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Summary 

Uranium alloyed with 10 weight percent (wt%) Molybdenum (U10Mo) is under development as a 
metallic nuclear fuel system in order to address the U.S. Department of Energy National Nuclear Security 
Administration’s objective of converting all research reactors and radioisotope production facilities in the 
U.S. from using highly enriched uranium (HEU) fuels to low-enriched uranium (LEU).  Replacement of 
HEU fuels is required in order to minimize risk of nuclear proliferation. During fuel fabrication, U10Mo 
is subjected to different time-temperature histories and mechanical deformation, and consequently the 
microstructure evolves from the as-cast condition to the final fuel foil.   
 
Fuel microstructure has a direct influence on irradiation response in-pile.  Quantitative description of 
U10Mo microstructures is therefore needed in order to relate microstructure to processing parameters, and 
ultimately material performance.  A major goal in performing U10Mo microstructure characterization 
studies is to be able to consistently and accurately predict microstructure from processing parameters.  
Improved predictive capabilities is needed for selection of appropriate processing parameters that yield 
desired microstructure and thus material properties and performance.  
 
This report presents an automated image processing approach to quantifying microstructure image data, 
specifically the extent of eutectoid (cellular) decomposition in rolled U-10Mo foils.  An image processing 
approach is used here to be able to quantitatively describe microstructure image data in order to relate 
microstructure to processing parameters (time, temperature, deformation).  

The goal of developing a more automated approach is to minimize bias introduced via the requirement for 
an expert to manually threshold image data, and more efficiently analyze a large amount of image data 
(i.e. hundreds of micrographs), thereby analyzing a larger sample area which would have been 
prohibitively time consuming if analyzed with manual methods alone.   
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1.0 Introduction 

1.1 Overview 

Uranium alloyed with 10 wt% molybdenum (U10Mo) is a promising metallic nuclear fuel candidate that 
uses low-enriched uranium (LEU) for replacement of highly enriched uranium (HEU) fuels currently used 
in U.S. research reactors and radioisotope production facilities.  

U10Mo experiences a eutectoid reaction at approximately 565°C, where the γ-U matrix phase forms α-U 
and U2Mo (γ′) as decomposition products, as follows:  

 γ-U → α-U + U2Mo (γ′)  

Here, this reaction is referred to as a eutectoid or cellular decomposition. The corresponding U-Mo phase 
diagram is provided below, for reference:  

 

 
Figure 1. UMo equilibrium phase diagram reproduced from Okamoto (2012). 
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The γ-U matrix phase is the stable allotrope of U with body-centered cubic (BCC) structure at elevated 
temperature (above 565°C). It is possible to stabilize the high temperature BCC γ-U phase at room 
temperature as a metastable single phase by alloying with Mo. A minimum of 6–7 wt% Mo combined 
with slow furnace cooling (approximate cooling rate of 2°C/minute) is required for γ-U stabilization.  

This slow cooling rate is needed to allow the eutectoid reaction (decomposition) to proceed. The reaction 
kinetics of this eutectoid decomposition slow further with increasing Mo content above 6–7 wt%. γ-U, or 
γ-UMo (when U is alloyed with Mo), is the desirable matrix phase for nuclear fuels due to its processing 
characteristics and irradiation behavior, whereas the α-U phase is undesirable because it shows 
anisotropic swelling during irradiation (ASM 1965, Sinha 2010, Hofman 1994).  The γ-UMo phase is also 
more desirable than α-U due to its favorable processing characteristics, and corrosion resistance in water, 
and water and steam environments (IAEA 2003).   

In order to determine appropriate processing parameters for development of a desirable microstructure 
that yields acceptable properties for a LEU metallic fuel, a reliable characterization of processed U10Mo 
microstructures is needed. This report presents work on characterizing U10Mo microstructures in order to 
quantify the extent of eutectoid decomposition so that phase transformation kinetics can be related to 
processing parameters.  

This report is organized as follows:  

Background information related to phase transformations in U10Mo is presented, followed by a 
discussion of previous characterization work done using image analysis and x-ray diffraction (XRD). 
Next, an image analysis approach (for characterization of image data obtained using scanning electron 
microscopy [SEM] image data) using the Python programming language is presented, including an 
overview of methods used, and hardware and software specifications.  

In the Methods section of this report, each method used in image processing is described, and any key 
equations and descriptive schematics are presented in order to clearly convey what exactly is being done 
to process each image. Results of image processing (output images and area fraction calculated) are 
presented, followed by limitations of the existing method using Python. The report ends with a conclusion 
section, and recommendations for future work. 

1.2 Background  

During fabrication of uranium-molybdenum (UMo) fuel foils, the UMo alloy is frequently subjected to 
various processing steps (including hot rolling and hot isostatic pressing) that take place within the 
temperature range of 400–600°C for various times. Thus, there is always a possibility that the metastable 
γ-UMo phase will decompose and form the undesirable α-U phase during exposure to elevated 
temperatures.  

