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Executive Summary

As power systems continue to adapt to the ever-increasing penetration
of renewable generation sources, there is a significant increase in the need
for reserves to balance the intermittency of renewable generation sources. In
the current operational scenario, this would require expensive fast-ramping
generators (like gas generation) which may even negate the benefits brought
by renewables in terms of carbon emissions. A cheaper and cleaner alter-
ative is to engage flexible loads (electric vehicles, HVACs, water heaters) and
distributed energy storage (Tesla powerwall, batteries). Engaging these dis-
tributed energy resources in a scalable and manageable fashion will require
restructuring of electricity markets. A natural architecture in this scenario
is a hierarchy of markets with the highest level corresponding to a wholesale
market at the transmission level and the lowest level corresponding to small
retail-level markets located on the distribution system.

The hierarchical market structure will involve new types of market
interactions and will need a new framework to analyze impacts of various
market designs and guide market operators in structuring future electricity
markets. Our goal in this project is to build a general framework to analyze
the interaction between multiple markets organized in a hierarchy. Markets
in each layer of the hierarchy interact with layers above them by bidding
aggregate demand/supply curves and receiving as input prices and power
dispatch set-points. In this report, we focus on the special case of such a
market hierarchy with just two layers: A wholesale transmission level elec-
tricity market connected to a number of retail level electricity market and
study the interaction between these markets (see figure (1)). The study pre-
sented in this report is meant to illustrate possible issues in retail-wholesale
integration and lays the foundation for further investigations into the design
and analysis of hierarchical market architectures.

The main contribution of this report is to develop a theoretical model
of the interaction between retail and wholesale markets and to analyze prop-
erties of this dynamical model. We provide a brief overview of our model
and analysis in the subsequent paragraphs.

We assume that the retail market is responsible for engaging price-
responsive loads and bidding the aggregate flexibility into wholesale (trans-
mission level) market. In order to aggregate the flexible loads, the retail
markets organizes loads into one of several “flexibility buckets” (see figure
(2)). A flexibility bucket represents a collection of loads with similar price
elasticity. The retail market constructs an aggregate bid for each of the flex-
ibility buckets and submits the bid to the wholesale market. The wholesale
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Figure 1: Interactions between wholesale market, retail market and indi-
vidual devices. The feedback loop inside the dashed black boundary is the
object of this report’s focus.

Figure 2: Loads organized into “flexibility buckets” in order of decreasing
price elasticity going left to right

market solves an economic dispatch (DCOPF) to compute the cleared load
and the prices for each market period. Based on the cleared load value, the
retail market operator decides how much each market participant is allowed
to consume. The total flexible load that was not cleared for consumption in
the current market period is referred to as the “uncleared load”.

The flexibility buckets also model the change in price elasticity of
loads over time. For example, an electric vehicle would become less elastic
as it approaches its charging deadline (since it has to be fully charged by the
charging deadline no matter what the price of electricity is). This is modeled
by assuming that the uncleared load in market period t moves to the next
flexibility bucket (with lower price elasticity) in market period t + 1 (see
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Figure 3: Uncleared flexible load at time t migrates to bucket with lower
elasticity at time t+ 1

figure 3). This migratory behavior by the flexible loads, when combined
with interaction of the retail market with the wholesale market creates a
dynamical system. It is then of interest to understand the behavior of this
dynamical system - this analysis will be useful in determining the impact of
the market architecture on price volatility, generator dispatch, congestion in
the transmission system etc.

In this report we study several natural questions regarding proper-
ties of the dynamical system induced by the interaction of the retail and
wholesale markets: Under what conditions is the hierarchical market de-
sign guaranteed to produce stable prices and generator dispatch levels? Are
there situations when prices and dispatch levels can oscillate going from one
market period to next (this is naturally an undesirable phenomenon both
from a physical and economic perspective)?

We show that the dynamical system converges to a stable set of prices
and dispatch levels quickly and cannot produce oscillatory behavior. Fur-
thermore, we provide numerical examples demonstrating the robustenss of
these results even when some of the assumptions made in the analysis do
not hold. In particular, we study stability of prices when the retail market
operator is not exactly able to follow the cleared load dispatch (because of
internal dynamics of loads like ACs/HVACs) and when there is congestion
in the transmission system. The results show that the predictions made
by our analysis (prices converging to stable levels quickly) hold true even
when the assumptions of the analysis may be violated and establish that the
analysis is likely robust to breaking these assumptions.

