

Proudly Operated by Battelle Since 1965

A New Dose Calculation Methodology for New PNAD and FNAD Designs at PNNL

October 2017

BA Rathbone

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty**, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

PNNL-27023

A New Dose Calculation Methodology for New PNAD and FNAD Designs at PNNL

BA Rathbone

October 2017

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Abstract

The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and utilized the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) situated on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The results indicated that the effective cross sections and/or dose conversion factors used historically for calculation of neutron dose from activation foils in PNADs and FNADs needed to be updated to effectively measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure that performance meets the performance criteria given in the standard. The measurement results obtained during the exercise are used in this report to establish a new dose calculation methodology to be used with PNNL's new PNAD and FNAD designs. The report describes the methods used to derive new cross sections, dose conversion factors and a new dose calculation algorithm. The report also describes the algorithm used to calculate gamma and neutron dose from OSL and OSLN elements in the PNAD and FNADs. The report demonstrates that the new methodology provides accurate dose results that meet the performance criteria in ANSI/HPS N13.3-2013 when applied to the dosimeters exposed during the exercise.

Executive Summary

The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly which is part of the Nuclear Criticality Experimental Research Center (NCERC) situated on the NNSS site (Hutchinson et. al. 2012). The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods. PNNL participated with new Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs. as well as the historical Hanford PNAD design. The new PNNL designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils used historically. The dosimeter designs, exercise measurement data, calculated doses and dosimeter performance using historical dose calculation methodology are documented in detail in PNNL 26497 PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148) (Rathbone et. al. 2017). The results indicated that the dose calculation methodology used historically needed to be revised to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013.

The current report documents the new PNAD and FNAD designs used at PNNL, the new dose calculation methodology developed for use with them, and the performance of the new dosimeter designs in the 2016 criticality accident exercise at NNSS when the new dose calculation methodology is applied to the measurement data obtained in the exercise. The new methodology provides for calculation of neutron dose from OSL/OSLN elements as well as activation foils in the dosimeter. For neutron dose calculated from foil activity, the new methodology provides for calculation of both fluence and dose in each of five energy regions, thus providing a spectral distribution for the calculated fluence and dose. The new energy regions were chosen to be contiguous, covering the neutron energy spectrum from 0.001 eV to 20 MeV without overlap or gaps. Thus the fluence or dose from each region can be summed to obtain the total measured fluence or dose. One of the design objectives was to develop a dose calculation methodology that would be intuitive and provide quantitative information on the spectral distribution of the measured absorbed dose. These features were lacking in the previous methodology.

The basic approach taken in developing the new calculation methodology was to use the foil activity measurements documented in PNNL 26497, in conjunction with the reference values for total delivered fluence and delivered dose provided by LLNL, and the Godiva-IV fluence energy spectrum characterization performed by the United Kingdom's Atomic Weapons Establishment (AWE) to empirically determine the appropriate restricted energy effective cross section and activity to fluence conversion factor for each energy region. The AWE spectrum data (Wilson et. al, 2014) was folded with the fluence to absorbed dose conversion factors in ANSI/HPS N13.3-2013, to determine the delivered dose in each energy region and the appropriate fluence to absorbed dose conversion factor for each energy region.

For the dosimeters exposed in the Godiva-IV exercise, the new methodology for calculating neutron dose from foil activity provides fluence results and dose results for each of the five energy regions represented and accurate neutron dose results overall. When calculated using the new methodology, the neutron dose result for every dosimeter exposed in air or on phantom in normal AP geometry during the Godiva-IV exercise was within $\pm 25\%$ of the delivered dose.

The OSL/OSLN response data obtained during the exercise were used to develop corrections for neutron influence on the OSL gamma dose response in PNADs and FNADs. Without correction for the neutron influence, the gamma dose calculated from the OSL element in PNADs exposed on phantom, was on average 2.6 times the actual delivered gamma dose. Similarly, without correction the gamma dose calculated from the OSL element in the outer dosimetry package of FNADs was on average 1.31 times the actual delivered gamma dose. The revised gamma dose calculation methodology now provides gamma dose results for FNADs exposed in air and for PNADs exposed either on phantom \underline{or} in air, that are within $\pm 25\%$ of the delivered gamma dose for 28 of the 33 dosimeters tested.

When the new methodology for calculating neutron dose from foils and the new methodology for calculating gamma dose from OSL elements are used together, the total (gamma + neutron) absorbed dose result for every PNAD exposed in normal AP geometry either in air or on phantom during the exercise meets the ANSI/HPS N13.3-2013 \pm 25% accuracy requirement for total gamma+neutron dose.

The OSLN neutron response data for PNADs and FNADs obtained during the exercise were used to calculate Godiva-IV spectrum specific neutron dose calibration factors for use with PNADs and FNADs. For PNADs exposed on phantom in normal AP geometry, use of a single factor provided OSLN albedo neutron dose results within $\pm 25\%$ of the delivered neutron dose at 2.0 m, 2.5 m, 3.0 m and 4.0 m distances. For FNADs, use of the PNNL default neutron calibration factor based on the FNAD response to ²⁵²Cf provided OSLN neutron dose results within $\pm 25\%$ of the delivered neutron dose at the single 4.0 m distance used for FNAD exposures.

This report demonstrates that the new dose calculation methodology provides satisfactory gamma and neutron dose results for the new PNNL dosimeters tested in the 2016 Godiva-IV exercise.

Acknowledgments

The author would like to thank PNNL Radiation Protection Division Manager, Richard Pierson, for making funding available for this report and implementing improved nuclear accident dosimeter designs at PNNL. In addition, the author would like to thank to Larry Greenwood and Andrey Mozhayev for their modeling calculations and expert advice on a number of technical issues related to gamma spectroscopy and neutron activation. The author would like to acknowledge team members Shannon Morley and John Stephens who assisted with measurements at NNSS during the exercise. Finally, the author would like to thank David Heinrichs and David Hickman at LLNL for organizing and hosting the 2016 intercomparison exercise at NNSS, and ultimately making the measurements used in this report possible.

Acronyms and Abbreviations

ABS	acrylonitrile butadiene styrene
ANSI	American National Standards Institute
AWE	Atomic Weapons Establishment (U.K.)
BOMAB	BOttle MAnnikin Absorber
DAF	device assembly facility
EOB	end of burst
EPD	electronic personal dosimeter
FNAD	fixed nuclear accident dosimeter
FWHM	full width at half maximum
GM	Geiger-Mueller tube
HD	high dose
HPGe	high purity germanium
HPRR	Health Physics Research Reactor
HPS	Health Physics Society
IAEA	International Atomic Energy Agency
ICRP	International Commission on Radiation Protection
LANL	Los Alamos National Laboratory
LCD	liquid crystal display
LD	low dose
LED	light emitting diode
LLNL	Lawrence Livermore National Laboratory
MCA	multi-channel analyzer
mil	one thousandth of an inch
NAD	nuclear accident dosimeter
NCERC	Nuclear Criticality Experimental Research Center
NNSS	Nevada National Security Site
NRC	Nuclear Regulatory Commission (U.S.)
OSL	optically stimulated luminescence
OSLN	optically stimulated luminescence (neutron sensitive)
PMMA	polymethylmethacrylate
PNAD	personal nuclear accident dosimeter
PBSS	passive bonner sphere spectrometer
TLD	thermoluminescence dosimeter

Contents

Abst	iii							
Exec	Executive Summary							
Ackr	Acknowledgments							
Acro	nyms	and Abbreviations	ix					
Cont	ents		xi					
Appe	endices	S	xiii					
1.0	.0 INTRODUCTION							
2.0	MAT	FERIALS AND METHODS	2					
	2.1	PNNL PNAD Design	2					
	2.2	PNNL FNAD Design	3					
	2.3	Dosimeter Irradiations	4					
	2.4	Delivered Fluence and Dose	5					
	2.5	Delivered Neutron Energy Spectrum	5					
	2.6	Foil Activity Measurements	6					
	2.7	Energy Regions for Fluence and Dose Calculation	7					
	2.8	Re-binning of AWE Energy Spectrum Data	7					
	2.9	Determining Activity-to-Fluence Conversion Factors	10					
	2.10	Determining Effective Cross Sections	12					
	2.11	Determining a Method for Estimating Fluence between 100 keV and 1.25 MeV	13					
	2.12	Determining Fluence-to-Dose Conversion Factors for Energy Regions	14					
	2.13	Method for Calculating PNAD and FNAD Neutron Dose from Foil Activity	15					
		2.13.1. Calculating Neutron Fluence from Foils	16					
		2.13.2 Calculating Neutron Dose from Foils	18					
	2.14	Method for Calculating PNAD Gamma and Neutron Dose from InLight [®] Readings	19					
		2.14.1 Calculating Gamma Dose from InLight [®] Readings	21					
		2.14.2 Calculating Neutron Dose from InLight [®] Readings	22					
	2.15	Method for Calculating FNAD Gamma and Neutron Dose from nanoDot® Readings	24					
		2.15.1 Calculating Gamma Dose from nanoDot [®] Readings	25					
		2.15.2 Calculating Neutron Dose from nanoDot [®] Readings	26					
3.0	RES	ULTS AND DISCUSSION	28					
	3.1	Neutron Fluence and Dose Results for PNADs Calculated from Foil Activity	28					
	3.2	Neutron Fluence and Dose Results for FNADs Calculated from Foil Activity	29					
	3.3	Gamma and Neutron Dose Results for PNADs Calculated from InLight [®] Readings	30					
	3.4	Gamma and Neutron Dose Results for FNADs Calculated from nanoDot® Readings	31					
	3.5	Dosimeter Performance Evaluation	31					
		3.5.1 PNAD Performance	32					
		3.5.2 FNAD Performance	34					
	3.6	Dependence of Foil Calculated Neutron Dose on Neutron Energy Spectrum	34					
	3.7	Dependence of InLight [®] OSLN Measured Neutron Dose on Neutron Energy Spectrum	34					
	3.8	Additional DOE Accuracy Requirements for FNADs	36					
4.0	CON	CONCLUSIONS 37						
5.0	REFERENCES 50							

Appendices

Α	PNNL PNAD Design Features	41
В	PNNL FNAD Design Features	47
С	Irradiation Locations in the DAF	55
D	Reference Dose Information for Godiva-IV Exercise	61
Е	Godiva-IV Neutron Energy Spectra at Dosimeter Irradiation Locations	69
F	Activity Measurement Results for PNAD and FNAD Components	71
G	Averaged Neutron Energy Spectra at Each Irradiation Distance	75
Η	Physical Data Used for Calculation of Effective Cross Sections	77
Ι	microStar [®] Reader Calibration Factors	79
J	OSL/OSLN Dose Response Linearity Corrections	81
Κ	Accuracy of Foil Measured Fluence and Dose Within NAD Energy Regions	87
L	PNAD InLight [®] Readings and Calculated Doses	91
Μ	Gamma and Neutron Dose Results for FNADs Calculated from nanoDot® Readings	93
Ν	PNAD Performance	97
0	FNAD Performance	101

1.0 INTRODUCTION

PNNL participated in an international nuclear accident dosimetry exercise was conducted at the Nevada National Security Site (NNSS) on May 24-27, 2016 using the Godiva-IV critical assembly. The experimental design for the exercise is described in LLNL-TR-661851, Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV (IER-148 CED-2 Report), (Heinrichs, D. et. al, 2014). The primary purpose of the exercise was to allow participants to test the ability of their criticality accident dosimetry systems to meet the performance criteria in ANSI/HPS N13.3-2013. The exercise also afforded participants the opportunity to evaluate their measurement methods and collect measurement data for use in revising dose calculation methodology where appropriate. For PNNL, the exercise presented an opportunity to test prototypes of new personal nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) designs planned for implementation at PNNL in 2018. The new designs were developed to address a number of issues with the historical dosimeter design and to capitalize on the transition of PNNL from a TLD based external dosimetry program with its associated infrastructure to an OSL based external dosimetry program. Among other things, the new designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), activation foils and sulfur pellets with larger mass to increase sensitivity, and sealed sulfur pellet packets with sufficient mass to allow direct beta counting without the need for melting, crushing or handling of dispersible activity.

The measurements made by the PNNL team during the exercise, the doses calculated from the measurement data using default calibration factors and historical dose calculation formulae, and the resulting dosimeter performance with respect to ANSI/HPS N13.3-2013 criteria are documented in detail in *PNNL 26497, Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148)* (Rathbone et. al. 2017). In general, neutron absorbed dose results calculated from foil activity were consistently low while gamma absorbed dose results from OSL dosimeters were consistently high. These results indicated that the effective cross sections and dose conversion factors used historically to calculate dose from foil activity, needed to be revised to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).

The purpose of the current report is to document the finalized design of the new PNAD and FNAD dosimeters, the new dose calculation methodology and the methods by which the new cross sections and fluence to dose conversion factors used in that methodology were arrived at. This report also documents the performance of the new designs in the 2016 criticality accident exercise at NNSS when the new dose calculation methodology provides for calculation of neutron dose from OSL/OSLN elements as well as activation foils in the dosimeter. For neutron dose calculated from foil activity, the new methodology provides for calculated fluence and dose in each of five energy regions, thus providing a spectral distribution for the calculated fluence and dose. The new energy regions were chosen to be contiguous, covering the neutron energy spectrum from 0.001 eV to 20 MeV without overlap or gaps. Thus the fluence or dose from each region can be summed to obtain the total measured fluence or dose. The objective was to develop a dose calculation methodology that would be intuitive and provide

quantitative information on the spectral distribution of the measured absorbed dose. These features were lacking in the previous methodology.

2.0 MATERIALS AND METHODS

2.1 PNNL PNAD Design

The PNNL PNAD consists of metal foils and sulfur pellets housed inside a Landauer InLight[®] Model 2 dosimeter clear polycarbonate shell together with an InLight[®] Model 2 OSLN dosimeter case ("BA" type case) and slide ("N" type slide). The six sulfur pellets are sealed in a polyethylene bag for direct beta counting on a standard 50 mm planchet with commonly available beta counting equipment. The InLight[®] OSLN dosimeter is read on a Landauer microStar[®] reader specially modified with a neutral density filter for readout of accident level dosimeters. The InLight[®] OSLN dosimeters may also be read on an unmodified microStar[®] reader without neutral density filter if the dose is sufficiently low. Both readers must be set up and specifically calibrated for nuclear accident dosimeter readout. The InLight[®] OSLN dosimeter provides the primary gamma dose to be used for the PNAD and an albedo neutron dose value that can be used as an initial estimate of neutron dose. The albedo neutron dose response is highly energy dependent and not suitable for final reporting of neutron dose. Photos of the front and back side of an assembled PNNL PNAD are shown in Figure 1 and Figure 2. Appendix A contains detailed design information for the PNNL PNAD. Components of a disassembled PNNL PNAD are shown in Figure A.1 and an exploded view of the dosimeter is shown in Figure A.2. Component dimensions and composition are given in **Table A.1**. A simplified listing of the detector dimensions for the PNNL PNAD is provided below in Table 1.

Figure 1. PNNL PNAD front side

Figure 2. PNNL PNAD back side

PNNL PNAD Activation Detectors					
detector name	А	В	С	D	
detector description	sulfur pellet (sixpack)	10 mil copper foil (Cd covers)	10 mil indium foil (Cd covers)	10 mil indium foil (bare)	
detector composition	S	Cu	In	In	
detector thickness (mm)	1.91	0.254	0.254	0.254	
detector mass (g)	2.61	0.281	0.236	0.236	
detector density thickness (g/cm ²)	0.343	0.228	0.186	0.186	
detector diameter (cm)	n/a	1.27	1.27	1.27	
detector L (cm) x W (cm)	3.81 x 2.54	n/a	n/a	n/a	
filter composition	none	Cd	Cd	none	
filter thickness (mm)	none	0.533	0.533	none	

Table 1. PNNL PNAD Detector Dimensions and Composition

2.2 PNNL FNAD Design

The PNNL FNAD design is based on the Hanford FNAD which has been used since the 1960s at both Hanford and PNNL. The historical Hanford FNAD is described in Hanford historical documents (Bramson 1963, Glen and Bramson 1977). The most recent iteration of that design, currently in use at PNNL as of this writing, is documented in the PNNL Nuclear Accident Dosimetry Technical Basis Manual, Rev 0.1, April 2017. The PNNL FNAD design uses the same types of neutron activation detectors, and activation reactions for neutron dose assessment as the Hanford FNAD. The new design differs from the old design primarily in the replacement of TLDs with OSL dosimeters. Landauer OSL and OSLN nanoDots have replaced the TLD 700 and TLD 600 chips respectively, and are read on the same modified Landauer microStar[®] reader used for reading the InLight[®] dosimeters in the PNNL PNADs. The new design (metal foils are no longer stacked on top of each other). The PNNL FNAD inner and outer dosimetry packages have been re-designed for easier loading and unloading. The PNNL FNAD is described in greater detail in **Appendix B**. An exploded view of the dosimeter is shown in **Figures B.1** through **B.5**. Component dimensions and composition are given in **Table B.1**. **Figure 3** shows an assembled FNAD.

Figure 3 PNNL FNAD

2.3 Dosimeter Irradiations

The source used for the intercomparison exercise was the Godiva-IV critical assembly. The assembly consists of enriched U-235 concentric metal cylinders. The exercise consisted of three bursts from the unmoderated Godiva-IV critical assembly, each being administered on a separate day with a new set of dosimeters being exposed each day. The reactor was operated in the pulse mode and the burst intensity was varied on each day to achieve the desired range of doses at dosimeter locations in the DAF. Each pulse consisted of a super-prompt-critical excursion lasting approximately 50 microseconds (pulse FWHM ≈ 25 microseconds). The exact dimensions of the room in which the reactor is housed and the irradiations took place were not provided to participants. However, it was revealed that the room is heavily shielded with concrete walls, floor and ceiling. Dosimeters were irradiated either in air or on phantom. To simulate irradiations in air, PNADs were mounted on thin aluminum plates suspended on portable racks called "trees", or in the case of the FNADs, placed on low mass stands. The phantoms used were saline filled Bottle Manikin Absorption (BOMAB) phantoms and 30 x 30 x 15 cm polymethyl methacrylate (PMMA) slab phantoms. PNADs were mounted on the front and back of the phantoms. For the third pulse, one BOMAB was placed in a lateral orientation with respect to the source with PNADS

mounted on the front and back of the phantom to provide lateral irradiation geometry. For each pulse, the phantoms, dosimeter trees, and FNAD stands were placed at designated locations numbered 1 through 12, having distances of either 2 meters, 2.5 meters, 3 meters, 4 meters or 9 meters. The single location at 9 meters (location 10) was described as an "alcove" location. Maps of the locations and types of phantoms/trees at each location for each pulse are shown in **Appendix C**, **Figures C.1-C.3**. The identities of the individual dosimeters placed on each phantom or tree are also documented in **Appendix C**, in **Table C.1**. The BOMAB phantoms complied with the standard dimensions and fill volumes documented ANSI/HPS N13.35-2009 (HPS 2009) for a phantom representing a contemporary adult male. The cylinders in each phantom were filled with Ringer's lactate solution.

2.4 Delivered Fluence and Dose

Prior to the exercise, each designated test location (except for the alcove location, no. 10) had been characterized for neutron fluence as a function of ΔT in the Godiva-IV core, neutron energy spectrum, and the operational quantities including personal absorbed dose from neutrons, $D_p(10)_n$ and ambient absorbed dose from neutrons, $D^*(10)_n$ which are recommended operational quantities to use for calibration of PNADs and FNADs respectively. Gamma doses at each location except the alcove location had also been characterized. Preliminary reference fluence and dose information provided by LLNL (Hickman, 2017) is shown in **Appendix D**, **Tables D.1.1-D.3.3**. The reference data for location 10 was not used in this report because the position distance and delivered dose data were not finalized as of this writing and dosimeter response data for this location were significant outliers.

2.5 Delivered Neutron Energy Spectrum

Prior to the exercise, each designated test location (except for the alcove location, no. 10) had been characterized for neutron energy spectrum by the Atomic Weapons Establishment (AWE) of the United Kingdom (U.K.). Characterization was accomplished in two phases. In the first phase, the Godiva-IV critical assembly was operated in a subcritical mode at steady state with a ²⁵²Cf source providing neutrons multiplied by the assembly. During this phase, a series of active Bonner sphere spectrometer and RoSpec measurements were made. In the second phase, "passive" spectrometry techniques involving materials sensitive to neutron activation were used to measure the leakage spectrum from a super-promptcritical excursion of the Godiva reactor. A passive Bonner sphere spectrometer (PBSS) system using gold foils as detectors was used in conjunction with NADs to characterize the neutron energy spectrum at each test location. Spectral data (fluence per unit lethargy) at each test location are given in Annex F of the AWE phase 2 characterization report (Wilson et. al. 2014). These data are used in the present report to establish activity to fluence conversion factors and fluence to dose conversion factors for the energy regions relevant to the neutron activation reactions used in the PNNL PNAD and FNAD detectors. The AWE data (given in fluence per unit lethargy) have been converted to fluence and listed in Appendix E of this report for convenience. The original AWE fluence per unit lethargy data were normalized to the fluence resulting from a burst producing a 70°C temperature rise in the Godiva-IV core, and the data in Appendix E retain that normalization. Two noteworthy conclusions from the Godiva-IV phase 2 characterization report by AWE are: 1) The neutron energy spectrum did not vary significantly as a function of radial distance from the core. 2) The neutron energy spectrum varied significantly as a function of height above the floor. To the extent practicable, PNNL dosimeters were placed at a uniform

height across locations, matching as closely as possible the height of the Godiva-IV core and the PBSS spheres during phase 2 measurements.

2.6 Foil Activity Measurements

The activation reactions and product radionuclides utilized for the purpose of determining dose in PNNL PNADs and FNADS are summarized in **Table 2**. Participants in the IER-148 International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV were required to bring their own counting equipment for analyzing the foils in their nuclear accident dosimeters. For PNNL, this meant bringing gamma counting equipment, beta counting equipment, and associated shielding. The equipment used, how it was calibrated, the analytical methods used to measure the activity, and the measurement results are documented in detail in **PNNL 26497** (Rathbone et. al. 2017). The mean measured activity per unit delivered fluence for each combination of exposure distance and exposure geometry are also provided in the current report in **Appendix F**, **Table F.1** and **Table F.2**.

Energy range	Reaction	Effective Threshold or resonance energy (approx.) ¹	Filter	Product half-life	Principal radiations for assay (MeV)	Other principle radiations (MeV)
Thermal	197 Au(n, γ) 198 Au	-	-	2.696 d	γ(0.412)	β (0.961)
	115 In $(n,\gamma)^{116m}$ In	-	-	54.2 m	γ(0.417) γ(1.097) γ(1.294)	$\begin{array}{c} \beta^{\text{-}} \left(0.189 \; avg \right) \; \beta^{\text{-}} \\ \left(0.294 \; avg \right) \; \beta^{\text{-}} \\ \left(0.351 \; avg \right) \end{array}$
Intermediate	63 Cu(n, γ) 64 Cu	580 eV	Cd	12.701 h	$\gamma(0.511)^{2}$	β ⁻ (0.578)
Fast	$^{32}S(n,p)^{32}P$	3.16 MeV	-	14.29 d	β ⁻ (1.711)	-
	115 In(n,n') 115m In	1.25 MeV	-	4.486 h	γ(0.336)	ce (0.308) ³

 Table 2.
 Activation Reactions Used in FNADs and PNADs

1. from Delafield, 1988. (Resonance energy for intermediate range. Threshold energy for fast range)

2. annihilation photon

3. conversion electron

2.7 Energy Regions for Fluence and Dose Calculation

For each reaction shown in **Table 2**, the foil combinations used and the neutron energy regions predominantly contributing to activity, are shown in **Table 3**.

