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1.1 

1.0 Project Overview 

U.S. military influenza surveillance uses electronic reporting of clinical diagnoses to monitor health of 
military personnel and detect naturally occurring and bioterrorism-related epidemics. While accurate, 
these systems lack in timeliness. More recently, researchers have used novel data sources to detect 
influenza in real time and capture nontraditional populations. With data-mining techniques, military social 
media users are identified and influenza-related discourse is integrated along with medical data into a 
comprehensive disease model. By leveraging heterogeneous data streams and developing dashboard 
biosurveillance analytics, the researchers hope to increase the speed at which outbreaks are detected and 
provide accurate disease forecasting among military personnel. 

1.1 Objective 

The project objective is to integrate existing influenza surveillance data sources and social media data into 
an accurate and timely outbreak detection model embedded into dashboard biosurveillance analytics for 
the U.S. Department of Defense. 

1.2 Introduction 

Influenza-like illness (ILI) remains a significant public health burden to both the general public and the 
U.S. Department of Defense. Military personnel are especially susceptible to disease outbreaks owing to 
the often-crowded living quarters, substantial geographic movement, and physical stress placed upon 
them (Sueker et al. 2010). Currently, the military employs syndromic surveillance on electronic reporting 
of clinical diagnoses. While faster than traditional, biologically focused monitoring techniques, a recent 
study conducted by the Centers for Disease Control (CDC 2009) found that the military surveillance 
system proved inadequate at detecting outbreaks quickly enough. Recently, research has included novel 
data sources, like social media, to conduct disease detection in real time and capture communities not 
traditionally accounted for in current surveillance systems. Data-mining techniques are used to identify 
influenza-related social media posts and train a model against validated medical data (Fairchild 2014). By 
integrating social media data and a medical dataset of all ILI-related laboratory specimens and doctor 
visits for the entire military cohort, a more comprehensive model than presently exists for disease 
identification and transmission will be possible.  

1.3 Methods and Results 

For analyses, the Armed Forces Health Surveillance Center (AFHSC) provided about 1000 military 
health facilities’ Defense Medical Surveillance System data, recorded between December 1999 and 2014. 
These data included laboratory results and medical clinical visits coded with an International 
Classification of Disease, 9th edition (ICD-9) code under the AFHSC’s syndromic definition of ILI. 
Health facilities were mapped in ESRI ArcGIS with a 25-mile buffer. To determine specific locations of 
interest for historical Twitter data purchase and analyses, facilities within each buffer were condensed 
into a merged location and areas with substantial medical data, military populations, and social media 
usage were targeted. From this analysis, twenty-five U.S. and six international condensed locations were 
chosen as study sites. Three additional non-military locations, based on comparative attributes, were 
identified as control sites. Geo-tagged tweets, from November 2011 to June 2015, were purchased within 
a 25-mile radius of the centroid for each of the thirty-one identified locations of interest.  
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Descriptive summary statistics for each location, time series analyses, and correlation studies of ICD-9 
codes and laboratory data against regional CDC U.S. Outpatient Influenza-like Illness Surveillance 
Network (ILINet) and city-level Google Flu Trends were conducted. Social media analytics on military 
and non-military tweets identified differences in Twitter discourse between the two cohorts, including 
common language, sentiment and health-related topics (Table 1.1). 

Table 1.1.  Differences in Twitter Health-related Terminology between Military and Non-military 
Populations 

Category 
Mean  

(Military) 
Mean  

(Control) T-statistic P-value 
Self-related heath experience 0.0037 0.0031 3.907 9.74E-05 
ILI-specific symptoms 0.0008 0.0008 0.261 7.94E-01 
Disease names and terms 0.0012 0.0012 0.668 5.04E-01 
Entities 0.0012 0.0012 0.559 5.77E-01 
Parts of body and related 0.0003 0.0003 -1.216 2.24E-01 
Non-ILI specific symptoms 0.0006 0.0006 -0.382 7.01E-01 

     

1.4 Conclusion 

Twitter flu-related discourse from military members and electronic medical data will be incorporated into 
a robust outbreak detection model. This model will continually ingest new health and social media data to 
nowcast and forecast influenza activity on military bases. A user-friendly application will provide military 
analysts with tools required to allocate resources efficiently and effectively.  

 

 



 

2.1 

2.0 Generalized Time Series Exploratory Data Analysis 
Application 

The Generalized Time-Series Exploratory Data Application is deployed in the Biosurveillance Ecosystem 
(BSVE), and it provides interactive exploration and analysis of syndrome data sources such as the CDC 
National Notifiable Diseases Surveillance System (NNDSS) Table II data. This app provides exploratory 
data analysis and alerting capabilities to analysts. These capabilities include Seasonal Trend Loess time-
series decompositions, hierarchical geo-location clustering, and alerting. 

2.1 Introduction 

Syndromic surveillance systems are an important part of the larger topic of biosurveillance systems 
deployed to protect the interest of the United States and partners. Typically, such systems generate 
aggregate geo-located time-series for many related diseases. Anomaly detectors, alerting algorithms, and 
other information generating systems analyze these data to create information important to an analyst.  

The Generalized Time-Series Exploratory Data Analysis application (GTSEDA) is an app developed 
under contract with PNNL deployed on the BSVE. The purpose of GTSEDA is to address some common 
tasks and operations one might wish to perform on weekly geo-located syndrome time-series, but 
GTSEDA allows this to be done entirely from within the BSVE. In addition, emphasis was placed on 
allowing analysts to explore geolocated time-series, so that they can trust any inference made by the 
system. At times, this ability to explore the data came at the cost of automation, a topic discussed Section 
2.4. 

 

 
Figure 2.1. The Larger Vision for GTSEDA. The use of geolocated time-series data that are common in 

syndrome surveillance is the primary focus. 
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2.1.1 Data Sources  

We introduce the data source experience within the application. 

2.1.1.1 Background and Technical Remarks 

Data sources were a challenging aspect of the BSVE experience to manage. A repeating aggregate geo-
located time-series has a pretty clear structured data schema, but at the time the app was developed, there 
was not an efficient common schema within the BSVE. Furthermore, the existing data sources used by 
GTSEDA are not efficiently queried in its current schema or MongoDB format.  

The approach taken for GTSEDA was to reshape selected BSVE data into a new schema and place that 
data onto the BSVE Postgres servers in an application table. Redeployment to BSVE Postgres was done 
in accordance with the BSVE documentation guide, but this plan basically forced two things upon 
GTSEDA: a CRON-like task would have to operate externally to BSVE to constantly update the new 
schema tables, and what tables a user could use would be dictated by the developers and sponsors of 
GTSEDA. 

2.1.1.2 SODA dataSource and NNDSS 

The primary source of data used within GTSEDA originally comes from the CDC. The NNDSS is a 
longstanding aggregate syndrome surveillance publication of the CDC. It consists of three tables; Table I: 
Infrequently reported notifiable diseases; Table II is divided into 14 parts with each part containing 
several weekly notifiable diseases (Morbidity and Mortality Weekly Report [MMWR] timestamps); and 
finally, there is Table IV: Tuberculosis. In the past, this list would have contained Table III: U.S. Deaths 
in 122 Cities, but it was discontinued in Week 40 of 2016 as part of a modernization effort. The data still 
exist and are reported by CDC via their own interface not provided to BSVE (see 
https://wonder.cdc.gov/mmwr/mmwrmorb.asp). 

CDC exports these tables to a broader community via an interface called Socrata Open Data API 
(SODA), which generally provides a JSON organized by MMWR week number for each location of two 
types: cities, states, or regions depending on context. 

These details are hidden to GTSED users, but all four of these CDC NNDSS tables are present in BSVE 
as a dataSource. The dataSource has the type “SODA,” and then respective tables from the CDC are 
enumerated in the name. Unfortunately, JSON returned from accessing this SODA data source have many 
fields that are unnecessary to syndrome surveillance, so rather than use these data directly, we reprocess 
prior to deploying GTSEDA and in an ongoing background task for weekly updates. 

One of the decisions made in pre-processing the SODA data to a new schema was to keep only the 
current week observation for each week. The SODA data are loaded with several extra fields that do not 
seem applicable the GTSEDA app.  

2.1.1.3 GTSEDA Schema 

The number of Postgres tables GTSEDA can interoperate with is not fixed, and conceptually distinct 
tables can be kept separate. The Postgres tables that GTSEDA uses are row-oriented data structures as 
shown in Table 2.1; however, the field names are not important. The GTSEDA app gets told which fields 
have the corresponding equivalent meaning in a JSON structure at startup. For future development, 
although the field names need not be the same, each field needs to have the same purpose, organization, 

https://wonder.cdc.gov/mmwr/mmwrmorb.asp
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and type, that is, equivalent schema. The type field of Table 2.1 refers to different diseases; for example, 
it can take on values identifying unique diseases monitored in NNDSS. 