The conclusions of this report lay the foundation for further investi-
gations involving more realistic retail market data (that can be used to fit
the parameters of the flexibility buckets model) and more complicated hier-
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archical market architectures that go beyond the simple 2-level architecture
studied here.
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1 Background

In this section, we survey reviewing previous work done in retail market
design and stability analysis of electricity markets. Retail-side markets ef-
fectively aggregate flexible demand and distributed energy resources (DERs)
and bid the aggregate flexibility into wholesale markets. Several models of
retail markets for engaging flexible loads have been proposed and studied:
Proposals under the New York “Reforming the Energy Vision” program can
be found in [1] and transactive control mechanisms have been studied in
[2][3][4]. Some transactive schemes have even been deployed in pilot demon-
stration projects [5][6][7].

Several papers in the literature have studied the problem of stability
of markets on either the retail or wholesale side. The work presented in [8]
demonstrates that direct coupling of consumers to the a retail market with-
out appropriate safeguards in place can result in the highly volatile price be-
haviour. In [9], the authors extend this work and study a market where flex-
ible consumers predict electricity prices and compute optimal-consumption
schedules in response. The authors show that under certain design assump-
tions, adding memory effects to customer response can enhance stability. A
transactive control model that can efficiently coordinate demand-side flexible
resources is developed and studied in [10]. Recent work [11] demonstrates
that certain implementations of the transactive control model can cause
sustained oscillations in demand due to load synchronization. It is shown
in [12] that load synchronization tends to occur when controlling deferable
loads and algorithms are developed which mitigate volatility and instability
issues. One of the key features that distinguishes our work from [8, 11, 12]
is the assumption that the bids of the price-responsive loads are taken into
account while clearing the wholesale market, rather than devices responding
autonomously to price signals. This places the burden of accounting for de-
vice level constraints on the retail market operator and reduces a significant
potential source of price volatility (viz the devices may not follow the dis-
patch computed in the wholesaler market). By aggregating several flexible
loads on a distribution system, the retail market operator can reduce overall
uncertainty and present a simple aggregate model of flexible loads to the
wholesale market.

The rest of this report is organized as follows: In section 2, we describe
how we model the retail and wholesale electricity markets. In section 3, we
present our main theoretical results analyzing stability of the retail-wholesale
interconnection. In section 4, we validate our analysis using numerical simu-
lations and show that the conclusions of our theoretical analysis remain valid
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in general (even when some assumptions made in our theoretical analysis
are violated). Finally, in section 5, we summarize our findings and outline
directions for future work.
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2 Modeling Retail and Wholesale Markets

In this section, we introduce detailed mathematical models of the retail and
wholesale markets that form the basis of our study.

2.1 Wholesale market with dispatchable loads

The transmission level wholesale market collects bids from the retail market
and the generators and solves the standard economic dispatch problem to
determine prices and dispatch levels. A mathematical model of this whole-
sale market is presented in the subsequent paragraphs.

The set of generators is denoted by G, the set of (aggregated) price-
responsive loads by Lf and the set of inelastic loads by Lb. gi denotes
the power produced by the generator i and must satisfy gi ∈ [Gmin

i , Gmax
i ].

Associated with each generator is also a cost function

ci (x) = αg
i x

2 + βgi x (1)

where αg, βg ≥ 0 are positive parameters. Similarly, the consumption of the
i-th flexible load are denoted by lfi and must satisfy lfi ∈ [0, Lf

i ]. Associated
with each flexible load is a utility function

ui (x) = −αf
i x

2 + βfi x (2)

where αf , βf ≥ 0 are flexible load parameters. 1

Given the cost and utility curves, the market operator solves an eco-
nomic dispatch problem in order to determine the optimal generation and
flexible load levels. The problem is stated as follows:

min
lf ,g

∑
i∈G

ci(gi)−
∑
i∈Lf

ui(l
f
i ) (3a)

s.t
∑
i∈G

gi =
∑
i∈Lf

lfi +
∑
i∈Lb

lbi (Energy balance) (3b)