Energy Region	Reaction	Foil Combination
< 0.464 eV	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	Au(bare) - Au(Cd)
< 0.464 eV	¹¹⁵ ln(n,γ) ^{116m} ln	In(bare) - In(Cd)
0.464 eV – 0.1 MeV	⁶³ Cu(n,γ) ⁶⁴ Cu	Cu(Cd)
> 1.25 MeV	¹¹⁵ In(n,n') ^{115m} In	In(Cd) or In(bare)
> 3.16 MeV	³² S(n,p) ³² P	S (pellet)

Table 3. Neutron Energy Regions Contributing to Activity in Foils

Because of a practical limit to the number of detectors and reactions that can be used for fluence and dose measurement in PNADs, the number of energy bins available for fluence and dose calculation is also limited and thus the quality of energy spectrum information obtainable is inherently limited. A simplified energy bin scheme involving five energy regions was chosen for use in the current analysis for the new PNAD and FNAD designs. The bin boundaries were chosen based on the following considerations:

- 1) the location of resonances or thresholds in cross section plots,
- 2) the location of the region of constant lethargy and the fission peak in neutron energy spectra,
- 3) the shape of the fluence to dose conversion factor curve,
- 4) the energy regions used with NAD foils at other DOE facilities,
- 5) the desire to align bin boundaries with the bin structure of ANSI/HPS N13.3,
- 6) the advantages of a straightforward and intuitive dose calculation methodology

The simplified energy bin scheme is shown in Table 4.

2.8 Re-binning of AWE Energy Spectrum Data

To allow the fluence to absorbed dose conversion factors from ANSI/HPS N13.3 to be folded with the AWE energy spectrum data it was necessary to re-bin the AWE data to match the energy bin scheme used in Table B.1 of that standard. A spectrum average for each irradiation distance used in the exercise (2.0 m, 2.5 m, 3.0 m and 4.0 m) was calculated in the original AWE 66 energy bin structure. Then each average spectrum was re-binned in the 53 bin structure matching ANSI/HPS N13.3. The re-binned fluence data for each distance are given in tabular form in **Appendix G, Table G.1**. The color shading indicates the energy regions chosen for fluence and dose calculated for each irradiation distance and is shown in **Table 4** below. The values were calculated by summing fluence from the 53 bin normalized fluence data across the bins representing the energy region of interest. The values represent the fraction of total fluence falling within the designated energy region.

Distance (m)	Normalized Bin Fluence $\Phi_{ m bin}$ / $\Phi_{ m tot}$						
	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 20 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	
2.0 m	0.11	0.28	0.38	0.23	0.18	0.04	
2.5 m	0.12	0.34	0.37	0.17	0.14	0.03	
3.0 m	0.13	0.33	0.36	0.18	0.15	0.03	
4.0 m	0.14	0.37	0.34	0.15	0.13	0.03	

Table 4. Normalized Fluence Within Selected Energy Regions

The average energy spectrum at each distance from Godiva-IV, are plotted as fluence per unit lethargy in **Figures 4** through **7**. The normalized fluence is plotted in both 5 bin and 53 bin formats.

Figure 4. Neutron energy spectrum at 2.0 m from Godiva-IV

Figure 5. Neutron energy spectrum at 2.5 m from Godiva-IV

Figure 6. Neutron energy spectrum at 3.0 m from Godiva-IV

Figure 7. Neutron energy spectrum at 4.0 m from Godiva-IV

2.9 Determining Activity-to-Fluence Conversion Factors

Fluence within a given region can be directly measured from foil activity if an activity to fluence conversion factor, C_x , has been determined for the reaction based on the restricted fluence falling only within that energy region. For dosimeters exposed by Godiva-IV, the fluence falling within each energy region is known from the normalized neutron energy spectrum data in **Appendix G** and **Table 3**, combined with the reference values for total delivered fluence in **Appendix D**. The reaction product activity per unit delivered fluence is known from the activity measurement data in **Appendix F**. Therefore, it is possible to empirically determine a C_x for each reaction and associated energy region using this data. The C_x thus determined will be somewhat dependent on the energy spectrum used.

The average data for measured activity per unit delivered fluence for dosimeters exposed in normal geometry are summarized in **Appendix F** in **Table F.3** The averages shown in the table do not include dosimeters with 5 mil thick foils, or dosimeters exposed on the back or side of a phantom. The activity data for ³²P, ⁶⁴Cu, ^{115m}In, and ^{116m}In are from PNAD measurements. The activity data for ¹⁹⁸Au is from FNAD measurements. The net activity for bare -Cd covered foil pairs is also shown.

The average measured activity per unit delivered fluence *within in each relevant energy bin* was calculated as follows:

$$A_{o} / \Phi_{bin} = (A_{o} / \Phi_{tot}) / (\Phi_{bin} / \Phi_{tot})$$
Eq. 1

where:

Ao	=	measured specific activity decay corrected to end of burst
Φ_{tot}	=	reference value for total delivered fluence
$\Phi_{ ext{bin}}$ / $\Phi_{ ext{tot}}$	=	fraction of total fluence in region of interest (from Table 4)

These results are shown in **Table 5**. The indium and sulfur data for the 2.5 meter distance in air were rejected as outliers and not used. The reciprocal of each value in **Table 5** was used as a direct measure of the activity to fluence conversion factor, C_x , for each distance and exposure geometry. The measured C_x values are shown in **Table 6**.

Albedo neutrons produced by a phantom heavily influence the measured foil activity for thermal and epithermal reactions. The reference values for delivered fluence at each location and the measured energy spectra at each location were measured without a phantom present. As such, the ¹⁹⁸Au, ^{116m}In and ⁶⁴Cu activities from foils exposed on phantom were not included in the calculated average C_x factors for the associated reactions. The albedo neutrons have less effect on the fast reactions so the ^{115m}In and ³²P activities from foils exposed on phantom *were* included in the calculated average C_x factors. These choices were made with the understanding that as a result, PNADs mounted on phantom or body will tend to overestimate the incident thermal and epithermal neutron fluence while PNADs exposed in air will tend to provide unbiased estimates of thermal and epithermal fluence. The effect on dose accuracy is considerably less because the fluence to dose conversion factors for neutron energies less 100 keV are considerably smaller than for neutron energies greater than 100 keV.

		Average Specific Activity Per Bin Fluence A_o / Φ_{bin} (cm ² g ⁻¹ min ⁻¹)					
Irradiaton	Irradiation	0.001 eV -	0.001 eV -	0.464 eV -	1.25 MeV -	3.16 MeV -	
Geometry	Distance	0.464 eV	0.464 eV	100 keV	20 MeV	20 MeV	
		Au (bare) -	In (bare) -	Cu (Cd)	In (Cd)	S	
		Au (Cd)	In (Cd)	Cu (Cu)	III (Cu)	ാ	
		Au-198	I-116m	Cu-64	I-115m	P-32	
	2.0 m		2.02E-02	2.65E-06	4.82E-06	3.39E-07	
on	2.5 m						
phantom	3.0 m		1.84E-02	2.10E-06	4.13E-06	3.11E-07	
	4.0 m		1.85E-02	2.02E-06	4.56E-06	3.49E-07	
	2.0 m		6.00E-03	1.70E-06	4.58E-06	3.21E-07	
in oir	2.5 m		7.13E-03	1.65E-06	5.07E-06	3.83E-07	
111 211	3.0 m						
	4.0 m	5.46E-05	8.42E-03	1.76E-06	4.25E-06	2.99E-07	

 Table 5.
 Average Activity per Unit Delivered Bin Fluence

		Aver	rage Activity to	Fluence Conv	version Factors	s, C _x	
		$C_x = \Phi_{bin} / A_o (min g cm^{-2})$					
Irradiaton	Irradiation	0.001 eV -	0.001 eV -	0.464 eV -	1.25 MeV -	3.16 MeV -	
Geometry	Distance	0.464 eV	0.464 eV	100 keV	20 MeV	20 MeV	
		Au (bare) -	In (bare) -	Cu (Cd)	In (Cd)	c	
		Au (Cd)	In (Cd)	Cu (Ca)	In (Cd)	5	
		Au-198	I-116m	Cu-64	I-115m	P-32	
	2.0 m				2.08E+05	2.95E+06	
on	2.5 m						
phantom	3.0 m				2.42E+05	3.22E+06	
	4.0 m				2.19E+05	2.87E+06	
	2.0 m		1.67E+02	5.89E+05	2.18E+05	3.11E+06	
in air	2.5 m		1.40E+02	6.08E+05			
in air	3.0 m						
	4.0 m	1.83E+04	1.19E+02	5.69E+05	2.35E+05	3.35E+06	
	avg	1.83E+04	1.42E+02	5.88E+05	2.25E+05	3.10E+06	

Table 6. Measured Values for Activity to Fluence Conversion Factors, C_x

2.10 Determining Effective Cross Sections

The effective cross section, $\mathbf{\sigma}_{eff}$ for each reaction was determined using data for measured specific activity per bin fluence, A_o / Φ_{bin} , from **Table 5**. As with the calculation of C_x factors, the ^{115m}In and ³²P data for 2.5 m exposures in air were not used. The effective cross section was calculated using the following relationship:

$$\sigma_{\rm eff} = A_{\rm o} / (\lambda n \Phi_{\rm bin})$$
 Eq. 2

where:

λ	=	product radionuclide decay constant (min ⁻¹)
n	=	number of target atoms per gram in the foil
Φ_{bin}	=	fluence within restricted energy region (cm ⁻²)
A	=	initial activity as dpm <i>per gram</i> (min ⁻¹ g ⁻¹)

The number of target atoms per gram of foil, n, was calculated using the following equation:

$$n = [A.N. / A.W.] \cdot \chi \cdot P \qquad Eq. 3$$

where:

A.N. = Avogadro's number =
$$6.0221409 \times 10^{23}$$
 (atoms/mole)
 χ = abundance of target isotope in target element (target atoms / element
atoms)

Р	=	elemental abundance in activation foil or sample (purity)
A.W.	=	atomic weight for target <i>element</i> (grams/mole)

		Energy R	(barns)						
		$\sigma_{\rm eff} = A_{\rm o} / (\lambda n \Phi_{\rm bin})$							
Irradiation Geometry	Irradiation Distance	0.001 eV - 0.464 eV	0.001 eV - 0.464 eV	0.464 eV - 100 keV	1.25 MeV - 20 MeV	3.16 MeV - 20 MeV			
	Distance	Au (bare) - Au (Cd)	In (bare) - In (Cd)	Cu (Cd)	In (Cd)	S			
		Au-198	I-116m	Cu-64	I-115m	P-32			
	2.0 m				0.373	0.565			
on	2.5 m								
phantom	3.0 m				0.319	0.517			
	4.0 m				0.352	0.581			
	2.0 m		93.5	0.285	0.354	0.535			
in oir	2.5 m		111	0.276	0.392	0.638			
шаш	3.0 m								
	4.0 m	100	131	0.295	0.329	0.498			
	avg.	100	112	0.285	0.346	0.539			

 Table 7. Measured Values for Effective Cross Sections

The physical data used to calculate *n* are given in **Appendix H**. Foil purities were all 99.9% or better so a value of 1.0 was assumed for P in the calculations. The empirically derived values for effective cross section, σ_{eff} , are shown in **Table 7**. These effective cross sections may be thought of as energy restricted effective cross sections, and are somewhat dependent on the energy spectrum used. It should be noted that the cross sections shown for the ¹⁹⁸Au, ^{116m}In and ⁶⁴Cu reactions in the above table are apparent cross sections for the foil thickness used. No correction was made for neutron attenuation by absorption within the foils which can be significant for gold, indium, and copper foils (IAEA 1982). The cross sections for infinitely dilute foils would be larger.

2.11 Determining a Method for Estimating Fluence between 100 keV and 1.25 MeV

As can be seen from the data in **Table 4**, between 34% and 38% of the delivered fluence at Godiva-IV dosimeter irradiation locations falls between 100 keV and 1.2 MeV. Unfortunately, none of the reactions in the PNAD and FNAD foils that have a significant cross section for neutrons in this energy range. Therefore, the fluence in this region must be inferred from the fluence measured in adjacent regions and a knowledge of typical energy spectrum shape. Through an iterative process of successive approximation, it was found that by using a weighted combination of the copper measured fluence in the 0.464 eV - 100 keV region and the indium measured fluence in the 1.25 MeV - 20 MeV region, satisfactory estimates of

the known fluence in the 100 keV – 1.25 MeV region could be obtained for dosimeters exposed both in air and on phantom. The measured fluences were determined, using the activity measurements from the Godiva-IV irradiations and the empirically established C_x in **Table 6.** Fluence in the 100 keV – 1.25 MeV region can be satisfactorily estimated using the following relationship:

where:

W _{Cu}	=	weighting factor for copper measured fluence $= 0.48$
Φ_{Cu}	=	fluence in 0.464 eV – 100 keV region measured with copper foil
W _{In}	=	weighting factor for indium measured fluence $= 1.12$
Φ_{In}	=	fluence in 1.25 MeV –20 MeV region measured with indium foil

2.12 Determining Fluence-to-Dose Conversion Factors for Energy Regions

Although fluence-to-dose conversion factors exist for a 53 bin structure, the PNAD and FNAD measure fluence in a simplified 5 bin structure. Therefore it was necessary to calculate a fluence-to-dose conversion factor to be used with each of those 5 bins. To accomplish this, the 53 bin normalized fluence data for each dosimeter irradiation distance were folded with the 53 bin dose conversion factor data from ANSI/HPS N13.3. The dose in groups of bins corresponding to each of the 5 larger energy bins used by PNADs and FNADs was summed and divided by the summed fluence delivered to the same bins. The results are shown in **Table 8**.

Irradiation Geometry	Irradiation Distance		Fluence to Dose Conversion Factors [delivered dose per bin fluence] D_{bin} / Φ_{bin} (cGy - cm ²)						
		0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV			

Table 8. Fluence to Dose Conversion Factors for NAD Energy Bins

		$D_p(10)_{n,bin}$ / Φ_{bin} (cGy - cm ²)						
on phantom	2.0 m	2.98E-10	3.83E-10	2.13E-09	3.62E-09	5.27E-09		
	2.5 m	3.00E-10	3.81E-10	2.08E-09	3.61E-09	5.27E-09		
	3.0 m	2.99E-10	3.81E-10	2.09E-09	3.62E-09	5.27E-09		
	4.0 m	2.99E-10	3.79E-10	2.08E-09	3.61E-09	5.27E-09		
avg * 1.1		3.29E-10	4.19E-10	2.31E-09	3.98E-09	5.79E-09		

		$D^{*}(10)_{n,bin} / \Phi_{bin}$ (cGy - cm ²)						
	2.0 m	2.84E-10	3.20E-10	2.04E-09	3.57E-09	5.12E-09		
:	2.5 m	2.84E-10	3.17E-10	1.99E-09	3.56E-09	5.12E-09		
in air	3.0 m	2.84E-10	3.17E-10	2.00E-09	3.56E-09	5.12E-09		
	4.0 m	2.84E-10	3.15E-10	1.99E-09	3.56E-09	5.12E-09		
avg * 1.1		3.12E-10	3.49E-10	2.21E-09	3.92E-09	5.63E-09		

In **Table 8**, the average of each column has been multiplied by a factor 1.1. This was done to better align the dose results obtained for PNADs and FNADs exposed during the exercise, with the reference doses given in **Appendix D**. The reasons for this are not clear, but may include use of different (i.e. updated) energy spectrum data and/or dose conversion factors to calculate the reference doses.

At each irradiation distance, the fraction of the total dose falling in each energy region was also calculated. The results are shown in **Table 9**.

	Irradiation Distance	Delivered Dose Distribution							
Irradiation Geometry		$\mathrm{D_{bin}}$ / $\mathrm{D_{tot}}$							
		0.001 eV -	0.464 eV -	100 keV -	1.25 MeV -	1.25 MeV -	3.16 MeV -		
		0.464 eV	100 keV	1.25 MeV	20 MeV	3.16 MeV	20 MeV		

			D _p (10) _n					
	2.0 m	0.02	0.06	0.44	0.48	0.36	0.12	
on	2.5 m	0.02	0.08	0.48	0.41	0.32	0.10	
phantom	3.0 m	0.02	0.08	0.47	0.43	0.32	0.10	
	4.0 m	0.03	0.10	0.47	0.40	0.31	0.09	

		D*(10) _n						
in air	2.0 m	0.02	0.05	0.44	0.49	0.37	0.12	
	2.5 m	0.02	0.07	0.48	0.42	0.33	0.10	
	3.0 m	0.02	0.07	0.47	0.44	0.33	0.11	
	4.0 m	0.03	0.08	0.48	0.41	0.32	0.10	

2.13 Methodology for Calculating PNAD and FNAD Neutron Dose from Foil Activity

The activity-to-fluence conversion factors and fluence to dose conversion factors established for use with PNADs and FNADs in the preceding sections are summarized in **Table 10**.

	Fluence	Foil		Activity to Fluence Conversion Factor, C_x		Fluence to Dose Conversion Factor [delivered dose per bin fluence] D_{bin} / Φ_{bin} (cGy - cm ²)			
Energy Bin	Symbol	Combination	Reaction	(min	$C_x = \Phi_{bin} / A_o$ (min g cm ⁻²)		$(10)_n / \Phi_{bin}$ Gy - cm ²)	$\frac{D^*(10)_n / \Phi_{bin}}{(cGy - cm^2)}$	
				symbol	value	symbol	value	symbol	value
0.001 eV - 0.464 eV	$\Phi_{\text{th-Au}}$	Au(bare) - Au(Cd)	197 Au(n, γ) 198 Au	C _{th-Au}	1.83E+04	K _{th}	3.29E-10	L_{th}	3.12E-10
0.001 eV - 0.464 eV	$\Phi_{ ext{th-In}}$	In(bare) - In(Cd)	115 In(n, γ) 116m In	C _{th-In}	1.42E+02	K _{th}	3.29E-10	L _{th}	3.12E-10
0.464 eV - 100 keV	$\Phi_{\rm Cu}$	Cu(Cd)	63 Cu(n, γ) 64 Cu	C _{Cu}	5.88E+05	K _{Cu}	4.19E-10	L _{Cu}	3.49E-10
1.25 MeV - 20 MeV	Φ_{In}	In(Cd) or In(bare)	¹¹⁵ In(n,n') ^{115m} In	C _{In}	2.25E+05				
3.16 MeV - 20 MeV	$\Phi_{\rm S}$	S (pellet)	³² S(n,p) ³² P	Cs	3.10E+06	Ks	5.79E-09	Ls	5.63E-09
100 keV - 1.25 MeV	Φ_{a}					Ka	2.31E-09	La	2.21E-09
1.25 MeV - 3.16 MeV	$\Phi_{\rm b}$					K _b	3.98E-09	L _b	3.92E-09

Table 10. Conversion Factors for use with PNADs and FNADs

2.13.1 Calculating Neutron Fluence from Foils

The neutron fluences are calculated from the decay corrected activities, A_o , (dpm/g) of the foils using the activity to fluence conversion factors, C_x , given in **Table 10**. The measured activity, A_o must be expressed as specific activity (i.e. dpm/g) and decay corrected to the end of the burst. If multiple excursions are involved, then activity should be decay corrected to the end of the last excursion.

Using the foil activity at time zero, A_0 (dpm/g), and the activity to fluence conversion factor C_x , from **Table 10**, a fluence, Φ , for each of the first five energy regions in **Table 10** is calculated using the following general relationship.

$$\Phi = C_x A_0$$
 Eq. 5

where:

 $\Phi = \text{fluence (cm}^{-2})$ $C_x = \text{activity-to-fluence conversion factor (min g cm}^{-2})$ $A_o = \text{initial activity as dpm$ *per gram* $(min}^{-1} g^{-1})$ The steps and specific equations used for calculating fluence (cm^{-2}) for each region are described below. Calculations are performed in logical sequence. The equations involving gold foil activities are used only for the FNAD.

0.001 eV to 0.464 eV (thermal region)

<u>For FNADs</u>, the difference between the ¹⁹⁸Au activity in the bare gold foil (**E**), and the ¹⁹⁸Au activity in the cadmium covered gold foil (**F**) is used to calculate the neutron fluence as follows:

$$\Phi_{\text{th}} = C_{\text{th-Au}} [A_0 \text{ (bare gold)} - A_0 \text{ (cadmium covered gold)}]$$
 Eq. 6

<u>For PNADs</u>, the difference between the ^{116m}In activity in the bare indium foil (**D**) and the ^{116m}In activity in the cadmium covered indium foil (**C**) is used to calculate the neutron fluence as follows:

$$\Phi_{\text{th}} = C_{\text{th-In}} [A_0 \text{ (bare indium)} - A_0 \text{ (cadmium covered indium)}]$$
 Eq. 7

<u>For FNADs</u>, equation 7 can also be used to calculate the neutron fluence. Equations 6 and 7 provide two independent measurements of the fluence in this energy region, one (the indium) being more sensitive but decaying away much more rapidly.

0.464 eV to 100 keV (epithermal region of constant lethargy)

Fluence for this energy region can be calculated from the 64 Cu in the cadmium covered copper foil (**B**), as follows:

$$\Phi_{Cu} = C_{Cu} A_o$$
 (cadmium covered copper). Eq. 8

1.25 MeV to 20 MeV

Fluence for this energy region can be calculated from the 115m In activity in the cadmium covered indium foil (**C**) as follows:

$$\Phi_{In} = C_{In} A_o$$
 (cadmium covered indium). Eq. 9

3.16 MeV to 20 MeV

The fluence in this energy region can be calculated from the 32 P activity in the sulfur pellet pack (**A**) as follows:

$$\Phi_{\rm S} = C_{\rm S} A_{\rm o}$$
 (sulfur pellet pack A). Eq. 10

100 keV to 1.25 MeV

Calculation of the fluence in this energy region is based on the above calculated results for Φ_{Cu} and Φ_{In} . Fluence for this energy region is calculated as follows:

$$\Phi_{a} = 0.48 * \Phi_{Cu} + 1.12 * \Phi_{In}$$
 Eq. 11

1.25 MeV to 3.16 MeV

Calculation of the fluence in this energy region is based on the previously calculated results for Φ_{In} and Φ_{S} . Fluence for this energy region is calculated as follows:

2.13.2 Calculating Neutron Dose from Foils

For PNADs, the personal absorbed dose from neutrons, $D_p(10)_n$, is calculated from energy bin fluence as follows:

$$D_{p}(10)_{n} = \Phi_{th-In} K_{th} + \Phi_{Cu} K_{Cu} + \Phi_{a} K_{a} + \Phi_{b} K_{b} + \Phi_{S} K_{S}$$
 Eq. 13

where $\Phi_{\text{th-In}}$, Φ_{Cu} , Φ_{a} , Φ_{b} and Φ_{S} are the values of neutron fluence within designated energy bins in **Table 10**, and K_{th} , K_{Cu} , K_{a} , K_{b} and K_{S} are the corresponding fluence-to-dose conversion factors listed in **Table 10**. The calculated value for $D_{p}(10)_{n}$ has units of cGy.

For FNADs, the ambient absorbed dose from neutrons, $D^*(10)_n$, is calculated from energy bin fluence as follows:

$$D^{*}(10)_{n} = \Phi_{th-Au} L_{th} + \Phi_{Cu} L_{Cu} + \Phi_{a} L_{a} + \Phi_{b} L_{b} + \Phi_{S} L_{S}$$
 Eq. 14

where $\Phi_{\text{th-Au}}$, Φ_{Cu} , Φ_a , Φ_b and Φ_s are the values of neutron fluence within designated energy bins in **Table 10**, and L_{th} , L_{Cu} , L_a , L_b and L_s are the corresponding fluence-to-dose conversion factors listed in **Table 10**. The calculated value for D*(10)_n has units of cGy.

For FNADs, the ambient absorbed dose from neutrons is *also* calculated from the ¹⁹⁸Au activity in the bare gold foil (**G**) located in the *inner dosimetry package* using the following empirically derived formula:

$$D^*(10)_n = k A_0$$
 Eq. 15

where $D^*(10)n$ is the ambient absorbed dose in cGy, A_0 is the decay corrected ¹⁹⁸Au activity in dpm/g, and the activity-to-dose conversion factor $k = 5.97 \times 10^{-5}$ (cGy g min). This relationship is based on the $A_0 / D^*(10)_n$ data for ¹⁹⁸Au in gold foil **G**, in **Appendix F**, **Table F.2**.

For FNADs, the calculation of $D^*(10)_n$ from activity on gold foil (G) using **equation 15** is used as the primary value for $D^*(10)_n$ because it is less influenced by variations in neutron energy spectrum.

For PNADs, a first-approximation of $D_p(10)_n$, can be made using the ^{115m}In specific activity in either the bare or cadmium covered indium foil as follows:

$$\mathbf{D}_{\mathbf{p}}(10)_{\mathbf{n}} = \mathbf{k} \mathbf{A}_{\mathbf{o}}$$
 Eq. 16

where A_o is the decay corrected ^{115m}In activity in dpm/g, $k = 2.28 \times 10^{-3}$ (cGy g min), and $D_p(10)_n$ is the personal absorbed dose in units of cGy. This relationship is based on the $A_o / D_p(10)_n$ data for ^{115m}In in **Appendix F**, **Table F.1**.