Table 2.1. Data A Reprocessed prior to the User Seeing It into a Table with the Following Schema 

Field Name Purpose Value Type 
reporting_area or longname Uniquely identify a geolocation String 
timestamp datetime in Y/M/D format String 
series Name of observation type or time-

series 
String 

value  Value for observation at that time Integer 
   

2.2 User Interface 

The user interface (UI) follows a natural progression of exploratory and analytic analysis for geolocated 
time series. The UI provides various tools to transform, summarize, and examine time-series, cluster time-
series across geolocations and within geo-locations, and alert on unusually large quantities within time-
series.  

The UI is laid out vertically. At the top of the UI is a map widget and below that is the primary time-
series currently being considered by the application (Figure 2.2). The map widget responds to “onclick” 
events and can be used to select a new geolocation for analysis or further consideration. 

 
Figure 2.2.  Primary Information Display in App. AFHSB hospitals are displayed. Map values are current 

Exponentially Weight Moving Average values for Influenza-Like Illness for ages 0 to 4. 
This map and time-series plot is the primary display consistent across all tab types within the 
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app. Prev and Next buttons move threw locations, but the map can also be clicked to select 
locations. 

2.2.1 Query Tab 

Below the primary map and time-series is a tab set for app operation (Figure 2.3). Before using the app in 
any capacity, users should first select a data source and click Query All Locations. 

 
Figure 2.3.  Below the Primary Information Display (Figure 2.2), a Tab Set for Navigation of GTSEDA 

Capabilities Is Provided. The Query tab is selected in this figure. 

2.2.2 Select Tab  

The Select tab contains more tools for customizing the currently selected data. Importantly, a knowledge 
base allows users to select disease time-series by interest or topic (Figure 2.4). In addition, users can 
transform the selected data to only include a time period of active interest.  
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Figure 2.4.  Select Tab. Time-series can be selected by knowledge base properties and transformed for 

further operations. 

2.2.2.1 Methods 

Several statistical methods can be applied to geo-located time-series. We briefly outline each and point to 
related documentation when available. For this document, we assume that time-series are on MMWR 
weekly observations. 

2.2.2.2 Transformations 

A variety of transformations are available to be applied to the time-series and are described below. 

• Sum: If more than one time-series is selected from the knowledge base, then the counts of time-series 
can be summed prior to analysis via “sum” in Transformation.  

• Median Smoothing: Especially noisy time-series may benefit from a median smoothing. In media 
smoothing, the observation at time t of a time-series 𝑉𝑉𝑡𝑡 is replaced with the median of (𝑉𝑉𝑡𝑡−1, 𝑉𝑉𝑡𝑡, 𝑉𝑉𝑡𝑡+1) 
so that the middle of a 3-week time span is used as the actual observation. This approach was found 
to be useful in analyzing especially noisy ILI at smaller military facilities. 

• 1st Difference: The time-series at time t is replaced by 𝐷𝐷𝑡𝑡  =  𝑉𝑉𝑡𝑡 – 𝑉𝑉𝑡𝑡−1. Some distributions are better 
modeled in this fashion. However, this feature is of limited usefulness for the MMWR analysis.  
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• Center: Observations are replaced by 𝑉𝑉𝑡𝑡  =  𝑉𝑉𝑡𝑡 – ∑ 𝑉𝑉𝑢𝑢𝑢𝑢=𝑇𝑇
𝑢𝑢=1
𝑇𝑇

, where T is the number of observations in the 
time-series. 

• Scale: Observations are replaced by V_t = V_t /s.d(V). Checking scale and center together performs 
normalization of a time-series. Scale is useful for comparing unrelated disease counts and useful for 
measuring distance such as measurements employed in clustering. 

• Remove Seasonal Effect: When the number of weeks in a series is greater than 104, it is 
mathematically feasible to remove a seasonal effect prior to analysis. This transformation does so 
with a Seasonal Trend Loess (STL) decomposition. This transformation estimates a seasonal 
component, as discussed in the Summary Tab section below, and subtracts it from the time-series for 
further analysis. More information about STL is available at https://www.otexts.org/fpp/6/5. 

• 52-week window is a helper function to clip a time-series to the last 52 weeks of observations. Users 
can also perform this manually at the bottom of the Select tab. 

2.2.3 Summary Tab 

The Summary tab quantifies the historic distribution of the current time-series. Common statistics such as 
the mean and standard deviation of the time-series are reported here. Also reported are the 25th and 75th 
quantiles of the distribution and the percentile of the current observation (Current Quantile). This 
information gives an immediate quantification of how extreme the present observation is relative to the 
time-series historic range. 

If a time-series has more than two years of observations, an STL decomposition is also presented that 
breaks down the time-series into component parts. Figure 2.5 shows a typical STL time-series 
representation, and Figure 2.6 shows an STL representation in BSVE. This plot allows users to quickly 
assess whether a time-series appears to be drifting (trending) and to make distinct a true residual that 
might occur with a pandemic versus an expected annual seasonal component. More information about 
STL is available at https://www.otexts.org/fpp/6/5.  
 

 
Figure 2.5.  Ft. Sill Rates of Influenza-like Illness in Children 0 to 4. This time-series is not available on 

BSVE, but it illustrates the STL decomposition of a time-series within the summary panel. 
(Figure 2.6). 

https://www.otexts.org/fpp/6/5
https://www.otexts.org/fpp/6/5
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Figure 2.6.  Seasonal Trend Loess Decomposition of a Ft. Sill Time Series. The upper panel shows the 

cyclic seasonal component observed in this time-series. The middle panel shows the trend, 
and unusually in 2009 there is an upward trend peaking in August 2009. The bottom panel is 
the residual left over after subtracting the seasonal component and the trend. 

2.2.4 Clustering Tab 

Clustering is perhaps the most complicated tab in the application. Jargon has been exposed directly from 
R functions. The general procedure is to pick a distance measure and then a hierarchical clustering 
method. The “Relation” selection in the Clustering tab is where a distance is picked: it was titled 
“relation” because we also allowed time-series to be related by correlation and partial correlation, but that 
may be changed back to Distance in a future version because the distance matrix must be calculated from 
any measurement before performing a clustering (see Figs. 2.7 and 2.8). 
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Figure 2.7.  For Most Clustering Operations, Users Should First Apply the “Scale” and “Center” 

Transformations before Clustering. If the time-series are not scaled and centered, the clusters 
are valid, but they will be on the magnitude of the observations. 

 
Figure 2.8. UI for Clustering across Locations 

2.2.4.1 Relations/Distances 

The clustering is across locations currently loaded into GTSEDA. Suppose we number each location 
𝑙𝑙 ∈ {1, … , 𝐿𝐿}, where L is the total number of locations loaded into GTSEDA. Further, we number the 
time-series MMWR weekly observations 𝑡𝑡 ∈ {1, … , 𝑇𝑇}, where T is the total weekly observations. We 
calculate a distance between time-series 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝑠𝑠 as 𝑑𝑑(𝑣𝑣𝑟𝑟, 𝑣𝑣𝑠𝑠) where the form of 𝑑𝑑 depends on what is 
selected in Relation. 

We summarize each selection here: 

• Manhattan is 𝑑𝑑(𝑣𝑣𝑟𝑟, 𝑣𝑣𝑠𝑠) =  ∑ |𝑣𝑣𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑡𝑡 |. 

• Euclidean is 𝑑𝑑(𝑣𝑣𝑟𝑟, 𝑣𝑣𝑠𝑠) =  �∑ (𝑣𝑣𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑠𝑠𝑠𝑠)2𝑡𝑡 . 

• Correlation is 𝑑𝑑(𝑣𝑣𝑟𝑟, 𝑣𝑣𝑠𝑠) = | 1 − 𝜌𝜌𝑟𝑟𝑟𝑟|, where 𝜌𝜌𝑟𝑟𝑟𝑟 is the correlation between the time-series r and s. 

• Partial Correlation is correlation between r and s after conditioning on the values of the other 
locations. 

The remaining distance measures are more experimental in the context of the application. The above 
measures are emphasized because Manhattan distance seems to perform well in the context of 
proportional time-series (ILI rates); Euclidean distance seems to perform well in the context of count 
data; and finally, correlation is very easy to interpret. More information for the other distance options can 
be found at https://stat.ethz.ch/R-manual/R-devel/library/stats/html/dist.html. 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/dist.html
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Distances are pairwise calculated between each and every location, so that there is a distance matrix that 
is L by L—that is the number of locations by the number of locations—upon which clustering is 
performed. 