Gmin
i ≤ gi ≤ Gmax

i ∀i ∈ G (Generation limits) (3c)

0 ≤ lfi ≤ L
f
i ∀i ∈ Lf (Flexible load limits) (3d)

1The utility function is computed by integrated a linear price-responsiveness curve:
lfi = Lfi −κλ where λ is the price and Lfi is the consumption when λ = 0 (power is free in

this case, leading to maximum consumption). This curve can be inverted: λ =
L

f
i −lfi
κ

to
compute the marginal value of consuming the next dl units of power after having consumed
lfi units of power. Following standard economic theory, the overall utility of consuming x

units of power is then ui (x) =
∫ x
0

L
f
i −t
κ

dt =
L

f
i
κ
x− 1

2κ
x2 so that αfi = 1

2κ
, βfi =

L
f
i
κ
.
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The optimal solution to this problem as a function of the parameters Lf , lb

is denoted as lf?
(
Lf , lb

)
, g?
(
Lf , lb

)
.

The optimal generation levels and load levels, obtained by solving the
problem (3). In most wholesale electricity markets, this problem is aug-
mented with transmission line limits that use the DC power flow approxi-
mation and impose limits on the DC approximation of the power flow over
transmission lines. In this preliminary work, we ignore the transmission line
congestion constraints in our analysis but perform numerical studies show-
ing that accounting for these does not significantly change the conclusions
derived from our theoretical analysis of the uncongested case.

The optimization problem (3) is a convex optimization problem with a
strongly convex objective function. Hence, it has a unique optimal solution
[13]. The dual variable corresponding the constraint (3b) represents the
marginal increase in cost for satisfying an additional unit of load at the
optimal solution. We denote the dual variable as λ and it corresponds to
the market-clearing price. In the presence of congestion constraints, the
price is different at every node of the power system and is known as the
locational marginal price (LMP). In our theoretical analysis, we will assume
a uniform price λ at every bus.

2.2 Retail Market model and dynamics

Retail markets play the role of aggregating the flexibility of a large collection
of flexible loads (for example all loads on a distribution network) and bidding
the aggregate flexibility into the wholesale electricity market. The key idea
we use is that flexibility of loads depends on the physical state of each load
- for example, an air conditioner has flexibility (can turn on or off) if the
temperature is away from the comfort limits set by a customer. However,
as the temperature evolves over time and gets close to one of the comfort
limits, the air conditioner is forced to turn on or off and loses flexibility. In
the subsequent paragraphs, we develop a simple model to represent large
collections of loads with these characteristics.

In order to capture varying levels of price responsiveness among the
flexible loads, we assume that the retail markets organize loads into one of
several “flexibility buckets” (as discussed in Section ()). Load arrives into
any one of several “flexibility buckets” sorted from highly price elastic to
completely inelastic.

Formally, a flexibility bucket is a collection of loads with the same (or
similar) responsiveness to price that can be modeled using a single price-

versus-demand curve: lfi (λ) = Lf ;i − λκi where lfi denotes the desired con-
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sumption in bucket i at price λ and Lf ;i is the total load in bucket i. As
discussed in the previous section, such a curve can always be turned into a
utility function and incorporated into the wholesale market. κi represents
the “level of price-responsiveness” in bucket i. The buckets are arranged
in decreasing order of price-responsiveness, with the first bucket i = 0 cor-
responding to the highest level of price-responsiveness and the final bucket
i = M corresponding to the inelastic (base) load with κM = 0.