Time-temperature-transformation (TTT) diagrams developed for UMo alloys with varying Mo content 
can provide a general guideline about what temperature and time combinations should be used during fuel 
fabrication in order to avoid α-U formation. However, our recent work published in Jana (2017) on phase 
transformation behavior in a cast and homogenized U10Mo alloy has shown that the available literature 
varies widely based on source. 

The eutectoid transformation can initiate within one hour of heating U10Mo at 500°C and the major mode 
of transformation can change (e.g., discontinuous or cellular reaction vs. continuous precipitation) 
depending on the processing temperature (Jana, 2017). In addition, Mo homogeneity and the presence of 
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impurity elements can play a major role in determining phase transformation behavior. Thus, a 
recommended best practice is to identify transformation products from a fabricated UMo foil, rather than 
relying solely on earlier TTT data to determine what phases exist in the alloy (Jana, 2017). 

Various characterization techniques can be employed to detect phase transformation in U10Mo alloys, 
including optical and scanning electron microscopy, XRD, dilatometry, resistivity measurement, and 
hardness testing. Our recent work published in Jana (2017) has shown that microscopy of samples 
prepared using traditional metallographic processes is the most sensitive technique that can help in 
detecting the extent of eutectoid decomposition in U10Mo, particularly during early stages when the 
estimated volume fraction of the transformation (based on area fraction) is less than 10%. Furthermore, 
metallography methods and imaging of prepared samples are well established techniques and 
reproducible results can be obtained fairly quickly, which is highly desirable for analysis of 
microstructures in an industrial/manufacturing environment.  

For analysis of transformation products via microscopy, optical or SEM images need to be obtained at a 
magnification of 500-1000x from different regions of the sample to use the image processing approach 
described here. If a sample has undergone the eutectoid transformation, there is a distinct difference in 
grayscale intensity between the parent γ-UMo phase and transformation products, which appear as α and 
γ lamellae. By using this recommended magnification range (500-1000x), and by imaging various regions 
of the sample, the collected data can be assumed to accurately represent the entire volume of material 
from which the metallographic sample was sectioned.  

The extent of phase transformation can be quantified from image data by computing the area fraction 
based on this observed grayscale difference between phases, where area fraction serves as a proxy for 
volume fraction. Per the fuel specification, the process shall yield U Mo alloy with at least 90 wt% 
gamma phase (i.e., having the body centered cubic crystal structure). 

Previous work on determining area fraction from micrographs has been performed manually using ImageJ 
to threshold input images. This manual method using ImageJ has the following key disadvantages:  

1. Operator bias is introduced into the thresholding process, since each image is thresholded separately. 

2. Manual thresholding is a time-consuming process for multiple images. 

In order to automate image processing and calculating area fraction, the OpenCV and scikit-image open-
sources libraries were used with Python (version 2.7.13).  

The goal of automating this process is to ultimately deliver a tool for engineers on a manufacturing floor 
to be able to quickly and reliably determine whether the microstructure of U10Mo is acceptable. Here, an 
“acceptable” microstructure is defined as having an area fraction of eutectoid decomposition less than 
0.10 (10%). 

1.3 Prior Work on Characterization of UMo Microstructures via Image 
Analysis and X-Ray Diffraction 

As an example, a set of backscattered electron (BSE)-SEM images at a magnification of 250× is shown in 
Figure 1. The images were obtained from rolled/annealed U10Mo foils that were subjected to 
subeutectoid heat treatments for different durations. In Figure 1, darker regions represent transformation 
products (regions of α and γ lamellae). Area fraction of transformed regions was measured manually in 
ImageJ, and is indicated below each individual image. Change in the distribution of the darker phase is 
apparent in Figure 1, as total transformation area changes from 6 to 26%. 
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Figure 1. A set of BSE-SEM Images at a Magnification of 250× from rolled and annealed U-10Mo Foils 

after Sub-eutectoid heat treatment for different durations ¶. Percentages under each image 
indicate the percentage of area transformed, which was measured by manually thresholding 
images using ImageJ software. Darker regions represent the transformed region.  

A comparison was made to evaluate the effectiveness of metallography vs. XRD techniques in 
determining the extent of phase transformation in U10Mo alloy. Figure 2 shows an image of a heat treated 
U10Mo sample at a magnification of 250×, where the degree of transformation was found via image 
analysis to be ~7%. An XRD profile from the same sample is shown in Figure 3. Rietveld refinement of 
the XRD profile indicates presence of γ-UMo phase and a small fraction of UC phase. Presence of phase 
transformation products in heat treated U10Mo alloy, therefore, remains undetected with the XRD 
method until the area fraction reaches a critical value. The rationale for this is subsequently discussed. 