2.2.4.2 Hierarchical Clustering Method 

Clustering is done through hierarchical clustering such that time-series are grouped according to rules, but 
the rules vary according to the method selected. 

Options come directly from R, and recommended reading for these options is online in the details section 
of the underlying function at https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html.  
Briefly, the important options are the following: 

• Ward.D2. This algorithm precedes bottom up, joining clusters such that the variance within them is 
the lowest possible until all the locations are in one cluster. It generally discovers “compact spherical 
clusters.” 

• Complete. This algorithm precedes bottom up, joining clusters such that the closest locations between 
clusters are as large as possible (so that clusters are forced apart).  

• Single. This algorithm precedes bottom up, joining clusters such that the minimum distance between 
locations within two clusters is the smallest observed anywhere. It tends to find long “stringy” 
clusters and is related to a minimum spanning tree. 

Ward.D2 makes the most geographically interpretable clusters, but we leave the other options active for 
users. 

Finally, the user selects the number of clusters, which can be from 2 to 7, via slider. 

2.2.4.3 Clustering Map Output 

The most important output is a change to a map layer that colors locations by cluster membership. For 
example, Figure 2.9 is the clustering map output after selecting the 2011 to 2012 season of Figure 2.6 
with default clustering options except that four clusters are used instead of five. 

 
Figure 2.9. Clustering AFHSB Hospitals by ILI for Ages 0-4 in the 2012 to 2013 Season 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
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Clustering Interpretation with Cluster Means 

Each cluster has a mean over time for the time-series within the clusters. This takes the form of its own 
time-series, so that means change over time, and is particularly effective for the Ward.D2 method, which 
tries to minimize variances within clusters. In Figure 2.10, we see the cluster means for Figure 2.9. What 
is shown is that certain geolocations within the United States had their largest ILI rates for this 
demographic in March instead of December/January (Cluster 1—Orange). The effectiveness of clustering 
is that it helps guide the organization of geolocation into a common inference.  

 
Figure 2.10. Cluster Means. The orange cluster (Midwest and Pacific Northwest) is different from the 

other clusters because it had its largest peak for ILI illness for ages 0 to 4 in late February. 
Selecting each location individually confirms this fact. 

2.2.5 Within-Location Clustering Tab 

Another type of clustering within the app groups diseases within a location. Unlike the Clustering tab, the 
things being organized within a group are not locations, but rather diseases. This can help create 
understanding of the seasonality of diseases within a location by grouping time-series. Its usefulness is 
limited to anomaly detection and scenarios where rapid assessment of data within a location is necessary. 
The difference between this tab’s output and just examining the seasonality directly in the Summary tab is 
that here every disease known to a geo-location is examined at once. 

For example, we loaded NNDSS Table II data for states available at the time of this writing within the 
app. On the Select tab, we selected “Center” and “Scale” transformations. We selected “New York” on 
the map UI, and then we selected the “Within Location Clustering.” We left the defaults on the Clustering 
tab and clicked Clusters. This produces output like that show in Figure 2.11 where it can be seen one 
cluster of diseases has more case counts in summer than in winter. This helps us identify typical seasons 
across many agents. 
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Figure 2.11. Cluster Means for Within-Location Clustering. Note that there are two distinct types of 

diseases in New York: those that always peak in the summer within the period of observation 
and those time-series that do not. 

2.2.5.1 Clustering Interpretation with Cluster Dendrograms and Interactive Heatmaps 

Cluster means alone, however, are not sufficient to interpret the WithinLocation Clusters, mostly because 
there is no associated map that indicates membership such as is the case when grouping geolocations. 
Instead we rely on a dendrogram, measure heatmap, and interactive graph decomposition of the measure 
heatmap. These are shown in Figure 2.11, Figure 2.12, and Figure 2.13. 
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Figure 2.12. Dendrogram of Within-Location Clustering. Tracing diseases from bottom to top can help 

understand how clusters were merged. 

 
Figure 2.13. Distance Matrix as a Heatmap Visualized within the App. Distances over 86 units have been 

filtered out (threshold selected interactively within the UI). 
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The dendrogram (Figure 2.11) identifies cluster assignment as well as providing information for 
experienced users to assess the number of clusters that might be useful for these data.  

The interactive heatmap visualization (Figure 2.12) is typically associated with clustering dendrograms. It 
allows an experienced user to find pockets of related distances to understand cluster assignment.  
GTSEDA goes one step further than might be seen in a publication in that the coloring of the heatmap can 
be thresholded to be removed (colored grey) if it is over a user-selected value. 

The value of thresholding is seen in Figure 2.13, which constructs a graph from the heatmap data. 
GTSEDA places an edge between two diseases if their measurement distance is under a user-defined 
threshold. The app takes the information in the heatmap and presents it graphically, and because the 
heatmap value has been incorporated in the presence/absence of an edge, the nodes (diseases or locations) 
are colored according to color membership. This graphic presentation allows the user to assess the cluster 
centrality of a node. If a node is only connected to other nodes of the same cluster, then exploratory 
analysis should be interpreted as that node is well placed and central to the cluster; conversely, if it is on 
the edge, and connected to an equal number of members from several clusters, then its cluster 
membership is likely not as well placed. A perfect Ward.D2 clustering scenario would have each cluster 
having only low distance measures between members of the same cluster, but situation that never happens 
in practice. This finding is the same interpretation of heatmaps commonly seen in applied clustering 
literature. 

 
Figure 2.14. The Information of Figure 2.12 Re-interpreted as a Graph. Here edges are allowed between 

diseases when the heatmap Distance matrix distances are under a user-selected threshold. We 
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can see that the seasonal bifurcation of New York diseases is preserved in the edges between 
diseases. 

2.2.6 Alarms Tab  

Alerting in GTSEDA is done largely through the use of the R package: surveillance. The exception to this 
is Exponentially Weighted Moving Average (EWMA), which is handled internally within the app. The 
user may select and customize the current alerting system in the Alarms tab (which was formerly called 
the “Alarming Tab”). 

2.2.6.1 Exponentially Weighted Moving Average 

EWMA is the default alerting routine within the app. It is not new, and nothing that is discussed here is 
new. Alerting on EWMA depends on a smoothed historic value exceeding statistically derived upper 
control lines. The value of smoother is calculated recursively as 

𝑧𝑧𝑟𝑟𝑟𝑟 = 𝜆𝜆𝑣𝑣𝑟𝑟𝑟𝑟 + (1 − 𝜆𝜆)𝑧𝑧𝑟𝑟(𝑡𝑡−1), 

so the present value of the smoother is given as (1 − 𝜆𝜆) times the last value of the smoother plus 𝜆𝜆 times 
the current value of the time-series being considered, where 𝜆𝜆 ∈ (0,1) controls how much emphasis to 
place on the present observation. If 𝜆𝜆 is very high, then a strong emphasis is being placed on the current 
observation. Various methods exist for selecting 𝜆𝜆. 

Rather than let the user specify the value of 𝜆𝜆 directly, GTSEDA lets the user input an easier-to-interpret 
parameterization. We note that that an equivalent mathematical definition is  

𝑧𝑧𝑟𝑟𝑟𝑟 = 𝜆𝜆𝑣𝑣𝑟𝑟𝑟𝑟 + (1 − 𝜆𝜆)�𝜆𝜆𝑣𝑣𝑟𝑟(𝑡𝑡−1) + (1 − 𝜆𝜆)𝑧𝑧𝑟𝑟(𝑡𝑡−2)� 
𝑧𝑧𝑟𝑟𝑟𝑟 = 𝜆𝜆𝑣𝑣𝑟𝑟𝑟𝑟 + 𝜆𝜆(1 − 𝜆𝜆)𝑣𝑣𝑟𝑟(𝑡𝑡−1) +  𝜆𝜆(1 − 𝜆𝜆)2𝑣𝑣𝑟𝑟(𝑡𝑡−2) +⋯+ 𝜆𝜆(1 − 𝜆𝜆)𝑁𝑁𝑣𝑣𝑟𝑟(𝑡𝑡−𝑁𝑁) + ⋯, 

which implies that every observation of the time-series 𝑣𝑣𝑟𝑟 going into the past has a relative weight to the 
present observation of (1 − 𝜆𝜆)𝑁𝑁 where N is the number of time steps into the past we are considering. We 
can then define a relative weight and some time period in the past that we want that relative weight to 
occur. We call this “period in the past” the span of the EWMA smoother, and GTSEDA lets the user 
select a relative weight for that span. If the relative weight is 1/2, this span is typically called a “half-life,” 
because it is the period of time between halving of the weight. 

After a user selects a span, N, and a relative-weight, w, GTSEDA simply assigns 𝜆𝜆 = 1 − 𝑤𝑤1/𝑁𝑁, which is 
a mathematically equivalent parameterization.  