The evolution of price elasticity of loads is captured in the following
dynamical model: Let Lf i (t) denote the amount of flexible load in bucket i

at time t and lfi (t) denote the amount of flexible load in bucket i that was
cleared (satisfied) at time t (computed by the wholesale market). Note that
t indexes clearing periods of the wholesale-level electricity market (that is, t
advances by 1 every time the wholesale market clears). We denote by ri (t)
the amount of fresh load arriving into bucket i at time t (for example, a new
electric vehicle arriving at a charging station). We then have the following
dynamics:

Lf
0 (t) = r0 (t) (4a)

Lf
i (t+ 1) = ri (t) + Lf

i−1 (t)− lfi−1 (t) , i = 1, . . . ,M (4b)

lb (t) = Lf
M (t) (4c)

Figure 4: Uncleared flexible load migrates to less flexible bucket over mul-
tiple market periods

The first equation says that the amount of flexible load in bucket 0
at time t is equal to the arrival rate into bucket 0 at time t. The second
equation says that the the amount of load in bucket i = 1, . . . ,M at time
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t + 1 is equal to the arrival rate at time t + 1 plus the uncleared load in
bucket i − 1 at time t (since the uncleared load in bucket i − 1 from the
previous time-step moves into bucket i) . The final equation says that load
in the final bucket M defines the value of the base load lb in the retail market.
Therefore, in each market cycle, a fraction of the flexible load in each bucket
is cleared (along will all of the base load). The remaining (uncleared) flexible
load moves into a subsequent bucket (with lower price elasticity) in the next
market period (See figure 4).

The dynamics (4) coupled with the wholesale market clearing proce-
dure (3) (run at each time-step t with the given values of Lf , lb) defines a
dynamical system describing the wholesale-retail interconnection. At every
time step t, flexible load values Lf (t) (arising from the dynamics (4)) are
submitted by the retail market to the wholesale market which then solves
the economic dispatch (3) to computed the optimal cleared load values lfi (t)
in each bucket and the optimal generation dispatch g?i (t), along with the
market clearing price λ (t).

Finally, we note that while the model present here assumes a single
retail market connected to a wholesale market, our analysis and conclusions
extend in a straightforward manner to a setup with several retail markets
connected to a wholesale market (perhaps with different buses in the whole-
sale market corresponding to distinct retail markets).

11



3 Stability Analysis of Retail/Wholesale interac-
tion

In this section, we provide a stability analysis of the market dynamics de-
fined by (3) and (4) under certain simplifying assumptions. The state of
this dynamical system is the values of the load in each bucket at any given
time and the prices and generation dispatch levels at any given time are
functions of the state. In this report, stability of a dynamical system refers
to a control-theoretic characterization of the long-term behavior of the dy-
namical system and answers questions such as : Do the states grow without
bound? Do the states exhibit oscillatory behavior? The results presented
in the subsequent sections show that the market dynamics developed in
the previous section converges to some equilibrium and does not exhibit
oscillatory behavior (we prove this theoretically under a set of simplifying
assumptions and numerically in more general cases).

3.1 Main Theoretical Results

In this subsection, we present results that analyze the stability of the dy-
namical system defined by (3) and (4). We study the special case where the
arrival rate ri (t) is constant over time - this is critical for analyzing a sta-
tionary dynamical system (otherwise the equilibrium of the system is always
changing and stability does not have a well-defined meaning). Practically,
this can be justified as long as the market dynamics converges on a much
faster timescale than the rate at which new loads arrive and load flexibility
evolves (we provide some numerical examples demonstration this in section
4). The overall dynamics is given as follows:

Lf
0(t) = r0 (5a)

lfi (t) = lf?i

(
Lf (t) , lb (t)

)
∀i = 0, . . . ,M (5b)

Lf
i (t+ 1) = ri + Lf

i−1(t)− l
f
i−1(t) ∀i = 1, . . . ,M (5c)

lb (t) = Lf
M (t) (5d)

where lf? refers to the the optimal solution of the economic dispatch problem
(3) given values of Lf and lb. We can also define relevant outputs of this
dynamical system λ (t) = λ?

(
Lf (t) , lb (t)

)
, g (t) = g?

(
Lf (t) , lb (t)

)
. Our

main result shows that the dynamics (5) converges to an equilibrium point
when initialized at an arbitrary initial condition:
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Theorem 1. For any given values of r, the variables Lf
i (t) and lb(t) evolving

according to the dynamical system (5) are non-decreasing and converge to
equilibrium values.

Note that (5) may not have a unique equilibrium point. However,
we show that initialized at an arbitrary condition, the dynamics must con-
verge to an equilibrium point and no oscillations are possible (because of
the monotone behavior of the system state).