A similar but less accurate first-approximation of $D_p(10)_n$, can be made using the ³²P specific activity in the sulfur pellets as follows:

$$D_{p}(10)_{n} = k A_{o}$$
 Eq. 17

where A_o is the decay corrected ³²P activity in dpm/g, $k = 1.74 \times 10^{-1}$ (cGy g min), and $D_p(10)_n$ is the personal absorbed dose in units of cGy. This relationship is based on the $A_o / D_p(10)_n$ data for ³²P in **Appendix F**, **Table F.1**.

The approximation of dose using ³²P activity is less accurate than the approximation using ^{115m}In activity because the energy range for which the ³²S(n,p)³²P reaction has significant cross section encompasses a smaller percentage of the dosimetrically significant fluence than the energy range for the ¹¹⁵In(n,n')^{115m}In reaction.

2.14 Methodology for Calculating PNAD Gamma and Neutron Dose from InLight[®] Readings

The Landauer InLight[®] OSLN dosimeter is used in the PNNL PNAD to provide the primary gamma dose information and supplemental neutron dose information used in the event of a criticality. Because of the highly energy dependent nature of the albedo neutron response, the neutron dose result from the InLight[®] OSLN dosimeter is suitable for use only as an initial estimate (i.e. first approximation) of neutron dose until the results of foil analysis become available. The OSL technology allows repeated readout of the $InLight^{\text{@}}$ dosimeter with minimal signal loss (< 0.5% per reading with strong beam). The $InLight^{\text{@}}$ OSLN dosimeter used in the PNNL PNAD consists of a BA-type case loaded with an N-type slide containing three gamma sensitive OSL elements (E1, E3, E4) and one gamma + neutron sensitive OSLN element (E2). The BA case filtration in front of and behind each element is symmetrical and consists of an open window (E1), plastic filter (E2), copper filter (E3), and aluminum filter (E4). The InLight[®] OSLN dosimeter is described in greater detail in Appendix A and in Landauer internal documentation (Landauer, 2010). For accident level doses, the InLight[®] OSLN dosimeters are read first on the accident level Landauer microStar[®] reader (a reader that has been modified with a neutral density filter to extend the dynamic range to 20,000 cGy). Using the microStar[®] 5.0 software serving this reader, the dosimeters are read in a reader environment named "PNAD" that has been set up and calibrated specifically for readout of high dose InLight® dosimeters retrieved from PNNL PNADs. After initial readout on the accident level modified reader, InLight[®] OSLN dosimeters may be read on the unmodified microStar[®] protection level reader in the "PNAD LD" reader environment for more accurate readings if the dose is sufficiently low (E2 < 3000 cGy and E1, E3 and E4 less than 1000 cGy). This limit is necessary to avoid damage to the unmodified reader's one inch diameter PM tube and to avoid PM tube saturation. Both readers must have been specifically set up and calibrated for readout of nuclear accident dosimeters. When using either reader, each dosimeter is read three times and the dose result is generally based on the average of the three readings.

For the purpose of reading InLight[®] OSLN dosimeters exposed in PNADs, the microStar[®] readers are calibrated using sets of InLight[®] reader calibration dosimeters (CC-type case with A-type slide) that have been exposed to protection and accident level doses using a ⁶⁰Co beam irradiator at PNNL. The CC type dosimeter contains four OSL gamma sensitive elements, with equal amounts of ABS plastic filtration (178 mg/cm²) covering each element front and back. The CC calibration dosimeters are exposed on 30 cm x 30 cm x 15 cm PMMA slab phantoms with 30 cm x 30 cm x 3.2 mm thick PMMA cover plates covering the dosimeters and front faces of the phantoms. The calibration dosimeters are irradiated to known levels of personal absorbed dose, $D_p(10)_{\gamma}$. During readout, the microStar[®] readers use two different power levels for optical stimulation of OSL elements with green colored LEDs. The two beams of light (weak and strong) are optimized to provide a large dynamic range for the system (5 mrad to 1000 rad ⁶⁰Co equivalent signal for the unmodified reader and 100 mrad to 20,000 rad for the modified reader). Both beams are calibrated using OSL elements exposed to a known dose from a ⁶⁰Co photon source. Thus, the reader calibration factors nominally have units of counts/cGy. Typical reader calibration factors that are applied by the reader software are shown in **Appendix I, Table I.1**.

NOTE: The suffix HD (high dose) is used in Table I.1 and Table I.2 after the PNAD and FNAD reader environment names to indicate the accident level reader. However when using the microStar[®] 5.0 software serving the accident level reader, the environments are referred to as PNAD and FNAD. The HD is implicit. For the protection level reader, the LD (low dose) nomenclature in **Table I.1** and **Table I.2** is consistent with the microStar[®] reader software environment names.

In the data files exported form the microStar® Reader database, dosimeter element readings are recorded as both raw readings (in units of "counts" from the PM tube), and as "converted values". Element converted values are readings that have been corrected for element sensitivity and have had the reader calibration factor applied. On the two dedicated microStar[®] readers specially calibrated for accident dosimetry, an InLight[®] element converted value of 1 cGy results from an element light output (measured as PMT counts) equal to that from an OSL element exposed in a CC case to 1 cGy of ⁶⁰Co gamma radiation, on phantom, under CPE conditions. Element readings expressed as converted values may thus be thought of as ⁶⁰Co cGy equivalent signal.

The microStar[®] software nominally reports the calculated reader calibration factors in units of counts/cGy during the reader calibration process. However, when reading BA type dosimeters, *the "converted values" for E1, E2, E3 and E4 that are recorded in the microStar*[®] *database are actually given in units of mrad. In the formulas below, it is assumed that E1, E2, E3 and E4 converted values exported from the microStar*[®] *database have been properly converted to units of cGy by dividing each value by 1000.* The gamma absorbed dose calibration factors and neutron absorbed dose calibration factors used in the formulas below require "converted values" that are expressed in units of cGy.
2.14.1 Calculating Gamma Dose from InLight® Readings

For each PNAD, the personal absorbed dose from photons, $D_p(10)_{\gamma}$ is calculated in using the E1, E2, E3 and E4 converted values (cGy) in a two-step process as follows:

Step1: Calculate the gamma signal with neutron influence on gamma signal subtracted.

$$x = ([(E3 + E4) / 2] - [R * (E2 - E1) / C_n])$$
Eq. 18

where

x is the OSL measured personal absorbed dose from photons (in cGy) without correction for photon energy dependence or supralinearity of dose response.

E1, E2, E3 and E4 are the element converted values in cGy

R is a dimensionless factor to estimate the fraction of delivered neutron absorbed dose that appears as apparent gamma signal on the gamma dose elements E3 and E4.

R = 0.165 (default) This value is based on dosimeters exposed on phantom in unmoderated fields with n/γ dose ratio = 8.

C_n is a dimensionless neutron absorbed dose calibration factor.

- $C_n = 2.90$ (default) This value is based on dosimeters exposed at 50 cm on phantom to bare ${}^{252}Cf$.
- $C_n = 6.19$ (optimum C_n for Godiva-IV irradiations in DAF) This value is based on the response of dosimeters exposed at 2m, 3m and 4m distances on phantom from unshielded Godiva-IV bursts in DAF, with the average response at each distance given equal weighting.

<u>Step 2</u>: Calculate the personal absorbed dose from photons with corrections for photon energy and supralinearity applied.

$$D_{p}(10) = x / (S_{\gamma 34} * C_{\gamma} * RRF)$$
 Eq. 19

where

 $D_p(10)_\gamma$ is the OSL measured personal absorbed dose from photons in cGy

x is the personal absorbed dose from photons (in cGy) without correction for gamma energy or supralinearity, as determined in Step 1 above.

 $S_{\gamma34}$ is the gamma supralinearity factor calculated from the average of E3 and E4 converted values *after subtraction of the neutron response*. $S_{\gamma34}$ is dimensionless.

$$S_{\gamma 34} = 9.8283E \cdot 13x^3 - 2.7185E \cdot 08x^2 + 2.0069E \cdot 04x + 1.0000E + 00$$
 Eq. 20

 C_{γ} is a dimensionless gamma absorbed dose calibration factor. It adjusts for any differences in element response to the photon energies used to calibrate the dosimetry system in the lab (⁶⁰Co) and the energies encountered in an actual criticality.

 $C_{\gamma} = 1.00$ default for prompt and delayed gamma from unshielded criticalities

RRF is the ⁶⁰Co relative response factor which is the ratio of OSL element response when exposed to ⁶⁰Co in the geometry used to calibrate the reader (inside CC case mounted on phantom with 3.2 mm PMMA cover plate) relative to the response when exposed to ⁶⁰Co in the geometry used to measure personal absorbed dose (inside BA case inside a PNAD assembly mounted on phantom. RRF is dimensionless.

RRF = relative response factor = 1.00 for E3 and E4 in the PNAD. (This preliminary value may need revision after more thorough response characterization is completed).

2.14.2 Calculating Neutron Dose from InLight® Readings

For each dosimeter, the personal absorbed dose from neutrons, $D_p(10)_n$, is calculated in a two-step process using E1 and E2 converted values (cGy) as follows:

Step 1: Calculate the gamma supralinearity correction factor for the E1 converted value reading

$$S_{\gamma 1} = 9.8283E - 13z^3 - 2.7185E - 08z^2 + 2.0069E - 04z + 1.0000E + 00$$
 Eq. 21

where

z = E1 converted value (cGy)

<u>Step 2</u>: Calculate the personal absorbed dose from neutrons, $D_p(10)_n$ as follows:

$$D_p(10)_n = [E2 - E1/(S_{\gamma 1})^{0.8}] / C_n$$
 Eq. 22

where

 C_n = neutron absorbed dose calibration factor

- $C_n = 2.90$ for dosimeters exposed at 50 cm on phantom to bare ²⁵²Cf (default)
- $C_n = 6.19$ for dosimeters exposed at 2 m, 3 m and 4 m distances on phantom from unshielded Godiva-IV in DAF (optimum C_n for Godiva-IV irradiations in DAF)

The appropriate values for C_n are unique to each radiation field and highly dependent on neutron energy spectrum. The default value of $C_n = 2.90$, based on PNAD response to unmoderated ²⁵²Cf neutrons at 50 cm, is expected to provide a conservative result for a solution type criticality. For more accurate albedo neutron dose results, the neutron calibration factor C_n should be evaluated for BA cases in fully loaded

PNAD holders mounted on phantom a neutron field more closely simulating the anticipated spectrum from a criticality in PNNL facilities where the dosimeter is used.

Correction factors for non-linearity of element dose response have been developed for use with converted value element readings from InLight[®] and nanoDot[®] dosimeters. OSL dose response linearity from 10 cGy to 10,000 cGy for gamma radiation was determined using the accident level reader to read sets of reader calibration dosimeters exposed on phantom covered with 3.2 mm PMMA plate, using a ⁶⁰Co beam irradiator to deliver 12 dose levels equally distributed across six decades. The OSL dose response to gamma radiation was shown to be supralinear above 100 cGy with a maximum response of 1.44 observed at 4000 cGy delivered dose. The empirically derived function for calculating the supralinearity correction factor, S_{γ} for an InLight[®] OSL element converted value reading is shown in **Appendix J, Figure J.1**. The nearly identical supralinearity correction function empirically derived in the same manner for OSL nanoDots is shown in **Appendix J, Figure J.2**.

OSLN unmoderated neutron dose response linearity was determined using the accident level reader to read sets of specially prepared dosimeters (CC-type case with N-type slide) that had been exposed to a moderated ²⁵²Cf source to produce readings equivalent to an absorbed dose between 10 cGy and 1000 cGy from an unmoderated $\frac{252}{25}$ Cf source. The "simulated" fast neutron response thus measured was essentially linear from 10 cGy to 1000 cGy simulated dose from an unmoderated ²⁵²Cf source. Dosimeters were then given additional gamma dose from a ⁶⁰Co gamma source, and read again, to simulate neutron response in mixed neutron/gamma fields in which the gamma component comprised more than half of the total absorbed dose. Under these conditions, the neutron response became nonlinear, decreasing as gamma/neutron ratio increases. The neutron dose response data are shown graphically in **Appendix J, Figure J.3**. The value $C_n = 4.27$ is shown on the data plots because this is the neutron calibration factor for unmoderated ²⁵²Cf neutrons that was measured with the experimental dosimeter configuration used to generate the neutron linearity data (N-type slide in CC-type case, covered with 3.2 mm PMMA). Because the dose response, and the associated non-linearity correction functions will vary as a function of gamma/neutron dose ratio, it is not possible to accurately calculate the nonlinearity correction factor for every situation unless the gamma/neutron dose ratio is known. Instead, a general neutron non-linearity correction is applied in equation 22 which provides an acceptable compromise between over response and under response under varying dose levels and gamma/neutron dose ratios. The improved accuracy in calculated neutron doses after applying this simple correction to the data used to generate Figure J.3 is shown graphically in Appendix J, Figure J.4. The accuracy in calculated total dose (gamma+neutron) over a large dynamic range is shown graphically in Figure J.5.

For dosimeters exposed in the Godiva-IV exercise, the delivered gamma doses were less than 100 cGy and calculated corrections for gamma dose response non-linearity were < 3%. Calculated corrections for neutron dose response non-linearity were also < 3% because the gamma/neutron absorbed dose ratio in Godiva-IV fields varies between 7 and 9 depending on distance, (i.e.gamma component of absorbed dose comprised 11% - 14% of the total).

2.15 Methodology for Calculating FNAD Gamma and Neutron Dose from nanoDot[®] Readings

Landauer OSL and OSLN nanoDots are used in the PNNL FNAD to provide the primary gamma dose information and supplemental neutron dose information. Primary neutron dose information for the PNNL FNAD is provided by the activation foils. The sensitive elements in the OSL and OSLN nanoDots are the same composition and thickness as the OSL and OSLN elements on the N-type slide in the InLight® BA type case described in Section 2.14. The OSL and OSLN nanoDots are first read on the modified microStar[®] reader in a reader environment named "FNAD" which is specifically configured and calibrated for reading high dose nanoDots retrieved from FNADs. The reader calibration factors for this environment are determined from the response of OSL nanoDots that have been exposed on PMMA slab phantoms with 30 cm x 30 cm x 3.2 mm thick PMMA cover plates covering the dosimeters and front faces of the phantoms. The nanoDot dosimeters used to calibrate the reader are exposed to ⁶⁰Co photons from a beam irradiator to achieve a known delivered personal absorbed dose, $D^*(10)_{\gamma}$. Reader calibration factors thus nominally have units of counts/cGy. After initial readout on the accident level modified reader, nanoDot dosimeters may be read on the unmodified microStar[®] protection level reader in the "FNAD LD" reader environment for more accurate readings if the dose is sufficiently low (OSLN nanoDot < 3000 cGy and OSL nanoDot < 1000 cGy). This limit is necessary to avoid damage to the unmodified reader's one inch diameter PM tube and to avoid PM tube saturation. When using either reader, all the nanoDots from a given FNAD should be read and each nanoDot read three times. The dose result is generally based on the average of the three readings.

The unmodified microStar[®] reader environment named "FNAD LD" is configured and calibrated in the same manner as "FNAD". As with the reader calibrations performed for the PNAD and PNAD LD reader environments, the weak beam and strong beams are calibrated independently. OSL nanoDots given doses larger than 100 cGy are not used, so as to ensure that reader calibration factors are determined based on linear response of the OSL elements. As with the PNAD environments, the crossover point for the FNAD LD reader environment is set to correspond to doses of approximately 10 cGy. For the FNAD reader environment, the crossover point is set to correspond to a dose of approximately 75 cGy. The reader calibration factors for the FNAD LD reader environments are shown in **Appendix I, Table I.2**.

NOTE: The suffix HD (high dose) is used in **Table I.1** and **Table I.2** after the PNAD and FNAD reader environment names to identify the accident level reader. However when using the microStar[®] 5.0 software serving the accident level reader, the environments will be displayed as "PNAD" and "FNAD" in the user interface. The HD suffix is implicit. For the protection level reader, the LD (low dose) nomenclature in **Table I.1** and **Table I.2** is consistent with the microStar[®] reader software environment names.

In the data files exported form the microStar[®] Reader database, dosimeter element readings are recorded as both raw readings (in units of "counts" from the PM tube), and as "converted values". Element converted values are readings that have been corrected for element sensitivity and have had the reader calibration factor applied. On the two dedicated microStar[®] readers specially calibrated for accident dosimetry, a nanoDot element converted value of 1 cGy results from an element light output (measured as PMT counts) equal to that from an OSL element exposed in a nanoDot case to 1 cGy of ⁶⁰Co gamma

radiation, on phantom, under CPE conditions (i.e. with PMMA cover plate). Element readings expressed as converted values may thus be thought of as ⁶⁰Co cGy equivalent signal.

The microStar[®] software nominally reports the calculated reader calibration factors in units of counts/cGy during the reader calibration process. However, when reading nanoDot[®] dosimeters, *the "converted value" for E1 recorded in the microStar[®] database is actually given in units of mrad. In the formulas below, it is assumed that E1 converted values exported from the microStar[®] database have been properly converted to units of cGy by dividing each value by 1000. The formulas below assume that the "converted values" have units of cGy.*

2.15.1 Calculating Gamma Dose from nanoDot[®] Readings

The outer dosimetry package of the PNNL FNAD is used to measure gamma dose from criticality accidents. It includes an OSL nanoDot (dot1) paired with an OSLN nanoDot (dot2). Each nanoDot is read three times and the average reading used in the formulas below. For the purpose of the exercise, the ambient absorbed dose from photons $D^*(10)_{\gamma}$ is calculated from the OSL / OSLN nanoDot pair in the outer dosimetry package as follows:

<u>Step1</u>: Calculate the gamma signal with neutron influence on gamma signal subtracted.

$$\mathbf{x} = [\operatorname{dot} 1 - \operatorname{R} (\operatorname{dot} 2 - \operatorname{dot} 1)]$$
 Eq. 23

where

x is the photon dose (60 Co cGy equivalent signal) after correction for neutron influence but without correction for photon energy dependence or supralinearity of dose response.

dot1 and dot2 are the E1 converted value <u>readings in cGy</u> for nanoDot 1 (OSL) and nanoDot 2 (OSLN) in the outer dosimetry package. Element converted value readings for nanoDots are always recorded as E1 in the microStar[®] database, with units of mrad and must be converted to cGy for use with the formulas in this section.

R is a dimensionless factor to estimate the fraction of delivered neutron absorbed dose that appears as apparent gamma signal on the gamma detector, dot1.

R = 0.0086 (default) This value is based on FNADs exposed to unmoderated fields from Godiva-IV with n/ γ dose ratio = 8. Unlike PNADs, R for FNADs is <u>not</u> used in conjunction with C_n.

<u>Step 2</u>: Calculate the ambient absorbed dose from photons, $D^*(10)_{\gamma}$, with corrections for photon energy dependence and supralinearity applied.

$$D^{*}(10)_{\gamma} = x / (S_{\gamma} * C_{\gamma} * RRF)$$
 Eq. 24

where

 $D^*(10)_{\gamma}$ is the measured ambient absorbed dose from photons in cGy

x is the dose from photons (in cGy) without correction for gamma energy or supralinearity, as determined in Step 1 above.

 S_{γ} is the gamma supralinearity factor calculated using x as determined in Step 1 above. S_{γ} is dimensionless.

 $S_{\gamma} = 1.2251E \cdot 12x^3 - 3.1340E \cdot 08x^2 + 2.1261E \cdot 04x + 1.0000E + 00$

 C_{γ} is a dimensionless gamma absorbed dose calibration factor. It adjusts for any differences in element response to the photon energies used to calibrate the dosimetry system in the lab (⁶⁰Co) and the energies encountered in an actual criticality.

 C_{γ} = 1.00 default for prompt and delayed gamma from unshielded criticalities

RRF is the ⁶⁰Co relative response factor which is the ratio of OSL element response when exposed to ⁶⁰Co in the geometry used to calibrate the reader (inside nanoDot case mounted on phantom with 3.2 mm thick PMMA cover plate) relative to the response when exposed to ⁶⁰Co in the geometry used to measure personal absorbed dose (in outer dosimetry package mounted on candle exposed in air). RRF is dimensionless.

RRF = 1.00 for dots in the outer dosimetry package of the FNAD. (This preliminary value may need revision after more thorough response characterization is completed).

2.15.2 Calculating Neutron Dose from nanoDot[®] Readings

The ambient absorbed dose from neutrons $D^*(10)_n$ is calculated from the nanoDots in the <u>inner dosimetry</u> <u>package</u> as follows:

Step 1: Calculate the gamma supralinearity correction factor for the dot3 converted value reading

$$S_{\gamma} = 1.2251E - 12z^3 - 3.1340E - 08z^2 + 2.1261E - 04z + 1.0000E + 00$$
 Eq. 25

where

z = dot3 converted value (cGy)

<u>Step 2</u>: Calculate the ambient absorbed dose from neutrons, $D^*(10)_n$ as follows:

$$D^{*}(10)_{n} = [(dot4 + dot5 + dot6) / 3 - dot3 / (S_{\gamma})^{0.8}] / C_{n}$$
 Eq. 26

where

dot3 is the inner dosimetry package OSL nanoDot converted value reading (⁶⁰Co cGy equivalent signal)

dot4, dot5 and dot6 are the inner dosimetry package OSLN nanoDot converted value readings (⁶⁰Co cGy equivalent signal)

 C_n = neutron absorbed dose calibration factor (dimensionless)

 $C_n = 12.89$ (default). This value is based on calibration of the FNAD with an unmoderated ²⁵²Cf source at a distance of 1 meter. This value also provided unbiased neutron absorbed dose results for FNADs exposed at a distance of 4.0 meters from Godiva-IV.

3.0 RESULTS and DISCUSSION

3.1 Neutron Fluence and Dose Results for PNADs Calculated from Foil Activity

Using equations 5 - 13 in conjunction with Table 10, neutron fluence and neutron absorbed dose were calculated for each PNAD exposed in the IER-148 exercise with Godiva-IV. This includes the six Hanford PNADs and 46 PNNL PNADs exposed in the exercise. For each dosimeter, neutron fluence and absorbed dose were calculated for individual NAD energy regions and summed to obtain values for total fluence and total dose. The calculated values are compared against delivered values and presented in Appendix K. Table K.1 shows the results for PNADs exposed in air and Table K.2 shows the results for PNADs exposed on phantom. The results show that the dose calculation methodology developed in Section 2 provides accurate dose results for each energy region and accurate results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimeter exposed either in air or in AP geometry on phantom. The relative standard deviation of results for each combination of distance and geometry show good measurement precision. As expected, dosimeters exposed on the back side of a phantom under respond significantly. The two dosimeters mounted on phantoms irradiated in lateral geometry produced inconsistent results. The results for dosimeters exposed in air or in AP geometry on phantom are summarized by distance for fluence in **Table 11** and by distance for dose in **Table 12** below. Data for 3 Hanford PNADs containing 5 mil thick foils are shown on the second row All other data are for 10 mil foils . The values for Φ_{th} and Φ_{Cu} on phantom in **Table 11** and the values for D_{th} and D_{Cu} in **Table 12** over respond due to the additional fluence from albedo neutrons not accounted or in the reference values for fluence and ose. The effective cross sections and activity to fluence conversion factors for these two energy regions were based only on measured foil activity and known fluence for foils exposed in air and thus correctly measure the 4π fluence seen by the foils which includes albedo neutrons. Although the calculated dose from thermal neutrons shows a significant over response for dosimeters mounted on phantom, the relative contribution to total dose from thermal neutrons is small (2-3 %).