For example, the default control options for EWMA in GTSEDA sets a half-life of four weeks. The half-
life of four weeks is derived within the app as 𝜆𝜆 =  .159 = 1 − 0.5

1
4. Even though internally EWMA is 

parameterized in terms of this 𝜆𝜆, stating that every four weeks into the past each observation gets half as 
much weight in the current smoother is a lot more interpretable. Therefore, control options for EWMA 
include a span and a weight for the smoother.  

EWMA Upper Control Line 

The upper control line is parameterized by the number of standard deviations outside the mean an EWMA 
for a time-series should be before generating an alert. Typical values are 3 to 4 standard deviations 
depending on context. 
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The upper control line for the EWMA alerting is calculated in a standard way as 𝑈𝑈𝑈𝑈𝐿𝐿𝑟𝑟 =   𝜇̂𝜇𝑟𝑟   ±
𝑘𝑘 𝜎𝜎�𝑟𝑟

𝜆𝜆
2−𝜆𝜆

 , where  𝜇̂𝜇𝑟𝑟 is an estimate of the mean of the current time-series r,  𝜎𝜎�𝑟𝑟 is an estimate of the 
standard deviation, and k is a control parameter input by the user. This upper control line follows 
literature such as that outlined here: http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc324.htm. 

2.2.6.2 Early Aberration Reporting System C1, C2, and C3 

After EWMA, the next set of generally applicable alerts for counts are the Early Aberration Reporting 
System (EARS) algorithms C1, C2, and C3. These algorithms were developed more than a decade ago, 
and their name refers to names used in the original publications. Fricker et al. (2008) offer a broader 
discussion and comparison of EARS and cumulative sum (CUSUM)-based methodology. The GTSEDA 
app uses the implementation of EARS in the R package surveillance, which is more broadly discussed in 
Salmon et al. (2016). 

We quote from the surveillance R package: 

• “In C1 and C2 the expected value is the moving average of counts over the sliding window of the 
baseline and the prediction interval depends on the standard derivation of the observed counts in this 
window. They can be considered as Shewhart control charts with a small sample used for 
calculations.” 

• “In C3 the expected value is based on the sum over three timepoints (assessed timepoints and the two 
previous timepoints) of the discrepancy between observations and predictions, predictions being 
calculated with the C2 method. This method has similarities with a CUSUM method due to it adding 
discrepancies between predictions and observations over several timepoints, but is not a CUSUM 
(sum over 3 timepoints, not accumulation over a whole range), even if it sometimes is presented as 
such.” 

The important control parameter exposed in the UI is “Alpha,” which controls the sensitivity to unusual 
observations within the time-series before alerting. Alpha is interpreted as the tail probability of observing 
something as extreme as this under the Null hypothesis of no change in distribution. Lowering Alpha 
causes alarms to be less frequent and lowers sensitivity. 

In addition to EWMA and EARS, the UI has experimental support for other alerting algorithms from the 
package surveillance, but these remaining alerts require a long seasonal time-series. 

2.3 Future Work and Discussion 

If work on GTSEDA were further supported, then we believe four broad areas of improvement are 
possible. 

2.3.1 Data Sources 

In regards to new data source, any data source that is basically syndrome surveillance, or similar in form 
and schema to geolocated weekly time-series is appropriate to be used within GTSEDA.  

Beyond the topic of new data sources, either there must be some constantly re-engineering of GTSEDA to 
match new data schema or some schema specifications must be standardized within the BSVE such that 
apps can rely on it in the future. 

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc324.htm
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The BSVE is currently standardizing the concept of a geolocation in the form of a geoJSON project, 
which was not taken advantage of by GTSEDA, but even beyond that, geolocation standardization is 
standardizing the storage of time-series for geolocations, such that they can be efficiently queried by all 
apps.  

GTSEDA could bridge the gap by providing a data specification app or UI. Such an app is not GTSEDA 
per se but communicates to GTSEDA via Postgres storage the translation of new data sources to a schema 
that GTSEDA understands. It would be better to make universal the schema that stores time-series for 
MMWR weekly data and maps it to geolocations within the BSVE. 

Future work in this area is more than just finding new data sources: it is taking part in the standardization 
of time-series storage within BSVE. 

2.3.2 Automation 

The lack of automation in the app comes from its origin as “Exploratory Data Analysis” and “Visual 
Analytics,” but once the topic of alerting is broached, the subject of automation comes close behind. 

The systems that state and federal agencies use to monitor syndrome surveillance generally do not ask the 
user to interact directly with data simply to get an alert. A common paradigm is for the system to 
asynchronously run a suite of related alerts and annotate MMWR weekly data with the alerts that 
triggered. For example, in the GTSEDA app, the use case is to specify an alerting algorithm and then 
return every week to re-run it, but if that is the focus of GTSEDA, then a better idea is to simply run 
alerting when GTSEDA starts up.  

Automation needs to be promoted to a first-class concept within GTSEDA, such that users need to specify 
very little from week to week but instead only need to specify once what sort of alerts they are interested 
in receiving.  

2.3.3 Modularization 

The alerting system within GTSEDA is an example of a module that does not need to be directly placed 
within the GTSEDA application. There are component parts of the GTSEDA that would fit better within 
the BSVE if they were decomposed into separate systems that relied on application communications 
supported and recommended by Digital Infuzion. A direct advantage of this modularization would be that 
operations that are conceptually distinct would, with some data format standardization, be available to 
other applications. 

Modularization need not be merely breaking GTSEDA into component systems; it can also include re-
using available BSVE systems. For example, GTSEDA includes a map widget, and that map widget is 
partially redundant with the map UI being built into the BSVE. It is redundant in the sense that the 
display of geoJSON could be accomplished by either UI element. However, GTSEDA also uses the map 
widget as a primary way to allow the user to navigate from location display to location display, so the 
GTSEDA needs “onclick” events from the map. This GTSEDA-specific map use is an example of 
something that becomes more challenging when the obvious components from the BSVE are re-used. 

Using more focused expertise in the development of individual modules is another reason to break 
GTSEDA into component parts. For example, GTSEDA includes a knowledge base for selecting etiologic 
agents. This knowledge base is a topic unto itself, and BSVE is developing this capability in stand-alone 
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efforts. Rather than use a purpose-built knowledge base within the app, a more modular approach would 
query an external knowledge base for etiologic agents. 

2.3.4 Further Output Integration 

Currently, GTSEDA is on the cusp of having minimal dossier integration. This integration does not 
include image-based output, which would require an additional one-month effort. In addition, the current 
organization of the app does not allow users to efficiently communicate the aspects of the output they feel 
should go to the BSVE dossier. Aspects of the communicating what output is of interest to the user would 
be easier if the design were broke apart into the modules discussed in modularization.  

For example, if the alerting UI were its own module, then it would be clear from the operation of the 
alerting UI that the context for dossier output was current alerts, and presumably if the map UI is its own 
module, then it would be clear that the map layer is the dossier output of interest. 

We believe that engineering smooth dossier interaction needs to come during modularizing sub-systems. 
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3.0 Military Biosurveillance: Studying Military Community 
Health, Well-being, and Discourse through the Social 

Media Lens 

Social media has become a resource for studying different social, emotional, health, and economic 
conditions of communities through their online activities and shared content. Recently, studies have 
sought to understand the emotions and behavior in different groups of people through their social 
media footprints (Blei et al. 2003; De Choudhury et al. 2013). Other studies aim to investigate social 
issues and phenomena existing in communities through their online activities (Delgado Valdes et al. 
2015; Lin 2014).  

Social media platforms, such as Twitter, contain publicly available information that provides a 
resource for potential identification of subpopulations and communities (Blei et al. 2003; De 
Choudhury et al. 2013; Lin 2014). Applying machine learning and natural language processing 
techniques to social media content generated by military populations creates a potential to identify, 
characterize, and monitor their health and well-being. For instance, recent studies used signals from 
social media to study subpopulations online with the goal of detecting food poisoning within certain 
subpopulations and geographic regions (Harris et al. 2014) and identifying subpopulations of smokers 
and drug addicts (Paul and Dredze 2013).  

Military service type (e.g., Army, Navy, Marine, Air Force, Active Duty, Reserves, and Veterans) 
may play a role in the health and well-being of military personnel, including the development of 
specific health conditions. Boehmer et al. (2003) studied the association between military service and 
health-related quality of life, using a population-based sample of adults in the United States. They 
found that the active-duty population had more health complaints than either reserve or veteran 
populations.  