As has been mentioned earlier, cellular decomposition is the major mode of transformation in U10Mo 
alloy, especially at 500°C or higher. Cellular reaction results in formation of a lamellar microstructure 
that primarily nucleates along the prior γ-UMo grain boundaries and grows inward into the γ-UMo grain 
interior with time. The lamellar microstructure is made of thin lamellae of α-U, and the interlamellar 
region is γ-UMo phase but with a higher Mo content than the parent γ-U10Mo alloy. At 250× 
magnification, the lamellar nature of the transformed regions is not discernable, and they appear as a 
darker contrast phase. Such contrast difference helps distinguish the transformed regions through image 
analysis techniques. On the other hand, the volume fraction of α-U present within the lamellar 
microstructure is very low. Use of the lever rule can help in finding the volume fraction of α-U within the 
lamellar microstructure in a conservative manner. However, the actual volume fraction of α-U is less than 
that predicted by the lever rule because of cellular decomposition. Therefore, XRD is unable to detect 
such a small volume fraction of α-U, especially at the early stage of transformation. Detecting the extent 
of phase transformation products at an early stage is of paramount importance during UMo fuel 
fabrication. 
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Figure 2. SEM-BSE Image at 250× of a heat treated U10Mo sample¶. The percentage of transformed 

area was calculated to be ~7% using ImageJ software. 

 
Figure 3. XRD profile of the heat treated U10Mo sample shown in Figure 2¶. Rietveld refinement 

indicates presence of γ-UMo phase and a small fraction of UC. Phase transformation through 
cellular reaction remains undetected through XRD. 

In the above example, the image analysis approach was able to determine the phase transformation where 
there was little phase transformation. However, it is to be noted that conventional metallography methods 
will not be able to determine phase transformation in U10Mo alloy when continuous precipitation is the 
major mode of transformation, which is the case at 400°C or lower. We have found that hardness 
measurement of the γ-UMo grain interior can help in determining the onset of continuous precipitation in 
these cases. One such example is shown in Figure 4. The hardness of the γ-UMo matrix increases more 
rapidly at 400°C than at 500°C; this is because continuous precipitation dominates at 400°C and results in 
nanoscale precipitates within the γ-UMo grain interior, which cause the rapid hardness increase. 
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Figure 4.  Hardness of a Heat Treated U10Mo Alloy Sample 

In summary, previous work indicates that metallography and microscopy combined with hardness 
measurements are time efficient and effective methods for determining the extent of cellular 
decomposition in U10Mo. 

2.0 Methods 

The input requirements for images to be processed using the image analysis Python script discussed here 
(and provided in the appendix) include the following:  

1. Image type: grayscale (1 color channel)  

2. Image acquired using SEM  

3. Magnifications: 500–1000× 

4. Orientation: planar or longitudinal cross-sectional view 

5. File Type: .tif 

6. Image size: 1024 pixels (height) × 1280 pixels (width)  

The output of the script is two values of area fraction, saved in a comma-separated values (.csv) file. 

The general approach applied to image processing was first to crop all BSE images to remove the scale 
bar, then improve image contrast, perform thresholding, and fill in regions of the image that corresponded 
to the cellular precipitation/decomposition transformation. In this work, carbides were also included in the 
final calculated percent transformed in order to provide a conservative estimate. The methods used in this 
approach (shown schematically in Figure 5) are described in more detail in this section.  
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Figure 5. Flow Chart that summarizes the image processing script written in Python¶. Here, CLAHE 

refers to contrast-limited adaptive histogram equalization. Routines A and B are labeled in the 
flowchart above as ‘A’ and ‘B’, respectively. 
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2.1 Contrast-Limited Adaptive Histogram Equalization  

Contrast-limited adaptive histogram equalization (CLAHE) is a specific type of histogram equalization, 
which is a method that improves image contrast by stretching the intensity range of grayscale values in an 
image.  

Histogram equalization requires mapping the starting image histogram (count versus grayscale intensity 
value) to another distribution that is wider and more uniform across the grayscale range of 0–255, hence 
the term “equalization.” This concept of stretching an image histogram is shown schematically in 
Figure 6.  

 
Figure 6.  Schematic of Histogram Equalization¶, from OpenCV documentation (OpenCV 2015). Here, 

“T” in the above schematic represents the function required for stretching the original image 
histogram to perform histogram equalization 

Given an input image, {x}, with 𝑛𝑛𝑖𝑖 as the number of occurrences of grayscale intensity value, 𝑖𝑖, the 
probability of a pixel having intensity 𝑥𝑥 = 𝑖𝑖 is as follows:  

 𝑝𝑝𝑥𝑥(𝑖𝑖) = 𝑝𝑝(𝑥𝑥 = 𝑖𝑖) = 𝑛𝑛𝑖𝑖
𝑛𝑛

 , 0 ≤ 𝑖𝑖 > 𝐿𝐿 (1) 

where 𝐿𝐿 is the total number of grayscale intensity values in an image (256 if all values 0 to 255 are 
represented), 𝑛𝑛 is the total number of pixels in an image, 𝑛𝑛𝑖𝑖 is the total number of pixels with intensity 𝑖𝑖, 
and 𝑝𝑝𝑥𝑥(𝑖𝑖) is the image histogram normalized to [0 1].  