(m)	type	Measured Φ _{bin} /Given Φ _{bin}										
ance (ntom	Φ_{th}	Φ _{Cu}	Φ_{a}	Φ_{In}	$\Phi_{\rm b}$	$\Phi_{\rm S}$	Φ_{total}				
dist	pha	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 20 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	0.001 eV - 20 MeV				
2.0	air	0.85	1.00	1.03	1.03	1.04	1.00	1.00				
2.0	air	0.76	1.08	1.03	1.00	1.01	0.97	1.01				
2.5	air	1.01	0.97	1.01	1.14	1.13	1.19	1.02				
4.0	air	1.19	1.03	1.03	0.96	0.96	0.93	1.02				
3.0	BOMAB	2.61	1.23	1.05	0.93	0.92	0.96	1.29				
4.0	BOMAB	2.85	1.17	1.14	1.03	1.01	1.09	1.37				
2.0	PMMA	2.86	1.56	1.26	1.08	1.09	1.05	1.48				
4.0	PMMA	2.40	1.21	1.16	1.02	1.01	1.07	1.33				

 Table 11. Accuracy of Calculated Fluence Using Foil Activity in PNADs.

* 5 mil foils

	(m)	type		Reported D _{bin} / Given D _{bin}									
	ance		D _{th}	D _{Cu}	Da	Db	D _s	D _{total}	В				
	dist	pha	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	0.001 eV - 20 MeV					
Ī	2.0	air	0.82	0.95	0.97	0.99	0.96	0.97	-0.03				
*	2.0	air	0.73	1.02	0.97	0.96	0.92	0.96	-0.04				
	2.5	air	0.95	0.91	0.96	1.07	1.12	1.01	0.01				
	4.0	air	1.13	0.98	0.98	0.91	0.87	0.95	-0.05				
	3.0	BOMAB	2.48	1.17	1.00	0.87	0.91	1.00	0.00				
	4.0	BOMAB	2.65	1.09	1.06	0.94	1.01	1.07	0.07				
	2.0	PMMA	2.77	1.50	1.19	1.05	1.01	1.16	0.16				
	4.0	PMMA	2.23	1.13	1.08	0.94	0.99	1.07	0.07				

Table 12. Accuracy of Calculated Neutron Dose, $D_p(10)_n$, Using Foil Activity in PNADs.

* 5 mil foils

3.2 Neutron Fluence and Dose Results for FNADs Calculated from Foil Activity

Using equations 5 – 15 in conjunction with Table 10, neutron fluence and neutron absorbed dose were calculated for each FNAD exposed in the IER-148 exercise with Godiva-IV. For each dosimeter, neutron fluence and absorbed dose were calculated for individual NAD energy regions and summed to obtain values for total fluence and total dose. The calculated values are compared against delivered values and presented in Appendix K, Table K.3. With the FNAD, thermal fluence and thermal dose can be calculated from either the indium foil activity in the outer dosimetry package or the gold foil activity in the outer dosimetry package or the gold foil activity in the outer dosimetry package using both options. The results show that the dose calculation methodology developed in Section 2 provides generally accurate dose results for each energy region and <u>accurate results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation 15. The results for this method are also presented in Table K.3. The results indicate <u>accurate results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation 15. The results for this method are also presented in Table K.3. The results indicate <u>accurate results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation 15. The results for this method are also presented in Table K.3. The results indicate accurate results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation 15. The results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation 15. The results for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation for total neutron dose that are within $\pm 25\%$ of the delivered value for every dosimetry package using equation of dose results indicate satisfactory pr</u></u></u>

(m)	Foil Used for $\Phi_{\rm th}$		Measured Φ _{bin} /Given Φ _{bin}									
ance		Φ_{th}	Φ_{Cu}	Φ_{a}	Φ_{In}	$\Phi_{\rm b}$	$\Phi_{\rm S}$	Φ_{total}				
dist		0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 20 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	0.001 eV - 20 MeV				
4.0	In	1.41	1.20	1.14	1.00	1.02	0.90	1.18				
4.0	Au	1.00	1.20	1.14	1.00	1.02	0.90	1.12				

Table 13. Accuracy Of Calculated Neutron Fluence Using Foil Activity in FNADs.

Table 14. Accuracy of Calculated Neutron Dose, $D^*(10)_N$ Using Foil Activity in FNADs.

(m)	Foil Used for $\Phi_{\rm th}$	Reported D _{bin} / Given D _{bin}									
tance		D _{th}	D _{Cu}	Da	D _b	D _S	D _{total}	В			
dist		0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	0.001 eV - 20 MeV				
4.0	In	1.33	1.13	1.08	0.96	0.84	1.01	0.01			
4.0	Au	0.94	1.13	1.08	0.96	0.84	1.02	0.02			

3.3 Gamma and Neutron Dose Results for PNADs Calculated from InLight® Dosimeter Readings

Using the equations and methodology described in **Section 2.14**, gamma absorbed dose and neutron absorbed dose were calculated for the 46 PNNL PNADs exposed in the IER-148 exercise using the InLight® dosimeter's element readings. The results are presented in **Appendix L, Table L.1**. The gamma dose results show that for PNADs exposed in air and in AP geometry on phantom, the applied corrections for neutron influence on gamma response were reasonably effective. Previously, without correction, the reported gamma dose for dosimeters exposed on phantom was on average, 2.59 times the given gamma dose. Similarly, without correction, the reported gamma dose for dosimeters exposed in air was on average, 1.31 times the given gamma dose. On average, the reported gamma dose is now within 5% of the given dose. The neutron dose results show that for dosimeters exposed on phantom in AP geometry, the dosimeters generally reported neutron dose that was within $\pm 25\%$ of the given dose. The one dosimeters exposed on phantom in AP geometry generally reported total absorbed dose from neutrons and gamma that met the $\pm 25\%$ total dose accuracy criteria of ANSI/HPS N13.3 – 2013. The one dosimeter not meeting this total dose criteria was the same dosimeter not meeting the criteria for neutron dose. This dosimeter had a reported total dose that was 1.28 times the given total dose.

3.4 Gamma and Neutron Dose Results for FNADs Calculated from nanoDot® Dosimeter Readings

Using the equations and methodology described in **Section 2.15**, gamma absorbed dose and neutron absorbed dose were calculated for the 3 PNNL FNADs exposed in the IER-148 exercise using the nanoDot dosimeter readings. The results are presented in **Appendix M, Table M.1 and Table M.2**. The gamma dose results in **Table M.1** show that the applied corrections for neutron influence on gamma response of nanoDots in the outer dosimetry package were reasonably effective. Previously, without correction, the reported gamma dose for FNADs exposed at 4.0 meters from Godiva-IV was on average, 1.31 times the given gamma dose. With the corrections applied, the reported gamma dose is now within 6% of the given dose. The neutron dose results in **Table M.2** show that for FNADs exposed at a distance of 4.0 meters, the dosimeters reported neutron dose that was within \pm 5% of the given dose. These neutron dose results were calculated using the default calibration factor determined from ²⁵²Cf irradiations at PNNL. The use of a generic rather than site specific neutron calibration factor is possible because, unlike the InLight® albedo neutron dosimeter, the FNAD enjoys the flattened energy response characteristic of a detector inside a 23 cm diameter cylindrical paraffin moderator.

3.5 Dosimeter Performance Evaluation

The primary purpose of this section is to consolidate the dose results obtained from different detectors and analyze dosimeter performance against the performance criteria in ANSI/HPS N13.3-2013. According to the standard, performance is to be evaluated for the total (gamma + neutron) absorbed dose on an individual dosimeter basis using the performance statistic P which is calculated as follows:

$$P = (Measured Dose - Delivered Dose) / Delivered Dose Eq. 27$$

Consistent with established nomenclature in personnel and environmental dosimeter performance test standards the symbol P is used in this report to represent the *performance quotient* for an individual dosimeter and the symbol B is used to represent the average value of P for a group of dosimeters (referred to as "bias"). ANSI/HPS N13.3-2013 used the symbol B to represent the performance quotient for an individual dosimeter. The performance testing criteria for PNADs and FNADs are given in ANSI/HPS N13.3 are shown in **Table 15**. The operational quantity recommended for use with PNADs is personal absorbed dose, $D_p(10)$. The operational quantity recommended for use with FNADs is ambient absorbed dose D*(10). All PNNL dosimeters exposed in the exercise received a total dose between 100 cGy and 1000 cGy. Thus the ±25% criterion applies to all dosimeters in the study.

Total absorbed dose range	Р
10 to 100 cGy (10 to 100 rad)	-0.50 < P < 0.50
100 to 1000 cGy (100 to 1000 rad)	-0.25 < P < 0.25
> 1000 cGy (1000 rad)	indication of dose > 1000 cGy (1000 rad)

 Table 15.
 ANSI/HPS N13.3 Performance Test Criteria for Criticality Accident Dosimetry Systems

3.5.1 PNAD Performance

The gamma+neutron total dose performance for PNNL PNADs <u>when neutron dose is calculated from foil</u> <u>activity and gamma dose is calculated from the InLight® element readings</u> is shown in **Appendix N**, **Table N.1.** The performance of dosimeters exposed on phantom in AP geometry as well as dosimeters exposed in air meets ANSI/HPS N13.3-2013 criteria applicable to the range of doses delivered. Dosimeters exposed on phantom in PA geometry measured only 64% of the delivered dose on average. The two dosimeters exposed on phantom in LAT geometry gave inconsistent results.

The gamma+neutron total dose performance for PNNL PNADs when both neutron dose and gamma dose are calculated from InLight® OSLN dosimeter readings is shown in **Appendix N, Table N.2.** The performance of dosimeters exposed on phantom in AP geometry meets ANSI/HPS N13.3-2013 criteria applicable to the range of doses delivered for all but one dosimeter. The failing dosimeter had a performance quotient, $P_i = 0.28$ which lies marginally outside the ANSI/HPS N13.3-2013 acceptable range, $-0.25 < P_i < 0.25$. Dosimeters exposed on phantom in PA geometry generally failed the test with a group bias of -0.33. Interestingly, the two dosimeters mounted on the backside of PMMA slab phantoms passed. The two dosimeters exposed on phantom in LAT geometry gave inconsistent results with one passing and one failing. As expected for an albedo neutron dosimeter, all of the dosimeters exposed in air all failed the test, with performance quotients varying between -0.36 and -0.65 as an inverse function of distance, and with a group bias of -0.52.

PNAD performance for exposures on phantom in AP geometry are shown in **Table 16** for foil based neutron dose results and **Table 17** for OSLN based neutron dose results.

	Irra	adiation Data		PNAD Performance with foil calculated neutron dose					
PNAD No.	Distance (m)	phantom type	dosimeter location on phantom	OSL Gamma R/G	Foil Neutron R/G	PNAD γ + n R/G	Pi	Pass or Fail	
45	2	PMMA	front	1.17	1.16	1.16	0.16	Pass	
5	3	BOMAB	front	1.07	0.99	0.99	-0.01	Pass	
7	3	BOMAB	front	1.05	0.93	0.94	-0.06	Pass	
21	3	BOMAB	front	1.25	1.05	1.07	0.07	Pass	
23	3	BOMAB	front	1.07	1.00	1.01	0.01	Pass	
34	3	BOMAB	front	1.24	1.02	1.05	0.05	Pass	
13	4	PMMA	front	0.59	1.04	0.99	-0.01	Pass	
25	4	PMMA	front	0.72	1.09	1.05	0.05	Pass	
38	4	BOMAB	front	1.02	1.07	1.06	0.06	Pass	

 Table 16.
 PNAD Performance on Phantom in AP Geometry (neutron dose from foils)

Table 17. PNAD Performance on Phantom in AP geometry (neutron dose from InLight® OSLN)

	Irra	diation Data		PNAD Performance with InLight calculated neutron dose (C _n = 6.19)					
PNAD No.	Distance (m)	phantom type	dosimeter location on phantom	OSL Gamma R/G	OSLN Neutron R/G	PNAD γ + n R/G	Pi	Pass or Fail	
45	2	PMMA	front	1.17	0.81	0.85	-0.15	Pass	
5	3	BOMAB	front	1.07	1.00	1.00	0.00	Pass	
7	3	BOMAB	front	1.05	0.94	0.95	-0.05	Pass	
21	3	BOMAB	front	1.25	0.94	0.98	-0.02	Pass	
23	3	BOMAB	front	1.07	1.05	1.05	0.05	Pass	
34	3	BOMAB	front	1.24	0.99	1.02	0.02	Pass	
13	4	PMMA	front	0.59	1.22	1.15	0.15	Pass	
25	4	PMMA	front	0.72	1.08	1.04	0.04	Pass	
38	4	BOMAB	front	1.02	1.31	1.28	0.28	Fail	

3.5.2 FNAD Performance

The gamma+neutron total dose performance for PNNL FNADs <u>when neutron dose is calculated from foil</u> <u>activity and gamma dose is calculated from the nanoDot dosimeter readings</u> is shown in **Appendix O**, **Table O.1.** The performance is well within ANSI/HPS N13.3-2013 criteria. The gamma+neutron total dose performance for PNNL FNADs <u>when both neutron and gamma dose are calculated from nanoDot</u> <u>dosimeter readings</u> is shown in **Appendix O**, **Table O.2.** The performance is well within ANSI/HPS N13.3-2013 criteria. For the OSL gamma dose calculations and the OSLN neutron dose calculations, the PNNL default calibration factors were used.

3.6 Dependence of Foil Calculated Neutron Dose on Neutron Energy Spectrum

The energy regions, restricted energy effective cross sections and associated activity to fluence conversion factors for the new methodology were developed empirically from the measured activity on dosimeters exposed at Godiva-IV and the reference values for delivered fluence, dose, and neutron energy spectrum. The methodology was designed to give dose results that are accurate for test dosimeters exposed in Godiva-IV radiation fields while being as independent as possible of the shape of the neutron energy spectrum to which the dosimeter are exposed. However, some dependence of dosimeter response on neutron energy spectrum is unavoidable. In particular, the fluence in the energy region from 100 keV to 1.25 MeV is not directly measurable with the neutron reactions available in the PNAD and FNAD foil set. Fluence in this region must be inferred from the fluence measured in adjacent regions, using an assumption about the shape of the neutron energy spectrum. For the methodology described in this report, the Godiva-IV spectrum was used. Thus, the weighting factors in equation 4 are somewhat specific to the shape of the Godiva-IV spectrum and may need to be adjusted for spectra that differ significantly from Godiva-IV. For the Godiva-IV neutron fields, the neutron fluence in the 100 keV – 1.25 MeV energy region accounts for approximately 36% of the total fluence and approximately 47% of the total dose. Thus the accuracy of fluence assessment in this region has a potentially large impact on the accuracy of total measured dose. To some extent, the fluence-to-absorbed-dose conversion factors K_a and L_a for this energy region (given in **Table 10**) are also dependent on the shape of the neutron energy spectrum in this region.

3.7 Dependence of InLight® OSLN Measured Neutron Dose on Neutron Energy Spectrum

The OSLN element in the InLight dosimeter does not have a cadmium filter in front of it, so the influence of incident thermal neutrons on dose response is larger than a typical albedo dosimeter with cadmium filter in front of the neutron sensitive element. The neutron dose response of InLight OSLN component of the PNNL PNAD is strongly influenced by neutrons backscattered from walls, floors and other building materials ("room return") and thus dependent on the size of the room and distance of the dosimeter from the source. For example, the measured neutron calibration factor, C_n , for PNADs exposed on phantom with Godiva-IV was 5.03 at 2 meters, 6.09 at 3 meters and 7.46 at 4 meters. For PNADs exposed in air, the measured C_n factors were 1.78 at 2 meters, 2.53 at 2.5 meters and 3.69 at 4 meters.).

Figure 8 shows the measured InLight® OSLN neutron calibration factor on phantom as a function of distance. The data in **Figure 8** suggests that the OSLN neutron dose response for dosimeters worn on the chest and exposed in normal AP geometry may vary by a factor of 2 depending on distance from the source. The factor $C_n = (E2-E1)/D_p(10)_n$ where $D_p(10)_n$ is the delivered dose. The net neutron signal (E2-E1) and delivered dose $D_p(10)_n$ both have units of cGy, thus C_n is dimensionless. In essence, the coefficient C_n may be thought of as the dose "response" of the dosimeter as defined by ISO 8529-1 (ISO, 2001).

In addition to room size and distance from the source, the dose response is highly dependent on the degree to which the fission spectrum has been moderated by intervening materials. Response data from TLD based personnel dosimeters of similar design with a single unfiltered neutron sensitive element have shown that scatter in air and moderation in intervening materials can potentially produce a variation in dose response by a factor of 10 (Rathbone, 2011). Other variables such as orientation of the individual with respect to the source can produce a factor of 2 variation in response. Given the above considerations, the neutron results obtained from the InLight® should be considered preliminary dose estimates to be used only until neutron dose results from foils become available.

Figure 8. InLight® OSLN neutron response in PNADs exposed on phantom with Godiva-IV

3.8 Additional DOE Accuracy Requirements for FNADs

In addition to the accuracy requirements given in ANSI/HPS N13.3-2013, the Department of Energy Standard, DOE-STD-1098-2008 *Radiological Control*, contains the following requirements in Article 515 *Nuclear Accident Dosimeters*:

Fixed nuclear accident dosimeters should:

- a. Be capable of determining the neutron dose from 10 rads to approximately 10,000 rads with an accuracy of $\pm 25\%$
- b. Be capable of measuring fission gamma radiation from 10 rads to approximately 10,000 rads in the presence of neutron radiation with an accuracy of approximately $\pm 25\%$.
- c. Be capable of measuring the approximate neutron energy spectrum

The separate gamma and neutron response data in **Table O.1** and **Table O.2** demonstrate that the accuracy requirements of $\pm 25\%$ for gamma dose and $\pm 25\%$ for neutron dose can be met by the FNAD over the range of doses delivered in the exercise. The ability to meet the gamma accuracy requirement for doses up to 10,000 cGy is supported by the incorporation of corrections for OSL gamma response supralinearity (Appendix J, Figure J.2) and the modification of the accident level microStar[®] reader with a neutral density filter to provide an extended dynamic range with linear response up to 10,000 cGy ⁶⁰Co equivalent OSL element signal. For neutron dose determined from foil activity measurements, the activities resulting from a 10,000 cGy dose can be readily accommodated with existing instrumentation through a combination of extended decay time and/or use of counting geometries calibrated at larger source-detector distances and/or with source attenuators in place (e.g. beta attenuation). The measured specific activity per unit ambient absorbed dose values in **Appendix F, Table F.2** for FNAD foils exposed by Godiva-IV support this conclusion. The ability to measure the approximate neutron energy spectrum is supported by the data in **Table 11** and **Table 12** above.

4.0 CONCLUSIONS

A new dose calculation methodology has been developed for use with the new PNAD and FNAD designs planned for implementation at PNNL in 2018. The methodology is described in detail in this report. The ability of this methodology to meet the accuracy requirements of ANSI/HPS N13.11-2013 is demonstrated in this report using test data obtained from prototype dosimeters exposed in the 2016 *Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148)*

The methodology for calculating dose from foil activity provides neutron fluence and neutron dose information for each of five energy regions between 0.001 eV and 20 MeV as well as total neutron fluence and total neutron dose information. This report demonstrates that the methodology provides accurate neutron dose results for FNADs exposed in air and for PNADs exposed either in air or on phantom in normal AP geometry.

The methodology for calculating gamma dose from OSL elements incorporates corrections for supralinearity of gamma dose response, and corrections for the influence of neutrons on gamma dose response. This report demonstrates that with the corrections applied, accurate gamma dose results are obtained in radiation fields with neutron / gamma ratios as large as 8:1.

The methodology for calculating neutron dose from OSLN elements incorporates corrections for nonlinearity of neutron dose response. Data is provided to show that accurate OSLN neutron dose results can be obtained with PNADs over a wide range of neutron/gamma dose mixture ratios and dose levels. This report demonstrates that with the use of a source specific neutron calibration factor, OSL/OSLN gamma+neutron total dose results that meet the performance criteria of ANSI/HPS N13.3 – 2013 are obtained with PNADs at varying distances from the source. This report also demonstrates that accurate neutron dose results are obtained with FNADs using the default ²⁵²Cf neutron calibration factor applied to the OSLN element inside the cylindrical paraffin moderator.

When neutron dose results calculated from foil activity are combined with gamma dose from OSL elements, total reported dose meets the accuracy requirements of ANSI/HPS N13.3-2013. This is true for both PNADs and FNADs. Total dose results that comply with ANSI/HPS N13.3 -2013 are also obtained for PNADs when OSLN neutron dose is combined with the OSL gamma dose. This however requires that the proper neutron calibration factor is applied. Total dose results that comply with ANSI/HPS N13.13.2013 are obtained for FNADS when OSLN neutron dose is combined with OSL gamma dose. For FNADs, this accuracy is achieved with the use of a single default neutron calibration factor.

Dose results that meet the accuracy requirements of ANSI/HPS N13.3-2013 can be obtained under the conditions of performance testing. Dose results under actual criticality accident conditions will likely be less accurate, and vary depending on how much is known about the critical configuration, the intervening materials between source and exposed individuals, the room size and location of exposed individuals within the room, the dosimeter location on the exposed individuals and their orientation with respect to the source.

5.0 REFERENCES

Bramson, P.E. 1963. *Hanford Criticality Dosimeter*. HW-71710 Revised 2-8-63, General Electric Hanford Atomic Products Operation, Richland, Washington.

Glenn, R. D. and P. E. Bramson 1977 *The Hanford Critical Radiation Dosimeter* PNL-2276, Pacific Northwest National Laboratory, November 1997.

Health Physics Society (HPS) 2009. ANSI/HPS N13.35-2009 Specifications for the Bottle Manikin Absorption Phantom, Health Physics Society, 2009.

Health Physics Society (HPS) 2013, ANSI/HPS N13.3 – 2013, *Dosimetry For Criticality Accidents*, Health Physics Society, 1313 Dolley Madison Blvd. Suite 402, McLean, VA

Heinrichs, D. et. al, 2014 *Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV (IER-148 CED-2 Report).* LLNL-TR-661851, Lawrence Livermore National Laboratory, September 30, 2014.

Hickman, David P, 2017 (Personal email communication, from D.P. Hickman to B.A. Rathbone, Subject: *RE: Element 57 dose and IAEA 211 dose*, dated March 27, 2017)

Hutchinson, J. D., D. K. Hayes and W. L. Myers 2012 *National Criticality Experiments Research Center: Capabilities and Experiments*, LA-UR-20701 Los Alamos National Laboratory 2012.

International Atomic Energy Agency (IAEA). 1982. *Dosimetry for Criticality Accidents, a Manual.* Technical Report Series No. 211, IAEA, Vienna, Austria.

International Organization for Standardization (ISO), 2001 ISO 8529-1 Reference neutron radiations – Part 1: Characteristics and methods of production.

Knolls Atomic Power Laboratory, *Chart of the Nuclides*, Naval Reactors, U.S. Department of Energy, 16th Edition-Revised to 2002

Rathbone, B. A. 2011. *Hanford External Dosimetry Technical Basis Manual PNL-MA-842*. PNNL-15750 Rev. 1.2, Pacific Northwest National Laboratory, Richland, WA.

Rathbone, B. A. et. al. 2017 *Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148) PNNL 26497.* Pacific Northwest National Laboratory, May 2017.

Wilson, C., Leo Clark, and Phil Angus 2014 *Neutron spectrometry results from phase two of the Godiva-IV characterization*. AWE Report No. 880/14 AWE/NAS/RPG/ADS/CRIT/TR/004 issue 5.