In this work, we aim to understand the differences in online behavior and content produced by 
military populations, which share common characteristics, such as location, work, and culture, and 
compare them with non-military populations. Specifically, the goal of this section is to qualitatively 
and quantitatively estimate language variations and differences in communication behavior across 
these two populations.  

Understanding social media activities and discourse of military populations may help decision makers 
gain real-time insights into these populations’ mental health, including social and emotional stressors, 
and other health-related issues through a minimally invasive and economic approach. Public health 
researchers and authorities could use the proposed methods to identify targeted populations quickly 
and distribute resources effectively.  

Next, we list our research questions, provide some background, and describe our data and methods for 
identifying military users on Twitter. Then, we present our analysis and results. We conclude with a 
discussion about the implications of our findings. 

3.1 Research Questions 

Our motivation to study social media activities and discourse of military populations is to better 
understand their online social interactions and help to identify issues specific to military populations. 
Overall, we are interested in answering the leading broad questions by addressing the following finer 
research questions. 

• How does the military population use social media? 
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–  RQ 1: What are the differences in tweeting behavior between military and non-military 
(control) populations? 

• What do military users discuss in social media? 

– RQ 2: What are the linguistic differences between the content produced by the military vs. 
non-military (control) populations? 

– RQ 3: What are the seasonal trends of sentiment expressed in military and control tweets? 

– RQ 4: What kinds of topics do people in the military and non-military (control) populations 
talk about on social media? 

• Do military users talk about health differently than others? 

– RQ 5: Are there any differences in the discourse of health-related topics by the military 
population compared to the control?  

3.2 Background and Related Work 

In this section, we first provide a background and summary of prior research about the U.S. military 
population. Then, we briefly discuss prior work on understanding different populations through social 
media data. 

3.2.1 Characteristics of the U.S. Military Population 

The U.S. military consists of active-duty forces (Army, Air Force, Marine Corps, and Navy) and 
supporting groups (National Guard, Military Reserves, and Coast Guard). Within the United States, 
armed forces density varies by state; Texas, California, North Carolina, and Virginia have the highest 
concentrations (Segal and Segal 2004). 

In active duty and the reserves, individuals sign up for a specific length of duty and leave service or 
retire after that term. Three-quarters of the military population are less than 40 years old, and half of 
the active duty enlisted personnel are less than 25 years old. More than half of the military personnel 
are married, and 73% of married personnel have children (Office of the Deputy Assistant Secretary of 
Defense 2013). The military population is diverse, without discrimination of sex, race, or native 
language. A unique characteristic of the military lifestyle is the frequent relocation of personnel and 
their families. The military is vulnerable to physical and mental health problems with nearly 18% of 
active duty deaths caused by illness, and more than 10% of deaths are caused by suicides (Segal and 
Segal 2004).  

3.2.2 Studies on Military Populations 

Since the U.S. armed forces changed from drafting to enlistment in 1973, sociologists have debated 
whether to study the military as an institution or an occupation (Siebold 2001). In general, the military 
is becoming oriented as a profession yet retains institutional features (Siebold 2001). The U.S. 
military population reflects America's racial, ethnic, religious, and socioeconomic diversity (Segal and 
Segal 2004); however, their military status unifies them as a unique subpopulation.  

3.2.3 Understanding Populations through Social Media 

As more and more users adopt social media, recent studies have attempted to use social media data to 
understand different subpopulations. Geotagged social media data are being used to identify 
populations in specific geographical neighborhoods and urban areas (Delgado Valdes et al. 2015; Lin 
2014). Another body of work investigates specific demographic groups such as new mothers (De 
Choudhury et al. 2013), fathers (Blei et al. 2003), and mothers using anonymous social media 
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platforms (Schoenebeck 2013). These studies use social media profile information to identify users 
belonging to specific demographic groups or use forums to recruit subjects.  

In line with recent research, we seek to study the U.S. military population through the lens of their 
online social media activities, particularly through Twitter. 

3.3 Data 

Identifying subpopulations in social media with certain common characteristics (e.g., profession or 
location) is a challenging task. For our study, the data collection problem entailed differentiating 
public social media data from the military population and the surrounding civilian population.  

Our initial dataset includes nearly 200 million geo-tagged tweets from November 2011 to June 2015 
that originated within a 25-mile radius of 31 U.S. military base locations globally. We used this 
historical dataset to build a lexicon to identify and sample users who are likely to belong to the 
military population.  

For our analysis, we choose six different U.S. military installations located in three states in the 
continental United States (Table 3.1). We chose locations that have a high ratio of military to 
surrounding population. For each of these states, we chose one control location that is at least 50 miles 
away from any military facility and assumed that at this distance users were less likely to belong to 
the military population. From tweets that originated within a 25-mile radius of military facilities, we 
sampled users who were likely to belong to the military population using the methodology explained 
in the next subsection. We sampled the same number of users from non-military locations for our 
control dataset. In this manner, we collected up to 3,200 of the most recent tweets (in June 2015) per 
user in the military and control samples. Note that this timeline dataset contains anonymized tweets 
with and without geographic coordinates.  

Table 3.1.  Military Locations L1…L6 and the Corresponding Number of Users Sampled for Both 
Military and Control Populations Together. The total number of users sampled across six 
locations is 10,814. 

L1 L2 L2 L4 L5 L6 
4,246 1,040 1,538 1,372 1,720 926 

3.3.1 Data Anonymization 

We followed a rigorous data anonymizing procedure to ensure privacy of all Twitter users. The data 
collected from a social media vendor and through querying the Twitter API were anonymized 
specifically for usernames, userids, and tweetids. These data were fed into an Elasticsearch engine 
where they were encrypted using state-of-art encryption algorithms. Our analysis is based only on 
completely anonymized data, and findings are reported on an abstract, aggregate level. Below is the 
detailed description of our sampling and data collection procedures. 

3.3.2 Sampling Military Users on Twitter 

While studying social media activities and content shared by the military population, our first 
challenge was in sampling Twitter users who are likely to belong to the military. Military population 
includes individuals who are in active duty, their family members, and veterans. The standard practice 
in identifying specific events or users in social media is to search for specific terms or hashtags in the 
tweets [Cui et al. 2012; Starbird et al. 2014). This approach was not appropriate for our experiments 
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because we were interested in analyzing the content itself; extracting tweets with such keywords 
would bias our content analysis.  

Another approach often used to identify specific users on social media is to use a database or web 
listings of users belonging to specific groups (e.g., online listing of Twitter handles of journalists, 
used in (Soni et al. 2014]). However, to the best of our knowledge, there are no such listings available 
specifically for military users. Extracting tweet handles for some military organizations from their 
websites (e.g., @USArmyReserve, @camp_Lejeune, @Military1Source) provided a way to identify 
only a small subset of military users. Therefore, we devised an approach for discovering potential 
military user Twitter accounts based on publicly provided content in the profile description.  

To gather tweets that have a high likelihood of being posted by someone in the military, we extracted 
tweets that originated within a 0.5-mile radius from military base locations. These locations were 
selected based on the highest percentage of military-to-surrounding population ratio obtained from 
publicly available data 1. The rationale for choosing a 0.5-mile radius was two-fold; it restricted the 
area and increased the probability of obtaining tweets from military users, and the resulting number of 
users per area is nearly 1,000, which is a manageable size for faster annotation. Expert annotators 
classified profile descriptions of these anonymized users and the list of keywords extracted from the 
classified profile descriptions is shown in Table 3.2. 

Table 3.2. Example Keywords Used to Identify Military Users 

Group Keywords 

Active Duty military, national guard, usmc, corporal, sergeant major, hospitalman, sailor, 
usaf  

Family army wife, usnspouse, military girl, navygirlfriend, army brat, airforce wife 
Veteran veteran, usnveteran, retired army, ex navy 

  

To sample Twitter users who are likely the military population, we extracted tweets from a 25-mile 
radius of the facilities in chosen military locations and filtered tweets having most of the keywords 
from our lexicon in their profile description. Because we used both the geo-location and the 
appearance of keywords in the profile description to sample users, we expect our approach to perform 
better than the geo-location-based approach used in prior work (Coppersmith et al. 2014). For the 
control sample, we identified users from the control locations who did not include any of the 
keywords in their profile description. However, this control sample might include military users if 
they do not explicitly state their membership in their profile description. Timelines of the sampled 
users were collected and anonymized according to the description above. 

3.4 Analysis and Results 

3.4.1 RQ1: Differences in Social Media Activities of Military vs. Control 

To identify the differences in tweeting behavior between the military personnel (members and 
families in the military community) and control, we extracted the following measures: (1) size of their 
online social networks (i.e., the number of followers and friends), (2) interaction with other Twitter 
users (using user mentions as a proxy), (3) user's interaction with large groups of virtual communities 
(using hashtags as a proxy), and (4) ratio of geo-tagged messages to understand their practice of 
location sharing in social media. We present and contrast the mean counts that represent user activity 

                                                      
1  http://www.militaryinstallations.dod.mil/ 
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and online behavior across populations in Table 3.3. We observe a high degree of variability among 
the military and control populations. 