The cumulative distribution function (CDF) of the image can be expressed as  

 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥(𝑖𝑖) = ∑ 𝑝𝑝𝑥𝑥(𝑗𝑗)𝑖𝑖
𝑗𝑗=0  (2) 

In histogram equalization, a transformation function must be determined in order to produce a new image 
that has a flat histogram. This concept can be mathematically expressed as below, where 𝑦𝑦 is the new 
image, 𝑥𝑥 is the original image, and 𝑇𝑇 is the transformation function: 

 𝑦𝑦 = 𝑇𝑇(𝑥𝑥) (3) 
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In order to flatten the image histogram, the new image must have a flattened CDF across the range of 
grayscale intensity values (0–255):  

 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥(𝑖𝑖) = 𝑖𝑖𝑖𝑖 (4) 

where 𝑖𝑖 is a constant.  

The transformation that needs to be performed is as follows, where 𝑘𝑘 is in the range of [0 L]: 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦(𝑦𝑦′) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦(𝑇𝑇(𝑘𝑘)) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥(𝑘𝑘) (5) 

To map grayscale intensity values back to the original range, the following transformation is applied:  

 𝑦𝑦′ = 𝑦𝑦(max{𝑥𝑥} − min{𝑥𝑥}) + min {𝑥𝑥} (6) 

where 𝑦𝑦′ is the new image and 𝑦𝑦 is the original image.  

The result is that the number of pixels is more evenly distributed through the intensity range.  

In this work, CLAHE was performed. Adaptive histogram equalization means that histogram equalization 
was performed locally as opposed to globally (the entire image), in order to account for illumination 
variations across the image. The image was split into blocks of pixels, and histogram equalization was 
done for each block. Block size is a set parameter. For the purposes of this work, the image was split into 
nine blocks, and histogram equalization was performed on each block separately to yield the processed 
image that was then used for thresholding.  

Contrast limiting is also applied in order to minimize any noise amplification that could arise due to the 
histogram equalization process in each block. When adaptive histogram equalization is performed in each 
block, the histogram is confined to that given block, and if there is noise in that block, histogram 
equalization could amplify this noise. CLAHE limits amplification of noise by clipping the histogram at a 
value before computing the CDF for each block. This clipping limits the slope of the CDF and 
consequently the transformation function applied to the block histogram. Regions of the histogram that 
exceed the clip limit are redistributed equally among histogram bins. The value at which the histogram is 
clipped is a parameter called the clip limit, and is set in the Python script.  

2.2 Thresholding via Otsu’s Method 

Global thresholding was used in this work in order to reduce the grayscale image to a binary (black and 
white) image. This thresholding algorithm assumes the image has a bimodal histogram, and then 
calculates the optimal threshold value separating the two classes of pixel distributions that minimizes the 
intra-class variance (maximizes inter-class variance). This concept is illustrated in Figure 7. 
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Figure 7. Schematic of an image histogram that is bimodal, where the y-axis is count and the x-axis is 

grayscale intensity value. In Otsu’s Method of Thresholding¶, the image is assumed to have a 
bimodal distribution of grayscale values, where the threshold value is T.  Schematic is 
reproduced from Gonzalez and Woods (2018). 

Otsu’s method (Otsu 1979) is based on the simple concept of finding the grayscale value that minimizes 
the weighted within-class (intra-class) variance, 𝜎𝜎𝑤𝑤2(𝑡𝑡) , and selecting this as the threshold value. Otsu’s 
method operates on the image histogram (grayscale, single color channel). This method can be applied 
globally (to the entire image), or locally (to blocks of pixels, similar to what was done in CLAHE, 
previously). In this work, global thresholding after CLAHE yields acceptable results, so local 
thresholding was not applied in this case. However, local thresholding using Otsu’s method could 
improve thresholding results by accounting for varying illumination across an image that causes the 
contrast in one block to vary from the contrast in a different block.  

Mathematically, Otsu’s method can be described by Equations (7)–(12) below. The goal is to calculate 
minimum weighted intra-class variance 𝜎𝜎𝑤𝑤2(𝑡𝑡) (Gonzalez and Woods, 2008).  