Appendix A

PNNL PNAD Design Features

Figure A.1. Disassembled PNNL PNADs with components viewed from front and back sides

Figure A.2 PNNL PNAD Exploded View

Description	Detector	Composition	nominal density (g/cm ³)	diameter (cm)	length (cm)	Width (cm)	Nominal Thickness (cm) **	Nominal Mass (g)	nominal density thickness (g/cm ²)**
clear tape cover on exterior shell (3M 8412)		PF	1.34	n/a	5.51	2.54	0.015	0.286	0.020
exterior clear plastic shell		РС	1.2	n/a	7.1	3.6	0.089	5.62	0.107
orange cardstock label		paper	0.77	n/a	5.56	4.13	0.023	0.404	0.018
heat sealed bag for sulfur pellets		LDPE	0.902	n/a	3.81	2.9	0.010	n/a	0.00917
sulfur pellet (single) 0.5" dia. x 0.075" thick		S	1.8	1.27	n/a	n/a	0.191	0.435	0.343
sulfur pellet six pack (1" x 1.5" x 0.075")	А	S	1.8	n/a	3.81	2.54	0.191	2.61	0.343
black plastic PNAD frame (overall)		PET	1.15	n/a	n/a	n/a	n/a	4.86	n/a
black plastic PNAD frame (thick section)		PET	1.15	n/a	n/a	n/a	0.508	n/a	0.584
black plastic PNAD frame (thin section)		PET	1.15	n/a	n/a	n/a	0.292	n/a	0.336
lip of black plastic InLight Case		ABS	1.06	n/a	n/a	n/a	0.292	n/a	0.310
small cadmium cup		Cd	8.69	1.52	n/a	n/a	0.051	1.15	0.441
copper foil (inside Cd cups)	В	Cu	8.96	1.27	n/a	n/a	0.025	0.281	0.228
indium foil (inside Cd cups)	С	In	7.31	1.27	n/a	n/a	0.025	0.236	0.186
large cadmium cup		Cd	8.69	1.68	n/a	n/a	0.051	1.22	0.441
Indium foil (bare)	D	In	7.31	1.27	n/a	n/a	0.025	0.236	0.186
clear tape covering on foils (3M 142)		polyester	1.14	1.27	n/a	n/a	0.006	n/a	0.00723
black plastic InLight OSLN case		ABS plastic, Toyolac 10081 black, aluminum filter, copper filter,	1.06	n/a	4.91	2.30	0.554	n/a	n/a
"N" type slide		ABS plastic, black	1.06	n/a	4.70	1.18	0.191	n/a	n/a
AI2O3:C detectors on "N" type slide		Al ₂ O ₃ :C, ⁶ Li ₂ CO ₃	3.95	0.724	n/a	n/a	0.028	0.021	0.051
Heat sealed bag for InLight BA case		LDPE	1.04	n/a	5.72	2.86	0.004	n/a	0.0040

Table A.1 PNNL PNAD Component Dimensions and Composition

NOTES:

**

LDPE

ΡF

S

for clear plastic PNAD outer shell and for polyethylene heat sealed bags (sulfur pellet bag and InLight bag), the listed thickness or density thickness is for a single layer and includes the adhesive.

- low density polyethylene
- PET polyethylene terephthalate

PC polycarbonate

3M 8412 polyester film tape

sulfur pellet

- Cu copper metal
- In indium metal
- Cd cadmium metal
- air dry air at STP

Figure A.3 N-type slide for InLight[®] OSLN "BA" type case

Figure A.4 InLight[®] OSLN "BA" type case

Figure A.4 InLight[®] OSLN BA case filtration

		Density	Thicknoor	Density Thickness (mg/cm ²)				
	Material	(g/cm ³)	(mm)	Element 1 (E1)	Element 2 (E2)	Element 3 (E3)	Element 4 (E4)	
	clear polyester film tape (3M 8412)	1.34	0.152	20.4	20.4	20.4	20.4	
	clear polycarbonate Shell	1.21	0.76	-	92.2	92.2	92.2	
	orange cardstock paper label	0.77	0.23	17.6	17.6	17.6	17.6	
	polyethylene bag (wall)	0.90	0.10	9.17	9.17	9.17	9.17	
	sulfur pellet	1.8	1.91	343	343	343	343	
Ж	polyethylene bag (wall)	0.90	0.10	9.17	9.17	9.17	9.17	
TSII	BA case paper label (PNAD number)	0.77	0.10	7.82	7.8	7.8	7.8	
NON	BA filter cover label (blank) - polyester	1.01	0.09	9.09	9.09	9.09	9.09	
L É	(ABS) plastic case - E2	1.26	0.70	-	88.2	-	-	
	(ABS) plastic case - E3	1.26	1.00	-	-	126	-	
	(ABS) plastic case - E4	1.26	0.70	-	-	-	88.2	
	ABS plastic filter - E2	1.26	0.70	-	88.2	-	-	
	Cu filter - E3	8.96	0.40	-	-	358	-	
	Al filter - E4	2.7	0.70	-	-	-	189	
	total in front of OSL or OSLN detector			416	685	993	786	
OSL	Al ₂ O ₃ :C dots on "N" type slide	3.95	0.28	51.0	-	51.0	51.0	
OSLN	Al ₂ O ₃ :C - ⁶ Li ₂ CO ₃ dot on "N" type slide	3.95	0.28	-	51.0	-	-	
	Al filter - E4	2.7	0.70	-	-	-	189	
	Cu filter - E3	8.96	0.40	-	-	358	-	
щ	ABS plastic filter - E2	1.26	0.70	-	88.2	-	-	
	(ABS) plastic case - E4	1.26	0.70	-	-	-	88.2	
ACK	(ABS) plastic case - E3	1.26	1.00	-	-	126	-	
<u>n</u>	(ABS) plastic case - E2	1.26	0.70	-	88.2	-	-	
	InLight barcode label - polyester	1.01	0.09	9.09	9.09	9.09	9.09	
	clear polycarbonate shell	1.21	0.76	92.2	92.2	92.2	92.2	
	total behind OSL or OSLN detector		•	101	278	586	378	

Table A.2 PNAD Filtration in front of and behind OSL/OSLN elements

Appendix B

PNNL FNAD Design Features

Figure B.1 PNNL FNAD

Figure B.2 PNNL FNAD "Candle" Assembly with Inner and Outer Dosimetry Packages

Figure B.3 PNNL FNAD Inner Dosimetry Package (exploded view)

Figure B.4 PNNL FNAD Outer Dosimetry Package (exploded view)

Figure B.5 PNNL FNAD Cylindrical Moderator Dimensions

Drawing		Component		C	Outer Dime	nsions (nomi	nal)	Attenuation	Nominal	Nominal	Nominal density
Drawing	Component Name	Position	Composition	Length	Width	Thickness	Diameter	Thickness ¹	density	Mass	thickness
Drawing Outer Dosimetry Package				(cm)	(cm)	(cm)	(cm)	(cm)	(g/cm³)	(g)	(g/cm ²)
	sulfur pellet 7 pack	А	S	4.8	4.1	0.191	1.27	0.191	1.8	3.07	0.343
	copper foil (B1)	B1	Cu	n/a	n/a	0.025	1.27	0.025	8.96	0.281	0.228
	large cadmium cup	B1	Cd	n/a	n/a	0.051	1.68	0.051	8.69	1.22	0.441
	small cadmium cup	B1	Cd	n/a	n/a	0.051	1.52	0.051	8.69	1.15	0.441
	copper foil (B2)	B2	Cu	n/a	n/a	0.025	1.27	0.025	8.96	0.281	0.228
	large cadmium cup	B2	Cd	n/a	n/a	0.051	1.68	0.051	8.69	1.22	0.441
	small cadmium cup	B2	Cd	n/a	n/a	0.051	1.52	0.051	8.69	1.15	0.441
	indium foil (C)	С	In	n/a	n/a	0.025	1.27	0.025	7.31	0.236	0.186
	large cadmium cup	С	Cd	n/a	n/a	0.051	1.68	0.051	8.69	1.22	0.441
	small cadmium cup	С	Cd	n/a	n/a	0.051	1.52	0.051	8.69	1.15	0.441
	Indium foil (D)	D	In	n/a	n/a	0.025	1.27	0.025	7.31	0.236	0.186
Outer	O-ring spacer	D	Buna-N rubber	n/a	n/a	0.178	1.60	0.000	1.3	n/a	n/a
Dosimetry	gold foil (E)	E	Au	1	1	0.013	n/a	0.013	19.3	0.250	0.245
Package	plastic spacer	E	PET	1	1	0.140	n/a	0.140	1.15	0.161	0.161
	gold foil (F)	F	Au	1	1	0.013	n/a	0.013	19.3	0.250	0.245
	large cadmium cup	F	Cd	n/a	n/a	0.051	1.68	0.051	8.69	1.22	0.441
	small cadmium cup	F	Cd	n/a	n/a	0.051	1.52	0.051	8.69	1.15	0.441
	OSL nanoDot	dot1	$ABS + AI_2O_3:C$	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
	OSLN nanoDot	dot2	ABS + Al ₂ O ₃ :C	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
	nanoDot Cover Plate	dot1, dot2	PET	1.42	3.78	0.229	n/a	0.229	1.15	n/a	0.263
	foil coverpPlate	A, B1, B2, C, D, E, F	PET	13.13	3.78	0.254	n/a	0.254	1.15	n/a	0.292
	detector tray	A, B1, B2, C, F, dot1, dot2	PET	14.71	4.37	0.711	n/a	0.102	1.15	n/a	0.117
	detector tray	D, E	PET	14.71	4.37	0.711	n/a	0.152	1.15	n/a	0.175
	gold foil (G)	G	Au	1.00	1.00	0.013	n/a	0.013	19.3	0.250	0.245
	cardboard spacer	G	paper	1.00	1.00	0.058	n/a	0.058	0.75	0.044	0.044
	OSL nanoDot	dot3	$ABS + AI_2O_3:C$	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
	OSLN nanoDot	dot4	ABS + Al ₂ O ₃ :C	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
Inner	OSLN nanoDot	dot5	$ABS + AI_2O_3:C$	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
Dosimetry	OSLN nanoDot	dot6	$ABS + AI_2O_3:C$	0.99	1.01	0.191	n/a	0.046	n/a	n/a	n/a
Package	detector tray	dot3, dot4, dot5, dot6	PET	4.70	2.46	0.208	n/a	0.013	1.15	n/a	0.015
	detector tray	G	PET	4.70	2.46	0.208	n/a	0.076	1.15	n/a	0.088
	detector cover plate	G, dot3, dot4, dot5, dot6	PET	4.70	2.20	0.061	n/a	0.061	1.15	n/a	0.070
Cylindrical Moderator	paraffin moderator	n/a	paraffin filled aluminum can	23.0	n/a	n/a	23.0	10.2	0.93	n/a	9.51
Candle Assembly	polyethylene candlestick	n/a	polyethylene	24.1	n/a	n/a	2.54	1.27	0.94	n/a	1.19

Table B.1 PNNL FNAD Component Dimensions and Composition

Notes:

1

Attenuation thickness is the thickness of the part material that lies in the path of a normally incident beam of radiation passing through the sensitive volume of the detector. For

passing through the sensitive volume of the detector. I foils and pellets, this is the same as the foil or pellet thickness. For detector trays, this will be less than the nominal outer dimension thickness. Appendix C

Irradiation Locations in the DAF

Figure C.1 Irradiation Locations for Pulse 1

Figure C.2 Irradiation Locations for Pulse 2

Figure C.3 Irradiation Locations for Pulse 3

Pulse	Position	distance	nhantom	PN (Ini	INL PNADs Light shell)		Har (flat p	nford PNAD)s bly)	EPDs						RadWatch
#	#	(m)	type	front	back	total	5mil	10 mil	total	Thermo Mark 2.5	Mirion- MGP DMC3000	Mirion- MGP DMC2000	Miron- MGP DMC3000	Total	FNADS	Dosimeters
1	1	2	Tree A-D	PNAD1 PNAD2		2			0					0		
	2	2	Tree A-D	PNAD3, PNAD4		2	PNAD61	PNAD62	2					0		
	3	2	Tree A-D	- /		0			0					0		
	4	3	BOMAB	PNAD5	PNAD6	2			0					0		RW1, RW2
	5	3	BOMAB	PNAD7	PNAD8	2			0					0		
	6	2.5	Tree A-D	PNADs 9, 10, 11, 12		4			0					0		
	7	4	PMMA	PNAD13		1			0					0		
	8	4	Tree A-H	PNAD15, PNAD16		2			0					0		
	9	4	PMMA		PNAD 14	1			0					0		
	10	9	Tree A-H			0			0	EPD1	EPD2	EPD3	EPD4	4		
	11	4	FNAD			0			0					0	FNAD71	
	12	4	FNAD			0			0					0		
						16			2					4	1	2
2	1	2	Tree A-D			2			0	EDD5	EDDE			2		
2	2	2	Tree A-D	FINADI7, FINADIS		0	PNAD63		2	LFDJ	LFDO	FPD7		1		
	3	2	Tree A-D	ΡΝΔΟ19 ΡΝΔΟ20		2	TINADOJ	TNADO4	0					0		
	4	3	BOMAB	ΡΝΔΠ21	ΡΝΔΠ22	2			0					0		RW3 RW4
	5	3	BOMAB	PNAD23	PNAD24	2			0					0		1003,1004
	6	2.5	Tree A-D	PNAD27 PNAD28	TIVIDE	2			0					0		
	7	4	PMMA	PNAD25		1			0					0		
	8	4	Tree A-H	PNAD29.30	PNAD31. PNAD32	4			0					3		
	9	4	PMMA	- /	PNAD26	1			0					0		
	10	9	SSS-AWE			0			0					0		
	11	4	FNAD			0			0					0	FNAD72	
	12	4	FNAD			0			0					0		
						16			2					6	1	2
3	1	2	PMMA		PNAD44	1			0					0		
	2	2	Tree A-D			0	PNAD65	PNAD66	2					0		
	3	2	PMMA	PNAD45		1			0					0		
	4	3	вомав	PNAD34	PNAD35	2			0					0		
	5	3	BOMAB - LAT	PNAD36	PNAD37	2			0					0		
	6	2.5	Tree A-D	PNAD33	PNAD42	2			0					0		
	7	4	BOMAB	PNAD38	PNAD39	2			0					0		RW5, RW6
	8	4	Tree A-H			0			0	EPD8	EPD9	EPD10		3		
	9	4	Tree A-H	PNAD43	PNAD46	2			0					0		
	10	9	BOMAB	PNAD41	PNAD40	2			0					0		
	11	4	FNAD			0			0					0	FNAD73	
	12	4	FNAD			0			0					0		
						14			2					3	1	2
					Exercise Total	46	Exe	ercise Total	6			Exe	ercise Totals	13	3	6

Table C.1 Dosimeter Placement at Irradiation Locations for Pulses 1,2 and 3

Appendix D

Reference Dose Information for Godiva-IV Exercise

Table D.1.1 Pulse 1 Reference Fluence and Dose Values by Position

Pulse 1								
Burst Temperature	e(°C):	68.5						
Burst Date/Time:		5/24/2016 10:11						
			TOTAL N	EUTRON DOSE	ES			
Distance (m) Position		Total Fluence (n/cm ²)	Tiss. KERMA Dose (Gy)	ANSI 13.3 Dp(10) (Gy)	NSI 13.3 ANSI 13.3 A Dp(10) D*(10) E (Gy) (Gy)		IAEA 211 (Gy)	NCRP 38 (Gy)
2	1	1.01E+11	1.60	2.14	2.06	2.04	1.98	2.08
2	2	9.59E+10	1.53	2.05	1.98	1.96	1.89	1.99
2	3	1.01E+11	1.59	2.13	2.05	2.03	1.97	2.07
2.5	6	8.58E+10	1.17	1.59	1.53	1.53	1.47	1.56
3	4	6.55E+10	0.90	1.23	1.19	1.19	1.14	1.21
3	5	6.77E+10	0.92	1.26	1.21	1.21	1.17	1.24
4	7	5.10E+10	0.64	0.89	0.86	0.86	0.83	0.88
4	8	5.33E+10	0.66	0.92	0.88	0.89	0.86	0.91
4	9	5.46E+10	0.66	0.92	0.89	0.90	0.86	0.92
9	10	2.86E+10	0.13	0.39	0.38	0.38	0.38	0.40
4	11	5.30E+10	0.65	0.91	0.88	0.88	0.85	0.90

Position 11 fluence, tissue KERMA and dose values estimated from average of Positions 7,8 and 9.

	68.5 °C Average Fluence (1.6E-9 to 14 MeV)													
Distance (m)	Total Fluence (n/cm ²)	+/- 1s (%)	Comments											
2	9.93E+10	2.78%	@ 156 - 197 cm height to top of 30.5 cm plate(s)											
2.5	8.58E+10	NA	@ 169 - 220 cm height to top of plate(s)											
3	6.66E+10	2.40%	@ 169 - 220 cm height to top of plate(s)											
4	5.30E+10	3.49%	@ 178 - 234 cm height to top of plate(s)											
9	2.86E+10	NA	alcove											

 Table D.1.2
 Pulse 1
 Reference Fluence Values
 by Distance

TableD.1.3 Pulse 1 Reference Tissue Kerma and Gamma Dose Values by Distance

	68.5 °C Average Tissue KERMA Doses (1.6E-9 to 14 MeV)													
Distance (m)	Neutron KERMA (Gy)	+/- 1s (%)	Gamma Dose (Gy)	Total Dose (Gy)	Comments									
2	1.57	2.23%	0.22	19%	1.79	@ 156 - 197 cm height to top of 30.5 cm plate(s)								
2.5	1.17	NA	0.17	29%	1.34	@ 169 - 220 cm height to top of plate(s)								
3	0.91	1.20%	0.14	43%	1.05	@ 169 - 220 cm height to top of plate(s)								
4	0.66	1.62%	0.11	74%	0.77	@ 178 - 234 cm height to top of plate(s)								
9	0.13	NA	0.02	NA	0.15	alcove								
Gamma do	Gamma dose for 9m distance was estimated from the 4 meter dose using inverse square law.													

Table D.2.1 Pulse 2 Reference Fluence and Dose Values by Position

Pulse 2												
Burst Temperat	ure(°C):	244.8]									
Burst Date/Time	e:	5/25/2016 9:42	•									
			TOTAL	. NEUTRON DO	DSES							
Distance (m)	Position	Total Fluence (n/cm ²)	Tiss. KERMA Dose (Gy)	ANSI 13.3 Dp(10) (Gy)	ANSI 13.3 D*(10) (Gy)	Auxier et. al. Element 57 (Gy)	IAEA 211 (Gy)	NCRP 38 (Gy)				
2	1	3.60E+11	5.70	7.64	7.37	7.29	7.06	7.43				
2	2	3.43E+11	5.47	7.32	7.07	6.99	6.77	7.12				
2	3	3.60E+11	5.68	7.61	7.34	7.26	7.03	7.40				
2.5	6	3.07E+11	4.17	5.70	5.48	5.47	5.26	5.59				
3	4	2.34E+11	3.23	4.41	4.24	4.24	4.09	4.33				
3	5	2.42E+11	3.29	4.50	4.32	4.32	4.17	4.42				
4	7	1.82E+11	2.30	3.19	3.06	3.09	2.97	3.16				
4	8	1.91E+11	2.37	3.29	3.16	3.18	3.06	3.26				
4	9	1.95E+11	2.37	3.30	3.17	3.20	3.07	3.28				
9	10	1.02E+11	0.45	1.41	1.35	1.37	1.35	1.42				
4	11	1.89E+11	2.35	3.26	3.13	3.16	3.03	3.23				
Position 11 flue	Position 11 fluence, tissue KERMA and dose values estimated from average of Positions 7,8 and 9.											

64 of 102

244.8 °C Average Fluence (1.6E-9 to 14 MeV)													
Distance (m)	Total Fluence (n/cm ²)	+/- 1s (%)	Comments										
2	3.54E+11	2.78%	@ 156 - 197 cm height to top of 30.5 cm plate(s)										
2.5	3.07E+11	NA	@ 169 - 220 cm height to top of plate(s)										
3	2.38E+11	2.40%	@ 169 - 220 cm height to top of plate(s)										
4	4 1.89E+11 4.21% @ 178 - 234 cm height to top of plate(s)												
9 1.02E+11 5.50% alcove													

 Table D.2.2
 Pulse 2 Reference Fluence Values by Distance

 Table D.2.3
 Pulse 2 Reference Tissue Kerma and Gamma Dose Values by Distance

	244.8 °C Average Tissue KERMA Doses (1.6E-9 to 14 MeV)														
Distance (m)Neutron KERMA (Gy)+/- 1s (%)Gamma Dose (Gy)Total Dose (%)Comments(m)(Gy)(Gy)(Gy)(Gy)(Gy)(Gy)															
2	@ 156 - 197 cm height to top of 30.5 cm plate(s)														
2.5	4.17	NA	0.61	29%	4.78	@ 169 - 220 cm height to top of plate(s)									
3	3.26	1.20%	0.50	43%	3.76	@ 169 - 220 cm height to top of plate(s)									
4	2.35	1.62%	0.40	74%	2.75	@ 178 - 234 cm height to top of plate(s)									
9	0.45	NA	0.08	NA	0.53	alcove									
Gamma do	se for 9m di	stance was	estimated f	rom the 4 m	eter dose u	sing inverse square law.									

Table D.3.1 Pulse 3 Reference Fluence and Dose Values by Position

Pulse 3			_					
Burst Temperat	ure(°C):	147.7		_				
Burst Date/Time	9:	5/26/2016 11:35						
			TOTAL N	EUTRON DOS	ES			
Distance (m)	Position	Total Fluence (n/cm ²)	Tiss. KERMA Dose (Gy)	ANSI 13.3 Dp(10) (Gy)	ANSI 13.3 D*(10) (Gy)	Auxier et. al. Element 57 (Gy)	IAEA 211 (Gy)	NCRP 38 (Gy)
2	2 1 2.176		3.44	4.61	4.45	4.40	4.26	4.48
2	2	2.07E+11	3.30	4.42	4.27	4.22	4.08	4.30
2	3	2.17E+11	3.43	4.59	4.43	4.38	4.24	4.47
2.5	6	1.85E+11	2.52	3.44	3.30	3.30	3.18	3.37
3	4	1.41E+11	1.95	2.66	2.56	2.56	2.47	2.61
3	5	1.46E+11	1.98	2.71	2.61	2.61	2.51	2.67
4	7	1.10E+11	1.39	1.92	1.85	1.86	1.79	1.91
4	8	1.15E+11	1.43	1.99	1.90	1.92	1.84	1.97
4	9	1.18E+11	1.43	1.99	1.91	1.93	1.85	1.98
9	10	6.17E+10	0.27	0.850	0.810	0.83	0.810	0.860
4 11		1.14E+11	1.42	1.97	1.89	1.90	1.83	1.95

Position 11 fluence, tissue KERMA and dose values estimated from average of Positions 7,8 and 9.

147.7 °C Average Fluence (1.6E-9 to 14 MeV)													
Distance (m)	Total Fluence (n/cm2)	+/- 1s (%)	Comments										
2	2.14E+11	2.78%	@ 156 - 197 cm height to top of 30.5 cm plate(s)										
2.5	1.85E+11	NA	@ 169 - 220 cm height to top of plate(s)										
3	1.44E+11	2.40%	@ 169 - 220 cm height to top of plate(s)										
4	4 1.14E+11 3.49% @ 178 - 234 cm height to top of plate(s)												
9 6.17E+10 5.50% alcove													

 Table D.3.2
 Pulse 3 Reference Fluence Values by Distance

 Table D.3.3
 Pulse 3 Reference Tissue Kerma and Gamma Dose Values by Distance

	147.7 °C Average Tissue KERMA Doses (1.6E-9 to 14 MeV)														
Distance (m)	Neutron KERMA (Gy)	+/- 1s (%)	Gamma Dose (Gy)	+/- 1s (%)	Total Dose (Gy)	Comments									
2	3.39	2.23%	0.47	19%	3.86	@ 156 - 197 cm height to top of 30.5 cm plate(s)									
2.5	2.52	NA	0.37	29%	2.89	@ 169 - 220 cm height to top of plate(s)									
3	1.97	1.20%	0.30	43%	2.27	@ 169 - 220 cm height to top of plate(s)									
4	1.42	1.62%	0.24	74%	1.66	@ 178 - 234 cm height to top of plate(s)									
9	0.27	NA	0.05	NA	0.32	alcove									
Gamma dos	Gamma dose for 9m distance was estimated from the 4 meter dose using inverse square law.														