Table 3.3. Comparing Mean Values for User Activities and Online Behavior across Military vs. 
Control Populations (p-value ≤ 0.001***, p-value ≤ 0.01**) 

Counts µmil µcon p-value 

Favorite 1604.1  2113.8 *** 

Friend 663.7  498.2  ** 

Follower  955.9 976.0  

Status 8455.2 8268.4  

Tweet freq. 5.434 6.656 *** 

Geotag  0.155 0.138 *** 

Hashtag  0.216 0.186 *** 

Media 0.097 0.112 *** 

Mention  0.478 0.497 *** 

Retweet  0.200 0.239 *** 

Url  0.237  0.183 *** 

    

Twitter Usage and Frequency: We found that tweeting frequency is higher for the control population 
than the military. The differences in status counts and the number of followers per user are not 
statistically significant for military vs. control populations. Military users write a higher proportion of 
tweets with geo-tags. Moreover, it has been reported recently that military personnel are allowed to 
use smartphones (Powers 2014; BBC 2013), which have the geo-tagging capability. 

Size of Social Network and Online Interactions: The mean number of favorite counts is higher for the 
control population and the mean number of friend counts is higher for the military population. 

The mean ratio of tweets with mentions and retweets shows that military users interact less with 
others on social media using @-mentions and retweets compared to the control, even though they 
have similar size social networks. However, military users include more hashtags and URLs on 
average but less media content compared to the control population.  

3.4.2 RQ2: Differences in Language Use between Military and Control 

Psychology literature suggests that language is a reliable way of measuring people's internal thoughts 
and emotions (Tausczik and Pennebaker 2010). Hence, we focus on understanding military 
populations through the language used in their tweets. To identify the differences in the linguistic 
attributes between the military and control users, we first use a dictionary-based approach applying 
the psycholinguistic lexicon Linguistic Inquiry and Word Count (LIWC) (Pennebaker et al. 2001).  

Social media language, specifically in microblogs, is often found to be non-standard (Eisenstein 
2013). Although there are a few recent works on normalizing techniques to convert tweets to more 
standard language (Han and Baldwin 2011; Yang and Eisenstein 2013), their performance has shown 
an only marginal increase in accuracy. Because these methods are in a very primary stage of 
development, we did not perform any normalization. Instead, we used an open vocabulary approach 
for extracting terms that differentiate the language of the military and control populations in 
complementary to dictionary-based (LIWC) analysis.  



 

3.6 

3.4.2.1 Differences in Linguistic Attributes  

We used the psycholinguistic lexicon2 to measure the differences in linguistic attributes. LIWC 
consists of several categories of linguistic attributes, such as linguistic or psychological processes, 
personal concerns, and spoken categories. 

To measure the differences in LIWC linguistic categories, we aggregate all tweets per user, then count 
the number of LIWC terms in each category, and normalize these counts by the total number of 
tokens in the tweets written by that user. We compare the differences in LIWC terms for the military 
and control populations using an independent sample t-test. We report the results, showing only the 
measures that exhibit the same direction in the t-test for all military locations in Table 3.4.  

Linguistic Processes: Our results show that the military population uses more articles (e.g., a, an, the) 
and prepositions (e.g., to, with, above) compared to the control. Military users talk more about others 
by using third-person plural words (e.g., they, their) in comparison with the control. 

Psychological Processes: Military populations talk more about work and financial issues compared to 
the control populations in social media, as indicated by higher mentions of work (e.g., job, majors, 
labor) and money (e.g., bank, income, loan) related terms. In all of the six locations, military users use 
more home (e.g., family, leasing, housing) related words compared to the control, although none of 
the differences are statistically significant. 

Military personnel in certain locations use a significantly higher number of death-related terms (e.g., 
buried, died, kill). Compared to control users, military users talk significantly less about school-
related terms; they talk less about religion (e.g., church, mosque, prayer), although the differences are 
not statistically significant. Military users in all of the six locations use inhibition-related words (e.g., 
block, constrain, stop) in a significantly higher rate than respective control users.  

3.4.2.2 Keyword Extraction  

To find keywords that are specific for military and control populations, we extracted terms that 
differentiate language between these populations. We used a regularized log-odds ratio-based method 
(Eisenstein et al. 2011), which compares the base word distribution of each group and outputs terms 
that are specific for each group. We show the top terms for the military and control samples in Table 
3.5. 

Looking at the top population-specific terms, we find that terms relevant to the events in military life 
(e.g., Semper [motto of U.S. marine corps], barracks [buildings in military facilities], boot camp, 
deployed, stationed, Sergeant) are more prevalent in the social media content of the military 
population. On the other hand, terms related to school, work, and leisure (e.g., ep [episode], tix 
[tickets], dorm, campus, Raiders [sports], Savemart, Blackstone [stores or businesses], Greensboro, 
Winston, Sanger [place names]) are more prevalent in the control population's social media content.

                                                      
2  Linguistic Inquiry and Word Count (LIWC): http://www.liwc.net 
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Table 3.4. Differences in Linguistic Attributes between Military and Control Populations Measured Using LIWC. We only present linguistic categories which 
have the same directions across populations. ∆= (µmil- µcon) x10-3 (p-value ≤ 0.001***, p-value ≤ 0.01** 

 L1 L2 L3 L4 L5 L6 
Category ∆ t-stat p ∆ t-stat p ∆ t-stat p ∆ t-stat p ∆ t-stat p ∆ t-stat p 
Linguistic 

                  Article 5.4 16.0    *** 1.3 1.9 
 

2.2 4.2 ** 1.7 3.2 
 

1.6 3.2 
 

5.4 7.4 *** 
Prepositions 10.0 16.1 *** 1.5 1.3 

 
3.3 3.7 * 4.1 4.2 ** 3.3 3.7 * 9.4 6.8 *** 

3rd-person pl. 0.3 4.0 ** 0.5 3.0 
 

0.1 0.7 
 

0.8 5.8 *** 0.3 2.62 
 

0.2 1.7 
 Psychological 

                  Personal 
                  Work 1.2 10.9 *** 0.3 1.8 

 
0.2 1.7 

 
0.6 2.4 

 
0.5 3 

 
1.3 5.8 *** 

School -0.3 -2.8 
 

-2.1 -8.7 *** -1.7 -7.4 *** -1.9 -9.0 *** -1.4 -6.3 *** -0.4 -1.5 
 Money 0.8 6.2 *** 0.5 1.9 

 
0.1 0.2 

 
0.5 2.2 

 
0.5 2.7 

 
1.4 5.1 *** 

Home 0 0.3 
 

0.2 1.2 
 

0.5 3.1 
 

0.2 1.4 
 

0 0.2 
 

0 0.1 
 Death 0.1 3.7 * 0 0.6 

 
0.2 3.4 

 
0.3 4.7 *** 0.1 1.4 

 
0.1 1.2 

 Religion -0.2 -1.2 
 

-1.1 -2.7 
 

-0.2 -0.9 
 

-0.1 -0.6 
 

-0.1 -0.5 
 

-0.3 -0.9 
 Relativity 

                  Motion 1.1 5.7 *** 0.5 1.1 
 

0.4 1.7 
 

1.1 3.7 * 0.6 2.3 
 

0.1 0.4 
 Relative 9.2 11.5 *** 1.2 0.8 

 
4.7 4.2 ** 3.8 3.0 

 
2.3 2 

 
6.6 3.8 * 

Space 6.1 14.7 *** 1.5 1.8 
 

1.9 3.0 
 

3.0 4.4 ** 1.7 2.6 
 

6.5 7.0 *** 
Cognitive 

                  Inhibition 0.7 10.2 *** 0.5 3.7 * 0.5 4.7 *** 0.7 6.8 *** 0.4 4.4 *** 0.7 4.7 *** 
Causation 0.4 2.8 

 
0.6 2.7 

 
0.7 3.7 * 0.8 3.8 * 0.2 0.9 

 
0.6 2.1 

 Perceptual 
                  Perception -0.3 -1.5 

 
-0.5 -1.4 

 
-0.4 -1.7 

 
-0.2 -0.5 

 
-0.6 -2.04 

 
-0.3 -0.8 

 Spoken 
                  Nonfluencies 0.1 3.2 

 
0.1 1.5 

 
0.2 3.5 * 0.1 2.4 

 
0.1 2.2 

 
0 0.5 
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Table 3.5. Keywords Specific to Each Military and Control Sample, Extracted Using Sparse Additive 
Generative Models of Text (SAGE; Eisenstein et al. 2011) 

Military Control 
deployed, sergeant, marines, afghanistan, army, soldiers, 
usmc, stationed, marine, sgt, barracks, #marines, #navy, 
hooyah, ssgt, pas, oorah, napa, sempa, bragg, #semperfi, 
bliss, launch, veterans, ty, lejeune, bootcamp, corps, 
cammies, hooah, airborne, dam, okinawa, deploy, 
#veterans 

pm, dorm, fresno, raider, #wreckem, lbk, tech, 
lubbock, frfr, burritos, pismo, ttu, ily, como, packs, 
Ep, shaver, rec, tcu, raiders, que, hp, bojangles, 
savemar, #texashtech, cheers, stock, campus, 
shaver 

  

We find that military slang words are widespread in the social media content of military users (e.g., oorah 
[battle cry of marine corps], hooyah [battle cry of the navy], chow [food]); whereas the control users have 
widespread usage of internet slang words (e.g., ep [episode], tix [tickets], ik [I know], tbh [to be honest]) 
and entity names (e.g., Greensboro, Fresno [place names], Bojangles [food chain], ttu [university], 
Raiders [sports]). These results show that social media language of the military population is different 
from the control population. 