 𝑞𝑞1(𝑡𝑡) = ∑ 𝑃𝑃(𝑖𝑖)𝑡𝑡
𝑖𝑖=1  (7) 

 𝑞𝑞2(𝑡𝑡) = ∑ 𝑃𝑃(𝑖𝑖)𝐼𝐼
𝑖𝑖=𝑡𝑡+1  (8) 

 µ1(𝑡𝑡) = ∑ 𝑖𝑖𝑖𝑖(𝑖𝑖)
𝑞𝑞1(𝑡𝑡)

𝑡𝑡
𝑖𝑖=1  (9) 

 𝜎𝜎12(𝑡𝑡) = ∑ [𝑖𝑖 − µ1(𝑡𝑡)]2 𝑖𝑖(𝑖𝑖)
𝑞𝑞1(𝑡𝑡)

𝑡𝑡
𝑖𝑖=1  (10) 

 𝜎𝜎22(𝑡𝑡) = ∑ [𝑖𝑖 − µ2(𝑡𝑡)]2 𝑖𝑖(𝑖𝑖)
𝑞𝑞2(𝑡𝑡)

𝐼𝐼
𝑖𝑖=𝑡𝑡+1  (11) 

 𝜎𝜎𝑤𝑤2(𝑡𝑡) = 𝑞𝑞1(𝑡𝑡)𝜎𝜎12(𝑡𝑡) + 𝑞𝑞2(𝑡𝑡)𝜎𝜎22(𝑡𝑡) (12) 
where 
 𝑞𝑞1(𝑡𝑡) is the class 1 probability 
 𝑞𝑞2(𝑡𝑡) is the class 2 probability 
 µ1(𝑡𝑡) is the class 1 mean 
 µ2(𝑡𝑡) is the class 2 mean 
 𝜎𝜎12(𝑡𝑡) is the class 1 variance 
 𝜎𝜎22(𝑡𝑡) is the class 2 variance 
 𝜎𝜎𝑤𝑤2(𝑡𝑡) is the weighted intra-class variance 
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 𝑃𝑃(𝑖𝑖) is the probability of grayscale value 𝑖𝑖  
 𝑡𝑡 is the maximum grayscale value of class 1  
 𝐼𝐼 is the maximum grayscale value of class 2  

2.3 Morphological Transformations  

Morphological image processing is a term used to describe nonlinear operations related to the shape or 
morphology of features in image. Morphological operations are best suited for operating on binary 
images. Morphological techniques, such as erosion and dilation, probe an image using a small pixel 
template (a small matrix of ones and zeros) called a structuring element or kernel. The size and shape of 
the structuring element can be varied based on desired results. Possible shapes include rectangles, crosses, 
and disks.  

A morphological operation on a binary image can be used to either “fatten” an image (connect 
components, referred to as dilation), or break thin connecting lines in an image (called erosion).  

Erosion removes the boundaries of a foreground object, where the foreground object is white and the 
background is black (in a binary image).  

The structuring element slides across the image, and a pixel in the original binary image (which is either a 
1 or 0) will be 1 if all pixels under the structuring element are 1. The result is that pixels near the 
boundary of the structuring element will be discarded (depending on size and shape of structuring 
element).  

Dilation has the opposite effect of erosion. Dilation is performed in the same manner as erosion, in that a 
structuring element slides over a binary image, except here, if there is any overlap between the structuring 
element and a pixel that is 1 in the original image, all pixels in the original image that coincide with the 
structuring element become a 1. The result is that objects in the image are “fattened” (the area of objects 
in an image increases).  

A simple example of erosion and dilation are provided in OpenCV (2015) and is reproduced in Figure 8 
in order to illustrate these concepts applied in this work.  
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(a) 

 

(b) 

 

(c) 

Figure 8. Simple Illustration of Morphological Transformations (Erosion and Dilation) Used in This 
Work¶, reproduced from OpenCV (2015), where (a) is the original image, (b) is the original 
image after erosion, and (c) is the original image after dilation. 

2.4 Floodfill 

The floodfill operation operates on a single-channel (grayscale) image, and fills in gaps in an image 
within connected components.  

In this work, floodfilling was done in order to fill in space between lamellae that were thresholded in 
order to estimate total area of transformation, as opposed to just the area associated with the thresholded 
lamellar phase (and other thresholded objects, such as carbides).  

2.5 Hardware and Software Specifications 

For this work, a Dell laptop computer was used. The Dell laptop has an Intel Core i5-3340M CPU at 
2.70 GHz, and is running a Windows 7 operating system with 8 GB of RAM.  

With regard to software, Python version 2.7.13 was used in this work. The OpenCV library (version 3.2) 
interface for Python was installed and used for image processing. Other important libraries used include 
matplotlib, skimage, numpy, and csv. 