Appendix E

Godiva-IV Neutron Energy Spectra at Dosimeter Irradiation Locations

Energy bin lower bound	Energy bin		Fluence Normalized to a 70°C Pulse (n/cm ²) Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8 Position 9													
		Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9						
MeV	MeV	(2.0 m)	(2.0 m)	(2.0 m)	(3.0 m)	(3.0 m)	(2.5 m)	(4.0 m)	(4.0 m)	(4.0 m)						
1.00E-09	1.58F-09	3.13E+05	2.81E+05	2.74E+05	2.14E+05	2.27E+05	2.56E+05	1.88E+05	1.98E+05	2.06E+05						
1.58E-09	2.51E-09	2.30E+06	2.02E+06	1.88E+06	1.61E+06	1.73E+06	1.85E+06	1.42E+06	1.49E+06	1.57E+06						
2.51E-09	3.98E-09	1.64E+07	1.45E+07	1.36E+07	1.15E+07	1.24E+07	1.33E+07	1.01E+07	1.07E+07	1.12E+07						
3.98E-09	6.31E-09	8.03E+07	7.12E+07	6.77E+07	5.63E+07	6.02E+07	6.59E+07	4.94E+07	5.20E+07	5.46E+07						
6.31E-09	1.00E-08	3.05E+08	2.72E+08	2.62E+08	2.14E+08	2.28E+08	2.53E+08	1.88E+08	1.97E+08	2.07E+08						
1.00E-08	1.58E-08	6.99E+08	6.29E+08	6.12E+08	4.92E+08	5.22E+08	5.89E+08	4.31E+08	4.53E+08	4.73E+08						
1.58E-08	2.51E-08	1.33E+09	1.20E+09	1.19E+09	9.37E+08	9.92E+08	1.14E+09	8.22E+08	8.63E+08	9.00E+08						
3.985-08	3.98E-08	2.09E+09	1.74E+09	1.742+09	1.55E+09 1 50E+09	1.43E+09	1.00E+09	1.19E+09	1.25E+09	1.30E+09						
6.31E-08	1.00E-07	2.14E+09	1.98E+09	2.04E+09	1.56E+09	1.64E+09	1.98E+09	1.37E+09	1.43E+09	1.49E+09						
1.00E-07	1.58E-07	1.77E+09	1.65E+09	1.72E+09	1.31E+09	1.37E+09	1.68E+09	1.14E+09	1.20E+09	1.25E+09						
1.58E-07	2.51E-07	1.15E+09	1.08E+09	1.14E+09	8.68E+08	9.09E+08	1.13E+09	7.58E+08	7.96E+08	8.32E+08						
2.51E-07	3.98E-07	7.61E+08	7.17E+08	7.69E+08	5.88E+08	6.15E+08	7.71E+08	5.12E+08	5.39E+08	5.65E+08						
3.98E-07	6.31E-07	7.20E+08	6.80E+08	7.35E+08	5.69E+08	5.94E+08	7.52E+08	4.95E+08	5.21E+08	5.48E+08						
6.31E-07	1.00E-06	7.46E+08	7.04E+08	7.64E+08	6.01E+08	6.29E+08	7.96E+08	5.22E+08	5.51E+08	5.82E+08						
1.00E-06	1.00E-02	2.11E+10	2.01E+10	2.21E+10	1.73E+10	1.82E+10	2.34E+10	1.50E+10	1.60E+10	1.69E+10						
1.00E-02	5.04E-02	2.13E+09	4.91E+09 2.12E±08	5.33E+09	3.86E+09	4.05E+09	5.30E+09	3.40E+09	3.64E+09	3.76E+09						
5.72F-02	6.51F-02	4.54F+08	4.34F+08	4.67F+08	3.32F+08	3.50F+08	4.61F+08	2.80F+08	2.96F+08	3.08F+08						
6.51E-02	7.39E-02	4.25E+08	4.06E+08	4.37E+08	3.11E+08	3.27E+08	4.32E+08	2.62E+08	2.77E+08	2.88E+08						
7.39E-02	8.37E-02	5.08E+08	4.85E+08	5.21E+08	3.68E+08	3.88E+08	5.11E+08	2.92E+08	3.11E+08	3.21E+08						
8.37E-02	9.55E-02	4.17E+08	3.98E+08	4.27E+08	3.00E+08	3.16E+08	4.15E+08	2.19E+08	2.34E+08	2.40E+08						
9.55E-02	1.08E-01	5.56E+08	5.31E+08	5.69E+08	4.00E+08	4.21E+08	5.54E+08	2.92E+08	3.13E+08	3.21E+08						
1.08E-01	1.23E-01	5.46E+08	5.22E+08	5.59E+08	3.93E+08	4.14E+08	5.45E+08	2.87E+08	3.07E+08	3.15E+08						
1.23E-01	1.40E-01	7.03E+08	6.71E+08	7.17E+08	4.97E+08	5.25E+08	6.88E+08	3.64E+08	3.91E+08	4.00E+08						
1.40E-01	1.58E-01	6.14E+08	5.86E+08	6.25E+08	4.31E+08	4.55E+08	5.95E+08	3.16E+08	3.39E+08	3.46E+08						
1.58E-01 2.01F-01	2.01E-01 2.22E-01	7 73E+08	1.82E+09	1.72E+09	5 25F+08	5 54F+08	7.23E+08	3.87F+08	9.35E+08	9.55E+08						
2.01E-01 2.22F-01	2.22E-01 2.47F-01	1.12F+09	1.07F+09	1.13E+09	7.58F+08	7.99F+08	1.04F+09	5.59F+08	5.99F+08	6.09F+08						
2.47E-01	2.74E-01	9.50E+08	9.07E+08	9.61E+08	6.45E+08	6.81E+08	8.88E+08	4.76E+08	5.10E+08	5.18E+08						
2.74E-01	3.05E-01	1.36E+09	1.30E+09	1.38E+09	9.25E+08	9.75E+08	1.27E+09	6.82E+08	7.31E+08	7.43E+08						
3.05E-01	3.38E-01	1.23E+09	1.18E+09	1.24E+09	8.10E+08	8.51E+08	1.11E+09	5.99E+08	6.39E+08	6.47E+08						
3.38E-01	3.78E-01	1.79E+09	1.71E+09	1.80E+09	1.16E+09	1.22E+09	1.59E+09	8.58E+08	9.14E+08	9.25E+08						
3.78E-01	4.21E-01	2.00E+09	1.91E+09	2.01E+09	1.30E+09	1.36E+09	1.78E+09	9.60E+08	1.02E+09	1.04E+09						
4.21E-01	4.66E-01	1.73E+09	1.66E+09	1.74E+09	1.13E+09	1.18E+09	1.54E+09	8.32E+08	8.87E+08	8.97E+08						
4.00E-UI	5.18E-01	2.40E+09	2.30E+09	2.41E+09	1.53E+09	1.59E+09	2.08E+09	1.13E+09	1.20E+09	1.212+09						
6.01E-01	6.71E-01	2.99E+09	2.87E+09	3.00E+09	1.84E+09	1.90E+09	2.48E+09	1.35E+09	1.42E+09	1.43E+09						
6.71E-01	7.41E-01	2.66E+09	2.54E+09	2.66E+09	1.63E+09	1.69E+09	2.20E+09	1.20E+09	1.26E+09	1.27E+09						
7.41E-01	8.25E-01	3.27E+09	3.14E+09	3.28E+09	1.97E+09	2.02E+09	2.63E+09	1.44E+09	1.51E+09	1.51E+09						
8.25E-01	9.16E-01	3.02E+09	2.90E+09	3.02E+09	1.73E+09	1.77E+09	2.29E+09	1.25E+09	1.30E+09	1.30E+09						
9.16E-01	1.02E+00	2.65E+09	2.55E+09	2.65E+09	1.52E+09	1.56E+09	2.01E+09	1.10E+09	1.14E+09	1.14E+09						
1.02E+00	1.13E+00	3.65E+09	3.51E+09	3.65E+09	2.10E+09	2.14E+09	2.77E+09	1.52E+09	1.57E+09	1.57E+09						
1.13E+00	1.26E+00	3.40E+09	3.27E+09	3.40E+09	1.96E+09	1.99E+09	2.58E+09	1.41E+09	1.46E+09	1.46E+09						
1.42F+00	1.42E+UU 1.61E±00	2.77F+09	2.67F+09	2.75F+09	1.48F+09	1.49F+09	2.35E+09 1.87F+09	1.04F+09	1.06F+09	1.52E+09						
1.61E+00	1.85F+00	3.82E+09	3.67E+09	3.79E+09	2.05E+09	2.05E+09	2.58E+09	1.43E+09	1.45E+09	1.44E+09						
1.85E+00	2.09E+00	3.48E+09	3.35E+09	3.46E+09	1.85E+09	1.85E+09	2.32E+09	1.29E+09	1.30E+09	1.29E+09						
2.09E+00	2.38E+00	1.71E+09	1.65E+09	1.69E+09	8.73E+08	8.65E+08	1.06E+09	5.93E+08	5.89E+08	5.80E+08						
2.38E+00	2.69E+00	1.90E+09	1.83E+09	1.87E+09	9.66E+08	9.58E+08	1.17E+09	6.57E+08	6.52E+08	6.42E+08						
2.69E+00	3.07E+00	2.58E+09	2.48E+09	2.54E+09	1.31E+09	1.30E+09	1.59E+09	8.92E+08	8.86E+08	8.73E+08						
3.07E+00	3.48E+00	1.19E+09	1.15E+09	1.17E+09	6.03E+08	5.98E+08	7.18E+08	4.06E+08	4.02E+08	3.94E+08						
3.48E+00	3.96E+00	8.05E+08	7.74E+08	7.89E+08	4.04E+08	4.01E+08	4.76E+08	2.71E+08	2.67E+08	2.61E+08						
3.96E+00	4./3E+00	1.51E+09 5.47E±08	1.45E+09	1.48E+09	7.57E+08	7.51E+08	8.91E+08	5.07E+08	5.00E+08	4.89E+08						
5.31F+00	5.88F+00	1.86F+08	1.79F+08	1.82F+08	9.38F+07	9.36F+07	1.08F+08	6.23F+07	6.14F+07	5.98F+07						
5.88E+00	6.43E+00	2.02E+08	1.94E+08	1.97E+08	1.02E+08	1.01E+08	1.17E+08	6.75E+07	6.65E+07	6.47E+07						
6.43E+00	6.98E+00	2.25E+08	2.17E+08	2.20E+08	1.13E+08	1.13E+08	1.31E+08	7.54E+07	7.43E+07	7.23E+07						
6.98E+00	7.52E+00	1.83E+08	1.76E+08	1.79E+08	9.22E+07	9.20E+07	1.06E+08	6.12E+07	6.04E+07	5.87E+07						
7.52E+00	8.04E+00	1.26E+08	1.21E+08	1.23E+08	6.36E+07	6.35E+07	7.35E+07	4.23E+07	4.17E+07	4.06E+07						
8.04E+00	8.56E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
8.56E+00	9.07E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
9.07E+00	9.57E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
5.5/E+00	1.06E+01	0.002+00			0.00E+00	0.00E+00		0.000+00	0.00E+00	0.000+00						
1.16E+01	1.45F+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						

 Table E.1
 Neutron Energy Spectra at Dosimeter Irradiation Locations

Appendix F

Activity Measurement Results for PNAD and FNAD Components

					Mea	asured Sp A 。	ecific Act / φ _{tot} (α	tivity per cm² g ⁻¹ m	Unit Flu∉ in ⁻¹)	ence		Measur	ed Specif A 。/ C	ic Activit 9 _p (10) _n	y per Uni (cGy ⁻¹ g ⁻¹	t Absorbo min ⁻¹)	ed Dose
					Α	A B C D						A B		с		I	D
					s	Cu (Cd)	In (Cd) In			n		s	Cu (Cd)	Cu (Cd) In (Cd)		In	
distance (m)	phantom type	location on phantom	mounting on phantom	Foil Thickness (mil)	P-32	Cu-64	In-115m	In-116m	In-115m	In-116m		P-32	Cu-64	In-115m	In-116m	In-115m	In-116m
2.0	Tree A-D	air	normal	10	1.38E-08	4.70E-07	1.04E-06	3.70E-04	1.03E-06	1.04E-03		6.48E+00	2.21E+02	4.90E+02	1.74E+05	4.83E+02	4.87E+05
2.0	Tree A-D	air	normal	5	1.34E-08	5.07E-07	1.01E-06	4.79E-04	1.04E-06	1.38E-03		6.27E+00	2.37E+02	4.75E+02	2.24E+05	4.89E+02	6.48E+05
2.5	Tree A-D	air	normal	10	1.12E-08	5.61E-07	8.57E-07	4.79E-04	8.46E-07	1.33E-03		6.03E+00	3.02E+02	4.62E+02	2.58E+05	4.56E+02	7.19E+05
4.0	Tree A-H	air	normal	10	7.87E-09	6.52E-07	6.46E-07	6.00E-04	6.30E-07	1.79E-03		4.58E+00	3.79E+02	3.76E+02	3.49E+05	3.67E+02	1.04E+06
3.0	ВОМАВ	front	normal	10	9.99E-09	6.98E-07	7.33E-07	6.56E-04	7.61E-07	3.00E-03		5.33E+00	3.73E+02	3.91E+02	3.50E+05	4.06E+02	1.60E+06
4.0	BOMAB	front	normal	10	9.27E-09	7.35E-07	6.95E-07	7.46E-04	6.44E-07	3.58E-03		5.31E+00	4.21E+02	3.98E+02	4.28E+05	3.69E+02	2.05E+06
2.0	РММА	front	normal	10	1.45E-08	7.34E-07	1.10E-06	6.14E-04	1.12E-06	2.85E-03		6.88E+00	3.47E+02	5.18E+02	2.90E+05	5.29E+02	1.35E+06
4.0	РММА	front	normal	10	9.10E-09	7.65E-07	6.89E-07	7.24E-04	6.65E-07	3.11E-03		5.20E+00	4.37E+02	3.94E+02	4.14E+05	3.80E+02	1.78E+06
3.0	BOMAB - LAT	side	normal	10	5.27E-09	5.13E-07	4.26E-07	5.08E-04	4.02E-07	2.45E-03		2.84E+00	2.76E+02	2.30E+02	2.74E+05	2.17E+02	1.32E+06
3.0	BOMAB	back	normal	10	1.58E-09	3.30E-07	1.13E-07	3.53E-04	1.22E-07	1.76E-03		8.45E-01	1.76E+02	6.05E+01	1.88E+05	6.49E+01	9.37E+05
4.0	BOMAB	back	normal	10	1.52E-09	3.53E-07	1.09E-07	3.19E-04	1.08E-07	1.58E-03		8.69E-01	2.02E+02	6.25E+01	1.83E+05	6.20E+01	9.06E+05
9.0	BOMAB	back	normal	10	3.86E-10	5.23E-08	2.62E-08	5.72E-05	3.58E-08	9.85E-04		2.80E-01	3.80E+01	1.90E+01	4.15E+04	2.60E+01	7.15E+05
2.0	PMMA	back	normal	10	2.19E-09	3.35E-07	1.78E-07	3.73E-04	1.75E-07	1.71E-03		1.03E+00	1.58E+02	8.36E+01	1.76E+05	8.23E+01	8.04E+05
4.0	PMMA	back	normal	10	1.84E-09	4.61E-07	1.49E-07	5.02E-04	1.49E-07	2.45E-03		1.09E+00	2.73E+02	8.80E+01	2.97E+05	8.81E+01	1.45E+06

		Measured Specific Activity per Unit Fluence A $_{o}$ / ϕ_{tot} (cm ² g ⁻¹ min ⁻¹)														
			Outo	er Dosim	etry Pacl	kage			Inner Package							
	Α	A B C D E														
	s	Cu (Cd)	In (Cd)	In (Cd)	In	In	Au	Au (Cd)	Au							
Given Fluence (n/cm²)	P-32	Cu-64	l-115m	I-116m	I-115m	I-116m	Au-198	Au-198	Au-198							
5.30E+10	7.60E-09	7.14E-07	7.44E-07	N/A	6.07E-07	N/A	1.32E-05	4.73E-06	2.75E-05							
1.89E+11	7.84E-09	7.96E-07	6.61E-07	6.24E-04	6.87E-07	2.00E-03	1.18E-05	5.00E-06	2.83E-05							
1.14E+11	7.57E-09	7.53E-07	6.26E-07	5.69E-04	6.66E-07	2.00E-03	1.28E-05	4.95E-06	2.73E-05							

Pulse #	distance (m)	Position #
1	4.0	11
2	4.0	11
3	4.0	11

		Measured Specific Activity per Unit Ambient Absorbed Dos A _o / D*(10) _n (cGy ⁻¹ g ⁻¹ min ⁻¹)														
		Outer Dosimetry Package														
	Α															
	S	Cu (Cd)	In (Cd)	In (Cd)	In	In	Au	Au (Cd)	Au							
Given Dose, D*(10) _n (cGy)	P-32	Cu-64	I-115m	I-116m	I-115m	I-116m	Au-198	Au-198	Au-198							
88	4.59E+00 4.31E+02 4.49E+02 N/A 3.66E+02 N/A 7.96E+03 2.86E+03															
313	4.74E+00 4.82E+02 4.00E+02 3.78E+05 4.15E+02 1.21E+06 7.15E+03 3.03E+03															
189	4.59E+00 4.56E+02 3.79E+02 3.45E+05 4.04E+02 1.21E+06 7.76E+03 3.00E+03															

Pulse #	distance (m)	Position #
1	4.0	11
2	4.0	11
3	4.0	11

			Average Specific Activity Per Unit Fluence														
						A $_{\rm o}$ / Φ	v_{tot} (cm ²	$g^{-1} \min^{-1}$)									
Irradiaton Geometry	Irradiation Distance	А	В	C-115 C-116		D-115	D-116	D-116 - C-116	Е	F	E - F	G					
		S	Cu (Cd)	In (Cd)	In (Cd)	In (bare)	In (bare)	In (bare) - In (Cd)	Au (bare)	Au (Cd)	Au (bare) - Au (Cd)	Au (bot)					
		P-32	Cu-64	I-115m	I-116m	I-115m	I-116m	I-116m	Au-198	Au-198	Au-198	Au-198					
	2.0 m	1.45E-08	7.34E-07	1.10E-06	6.14E-04	1.12E-06	2.85E-03	2.24E-03									
on	2.5 m																
phantom	3.0 m	9.99E-09	6.98E-07	7.33E-07	6.56E-04	7.61E-07	3.00E-03	2.34E-03									
	4.0 m	9.18E-09	7.50E-07	6.92E-07	7.35E-04	6.54E-07	3.35E-03	2.61E-03									
	2.0 m	1.38E-08	4.70E-07	1.04E-06	3.70E-04	1.03E-06	1.04E-03	6.66E-04									
in sin	2.5 m	1.12E-08	5.61E-07	8.57E-07	4.79E-04	8.46E-07	1.33E-03	8.55E-04									
11 21	3.0 m																
	4.0 m	7.87E-09	6.52E-07	6.46E-07	6.00E-04	6.30E-07	1.79E-03	1.19E-03	1.26E-05	4.90E-06	7.71E-06	2.77E-05					

Table F.3 Specific Activity per Unit Fluence in Foils Exposed Under Normal AP Geometry

Appendix G

Averaged Neutron Energy Spectra at Each Irradiation Distance

Energy bin lower bound	Energy bin upper bound	No	ormalized Fluence (n/cm ²)							
MeV	MeV	2.0 m	2.5 m	3.0 m	4.0 m					
1.00E-09	2.15E-09	1.55E-05	1.56E-05	1.82E-05	1.68E-05					
2.15E-09	4.64E-09	3.71E-04	3.77E-04	4.35E-04	4.82E-04					
4.64E-09	1.00E-08	3.06E-03	3.12E-03	3.54E-03	3.92E-03					
1.00E-08	2.15E-08	1.37E-02	1.41E-02	1.57E-02	1.74E-02					
2.15E-08	4.64E-08	2.67E-02	2.81E-02	3.04E-02	3.37E-02					
4.64E-08	1.00E-07	3.15E-02	3.39E-02	3.59E-02	3.98E-02					
1.00E-07	2.15E-07	2.29E-02	2.55E-02	2.64E-02	2.93E-02					
2.15E-07	4.64E-07	1.27E-02	1.47E-02	1.49E-02	1.65E-02					
4.64E-07	1.00E-06	1.13E-02	1.36E-02	1.37E-02	1.52E-02					
1.00E-06	2.15E-06	1.63E-02	2.05E-02	2.01E-02	2.25E-02					
2.15E-06	4.64E-06	1.64E-02	2.06E-02	2.02E-02	2.26E-02					
4.64E-06	1.00E-05	1.64E-02	2.05E-02	2.01E-02	2.25E-02					
1.00E-05	2.15E-05	1.63E-02	2.05E-02	2.01E-02	2.25E-02					
2.15E-05	4.64E-05	1.64E-02	2.06E-02	2.02E-02	2.26E-02					
4.64E-05	1.00E-04	1.64E-02	2.05E-02	2.01E-02	2.25E-02					
1.00E-04	2.15E-04	1.63E-02	2.05E-02	2.01E-02	2.25E-02					
2.15E-04	4.64E-04	1.64E-02	2.06E-02	2.02E-02	2.26E-02					
4.64E-04	1.00E-03	1.64E-02	2.05E-02	2.01E-02	2.25E-02					
1.00E-03	2.15E-03	1.63E-02	2.05E-02	2.01E-02	2.25E-02					
2.15E-03	4.64E-03	1.64E-02	2.06E-02	2.02E-02	2.26E-02					
4.64E-03	1.00E-02	1.64E-02	2.05E-02	2.01E-02	2.25E-02					
1.00E-02	1.25E-02	6.58E-03	7.77E-03	7.44E-03	8.41E-03					
1.25E-02	1.58E-02	6.91E-03	8.16E-03	7.81E-03	8.83E-03					
1.58E-02	1.99E-02	6.80E-03	8.03E-03	7.69E-03	8.69E-03					
1.99E-02	2.51E-02	6.84E-03	8.08E-03	7.74E-03	8.75E-03					
2.51E-02	3.16E-02	6.79E-03	8.02E-03	7.67E-03	8.68E-03					
3.16E-02	3.98E-02	6.80E-03	8.03E-03	7.69E-03	8.69E-03					
3.98E-02	5.01E-02	6.79E-03	8.01E-03	7.67E-03	8.67E-03					
5.01E-02	6.30E-02	6.35E-03	7.33E-03	7.03E-03	7.54E-03					
6.30E-02	7.94E-02	7.71E-03	8.86E-03	8.50E-03	8.93E-03					
7.94E-02	1.00E-01	7.76E-03	8.82E-03	8.47E-03	8.07E-03					
1.00E-01	1.25E-01	9.07E-03	1.03E-02	9.87E-03	9.20E-03					
1.25E-01	1.58E-01	1.13E-02	1.26E-02	1.21E-02	1.13E-02					
1.58E-01	1.99E-01	1.50E-02	1.65E-02	1.60E-02	1.49E-02					
1.99E-01	2.51E-01	1.94E-02	2.07E-02	2.01E-02	1.88E-02					
2.51E-01	3.16E-01	2.38E-02	2.53E-02	2.45E-02	2.30E-02					
3.16E-01	3.98E-01	3.26E-02	3.33E-02	3.23E-02	3.03E-02					
3.98E-01	5.01E-01	4.06E-02	4.09E-02	3.97E-02	3.73E-02					
5.01E-01	6.30E-01	4.80E-02	4.58E-02	4.48E-02	4.17E-02					
6.30E-01	7.94E-01	5.95E-02	5.58E-02	5.47E-02	5.08E-02					
7.94E-01	1.00E+00	5.83E-02	5.11E-02	5.07E-02	4.63E-02					
1.00E+00	1.25E+00	6.70E-02	5.81E-02	5.77E-02	5.25E-02					
1.25E+00	1.58E+00	5.48E-02	4.34E-02	4.44E-02	3.91E-02					
1.58E+00	1.99E+00	5.79E-02	4.47E-02	4.60E-02	4.02E-02					
1.99E+00	2.51E+00	3.61E-02	2.62E-02	2.77E-02	2.35E-02					
2.51E+00	3.16E+00	3.59E-02	2.54E-02	2./1E-02	2.2/E-02					
3.16E+00	3.98E+00	1.61E-02	1.11E-02	1.21E-02	9.96E-03					
3.98E+00	5.01E+00	1.58E-02	1.08E-02	1.18E-02	9.71E-03					
5.01E+00	6.30E+00	5.62E-03	3.79E-03	4.22E-03	3.44E-03					
6.30E+00	7.94E+00	5.08E-03	3.40E-03	3.82E-03	3.10E-03					
7.94E+00	1.00E+01	2.16E-04	1.45E-04	1.62E-04	1.31E-04					
1.00E+01	1.58E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
1.58E+01	2.00E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
1 005 00	2.005.01	1.005.00	1.005.00	1.005.00	1.005.00					
T.00F-08	2.00E+01	T.00F+00	1.00E+00	T.00F+00	1.00E+00					

Table G.1 Normalized Fluence at 2.0 m, 2.5 m, 3.0 m, and 4.0 m Distances

Appendix H

Physical Data Used for Calculation of Effective Cross Sections

	Target Eler	nent	Т	arget Atom		Produ	ct Atom	n	A.N.
Element Symbol	Atomic Number, Z	Atomic Weight, A.W.	Isotope Symbol	Atom Percent Abundance ¹ , χ	Reaction	Isotope Symbol	Decay Constant, λ	Target atoms per gram of foil	Avogadro's number (atoms per mole)
		(g/mole)		(isotope atoms / element atoms)			(min ⁻¹)	(g ⁻¹)	(mole^{-1})
In	49	114.82	¹¹⁵ In	0.9571 115 In(n, γ) 116m I		^{116m} In	1.279E-02	5.0198494E+21	
In	49	114.82	¹¹⁵ In	0.9571	115 In(n,n') 115m In	^{115m} In	2.575E-03	5.0198494E+21	
Cu	29	63.546	⁶³ Cu	0.6917	63 Cu(n, γ) 64 Cu	⁶⁴ Cu	9.096E-04	6.5551173E+21	
S	16	32.066	³² S	0.9493	$^{32}S(n,p)^{32}P$	³² P	3.368E-05	1.7828287E+22	
Au	79	196.97	¹⁹⁷ Au	1.0000	197 Au(n, γ) 198 Au	¹⁹⁸ Au	1.785E-04	3.0573899E+21	
									6.0221409E+23
1. Chart of t	the Nuclides,	Knolls Atomic Pov	ver Laborato	ory, Naval Reactors, U	J.S. Department of Ene	rgy, 16th Edi	tion-Revised to	2002	

Appendix I

microStar[®] Reader Calibration Factors

	PNAD InLight														
Reader Serial Number	Reader Type	Reader Environment	Calibration ID	Calibraton Name	Dose Range	Badge Type	Calibration Date/Time	Calibration Factor (counts / unit of dose)	Dose Units						
11040683	Protection Level	PNAD LD	51	Co-60 (strong beam)	0.005 cGy - 10 cGy	InLight	1/5/2016 7:10 PM	12268	cGy						
11040683	Protection Level	PNAD LD	52	Co-60 (weak beam)	10 cGy - 1000 cGy	InLight	1/5/2016 7:54 PM	895	cGy						
14240805	Accident Level	PNAD HD	69	Co-60 (strong beam)	0.1 cGy - 75 cGy	InLight	1/4/2016 2:43 PM	639	cGy						
14240805	Accident Level	PNAD HD	71	Co-60 (weak beam)	75 cGy - 10,000 cGy	InLight	1/4/2016 5:03 PM	35	cGy						

 Table I.2
 FNAD Reader Calibration Factors (example)

	FNAD nanoDot														
Reader Serial Number	Reader Type	Reader TypeReader EnvironmentCalibration IDCalibration NameDose RangeBadge TypeCalibration Date/Time													
11040683	Protection Level	FNAD LD	68	Co-60 (strong beam)	0.005 cGy - 10 cGy	nanoDot	1/10/2016 7:14 PM	8420	cGy						
11040683	Protection Level	FNAD LD	69	Co-60 (weak beam)	10 cGy - 1000 cGy	nanoDot	1/10/2016 7:30 PM	679	cGy						
14240805	Accident Level	FNAD HD	73	Co-60 (strong beam)	0.1 cGy - 75 cGy	nanoDot	1/12/2016 1:30 PM	409	cGy						
14240805 Accident Level FNAD HD 72 Co-60 (weak beam) 75 cGy - 10,000 cGy nanoDot 1/11/2016 9:17 PM 25 cC															

Appendix J

OSL/OSLN Dose Response Linearity Corrections

InLight OSL Gamma Dose Supralinearity Correction Function

Figure J.1 OSL Gamma Dose Supralinearity Correction Function for InLight® Dosimeters

OSL nanoDot Gamma Dose Supralinearity Correction Function

Figure J.2 OSL gamma dose supralinearity correction function for nanoDot[®] dosimeters.