3.4.3 RQ3: Trends of Sentiment for Military and Control 

Public opinions about real-world events and concepts may change over time, and opinions are often 
expressed through social media. Temporal topical analysis and sentiment analysis on social media data 
are active research areas (Diakopoulos and Shamma 2010; Mei et al. 2007). Additionally, temporal 
topical analysis is useful for public health research, such as finding disease outbreaks through social 
media posts (Corley et al. 2010; Culotta 2010). To analyze the seasonal trends of sentiment, we created a 
temporal dataset by binning tweets from each month. Over a 12-month period, we compared same-user 
tweet content from military personnel and civilians who wrote at least 10 tweets per month. We used the 
Valence Aware Dictionary and sEntiment Reasoner (VADER) sentiment analysis library (Hutto and 
Gilbert 2014), a recent rule-based model for sentiment analysis with state-of-the-art performance. For 
each month, we obtained average scores for positive and negative sentiments of all the users and plotted 
the overall averages (Figure 3.1).  

According to the trend plots in Figure 3.1, the sentiment scores vary across the months of the year for 
both the military and control populations. Overall, the military population expresses lower positive 
sentiment in social media compared to the control samples (except for the location L1). Notably, the 
positive sentiment scores of military population show an increased trend during the months of November 
and December, which is the holiday season in the United States (Thanksgiving, Christmas, and New 
Year).  

Looking at the negative sentiment scores in the bottom row of Figure 3.1, the military users express 
significantly higher amount of negative sentiment in their social media content compared to others. 
However, the negative sentiment scores show a reverse trend for the two locations L1 and L6, which are 
located in the same state. Further investigation is needed to understand whether the location of military 
personnel affects their sentiment expressed in social media. 
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Figure 3.1. Monthly Trend of Positive and Negative Sentiment Scores 

3.4.4 RQ4: Topic Variations between Military and Control 

Individuals use social media to report about their daily activities, life events, and opinions about various 
matters. The differences in the topics between the two populations indicate differences in social 
interactions and broad themes in their daily activities. Therefore, we aim to understand the differences in 
the language and the latent topics between the two groups.  

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is a classic method for topic modeling. Topic models 
are based on the assumption that natural language texts are built using a small number of latent topics, 
and the words in the document represent those topics. LDA is a bag-of-words based generative 
probabilistic model. The model builds on the words as observed entities, and then it learns the hidden 
(latent) topics by capturing intra-document statistical structure via mixing distributions of the observed 
words. 

We implemented our topic model using the python library Gensim (Rehurek and Sojka 2010), which is 
based on online LDA (Blei et al. 2003). After experimenting with several configurations, we determined 
that 100 topics is a reasonable number of topics. We combined all the tweets from a user and define it as a 
document unit for topic modeling. We performed standard filtering and cleaning of documents by 
removing stop words and cleaning HTML tags, followed by lemmatization and stemming. As emojis 
(smiley faces, sad faces, angry faces) are prevalent in tweets, and they are used to express emotion and 
other non-verbal cues, we included them in our data. 

We trained the topic model using tweets from location L3 (1,538 documents in the training set, with a 50-
50 split between military and control) with 100 topics and used that model to infer topics for the other 
five military-control pairs. Topics inferred from each document unit are averaged across all the users in 
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the set to form two distributions for military and control. The averaged distribution across all the topics is 
compared against the military and control locations.  

We selected the topics where control and military populations differ by more than 10% in the weight of 
their averaged distributions. The relative difference between topic distributions of military and control 
populations is shown in Figure 3.2. The proportion of the average topic distribution of the military 
population is shown in the colored area, and the non-colored area represents the respective measure of the 
control population. 

 
Figure 3.2.  A: Distribution of Topics Based on Tweets for Military and Control Populations. B: 

Distribution of topics based on tweets for military and control populations grouped by 
geography. C: Distribution of topics based on tweets for military and control populations 
grouped by military service types. Colored area: Military population; non-colored area: 
Control population. 

Figure 3.2A shows that across all the locations, profanity topic (Topic 2) is more prevalent in the military 
population compared to the control. Emojis (Topic 5 and 10) are highly prevalent in the tweets from the 
control population compared to the military users. Other topics do not show any consistent trends across 
different locations. 

To understand the impact of geography and the type of military service (Army, Navy and Marine, and Air 
Force) on the topics, we look at further groupings. The military populations of states S1 and S2 use more 
Spanish words than the control, but in state S3 the control uses more Spanish words than the military 
(Figure 3.2B). We observe the same patterns of increased profanity topics (Topic 2) in the military 
population and emojis (Topic 5 and 10) in the control population when the populations are grouped by 
their respective states. When populations are grouped based on military service type, the Navy, Marines, 
and Air Force use less profanity compared to the control populations, while the Army population uses 
more profanity compared to their control group (Figure 3.2C). 

It is interesting to note that even a completely data-driven model such as LDA can pick up the differences 
in the social media content of the military and control populations. The differences are present in the 
topics showing emotional, daily activities, sports, and work-related activities. These findings are 
consistent with the results observed for our previous research questions. 
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3.4.5 RQ5: Health-related Discourse between Military and Control 

Military populations are considered to be more vulnerable to infectious diseases, such as influenza, and 
mental health issues, because of overcrowding and a high degree of physical and mental stress (Gray et al. 
1999; Pflanz 2001; Russell et al. 2006).  

To identify differences in the way military members and their families talk about health conditions 
compared to the general population, we created a lexicon of health terms and possible misspellings (e.g., 
“influenza” or “influlenza” for the correct spelling “influenza”) and grouped them into six categories as 
shown in Table 3.6. 

Table 3.6. The Example of Health Category Keywords. A * indicates a regular expression; for example 
fever* indicates words that have a stem fever with difference suffixes such as fevers, feverish 
and fevered. 

Category Example Keywords and stems 

Self-related health experience suffer*, struggl*, fatigue, weak 
ILI-specific symptoms  fever*, cough*, shiver*, runny nose 
Disease names and related terms  influenza, sick*, flu, asthma 
Health entities  hospital*, doctor*, ER, clinic* 
Parts of body & related  lung*, throat, stomach, platelet 
Non-ILI-specific symptoms  breath*, diarrhea, dehydrat*, sneez* 

  

We calculated the total counts of terms appearing in user tweets and compared the average term count per 
token using a t-test (Table 3.7). After Bonferroni correction (Dunn 1961), we find that the direction and 
significance level of these health measures differ across health-related categories for the military and the 
civilian populations.  

Table 3.7.  Comparing the Counts of Health Words for Military vs. Control Populations 

Health Category  µmil µcon t-stat p-value 

Self-related health experience 3.04 3.35 -5.246 9.49 x10-7 

ILI-specific symptoms  71.5 79.0 -3.701 1.29 x10-3 

Disease names and related terms  1.06 1.17 -4.781 1.06 x10-5 

Health entities  1.02 1.07 -1.576 6.90 x10-1 

Parts of body & related  28.5 33.6 -5.134 1.73 x10-6 

Non-ILI-specific symptoms  49.5 54.5 -3.623 1.75 x10-3 

     

Overall, the mean frequency of health-related tweeted complaints from the civilian population is slightly 
higher than the military population across all health-related categories. These results are obtained through 
comparisons of military and civilian populations across different geo-locations and military service types. 
In Table 3.7, we show that civilians use disease-related words more frequently than the military.  
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3.5 Discussion 

In this section, we analyzed social media data collected from military sites and corresponding control 
populations of users surrounding military locations. We explored the language and metadata inside the 
tweets from both populations in the following dimensions: behavior, language, and the discourse related 
to health topics. 