In order to establish this result, we use the monotonicity property of
the economic dispatch problem (3) established by lemma 2. The lemma
shows that the amount of uncleared load Lf − lf?

(
Lf , lb

)
is non-decreasing

in Lf , lb. Given this, it is easy to prove the main theorem 1. The proof can
be found in the appendix section 6.

Theorem 1 implies that the amount of flexible load (and inelastic load)
in each of the “flexibility buckets” increases monotonically and will even-
tually stabilize to some equilibrium value (since there is a bound on the
maximum load in the system). Thus, the system cannot exhibit oscillatory
behavior or price volatility (See figure (5) for typical behavior).

Figure 5: Asymptotic behavior of the retail market dynamics for IEEE RTS-
24 system with two flexibility buckets

3.2 Design Considerations

Theorem 1 establishes, that under the absence of transmission line con-
straints, that the amount of flexible load in the system does not exhbhit
oscillatory behavior. From a market design perspective, this guarantees
that price fluctuations will not occur due to the presence of flexible load
when there is no congestion under the market design that gave rise to the
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dynamics (5). The effect of adding transmission constraints to the economic
dispatch model on the stability of the retail-wholesale dynamics is a subject
of ongoing investigation. There are also other choices pertaining to the de-
sign of retail market dynamics (5) which is of significant interest to a market
designer:

1 Rate of convergence: Theorem 1 establishes that the market dynamics
(5) converges to equilibrium, but does not provide a convergence rate.
The stability analysis assumes that the the arrival rate of inflexible
load is constant over time. In reality, the inflexible load varies slowly
across market cycles depending on the time of the day. It is therefore
important to ensure that the retail market is designed in such a way
that the market dynamics (5) converges quickly so that the slowly
changing inflexible load does not affect the stability of the system.

2 Robustness to noise: Theorem 1 assumes that the retail market model
we have is perfect and that the flexible loads on the retail market
side precisely follow the dispatch computed by the wholesale market.
Since these assumptions may be violated in a real system, it is im-
portant to study how robust the convergence is to adding noise to the
response of the retail market (so that it follows the wholesale dispatch
not perfectly, but with some noise).

In the following subsection, we present simulations that investigate the above
two issues not covered by our theoretical results that are relevant to the
stability of the retail-wholesale interconnection.
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Figure 6: Number of market periods before convergence of base load is
observed

4 Numerical Studies

In this subsection, we present numerical simulations studying the properties
of the dynamical system defined by the retail and wholesale markets on a
IEEE RTS-24 system (via MATPOWER [14]).

4.0.1 Rate of convergence

The theorems presented in the previous section establishes the stability of
the dynamical system (5). The numerical study presented here will provide
some insight into the rate of convergence of the system.

The base load lb for the IEEE 24-bus system is set to the nominal
power demand value in the case file. We then run the dynamics (5) and
record how long the dynamics takes to converge, as a function of the per-
centage of flexible load in the system (which is quantified in terms of the
arrival rates ri(0 ≤ i ≤ M − 1) into the flexible buckets as a percentage of
the base load rate rM ). Fig (6) shows the number of market periods required
for the system (5) to converge when the arrival rate is increased (expressed
a percentage of the base load in (6)). It can be seen that as the arrival rate
increases, the convergence rate slows down. This can be explained using
lemma 2 - as the arrival rate increases lb, Lf increase (since these quantities
are monotonic in the arrival rate) and hence by lemma 2 the uncleared load
increase so that more uncleared load remains in each market period. Hence,
it makes sense that it takes longer for the system to converge to equilib-
rium. Exact characterization of the convergence rate in terms of the model
parameters is a direction of future work that we will pursue.
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Figure 7: Evolution of the mean of LMP over market periods at different
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These results also show that the assumption of constant arrival rates
is reasonable since unless the arrival rate is a significant fraction of the base
load, the dynamics converge to equilibrium within a few market periods.
Since we study real-time markets (5-15 minutes), one would not expect
significant changes in arrival rates on these timescales.