OSLN Neutron Dose Response Linearity

(normalized to 10 cGy response)

Figure J.3 OSLN neutron dose response in unmoderated ²⁵²Cf neutron / ⁶⁰Co gamma mixed fields

OSLN Neutron Dose Response Linearity

(normalized to 10 cGy response)

Figure J.4 OSLN neutron dose response with correction for non-linearity applied

OSL/OSLN Total Dose Response Linearity

Figure J.5 Total dose response of InLight[®] dosimeter with corrections for gamma and neutron dose non-linearity applied.

Appendix K

Accuracy of Foil Measured Fluence and Dose Within NAD Energy Regions

#		#	(u	ntation rce			-	Measure	ed Φ _{bin} /G	iven Φ _{bin}	-			Given	Given						Reported	
dosimeter	pulse #	position	listance (1	neter orie VRT sou	$\begin{array}{c} \text{Given} \\ \Phi_{\text{tot}} \\ (\text{cm}^{-2}) \end{array}$	$\Phi_{\rm th}$	Φ _{Cu}	$\Phi_{\rm a}$	Φ_{In}	$\Phi_{\rm b}$	Φs	$\Phi_{ m total}$		D_{tot} $D_p(10)_n$ (cGy)	D _{th}	D _{Cu}	Da	D _b	D _s	D _{total}	Dose, $D_p(10)_n$ (cGy)	Pi
				dosin		0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV 20 MeV	1.25 MeV 3.16 MeV	3.16 MeV 20 MeV	0.001 eV - 20 MeV		(00)	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 3.16 MeV	3.16 MeV 20 MeV	0.001 eV - 20 MeV		
1	1	1	2.0	AP	1.01E+11	0.87	0.97	0.97	0.96	0.98	0.86	0.96		214	0.84	0.93	0.92	0.94	0.83	0.91	196	-0.09
2	1	1	2.0	AP	1.01E+11	0.77	0.95	0.97	0.97	0.97	0.98	0.94		214	0.74	0.91	0.92	0.93	0.95	0.92	197	-0.08
3	1	2	2.0		9.59E+10	0.77	0.99	0.95	1.06	0.90	0.97	0.93		205	0.74	0.94	0.89	0.86	0.93	0.88	181	-0.12
4 *62	1	2	2.0		9.59E+10	0.74	0.94	1.03	1.00	1.00	0.99	0.96		205	0.71	0.69	0.97	1.03	0.94	0.96	200	-0.02
17	2	2	2.0		3.60E+11	0.85	1 11	1.00	1.10	1.13	0.90	1.01		203 764	0.79	1.06	1.00	0.98	0.92	0.98	200 752	-0.02
18	2	1	2.0	AP	3.60E+11	0.00	1.11	1.00	1.01	1.02	0.97	1.04		764	0.93	0.96	0.95	0.96	0.94	0.96	730	-0.04
19	2	3	2.0	AP	3.60E+11	0.90	1.03	1.10	1.13	1.13	1.10	1.06		761	0.87	0.98	1.04	1.09	1.06	1.06	804	0.06
20	2	3	2.0	AP	3.60E+11	0.96	0.97	1.08	1.12	1.11	1.13	1.04		761	0.93	0.93	1.02	1.07	1.09	1.04	791	0.04
*64	2	2	2.0	AP	3.43E+11	0.85	1.01	1.03	1.03	1.03	1.03	1.01		732	0.81	0.96	0.97	0.98	0.99	0.97	713	-0.03
*66	3	2	2.0	AP	2.07E+11	0.86	1.06	1.04	1.01	1.03	0.96	1.02		442	0.82	1.01	0.97	0.98	0.92	0.97	428	-0.03
					mean	0.85	1.00	1.03	1.03	1.04	1.00	1.00		mean	0.82	0.95	0.97	0.99	0.96	0.97	В	-0.03
					C.V.	0.09	0.05	0.05	0.07	0.07	0.07	0.04		C.V.	0.09	0.05	0.05	0.07	0.07	0.05	S	0.05
					n	11	11	11	11	11	11	11		n	11	11	11	11	11	11	n	11
***																						-
**61	1	2	2.0	AP	9.59E+10	0.03	1.00	1.00	1.00	0.99	1.01	0.89		205	0.03	0.95	0.94	0.94	0.96	0.93	191	-0.07
**65	2	2	2.0		3.43E+11	1.10	1.11	1.05	1.01	1.01	0.98	1.06		132	1.06	1.06	0.99	0.96	0.94	0.98	/16	-0.02
05	3	2	2.0	AF	mean	0.76	1.12	1.03	1.00	1.02	0.91	1.07	1 Г	mean	0.73	1.00	0.98	0.97	0.87	0.97	429 B	-0.03
					C V	0.83	0.06	0.02	0.01	0.01	0.05	0 10		C V	0.83	0.06	0.03	0.00	0.05	0.03	s	0.03
					n	3	3	3	3	3	3	3		n	3	3	3	3	3	3	n	3
							-	-	-	-	-	-						-	-			
9	1	6	2.5	AP	8.58E+10	0.96	0.90	0.93	1.05	1.04	1.12	0.94		159	0.90	0.85	0.89	0.98	1.06	0.93	148	-0.07
10	1	6	2.5	AP	8.58E+10	0.92	0.94	0.98	1.11	1.08	1.24	0.98		159	0.87	0.88	0.93	1.03	1.17	0.98	156	-0.02
11	1	6	2.5	AP	8.58E+10	1.10	0.94	0.93	1.01	0.99	1.12	0.97		159	1.04	0.89	0.89	0.94	1.06	0.92	147	-0.08
12	1	6	2.5	AP	8.58E+10	0.91	0.94	0.99	1.11	1.11	1.11	0.98		159	0.86	0.89	0.94	1.06	1.05	0.98	156	-0.02
27	2	6	2.5	AP	3.07E+11	0.99	1.03	1.10	1.25	1.26	1.20	1.09		570	0.93	0.98	1.04	1.19	1.13	1.09	622	0.09
28	2	6	2.5	AP	3.07E+11	1.05	1.00	1.07	1.24	1.24	1.23	1.07		570	0.99	0.94	1.02	1.17	1.16	1.07	613	0.07
33	3	6	2.5		1.85E+11	1.03	0.97	1.02	1.15	1.13	1.23	1.03		344	0.97	0.92	0.97	1.07	1.16	1.01	349	0.01
42	3	0	2.5	AP	1.00E+11	1.13	1.03	1.00	1.19	1.10	1.20	1.00	1 Г	044 mean	0.05	0.97	1.01 0.06	1.11	1.10	1.00	304 B	0.06
					C V	0.08	0.57	0.06	0.07	0.08	0.05	0.06		C V	0.05	0.01	0.06	0.08	0.05	0.06	s	0.06
					n	8	8	8	8	8	8	8		n.	8	8	8	8	8	8		8
							•	•	•	0	•	v	J L		. •	•	•		0	•	L	
15	1	8	4.0	AP	5.33E+10	1.06	1.01	1.04	1.00	1.02	0.93	1.03		92	1.00	0.95	0.99	0.96	0.87	0.96	89	-0.04
16	1	8	4.0	AP	5.33E+10	N/A	0.95	1.02	1.02	1.01	1.03	0.85		92	N/A	0.90	0.96	0.95	0.97	0.93	85	-0.07
29	2	8	4.0	AP	1.91E+11	1.09	1.10	1.06	0.95	0.95	0.98	1.06		329	1.03	1.04	1.01	0.90	0.92	0.97	319	-0.03
30	2	8	4.0	AP	1.91E+11	1.16	1.00	1.01	0.95	0.94	0.97	1.02		329	1.09	0.95	0.96	0.89	0.92	0.93	307	-0.07
31	2	8	4.0	PA	1.91E+11	1.24	1.08	1.12	1.08	1.11	0.94	1.12		329	1.17	1.02	1.06	1.04	0.88	1.04	341	0.04
32	2	8	4.0	PA	1.91E+11	1.13	1.01	1.03	0.98	0.99	0.92	1.03		329	1.06	0.95	0.98	0.94	0.87	0.95	314	-0.05
43	3	9	4.0	AP	1.15E+11	1.35	1.11	1.02	0.86	0.87	0.82	1.08		199	1.27	1.05	0.97	0.82	0.77	0.92	182	-0.08
46	3	9	4.0	AP	1.18E+11	1.30	1.03	0.95	0.80	0.80	0.82	1.01	1 5	199	1.25	1.00	0.92	0.77	0.79	0.88	175	-0.12
*	Horf	and DA	۱۸ D	ith 10 mil faile	mean	1.19	1.03	1.03	0.96	0.96	0.93	1.02		mean	1.13	0.98	0.98	0.91	0.87	0.95	В	-0.05
**	Honf			ith 5 mil foile	U.V.	0.09	0.05	0.05	0.09	0.10	0.00	0.00		C.V.	0.10	0.05	0.04	0.10	0.00	0.05		0.03
	1 Iai III	JUEN				1	0	0	0	0	0	0	ιL	п	1	0	0	0	0	0		0

Table K.1 Accuracy of PNAD Fluence and Dose Measurements in Air

#			(1	pe	ion on	itation ce				Measuro	ed Φ _{bin} /G	iven $\Phi_{ m bin}$			Civen	Reported D _{bin} / Given D _{bin}							
losimeter	pulse #	position #	istance (n	hantom ty	leter locat phantom	eter orier VRT sour	Given Φ_{tot} (cm ⁻²)	Φ_{th}	Φ _{Cu}	$\Phi_{\rm a}$	Φ_{In}	$\Phi_{\rm b}$	Φs	$\Phi_{ m total}$	D_{tot} $D_p(10)_n$	D _{th}	D _{Cu}	Da	D _b	D _S	D _{total}	$\begin{array}{c} \text{Reported} \\ \text{Dose,} \\ \text{D}_{p}(10)_{n} \\ (\text{eCv}) \end{array}$	P _i
ģ			p	Įđ	dosim	dosim V		0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV 20 MeV	1.25 MeV 3.16 MeV	3.16 MeV 20 MeV	0.001 eV - 20 MeV	(CGy)	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV 3.16 MeV	3.16 MeV 20 MeV	0.001 eV - 20 MeV	((()))	
5	1	4	3.0	BOMAB	front	AP	6.55E+10	2.55	1.19	1.04	0.93	0.94	0.89	1.26	123	2.41	1.13	0.99	0.89	0.84	0.99	121	-0.01
7 21	1	5 1	3.0	BOMAB	front		0.77E+10 2.34E+11	2.37	1.17	0.98	0.84	0.83	0.91	1.20	126	2.27	1.12	0.94	0.79	0.87	0.93	117	-0.07
23	2	5	3.0	BOMAB	front	AP	2.42E+11	2.68	1.30	1.06	0.89	0.88	0.95	1.32	450	2.56	1.24	1.02	0.84	0.91	1.00	451	0.00
34	3	4	3.0	BOMAB	front	AP	1.41E+11	2.57	1.22	1.08	0.98	0.98	1.02	1.30	266	2.42	1.15	1.02	0.92	0.96	1.02	272	0.02
							mean	2.61	1.23	1.05	0.93	0.92	0.96	1.29	mean	2.48	1.17	1.00	0.87	0.91	1.00	В	0.00
							C.V.	0.08	0.05	0.05	0.07	0.07	0.07	0.05	C.V.	0.07	0.05	0.04	0.06	0.06	0.05	S	0.05
							n	5	5	5	5	5	5	5		5	5	5	5	5	Э	n	5
38	3	7	4.0	BOMAB	front	AP	1.10E+11	2.85	1.17	1.14	1.03	1.01	1.09	1.37	192	2.65	1.09	1.06	0.94	1.01	1.07	205	0.07
45	3	3	2.0	PMMA	front	AP	2.17E+11	2.86	1.56	1.26	1.08	1.09	1.05	1.48	459	2.77	1.50	1.19	1.05	1.01	1.16	534	0.16
13	1	7	4.0	PMMA	front	AP	5.10E+10	2.26	1.13	1.12	1.02	1.02	1.03	1.27	89	2.10	1.06	1.05	0.95	0.96	1.04	93	0.04
25	2	7	4.0	PMMA	front	AP	1.82E+11	2.55	1.29	1.20	1.01	0.99	1.11	1.40	319	2.36	1.20	1.12	0.92	1.03	1.09	348	0.09
							mean CV	2.40	1.21	1.16	1.02	1.01	1.07	1.33	mean CV	2.23	1.13	1.08	0.94	0.99	1.07	В S	0.07
							n 0.1	2	2	2	2	2	2	2	n 0.v.	2	2	2	2	2	2	n	2
									_							. –	_						
36	3	5	3.0	BOMAB	side	LAT	1.46E+11	1.72	0.59	0.35	0.16	0.16	0.14	0.57	271	1.65	0.57	0.33	0.16	0.13	0.30	83	-0.70
37	3	5	3.0	BOMAB	side	LAT	1.46E+11	2.62	1.22	1.04	0.92	0.93	0.88	1.28	271	2.51	1.17	1.00	0.89	0.84	1.00	270	0.00
							mean	2.17	0.91	0.70	0.54	0.55	0.51	0.93	mean	2.08	0.87	0.67	0.52	0.49	0.65	В	-0.35
							0.v. n	0.29	0.49	2	2	0.99	1.03	0.54	n (C.V.	2	0.49	2	0.99	1.03	0.75	n	0.49
								_						_			-				_		
6	1	4	3.0	BOMAB	back	PA	6.55E+10	1.33	0.57	0.34	0.16	0.16	0.16	0.51	123	1.26	0.54	0.32	0.15	0.16	0.29	35	-0.71
8	1	5	3.0	BOMAB	back	PA	6.77E+10	1.79	0.57	0.33	0.15	0.14	0.17	0.56	126	1.71	0.54	0.32	0.14	0.16	0.29	37	-0.71
22	2	4	3.0	BOMAB	back	PA	2.34E+11	1.47	0.55	0.32	0.14	0.13	0.16	0.51	441	1.39	0.52	0.30	0.12	0.15	0.27	119	-0.73
24 35	∠ 3	5 4	3.0	BOMAB	back	PA PA	2.42E+11 1 41F+11	1.00	0.62	0.35	0.15	0.15	0.14	0.57	450 266	1.58	0.59	0.34	0.14	0.13	0.30	75	-0.70
00	Ŭ	•	0.0	Bomb	baon		mean	1.56	0.58	0.34	0.10	0.12	0.15	0.54	mean	1.49	0.55	0.32	0.12	0.14	0.20	B	-0.71
							C.V.	0.11	0.05	0.04	0.08	0.09	0.09	0.05	C.V.	0.12	0.05	0.04	0.10	0.09	0.04	s	0.02
							n	5	5	5	5	5	5	5	n	5	5	5	5	5	5	n	2
39	3	7	4.0	BOMAB	back	PA	1.10E+11	1.27	0.56	0.38	0.16	0.16	0.18	0.54	192	1.18	0.52	0.35	0.15	0.17	0.31	60	-0.69
44	3	1	2.0	PMMA	back	PA	2.17E+11	1.71	0.71	0.36	0.18	0.18	0.16	0.57	461	1.64	0.68	0.34	0.17	0.15	0.30	138	-0.70
14	1	9	4.0	PMMA	back	PA	5.46E+10	1.90	0.71	0.48	0.21	0.21	0.21	0.72	92	1.83	0.68	0.47	0.20	0.21	0.42	39	-0.58
26	2	9	4.0	PIMIMA	DACK	PA	1.95E+11	2.02	0.75	0.52	0.23	0.23	0.22	0.77	330 mean	1.94	0.73	0.50	0.22	0.21	0.45	148 B	-0.55
							C.V.	0.04	0.05	0.05	0.22	0.22	0.22	0.05	C.V.	0.04	0.04	0.05	0.21	0.02	0.05	S	0.02
							n	2	2	2	2	2	2	2	n	2	2	2	2	2	2	n	2

Table K.2 Accuracy of PNAD Fluence and Dose Measurements on Phantom

	ŧ	(U	pe				Measure	ed Φ _{bin} /G	iven Φ _{bin}		
pulse #	position #	istance (n	antom ty	Given Φ_{tot}	Φ_{th}	Ф _{Cu}	$\Phi_{\rm a}$	Φ _{In}	Φ_{b}	$\Phi_{\rm S}$	Φ_{total}
	[di	þþ	(СШ)	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV - 20 MeV	1.25 MeV - 3.16 MeV	3.16 MeV - 20 MeV	0.001 eV - 20 MeV

Table K.3 Accuracy of FNAD Fluence and Dose Measurements in Air Within NAD Energy Bins

C!		Rej	ported D _{bi}	n / Given	D _{bin}			
Given D _{tot} D*(10) _n	D _{th}	D _{Cu}	Da	D _b	Ds	D _{total}	Reported D _{tot} D*(10) _n	P
(cGy)	0.001 eV - 0.464 eV	0.464 eV - 100 keV	100 keV - 1.25 MeV	1.25 MeV 3.16 MeV	3.16 MeV 20 MeV	0.001 eV - 20 MeV	(cGy)	

Φ_{th} based on ^{116m}In Activity in Indium Foils C and D 5.30E+10 71 1 11 2.0 air 11 2.0 air 1.89E+1 73 3 11 2.0 air 1.14E+1

3

0.03

3

	± m ou	bea on	III IICUIV.	ity in mai				
0	n/a	1.13	1.16	1.10	1.14	0.89	n/a	
1	1.39	1.26	1.16	0.98	0.99	0.92	1.20	
1	1.44	1.19	1.10	0.93	0.93	0.89	1.16	
	1.41	1.20	1.14	1.00	1.02	0.90	1.18]
	0.03	0.05	0.03	0.09	0.11	0.02	0.03	

3

0.09

3

3

0.11

3

3

0.02

3

2

0.02

3

D_{th} based on $^{116m}\!In$ Activity in Indium Foils C and D

88	n/a	1.07	1.09	1.07	0.84	n/a	n/a	n/a
313	1.30	1.19	1.10	0.93	0.86	1.03	324	0.03
189	1.35	1.13	1.04	0.88	0.84	0.99	186	-0.01
mean	1.33	1.13	1.08	0.96	0.84	1.01	В	0.01
C.V.	0.03	0.06	0.03	0.11	0.02	0.03	S	0.04
n	2	3	3	3	3	2	n	2

				$\Phi_{\rm th}$	based on ¹	[%] Au Acti	vity in Go	ld Foils E	and F	
11	4.0	air	5.30E+10	1.10	1.13	1.16	1.10	1.14	0.89	1.13
11	4.0	air	1.89E+11	0.88	1.26	1.16	0.98	0.99	0.92	1.13
11	4.0	air	1.14E+11	1.02	1.19	1.10	0.93	0.93	0.89	1.10
		mean		1.00	1.20	1.14	1.00	1.02	0.90	1.12

108

3

0.05

3

D_{th} based on ¹⁹⁸Au Activity in Gold Foils E and F

88	1.03	1.07	1.09	1.07	0.84	1.06	93	0.06
313	0.83	1.19	1.10	0.93	0.86	1.02	320	0.02
189	0.96	1.13	1.04	0.88	0.84	0.97	184	-0.03
mean	0.94	1.13	1.08	0.96	0.84	1.02	В	0.02
C.V.	0.11	0.06	0.03	0.11	0.02	0.04	S	0.04
n	3	3	3	3	3	3	n	3

Given D _{tot} D*(10) _n (cGy)	D_{total} based on ¹⁹⁸ Au Activity in Gold (inner dosimetry package) $D^*(10)_n = 5.97 \ge 10^{-5} A_o$	l Foil G	Reported D _{tot} / Given D _{tot}	Reported D _{tot} D*(10) _n (cGy)	P _i
88			1.06	87	-0.01
313			1.02	320	0.02
189			0.97	186	-0.01
		mean	1.02	В	0.00
		C.V.	0.04	S	0.02
		n	3	n	3

4.0 air 71 11 11 4.0 air 72 2 73 3 11 4.0 air

dosimeter #

72 2

71 1

72 2

73 3

mean C.V.

n

C.V.