2.6 Parameters 

Key parameters in the image processing Python script for this work are listed in Table 1:  



 

13 

Table 1.  Parameters used in Segmentation of SEM Images at 500× Magnification using Python 

 Parameter Value – SEM  
Contrast-limited adaptive 
histogram equalization 
cv2.createCLAHE 

tileGridSize 100 × 100 

clipLimit 1.0 
Thresholding (global) 
cv2.threshold 

minValue 
maxValue 

125 
255 

Morphological 
Transformations 
cv2.dilate 
cv2.erode 

Structural element shape and size Ellipse 3 × 3 

Number of iterations (for both dilation 
and erosion) 8 

Floodfill 
cv2.floodFill mask size 

2 pixels greater 
than image size 

3.0 Results and Discussion 

An example of output images corresponding to image processing steps described in the Methods section 
are provided in Figure 9. The same steps were applied to a directory of images that were all planar cross-
sectional views and to a separate directory of only longitudinal cross-sectional views. Due to the fact that 
16 images were processed as part of this work, it is not feasible to include all intermediate output images 
here (80 total, including original images). Results, shown in Table 2, appear similar for all 16 images 
analyzed. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Series of Images that Illustrate the Results of Each Major Step in the Image Processing Script 
Used to Estimate Area Fraction of the Transformed Region¶. The image processed to generate 
the above output is DUM974 image number 001, taken at 500× magnification using a 30 keV 
accelerating voltage and the BSE detector. This image is a planar cross-sectional view. Here, 
(a) is the original image, (b) after CLAHE, (c) after global thresholding using Otsu’s method, 
(d) after erosion and dilation, and (e) after floodfill. The same steps were applied to all images 
processed; therefore DUM974 image 001 (above) serves as an example. 
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Table 2.  Results from Image Processing using Python¶. All values below are reported as percent area 
transformed (out of a total image area of 100%).  

Sample ID 
Cross-Sectional 

View Magnification 
Area Transformed (%) 

Routine A Routine B Difference 

DUM975 Longitudinal 500 

1.75 2.96 1.21 
1 1.83 0.05 
0.36 0.79 0.36 
0.96 1.72 0.73 
0.96 0.88 0.52 
1.75 2.76 0.07 
0.67 1.98 0.56 
0.54 4.82 1.28 
1.14 4.82 1.28 
0.91 2.69 0.94 
0.6 2.1 1.16 

DUM974 Planar 

500 2.91 4.8 1.89 
1000 3.7 6.28 2.58 
500 1.25 2.29 1.04 
250 2.22 4.3 2.08 
500 2.56 5.31 2.75 

In addition to processing images and estimating area fraction of the cellular decomposition 
transformation, statistical analysis to determine the number of images needed was performed. The 
question to answer was, “how many images are needed per specimen in order to best estimate the area 
fraction of the cellular decomposition reaction?” This question could be answered by plotting sample size, 
N, (number of images) versus confidence interval width for a 95% confidence interval. The goal in 
plotting this data was to find where on this plot confidence interval width is minimized for a reasonable 
number of samples (where increasing the number of samples beyond this number, N, only marginally 
decreases interval width).  

Table 3 reports how confidence interval width varies with sample size (N), the number of images. Results 
reported in Table 3 are plotted in Figure 10.  

Table 3.  Results from Statistical Analysis of Data Presented in Table 2¶. Confidence interval (CI) bounds 
and width are for a 95% CI. The data listed in this table is plotted in Figure 10.  

Sample Size, N CI Lower Bound CI Upper Bound CI Width 
10 1.5236 3.4491 1.9255 
15 1.7410 3.2318 1.4908 
20 1.8565 3.1163 1.2598 
25 1.9308 3.0419 1.1112 
30 1.9839 2.9889 1.0050 
41 2.0616 2.9112 0.8496 
51 2.1077 2.8650 0.7572 
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A sample size of 20 is an optimal number of images for analysis, yielding a confidence interval width of 
1.26. However, since obtaining 20 images per metallographic mount is very time consuming, a sample 
size of 10 or greater is acceptable: for 10 images the 95% confidence interval width is 1.93. The 
significance of performing this preliminary statistical analysis was to be able to state that the mean area 
fraction of the eutectoid decomposition for a 95% confidence interval would be within a certain range 
(1.26% for 20 images or 1.93% for 10 images). 

 
Figure 10. 95% Confidence Interval (CI) Width versus Sample Size for Percent Transformed for 

Longitudinal and Planar Cross-Sectional Views¶. The percentage-transformed data from 
Routine B was used to calculate CI lower and upper bounds. 

 

4.0 Conclusions 

The following conclusions can be made based on results from automating image processing of U10Mo 
micrographs:  

1. Image processing work previously performed manually using ImageJ can be successfully 
automated and improved using open-source libraries in Python (OpenCV and scikit image). The 
current image processing method in Python is sufficient for providing a conservative estimate of 
volume fraction of the eutectoid decomposition (transformation), in order to relate to processing 
parameters. 

2. The use of CLAHE, thresholding, and flood-filling methods provide a conservative estimate of 
area fraction (which serves as a proxy for volume fraction) of the eutectoid decomposition. The 
result is viewed as conservative because carbides and silicides are included in the area fraction 
estimate 

3. Area fractions calculated from planar cross sections differ slightly from area fractions calculated 
from longitudinal cross sections, which may indicate the eutectoid decomposition transformation 
is proceeding with some directionality. 
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5.0 Limitations 

Limitations of the current image processing script are listed below:  

1. A specific range of magnifications is required (500-1000x).  

2. No graphical user interface (GUI) has been created, so the script is run using the Anaconda Prompt 
terminal. This is identified as a limitation because it is not as straightforward as a GUI would be for 
users who are not familiar with Python.  