4.0.2 Robustness to noise

Theorem 1 establishes the stability of (4) assumes that the flexible load
dispatch lf? is followed perfectly. However, given that flexible loads have
their own internal dynamics and control logic, it is likely that the retail
market operator will not be able to schedule loads to perfectly follow the
dispatch. Hence, we have

lfi (t) = lf?i

(
Lf (t) , lb (t)

)
+ ωi(t)

where ω denotes noise. We model ω as zero-mean Gaussian noise and exam-
ine how this noise propagates through the dynamic 5. The variance of the
noise ωi(t) added at bucket i is equal to a percentage of the default arrival
rate ri at that bucket and ri is chosen as to be 5% of the base load arrival
rate rM .

Figure (7) shows the impact of the noise introduced on the prices. In
figure 7, we plot the price trajectory (averaged over several realizations of
the noise) as a function of the noise variance - the results show that price
trajectories remain close to the price trajectory with ω = 0. Furthermore
the time-averaged variance of the prices is a slowly increasing function of
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the variance of the noise (as seen in 8) - this shows that the system is likely
robust to noise and does not amplify 0-mean noise to create instabilities.
Theoretical investigation of this phenomenon is also a direction of future
work.
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5 Conclusions and Future work

We have developed a general abstract model of retail markets and used it
to study the interface between wholesale and retail electricity markets. Our
theoretical results show that under our model of the retail market dynamics,
there are no oscillations between the wholesale and retail markets assuming
absence of congestion and constant load arrival rates. Our numerical simula-
tions indicate that these conclusions are valid even without the assumptions
made. Extending our theoretical framework to explain the observations in
section 4 is a natural direction of future work.

We envision that the contributions made in this report have several
applications: The model of retail markets developed here can serve as a
useful starting point for more detailed investigations. One interesting di-
rection of research would be collect data from an actual retail market (or a
detailed agent-based simulation of a retail market) and fit parameters of the
flexibility buckets model developed in this report. This would enable us to
characterize how well this model captures the dynamics of flexible loads in
real markets and analyze how deviations from this model impact stability
(since the simulations in this report seem to indicate that stability holds even
under mild perturbations from the flexibility buckets model). We envision
that this work will lay the foundation for a comprehensive framework for
the design and analysis of hierarchical market designs and will prove useful
to market operators and policy makers working on electricity market reform
for future smart grids with significant penetration of renewable generation
sources and flexible demand-side resources.
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6 Appendix

Lemma 1. The optimal solution lf?i
(
Lf , lb

)
to (3) is:

a) a continuous function of lb and Lf .
b) a decreasing linear function of the parameters lb and Lf if i is marginal,

ie, 0 < lf?i
(
Lf , lb

)
< Lf

i .

Proof. The continuity of the optimal solution l∗f,i follows directly from Berge’s
maximum theorem.

The decreasing nature of the lf?i when marginal is established as fol-
lows:

Let

N+
g (lb, Lf,i) = {j | j ∈ N , g∗j = Gmax

j } (6)

N−g (lb, Lf,i) = {j | j ∈ N , g∗j = Gmin
j } (7)

N+
l (lb, Lf,i) = {j | j ∈ N , lf?i = Lf

i } (8)

N−l (lb, Lf,i) = {j | j ∈ N , lf?i = 0} (9)

represents the set of all non-marginal generators and loads when the base
load is set to lb(t) and the bounds on the dispatchable load is set to Lf,i.
The set of marginal generators is then given byMg = N − (N+

g ∪N−g ) and

the set of marginal loads is given by Ml = (Lf − (N+
l ∪N

−
l ). (Recall that

Lf denotes the set of elastic loads.)

Let m ∈ Lf . Now suppose, m ∈ Ml (i.e 0 < lf?i
(
Lf , lb

)
< Lf

i ). It

can be shown that lf?i is a decreasing function of the base load lb and the
bounds on the flexible load Lf,i.