n

2

0.11

3

Appendix L

PNAD InLight[®] Readings and Calculated Doses

PNAD #	Pulse #	Distance (m)	Position #	phantom type	dosimeter location on phantom	InLight BA Case Serial Number	E1 (cGy)	E2 (cGy)	E3 (cGy)	E4 (cGy)	(E3+E4) / 2 (cGy)	Gamma calibration factor, C_{γ}	Neutron influence correction factor, R	Corrected gamma dose reading, x	E3 E4 gamma supralinearity factor, Sy ₃₄	Reported Dp(10) _Y (cGy)	Given Dp(10) _Y (rad)	R/G	E1 gamma supralinearity factor, Sγı	E2 - E1/(S _{Y1}) ^{0.8}	Neutron calibration factor, C _n	Reported Neutron Dose, Dp(10)n (cGy)	Given Dp(10)n (cGy)	R/G	Reported Total Dose Dp(10) (cGy)	Given Total Dose Dp(10) (cGy)	R/G	Pi
45	3	2	3	PMMA	front	BA00088219U	104	2412	118	116	117	1.00	0.165	56	1.01	55	47	1.17	1.02	2310	6.19	373	459	0.81	428	506	0.85	-0.15
5	1	3	4	BOMAB	front	BA00129701B	31	790	36	34	35	1.00	0.165	15	1.00	15	14	1.07	1.01	759	6.19	123	123	1.00	138	137	1.00	0.00
7	1	3	5	BOMAB	front	BA001124983	30	760	35	34	34	1.00	0.165	15	1.00	15	14	1.05	1.01	730	6.19	118	126	0.94	133	140	0.95	-0.05
21	2	3	4	BOMAB	front	BA00098475Q	122	2696	133	131	132	1.00	0.165	63	1.01	63	50	1.25	1.02	2576	6.19	416	441	0.94	479	491	0.98	-0.02
23	2	3	5	BOMAB	front	BA00111098C	121	3054	137	128	132	1.00	0.165	54	1.01	53	50	1.07	1.02	2935	6.19	474	450	1.05	527	500	1.05	0.05
34	3	3	4	BOMAB	front	BA000883712	69	1/06	82	80	81	1.00	0.165	37	1.01	37	30	1.24	1.01	1637	6.19	265	266	0.99	302	296	1.02	0.02
13	י 2	4	4		front	DA000940090	21	2212	20	24	24	1.00	0.105	20	1.00	20	40	0.59	1.00	2120	6.19	246	09 210	1.22	274	250	1.15	0.15
20	2	4	' ,	BOMAR	front	BA001136136	54	1613	00 66	00 66	66	1.00	0.105	25	1.01	29	40 24	1.02	1.01	1550	6 10	252	102	1.00	276	216	1.04	0.04
36	3	*	5	BOMAR - LAT	side	BA001113097 BA000976012	45	1013	53	50	51	1.00	0.105	23	1.00	24	24	0.80	1.01	1022	6.19	165	271	0.61	189	301	0.63	-0.37
37	3	3	5	BOMAB - LAT	side	BA00097742U	69	1655	78	74	76	1.00	0.165	34	1.00	33	30	1.12	1.01	1587	6.19	256	271	0.95	290	301	0.96	-0.04
6	1	3	4	BOMAB	back	BA00098095W	20	461	23	22	23	1.00	0.165	11	1.00	11	14	0.77	1.00	441	6.19	71	123	0.58	82	137	0.60	-0.40
8	1	3	5	BOMAB	back	BA00098462X	22	570	26	24	25	1.00	0.165	10	1.00	10	14	0.73	1.00	549	6.19	89	126	0.70	99	140	0.71	-0.29
14	1	4	9	PMMA	back	BA00093799F	16	555	20	20	20	1.00	0.165	5	1.00	5	11	0.49	1.00	539	6.19	87	92	0.95	92	103	0.90	-0.10
22	2	3	4	BOMAB	back	BA00098722V	72	1561	85	80	83	1.00	0.165	43	1.01	43	50	0.85	1.01	1490	6.19	241	441	0.55	283	491	0.58	-0.42
24	2	3	5	BOMAB	back	BA000923154	75	1711	84	83	84	1.00	0.165	40	1.01	40	50	0.79	1.01	1637	6.19	264	450	0.59	304	500	0.61	-0.39
26	2	4	9	PMMA	back	BA00098366R	54	1898	68	67	68	1.00	0.165	19	1.00	19	40	0.47	1.01	1845	6.19	298	330	0.90	317	370	0.86	-0.14
35	3	3	4	BOMAB	back	BA00098318S	44	1004	52	49	51	1.00	0.165	25	1.01	25	30	0.83	1.01	960	6.19	155	266	0.58	180	296	0.61	-0.39
39	3	4	7	BOMAB	back	BA00097925M	33	737	41	39	40	1.00	0.165	21	1.00	21	24	0.89	1.01	704	6.19	114	192	0.59	135	216	0.63	-0.37
44	3	2	1	PMMA	back	BA00114014P	63	1553	71	70	71	1.00	0.165	31	1.01	31	47	0.65	1.01	1491	6.19	241	461	0.52	271	508	0.53	-0.47
1	1	2	1	Tree A-D	aır	BA00098569H	29	414	34	33	34	1.00	0.165	23	1.00	23	22	1.06	1.01	385	6.19	62	214	0.29	86	236	0.36	-0.64
2	1	2	1	Tree A-D	air	BA00099010D	29	410 201	33	31	32	1.00	0.165	22	1.00	22	22	0.99	1.01	381	6.19	57	214	0.29	83 70	230	0.35	-0.65
3	4	2	2		air	BA00097036L	29	370	32	32	32	1.00	0.105	22	1.00	22	22	1.01	1.01	3/0	6 10	56	205	0.20	79	221	0.35	-0.05
17	2	2	1	Tree A-D	air	BA00129695W	121	1482	124	122	123	1.00	0.165	87	1.00	85	78	1.04	1.01	1363	6 19	220	764	0.20	306	842	0.35	-0.03
18	2	2	1	Tree A-D	air	BA00129074C	115	1429	125	124	124	1.00	0.165	89	1.02	88	78	1.12	1.02	1316	6.19	213	764	0.28	300	842	0.36	-0.64
19	2	2	3	Tree A-D	air	BA00098763P	114	1500	128	125	127	1.00	0.165	90	1.02	88	78	1.13	1.02	1388	6.19	224	761	0.29	312	839	0.37	-0.63
20	2	2	3	Tree A-D	air	BA00099789A	129	1575	129	127	128	1.00	0.165	90	1.02	88	78	1.13	1.03	1449	6.19	234	761	0.31	322	839	0.38	-0.62
9	1	2.5	6	Tree A-D	air	BA00097716P	25	437	29	29	29	1.00	0.165	18	1.00	18	17	1.06	1.01	411	6.19	66	159	0.42	85	176	0.48	-0.52
10	1	2.5	6	Tree A-D	air	BA00130514F	26	431	29	29	29	1.00	0.165	18	1.00	18	17	1.07	1.01	405	6.19	65	159	0.41	84	176	0.48	-0.52
11	1	2.5	6	Tree A-D	air	BA000931090	25	423	29	27	28	1.00	0.165	17	1.00	17	17	1.02	1.01	398	6.19	64	159	0.40	82	176	0.46	-0.54
12	1	2.5	6	Tree A-D	air	BA000883423	25	434	28	28	28	1.00	0.165	17	1.00	17	17	1.00	1.01	409	6.19	66	159	0.42	83	176	0.47	-0.53
27	2	2.5	6	Tree A-D	air	BA00111119G	99	1519	107	107	107	1.00	0.165	69	1.01	68	61	1.12	1.02	1421	6.19	230	570	0.40	298	631	0.47	-0.53
28	2	2.5	6	Tree A-D	air	BA00111701L	101	1544	108	108	108	1.00	0.165	69	1.01	68	61	1.12	1.02	1444	6.19	233	570	0.41	302	631	0.48	-0.52
33	3	2.5	6	Tree A-D	air	BA00098209T	62	943	68	66	67	1.00	0.165	43	1.01	43	37	1.16	1.01	882	6.19	142	344	0.41	185	381	0.49	-0.51
42	3	2.5	6	Tree A-D	air	BA000947940	58	907	66	62	64	1.00	0.165	42	1.01	41	37	1.12	1.01	849	6.19	137	344	0.40	178	381	0.47	-0.53
15	1	4	0 2		air	BA00112043Q	16	300	19	10	10	1.00	0.165	9	1.00	9	11	0.00	1.00	302	6 10	57	92	0.62	64	103	0.04	-0.30
20	2	4	8		air	BA00097672T	60	1220	67	64	66	1.00	0.165	35	1.00	35	40	0.82	1.00	1161	6 19	188	329	0.57	222	369	0.62	-0.33
30	2	4	8	Tree A-H	air	BA00097708M	61	1251	66	63	64	1.00	0.165	33	1.01	32	40	0.81	1.01	1191	6.19	192	329	0.58	225	369	0.61	-0.39
31	2	4	8	Tree A-H	air	BA00110981A	58	1226	67	65	66	1.00	0.165	35	1.01	35	40	0.86	1.01	1168	6.19	189	329	0.57	223	369	0.61	-0.39
32	2	4	8	Tree A-H	air	BA00110998V	61	1234	67	67	67	1.00	0.165	36	1.01	36	40	0.89	1.01	1173	6.19	190	329	0.58	225	369	0.61	-0.39
43	3	4	9	Tree A-H	air	BA000884132	34	816	37	38	38	1.00	0.165	17	1.00	17	24	0.69	1.01	782	6.19	126	199	0.64	143	223	0.64	-0.36
46	3	4	9	Tree A-H	air	BA00097796H	35	798	39	36	37	1.00	0.165	17	1.00	17	24	0.71	1.01	763	6.19	123	199	0.62	140	223	0.63	-0.37

Table L.1 PNAD InLight[®] Readings and Calculated Doses Using Default Gamma and Godiva Specific Neutron Calibration Factors
Appendix M

Gamma and Neutron Dose Results for FNADs

Calculated from nanoDot[®] Readings

Table M.1 Gamma Dose Results for FNADs Calculated Using default Calibration Factors

	FNAD OSL CALCULATED GAMMA DOSE (OUTER DOSIMETRY PACKAGE)													
FNAD #	Given Gamma dose Dp(10)γ (cGy)	dot1 OSL γ signal (Co-60 cGy)	dot2 OSLN γ + n signal (Co-60 cGy)	t2 LN Signal D cGy) dot2 - dot1 OSLN - OSL net neutron Signal (Co-60 cGy)		Gamma calibration factor, Cy	Neutron influence correction factor, R	Corrected gamma dose reading without supralinearity correction, X	gamma supralinearity correction factor, S _y	Reported Gamma Dose Dp(10)γ (cGy)	R/G			
71	11	14	407	393	1.00	1.00	0.0086	10.2	1.00	10.1	0.92			
72	40	55	1429	1375	1.00	1.00	0.0086	42.8	1.01	42.4	1.06			
73	24	32	940	908	1.00	1.00	0.0086	24.1	1.00	24.0	1.00			

	FNAD OSLN CALCULATED NEUTRON DOSE (INNER DOSIMETRY PACKAGE)												
FNAD #	Given Neutron dose D*(10)n (cGy)	Given Neutron dosedot3 OSL(dot4+dot5+dot6)/3 OSLND*(10)n (cGy)γ signal (Co-60 cGy)γ + n signal (Co-60 cGy)		OSLN - OSL net neutron signal (Co-60 cGy)	gamma supralinearity correction factor, S _Y	OSLN - OSL / (S _V) ^{0.8}	Neutron calibration factor, C _n	Reported Neutron Dose Dp(10)n (cGy)	R/G				
71	88	17	1193	1176	1.00	1176	12.89	91.2	1.04				
72	313	67	3896	3829	1.01	3830	12.89	297	0.95				
73	189	39	2444	2405	1.01	2406	12.89	187	0.99				

Appendix N

PNAD Performance

	Irra	idiation Data	ANSI/H Refe	PS N13.3 erence De	3 D _p (10) oses	PNAD Performance with foil calculated neutron dose								
PNAD No.	Distance (m)	phantom type	dosimeter location on phantom	Given Gamma dose D _p (10) _γ (cGy)	Given Neutron dose D _p (10) _n (cGy)	Given Total dose D _p (10) (cGy)	OSL Gamma Dose (cGy)	OSL Gamma R/G	Foil Neutron Dose (cGy)	Foil Neutron R/G	PNAD γ + n Dose (cGy)	PNAD γ + n R/G	Pi	Pass or Fail
45	2	PMMA	front	47	459	506	55	1.17	534	1.16	589	1.16	0.16	Pass
5	3	BOMAB	front	14	123	137	15	1.07	121	0.99	136	0.99	-0.01	Pass
7	3	BOMAB	front	14	126	140	15	1.05	117	0.93	132	0.94	-0.06	Pass
21	3	BOMAB	front	50	441	491	63	1.25	463	1.05	526	1.07	0.07	Pass
23	3	BOMAB	front	50	450	500	53	1.07	451	1.00	504	1.01	0.01	Pass
34	3	BOMAB	front	30	266	296	37	1.24	272	1.02	309	1.05	0.05	Pass
13	4	PMMA	front	11	89	100	7	0.59	93	1.04	99	0.99	-0.01	Pass
25	4	PMMA	front	40	319	359	29	0.72	348	1.09	377	1.05	0.05	Pass
38	4	BOMAB	front	24	192	216	24	1.02	205	1.07	230	1.06	0.06	Pass
36	3	BOMAB - LAT	side	30	271	301	24	0.80	83	0.30	107	0.35	-0.65	Fail
37	3	BOMAB - LAT	side	30	271	301	33	1.12	270	1.00	304	1.01	0.01	Pass
6	3	BOMAB	back	14	123	137	11	0.77	35	0.29	46	0.34	-0.66	Fail
8	3	BOMAB	back	14	126	140	10	0.73	37	0.29	47	0.34	-0.66	Fail
14	4	PMMA	back	11	92	103	5	0.49	39	0.42	44	0.43	-0.57	Fail
22	3	BOMAB	back	50	441	491	43	0.85	119	0.27	162	0.33	-0.67	Fail
24	3	BOMAB	back	50	450	500	40	0.79	136	0.30	176	0.35	-0.65	Fail
26	4	PMMA	back	40	330	370	19	0.47	148	0.45	167	0.45	-0.55	Fail
35	3	BOMAB	back	30	266	296	25	0.83	75	0.28	99	0.34	-0.66	Fail
39	4	BOMAB	back	24	192	216	21	0.89	60	0.31	81	0.38	-0.62	Fail
44	2	PMMA	back	47	461	508	31	0.65	138	0.30	169	0.33	-0.67	Fail
1	2	Tree A-D	air	22	214	236	23	1.06	196	0.91	219	0.93	-0.07	Pass
2	2	Tree A-D	air	22	214	236	22	0.99	197	0.92	219	0.93	-0.07	Pass
3	2	Tree A-D	air	22	205	227	22	1.01	181	0.88	204	0.90	-0.10	Pass
4	2	Tree A-D	air	22	205	227	23	1.04	200	0.98	223	0.98	-0.02	Pass
17	2	Tree A-D	air	78	764	842	85	1.09	752	0.98	838	1.00	0.00	Pass
18	2	Tree A-D	air	78	764	842	88	1.12	730	0.96	818	0.97	-0.03	Pass
19	2	Tree A-D	air	78	761	839	88	1.13	804	1.06	892	1.06	0.06	Pass
20	2	Tree A-D	air	78	761	839	88	1.13	791	1.04	880	1.05	0.05	Pass
9	2.5	Tree A-D	air	17	159	176	18	1.06	148	0.93	166	0.95	-0.05	Pass
10	2.5	Tree A-D	air	17	159	176	18	1.07	156	0.98	174	0.99	-0.01	Pass
11	2.5	Tree A-D	air	17	159	176	17	1.02	147	0.92	164	0.93	-0.07	Pass
12	2.5	Tree A-D	air	17	159	176	17	1.00	156	0.98	173	0.98	-0.02	Pass
27	2.5	Iree A-D	air	61	570	631	68	1.12	622	1.09	691	1.09	0.09	Pass
28	2.5	Iree A-D	air	61	570	631	68	1.12	613	1.07	681	1.08	0.08	Pass
33	2.5	Iree A-D	air	37	344	381	43	1.16	349	1.01	392	1.03	0.03	Pass
42	2.5	Tree A-D	air	3/	344	381	41	1.12	364	1.06	405	1.06	0.06	Pass
15	4	Tree A-H	air	11	92	103	9	0.80	89	0.96	98	0.95	-0.05	Pass
16	4	Tree A-H	air	11	92	103	9	0.82	85	0.93	94	0.92	-0.08	Pass
29	4	Tree A-H	air	40	329	369	35	0.86	319	0.97	353	0.96	-0.04	Pass
30	4	Tree A-H	air	40	329	369	32	0.81	307	0.93	340	0.92	-0.08	Pass
31	4	Tree A-H	air	40	329	369	35	0.86	341	1.04	3/6	1.02	0.02	Pass
32	4		air	40	329	309	30	0.89	192	0.95	349	0.95	-0.05	Pass
43	4		dii	24	199	223	17	0.09	175	0.92	199	0.89	-0.11	Pass
40	4	IIEE A-H	dli	24	199	223	17	0.71	1/5	0.00	192	0.00	-0.14	FdSS

Table N.1 PNAD Performance with Foil Calculated Neutron Dose

	Irra	idiation Data		ANSI/H Refe	PS N13.3 erence De	3 D _p (10) oses	PNAD Performance with InLight calculated neutron dose $(C_n = 6.19)$							
PNAD No.	Distance (m)	phantom type	dosimeter location on phantom	Given Gamma dose D _p (10) _y (cGy)	Given Neutron dose D _p (10) _n (cGy)	Given Total dose D _p (10) (cGy)	OSL Gamma Dose (cGy)	OSL Gamma R/G	OSLN Neutron Dose (cGy)	OSLN Neutron R/G	PNAD γ + n Dose (cGy)	PNAD γ + n R/G	Pi	Pass or Fail
45	2	PMMA	front	47	459	506	55	1.17	373	0.81	428	0.85	-0.15	Pass
5	3	BOMAB	front	14	123	137	15	1.07	123	1.00	138	1.00	0.00	Pass
7	3	BOMAB	front	14	126	140	15	1.05	118	0.94	133	0.95	-0.05	Pass
21	3	BOMAB	front	50	441	491	63	1.25	416	0.94	479	0.98	-0.02	Pass
23	3	BOMAB	front	50	450	500	53	1.07	474	1.05	527	1.05	0.05	Pass
34	3	BOMAB	front	30	266	296	37	1.24	265	0.99	302	1.02	0.02	Pass
13	4	PMMA	front	11	89	100	7	0.59	109	1.22	115	1.15	0.15	Pass
25	4	PMMA	front	40	319	359	29	0.72	346	1.08	374	1.04	0.04	Pass
38	4	BOMAB	front	24	192	216	24	1.02	252	1.31	276	1.28	0.28	Fail
36	3	BOMAB - LAT	side	30	271	301	24	0.80	165	0.61	189	0.63	-0.37	Fail
37	3	BOMAB - LAT	side	30	271	301	33	1.12	256	0.95	290	0.96	-0.04	Pass
6	3	BOMAB	back	14	123	137	11	0.77	71	0.58	82	0.60	-0.40	Fail
8	3	BOMAB	back	14	126	140	10	0.73	89	0.70	99	0.71	-0.29	Fail
14	4	PMMA	back	11	92	103	5	0.49	87	0.95	92	0.90	-0.10	Pass
22	3	BOMAB	back	50	441	491	43	0.85	241	0.55	283	0.58	-0.42	Fail
24	3	BOMAB	back	50	450	500	40	0.79	264	0.59	304	0.61	-0.39	Fail
26	4	PMMA	back	40	330	370	19	0.47	298	0.90	317	0.86	-0.14	Pass
35	3	BOMAB	back	30	266	296	25	0.83	155	0.58	180	0.61	-0.39	Fail
39	4	BOMAB	back	24	192	216	21	0.89	114	0.59	135	0.63	-0.37	Fail
44	2	PMMA	back	47	461	508	31	0.65	241	0.52	271	0.53	-0.47	Fail
1	2	Tree A-D	air	22	214	236	23	1.06	62	0.29	86	0.36	-0.64	Fail
2	2	Tree A-D	air	22	214	236	22	0.99	61	0.29	83	0.35	-0.65	Fail
3	2	Iree A-D	air	22	205	227	22	1.01	57	0.28	79	0.35	-0.65	Fail
4	2	Iree A-D	air	22	205	227	23	1.04	56	0.28	79	0.35	-0.65	Fail
17	2	Tree A-D	air	78	764	842	85	1.09	220	0.29	306	0.36	-0.64	Fail
18	2	Iree A-D	air	78	764	842	88	1.12	213	0.28	300	0.36	-0.64	Fail
19	2	Tree A-D	air	78	761	839	88	1.13	224	0.29	312	0.37	-0.63	Fail
20	2	Tree A-D	air	18	761	839	88	1.13	234	0.31	322	0.38	-0.62	Fall
9	2.5	Tree A-D	air	17	159	176	18	1.00	00	0.42	00	0.48	-0.52	Fall
10	2.5		dii	17	159	176	10	1.07	64	0.41	04 82	0.46	-0.52	Fall
12	2.5		dii	17	159	176	17	1.02	66	0.40	82	0.40	-0.54	Fail
27	2.5		all	61	570	631	68	1.00	230	0.42	208	0.47	-0.53	Fail
28	2.5	Tree A-D	air	61	570	631	68	1.12	230	0.40	302	0.47	-0.53	Fail
33	2.5		air	37	344	381	43	1.12	142	0.41	185	0.40	-0.51	Fail
42	2.5	Tree A-D	air	37	344	381	40	1.10	137	0.40	178	0.43	-0.53	Fail
15	4	Tree A-H	air	11	92	103	9	0.80	57	0.62	66	0.64	-0.36	Fail
16	4	Tree A-H	air	11	92	103	9	0.82	55	0.60	64	0.62	-0,38	Fail
29	4	Tree A-H	air	40	329	369	35	0.86	188	0.57	222	0,60	-0,40	Fail
30	4	Tree A-H	air	40	329	369	32	0.81	192	0.58	225	0.61	-0,39	Fail
31	4	Tree A-H	air	40	329	369	35	0.86	189	0.57	223	0.61	-0,39	Fail
32	4	Tree A-H	air	40	329	369	36	0.89	190	0.58	225	0.61	-0.39	Fail
43	4	Tree A-H	air	24	199	223	17	0.69	126	0.64	143	0.64	-0.36	Fail
46	4	Tree A-H	air	24	199	223	17	0.71	123	0.62	140	0.63	-0.37	Fail

Table N.2 PNAD Performance with InLight[®] Calculated Neutron Dose

Appendix O

FNAD Performance

Irradiation Data					ANSI/HPS N13.3 D*(10) Reference Doses			FNAD Performance with foil calculated neutron dose ($C_{\gamma} = 1.00$)							
FNAD No.	Pulse No.	Distance (m)	Location No.	Given Neutron Fluence (n/cm ²)	Given Gamma dose D*(10) _γ (cGy)	Given Neutron dose D*(10) _n (cGy)	Given Total dose D*(10) (cGy)	OSL Gamma Dose (cGy)	OSL Gamma R/G	Foil Neutron Dose (cGy)	Foil Neutron R/G	FNAD γ + n Dose (cGy)	FNAD γ + n R/G	Pi	Pass or Fail
71	1	4	11	5.30E+10	11	88	99	10	0.92	87	0.99	97	0.98	-0.02	Pass
72	2	4	11	1.89E+11	40	313	353	42	1.06	320	1.02	362	1.03	0.03	Pass
73	3	4	11	1.14E+11	24	189	213	24	1.00	186	0.99	210	0.99	-0.01	Pass

Table O.1 FNAD Performance with Foil Calculated Neutron Dose

Table O.2 FNAD Performance with OSLN Calculated Neutron Dose Using Default Calibration Factors

Irradiation Data					ANSI/HPS N13.3 D*(10) Reference Doses			FNAD Performance with OSLN calculated neutron dose $(C_{\gamma} = 1.00, C_n = 12.89)$							
FNAD No.	Pulse No.	Distance (m)	Location No.	Given Neutron Fluence (n/cm ²)	Given Gamma dose D*(10) _γ (cGy)	Given Neutron dose D*(10) _n (cGy)	Given Total dose D*(10) (cGy)	OSL Gamma Dose (cGy)	OSL Gamma R/G	OSLN Neutron Dose (cGy)	OSLN Neutron R/G	PNAD γ + n Dose (cGy)	PNAD γ + n R/G	Pi	Pass or Fail
71	1	4	11	5.30E+10	11	88	99	10	0.92	91.2	1.04	101	1.03	0.03	Pass
72	2	4	11	1.89E+11	40	313	353	42	1.06	297	0.95	340	0.96	-0.04	Pass
73	3	4	11	1.14E+11	24	189	213	24	1.00	187	0.99	211	0.99	-0.01	Pass

This page intentionally left blank

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665)

www.pnnl.gov