6.0 Recommended Future Work 

Currently, the image processing script (written in Python) provides a conservative estimate for the area 
fraction (which serves as a proxy for volume fraction) of the transformed region of the U10Mo matrix.  

Below, tasks to explore in future work (and the corresponding rationale) are listed:  

1. Remove carbides and silicides from the segmentation process, in order to be less conservative and 
improve accuracy of calculated area fraction of the eutectoid decomposition  

2. Segmentation of a higher magnification image (20,000×, for example) in order to estimate area 
fraction of α-U in the transformed region. Determining the fraction of the transformed region that is 
just α-U (which is the phase known to be detrimental to mechanical stability of U10Mo) could be 
used to improves accuracy of calculated area fraction of the eutectoid decomposition (because the 
current calculated area fraction is conservative). 

3. Analysis of more images of planar versus longitudinal cross-sectional views in order to investigate 
whether transformation is proceeding with some directionality. Additional images need to be 
analyzed in order to draw conclusions based on statistics. 

4. Experiment with additional image processing methods (such as low pass filtering) to determine if 
image quality prior to thresholding could be improved.  Low pass filtering could be applied to remove 
background noise in raw image data, and ultimately improve thresholding results and accuracy of 
calculated area fraction.  

5. Apply the current Python script to automated image analysis of more images for construction of TTT 
diagrams.  
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Appendix A 
 

Python Script 

TITLE: Image Processing to Determine Area Fraction of Eutectoid 

#Decomposition in U-10wt%Mo Micrographs 

#AUTHOR: EJ Kautz 

#DATE: 04/11/2017 

#SUMMARY:  

#reads-in images in a directory 

#pre-processes (CLAHE) 

#thresholds 

#performs morphological operations (dilation and erosion)  

#calculates area fraction (and converts to percentage) 

#prints data to csv file 

#--------------------------------------------------------------- 

from fnmatch import fnmatch  

import scipy  

import numpy as np 

import matplotlib.pyplot as plt 

import os 

import cv2 

import csv 

import math 

import operator  

from cv2 import adaptiveThreshold 

from decimal import *  
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import skimage  

from skimage import data, io, exposure  

from skimage.measure import regionprops 

from skimage.measure import label 

from skimage.filters import threshold_otsu, rank 

from skimage.io import imread 

from skimage.morphology import disk, rectangle  

import matplotlib.cm as cm 

from skimage.color import rgb2gray  

import skimage.io as io  

from skimage.util import img_as_ubyte 

from skimage import exposure 

#from skimage.morphology import disk 

#------------------------------------------------------------- 

#source file directory  

dir_path='C:/Users/kaut934/Documents/UMo_ImProc/SEM/input/SM160349 DU-Mo X1-X21C 10c_m 
500C 90m FC Long DUM975'  

#create empty array  

n=[] 

fn=[] 

#out_dir='C:/Users/kaut934/Documents/UMo_ImProc/SEM/output' 

#image file extension  

#ext='.tif' 

files=os.listdir(dir_path) #files is an array of file names 

file_pattern='* LBE *.tif' #only process backscatter images  

print('Pattern:'+str(file_pattern)) 

#print('files=' + str(files)) 
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#amount=len([f for f in files if f.endswith('.tif')]) #number of images to process  

#print('# of images to process=' + str(amount)) 

amount=len([f for f in files if fnmatch(f,file_pattern)]) 

print('# of images to process=' + str(amount)) 

#set output file directory here  

output_dir='C:/Users/kaut934/Documents/UMo_ImProc/SEM/output/output_SM160349 DU-Mo X1-
X21C 10c_m 500C 90m FC Long DUM975/' 

f1_name='percent_transformed_long.csv' 

f1=open(output_dir+f1_name,'w') 

writer=csv.writer(f1) 

writer.writerow(['File Name','Thresholded Only','With Dilation/Erosion','Difference','Result']) 

#------------------------------------------------------------- 

for f in files: 

 if fnmatch(f,file_pattern): 

  fn.append(f) 

  im=cv2.imread(f,0) 

  im_cropped=im[1:956,1:1280] 

#-------------------------------------------------------------- 

  #plot cropped image next to image histogram  

  fig=plt.figure("Original Image and Histogram") 

  ax0=fig.add_subplot(2,2,1) 

  ax0.imshow(im_cropped,cmap=cm.gray) 

  ax0.axis('off') 

  ax1=fig.add_subplot(2,2,2) 

  im=im_cropped 

  im = im[np.nonzero(im)]  # Ignore the background 

  hist,bins = np.histogram(im.flatten(),256,[0,256]) 
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  cdf = hist.cumsum() 

  cdf_normalized = cdf * hist.max()/ cdf.max() 

  ax1.plot(cdf_normalized, color = 'b') 

  ax1.hist(im.flatten(),256,[0,256], color = 'r') 