The KKT conditions for any marginal generator z inMg is as follows:

∂L

∂gz
= 2αg

zg
∗
z + βgz + λ = 0 (10)

where λ is dual variable corresponding to the power balance constraint.
Furthermore, the dual variables corresponding to the inequality constraints
are zero as z ∈ Mg implies that the corresponding generator is marginal.
Similarly, writing down the KKT conditions for any y ∈Ml, we obtain

∂L

∂lfy
= 2αf

y l
f?
y − βfy − λ = 0 (11)
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This implies that for any z ∈Mg, we have

2αf
ml

f?
m − βfm = λ = −2αg

zg
∗
z − βgz (12)

=⇒ g∗z =
2αf

ml
f?
m − βfm + βgz
−2αg

z
(13)

=⇒ g∗z = −αm,zl
∗
f,m + cm,z (14)

where αm,z, cm,z > 0.
Similarly, for any y ∈Ml, we have

2αf
ml

f?
m − βfm = λ = 2αf

y l
f?
y − βfy (15)

=⇒ lf?y =
2αf

ml
f?
m − βfm + βfy

2αf
y

(16)

=⇒ lf?y = γm,yl
f?
m + dm,y (17)

where γm,y > 0.

Substituting for g∗z and lf?y and accounting for the non-marginal loads
and generation, we obtain∑

z∈N+
g

Gmax
z +

∑
z∈N−

g

Gmin
z +

∑
z∈Ml

−αm,zl
f?
m + cm,z =

n∑
i=1

lb,i +
∑

y∈N+
l

Lf,y +
∑
y∈Ml

γm,yl
f?
m + dm,y

Rearranging, we obtain

lf?m =
lb +

∑
y∈N+

l
Lf,y + C∑

z∈Ml
−αm,z −

∑
y∈Ml

γm,y
(18a)

C =
∑
y∈Ml

dm,y −
∑
z∈N+

g

Gmax
z −

∑
z∈N−

g

Gmin
z −

∑
z∈Ml

cm,n,z (18b)

The slope
1∑

z∈Ml
−αm,n,z −

∑
(y,z)∈Ml

γm,n,y,z
in (18) is negative and

implies that a net increase in the base load results or an increase in the
capacity of the non-marginal dispatchable loads results in a decrease in the
marginal dispatched load which was to be shown.

Lemma 2. Let Lf and L̃f be such that Lf ≤ L̃f component-wise and let
lb ≤ l̃b. Then, we have

Lf
i − l

f?
i

(
Lf , lb

)
≤ L̃f

i − l
f?
i

(
L̃f , l̃b

)
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Proof. Define Lf
i (s) = sLf

i + (1 − s)L̃f
i and lb(s) = slbi + (1 − s)l̃bi and

s ∈ [0, 1]. Let h (s) = Lf (s) − lf?
(
Lf (s) , lb (s)

)
denote the uncleared load

as a function of s.
We show that gi(s) is non-decreasing. Suppose, there exists (s1, s2)

such that gi(s) is decreasing for all s ∈ (s1, s2). This implies that flexible

load lfi is marginal and increasing in (s1, s2) which contradicts Lemma (1).
As such, the amount of uncleared load gi(s) is a non-decreasing function of
s. Then, gi(0) ≤ gi(1) - hence the theorem.

6.1 Proof of theorem 1

Proof. The proof proceeds by showing that the base load lb(t) and Lf (t)
are increasing and bounded above which guarantees that they will converge.
This is done via induction.
Assume lb(t−1) ≤ lb(t) and Lf (t−1) ≤ Lf (t). Then, we claim lb(t) ≤ lb(t+1)
and Lf (t) ≤ Lf (t+ 1). By Lemma (2):

Lf (t− 1)− lf (t− 1) ≤ Lf (t)− lf (t) (19a)

=⇒ Lf (t) ≤ Lf (t+ 1) (19b)

where the second implication follows since Lf (t+ 1) depends monotonically
on Lf (t)−lf (t). A similar argument can be used to establish the monotonicty
of lb(t). Now, if it can be shown that lb(0) ≤ lb(1) and Lf (0) ≤ Lf (1), the
proof is complete. Since lb(1) = rM +c ≥ lb(0) where c is a postive constant,

it follows that lb(0) ≤ lb(1) . Similarly, Lf
i (1) = ri + d ≥ Lf

i (0) where d is
a positive constant. This completes the base case of the induction and
establishes monotonicity of the lb(t), Lf (t). Furthermore, Lf

i (t) ≤
∑i−1

k=0 ri
and lb(t) ≤

∑M
i=0 ri. As such, lb(t) and Lf (t) are increasing sequences

bounded above and hence must converge.
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