) 

 Repeat Fields  Repeat fields SIGNAL INDEX to SOURCE ID for 

REFERENCE COUNT times 

 UNAUTHORIZED 

COUNT 

4 Total number of measurements requested by 

subscriber that were unauthorized by publisher 

┌ 

│ 

└ 

UNAUTHORIZED 

SIGNAL ID 

16 Defines the 128-bit GUID-based 

identifier requested by subscriber 

that was unauthorized by publisher 

 Repeat Field  Repeat field UNAUTHORIZED SIGNAL ID for 

UNAUTHORIZED COUNT times 

Table 34. STTP Signal Index Cache Format 

                                                 

 
35 The source string and associated integer source ID will be dropped in future versions of STTP. These fields 
were implemented as part of GEP to define an alternate lookup key for the signal index.   
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Data Start Time Response Payload 

The payload for the DATA START TIME response defines the timestamp of the first data 

point sent by the publisher. To reduce bandwidth, options exist to not transport timestamps when 

the subscriber does not need them. Additionally, the timestamp value may represent a sequence 

value. To provide a base timestamp that represents the time at the beginning of a transmission, 

this response includes the timestamp value of the first value to be transmitted when a 

subscription is started, should the value be useful. See Protocol Timestamp Format for 

information on timestamp encoding. Below are the elements that make up the payload for a 

data start time response: 
 

Field Byte Size Description 

VALUE 8 Start time of first data point (INT64)  

Table 35. Data Start Time Response Payload Fields 

Buffer Block Response Payload 

The payload for the BUFFER BLOCK response defines a free form block of data that 

does not conform to a time-series value. A buffer block measurement must still be defined as a 

measurement and subscribed-to by the subscriber, but the implementation can be sourced from 

data other than time-series measurements, e.g., file data. Each data in block must be partitioned 

to fit within a minimal number of network packets, so data from a source larger than a network 

packet must be sequenced. The subscriber will be required to acknowledge reception of this 

BUFFER BLOCK response with a CONFIRM BUFFER BLOCK command since blocks may 

exist as a sequence of packets and could require retransmission, e.g., over UDP. Below are the 

elements that make up the payload for a buffer block response: 
 

Field Byte Size Description 

VALUE 4 Buffer block sequence used for confirmation (UINT32)  

SIGNAL INDEX 2 Index from the Signal Index Cache table that maps to 

the 128-bit measurement GUID (UINT16) 

BUFFER BLOCK 

PAYLOAD 

PAYLOAD 

LENGTH - 6 

Free-form payload of buffer block 

Table 36. Buffer Block Response Payload Fields 
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Notify Response Payload 

The payload for the NOTIFY response defines a critical notification as a string message. 

A notify operation works with a specially defined measurement, still requiring subscription, 

that allows the subscriber to receive messages with verified delivery. Since the message is 

considered critical, the subscriber must respond with a CONFIRM NOTIFICATION command 

since the message may require retransmission, not only when used over a lossy communications 

transport, e.g., UDP, but because the publisher requires verification of delivery even if 

subscriber has gone offline, e.g., restarting: 
 

Field Byte Size Description 

VALUE 4 Notification hash used for confirmation (INT32)  

MESSAGE PAYLOAD 

LENGTH - 4 

String-based notification message 

Table 37. Notify Response Payload Fields 