  #ax1.xlim([0,256]) 

  ax1.legend(('cdf','histogram'), loc = 'upper left') 

  #plt.show() 

  #ax1.xaxis.set_major_locator(MultipleLocator(10)) 

  ax1.minorticks_on() 

  ax1.set_yticks([]) 

  ax1.set_xlabel('Intensity') 

  ax1.set_ylabel('Count') 

  fig_name=f+".png" 

  plt.savefig(output_dir + fig_name) 

  plt.close() 

  #plt.show() 

#----------------------------------------------------------------------- 

  #contrast-limited adaptive histogram equalization (CLAHE) 

  clahe=cv2.createCLAHE(clipLimit=1.0,tileGridSize=(100,100)) 

  cl1=clahe.apply(im_cropped) 

  cv2.imwrite(os.path.join(output_dir,"CLAHE-"+str(f)+".png"),cl1) 

  min=np.amin(cl1) 

  max=np.amax(cl1) 

#----------------------------------------------------------------------- 

  #THRESHOLD(global) and take inverse/image complement  

  r,t=cv2.threshold(cl1,125,255,cv2.THRESH_BINARY_INV) 
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  #r,t=cv2.threshold(cl1,125,255,cv2.THRESH_BINARY) 

  cv2.imwrite(os.path.join(output_dir,"THRESH-"+str(f)+".png"),t) 

#--------------------------------------------------------------------- 

  #Morphological operations - dilate/erode image   

  kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)); 

  im_morph=cv2.morphologyEx(t,cv2.MORPH_CLOSE,kernel,iterations=8) 

  cv2.imwrite(os.path.join(output_dir,"MORPH-"+str(f)+".png"),im_morph) 

  #Floodfilling 

  # Copy the thresholded image. 

  im_floodfill = im_morph.copy() 

  # Mask used to flood filling.Notice the size needs to be 2 pixels than the image. 

  h, w = im_morph.shape[:2] 

  mask = np.zeros((h+2, w+2), np.uint8) 

  # Floodfill from point (0, 0) 

  cv2.floodFill(im_floodfill, mask, (0,0), 255) 

  # Invert floodfilled image 

  im_floodfill_inv= cv2.bitwise_not(im_floodfill) 

  # Combine the two images to get the foreground. 

  im=cv2.add(im_morph,im_floodfill_inv) 

  #im = im_morph | im_floodfill_inv 

  cv2.imwrite(os.path.join(output_dir,"FLOODFILL-"+str(f)+".png"),im) 

#--------------------------------------------------------------------- 

  #Calculate area fraction for thresholded AND dilated/eroded image 

  #and print to file  

  x,y=t.shape 

  im_area=x*y 
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  num_white_pix1=cv2.countNonZero(t) #thresholded image 

  num_white_pix2=cv2.countNonZero(im) #dilated/eroded image 

  af1=Decimal(num_white_pix1)/Decimal(x*y) #area fraction thresh. image 

  af2=Decimal(num_white_pix2)/Decimal(x*y) #area fraction dilated/eroded image 

  pt1=af1*100 #percent transformed (thresholded image) 

  pt2=af2*100 #percent transformed (dilated/eroded image) 

  ptr1=round(pt1,2) #percent transformed, rounded (thresholded image) 

  ptr2=round(pt2,2) #percent transformed, rounded (dilated/eroded image) 

  d=ptr2-ptr1 #difference 

  if ptr2>10: 

   r=['UNACCEPTABLE'] 

   print('UNACCEPTABLE, Percent Transformed='+str(ptr2)) 

   print('Percent Transformed from thresholded (only) image ='+str(ptr1)) 

  if ptr2<10: 

   r=['ACCEPTABLE'] 

   print('ACCEPTABLE, Percent Transformed='+str(ptr2))  

  n.append([f, ptr1,ptr2,d,r]) 

for values in n: 

 writer.writerow(values) 

f1.close() 

print 'DONE' 

 

 



 

 



 

 

 


	Summary
	Acknowledgments
	Acronyms and Abbreviations
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Overview
	1.2 Background
	1.3 Prior Work on Characterization of UMo Microstructures via Image Analysis and X-Ray Diffraction

	2.0 Methods
	2.1 Contrast-Limited Adaptive Histogram Equalization
	2.2 Thresholding via Otsu’s Method
	2.3 Morphological Transformations
	2.4 Floodfill
	2.5 Hardware and Software Specifications
	2.6 Parameters

	3.0 Results and Discussion
	4.0 Conclusions
	5.0 Limitations
	6.0 Recommended Future Work
	7.0 References
	Appendix A  – Python Script