Through the analysis of tweeting activities, we found that military populations use fewer retweets and @-
mentions compared to the control group. As the usage of retweets and @-mentions are usually considered 
a measure of social interaction on Twitter (Macskassy 2012), similar to comments and likes on Facebook, 
these findings indicate that the military users are less interactive on Twitter compared to others. 

We found differences in linguistic patterns of military users compared to the control: tweets from military 
users have a higher usage rate of articles, propositions, third-person plural pronouns, and inhibition 
words; military users talk more about work and death and less about school-related terms in social media. 
The increased use of articles suggests that military users use more concrete nouns, and they are interested 
in objects and things (Tausczik and Pennebaker 2012) compared to the control, while the increased use of 
propositions suggests that military population is concerned with precision (Tausczik and Pennebaker 
2012). Inhibition words are used to suppress strong emotions (Rand et al. 2015). Therefore, increased 
usage of inhibition words by military users may suggest that they suppress the expression of strong 
emotional content in social media compared to the control population. Military-specific terms and slang 
words are prevalent in the tweets of the military users, while the control users talk more about school and 
leisure activities. 

From our analysis, we observed significant differences in online behavior and discourse of the U.S. 
military when compared to civilian users in social media. Below, we discuss the implications of our 
findings on life and health of military populations. 

3.5.1 Implications for Military Social Life 

Our study offers novel and interesting findings on social media activities and the discourse of the U.S. 
military population. This is an early work towards understanding the role of social networks for 
improving lives of military populations. From our findings from RQ1, military populations have lower 
social interactions on Twitter compared to the control users. This finding suggests that military users are 
socially less active than others in social media. Findings from RQ2 show a significantly higher usage rate 
of inhibition words, which suggests the self-consciousness expressed in the military populations' 
messages.  

3.5.2 Implications for Military and Public Health 

Our findings for RQ3 show significant differences in the use of medically related terms between military 
vs. civilian populations on Twitter. Overall, civilian populations tend to use more health-related terms 
(diseases, symptoms, etc.) than military populations. However, we cannot conclude that military 
populations are healthier compared to civilian populations, as further study is needed to explore the use of 
colloquial language or military jargon instead of standard disease terminology. Nonetheless, the direction 
of the variables that indicate health-related terms shows that there are significant differences in the way 
military and civilian populations talk about health in social media. 

The discovered health-related expressions of military personnel on Twitter suggest that it is possible to 
use social media content from military users to identify emerging health issues that are prevalent in the 
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military population due to the nature of their job and living conditions. Faster and better identification of 
health-related issues have implications on public health. 

3.5.3 Limitations and Future Work 

First, we relied on social media content from Twitter alone to study our research questions. Using only 
one social media source is a limitation and future work can expand this to other sources such as Facebook 
and Reddit. Second, we relied on the geotagged tweets for the initial identification of military users. 
However, recent work shows biases in the geotagged Twitter data regarding text content (Pavalanathan 
and Eisenstein 2015) and suggests considerations of these biases when generalizing research findings. 
Third, we relied on geo-origins of the tweets and keywords in Twitter profile descriptions to extract users 
belonging to the military, but better identification methods can be explored. Fourth, we did not take into 
account demographics for military and control populations. 

There are several directions for future work. Complementing this analysis with an interview study about 
social media usage of the military users will help researchers and decision makers to understand the 
limitations in using social media among military personnel. 

Moreover, linguistic differences between military and civilian users would enable the construction of 
classification models to automatically identify military users in social media. Expanding the analysis on 
health discourse and deriving cues about military health issues to predict disease outbreaks is another 
possible direction. 

Finally, understanding the discourse of military when compared to the civilians helps to identify and 
prevent social issues affecting them non-evasively. For instance, differences in discourse between military 
and non-military populations have been effectively used in other studies to identify emotional stress, 
depression, and post-traumatic stress disorder and related illnesses. In the future, we would like to study 
fine-grained emotional differences between military and non-military populations over time and model 
language variations among populations more effectively.  

3.6 Conclusion 

In this work, we studied language and online behavior of military populations compared to civilians 
within the same geographic region through social media. We observed significant differences in tweeting 
behavior between these populations. We further analyzed language inside the tweets and observed that 
there are significant linguistic differences in emotion and psychological words used between military and 
civilian populations. Finally, we found that there are significant differences in health-related discourse 
between the military and civilian populations.  
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4.0 Military Biosurveillance: Predicting Influenza Dynamics 
with Neural Networks Using Signals from Social Media  

4.1 Motivation  

Every year, 500,000 deaths worldwide are attributed to influenza (WHO 2009). The Centers for Disease 
Control and Prevention (CDC) reports weekly on the level of ILI seen year round in hospitals and doctor 
visits. These values are used to monitor the spread and impact of influenza; however, by the time the ILI 
data are released, the information is already 1-2 weeks old and is frequently inaccurate until revisions are 
made (Paul et al. 2014). To overcome this, we propose making use of large amounts of social media data, 
such as Twitter, to be a secondary source of information in order to predict current and future ILI 
proportions—the total number of people seeking medical attention with ILI symptoms. In previous related 
work, flu forecasting has been accomplished through the use of basic linear autoregressive models, linear 
autoregression exogenous models, support vector machine regressions, logistic regression classifiers, 
susceptible, infectious, removed (SIR) models, and more (Broniatowski et al. 2013; Santillana et al. 2015; 
Riley et al. 2015; Shaman and Karspeck 2012). The addition of social media features to several of these 
models, such as the linear autoregressive model, has improved the model’s performances over ILI data 
alone (Paul 2016; Smith et al. 2016; Paul et al. 2014). Our work is geared toward applying these data 
sources to more powerful machine-learning models. Having this predictive power can aid health officials 
to properly prepare for and respond to yearly flu outbreaks. 

4.2 Approach  

By integrating the information that people tweet about—e.g., topics, syntax, style and their 
communication behavior (such as hashtags and mentions)—we built predictive models for ILI and 
confirmed influenza activity across different geographical locations in the United States. We experiment 
and evaluate the predictive power of a variety of features and machine-learning models—e.g., support 
vector machines with radial basis function or linear kernels, AdaBoost with Decision Trees (Pedregosa et 
al. 2011). We are the first to evaluate the predictive power of neural networks—Long Short-Term 
Memory (LSTM) for ILI nowcasting and forecasting (Chollet 2015). An LSTM is a special type of 
recurrent neural network that is capable of preserving information and learning long-term dependencies in 
data, which traditional recurrent neural networks struggle with. For this specific reason, we chose LSTMs 
to model our data over the course of several weeks. 

4.3 Results  

We found that LSTMs achieve the best performance regardless of which text representations are 
included—e.g., embeddings vs. raw tweets. Of our nine features extracted from Twitter, AdaBoost 
models learned from unigrams, hashtags, and word embeddings consistently outperform all other features. 
Using up to four weeks of past data, our models are capable of accurately predicting ILI proportions for 
the current week and predicting ILI values for up to the next two weeks. We have found that a model 
tailored to a specific location shows a greater performance than a general model encompassing all 
regions. In our future work, we will apply our LSTM model to 25 additional locations and combine our 
ILI and social media data into one predictive LSTM model. 
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5.0 Chiron Computing Pipeline and Architecture 

5.1 Server Architecture and Description 

The data and computing architecture for the Chiron BSVE project resided on a PNNL-hosted OpenStack 
cloud implementation. Software technologies supporting Chiron research included Apache NiFi 0.6.0 and 
Elasticsearch 1.7.1. NiFi is an Apache Software Foundation project allowing rapid construction of high-
performing clusterable Extract Transform Load (ETL) processes. Elasticsearch is a distributed, sharded, 
Lucene-based NoSQL database, used to allow bulk data storage, search, retrieval, and aggregation.  

Three OpenStack machine sizes were used in the construction of the Chiron data and computing 
architecture (see Table 5.1). 

Table 5.1.  The Three OpenStack Machine Sizes Used to Build the Chiron Data and Computing 
Architecture 

Type RAM VCPU DISK Space 
xLarge  16 GB  8 160 GB 
Large  8 GB 4 80 GB 
Small  2 GB  1  20 GB  

    

Table 5.2 shows a list of the servers with their types and size of the added volume to allow for extra 
storage space (if N/A, then no volume is attached):  

Table 5.2. Servers Used in the Chiron BSVE Project 

Instance (Server) Name  Type Volume Size 
large_httpnode  xLarge  N/A 
Nifihost3 xLarge N/A 
data_host  Small 500GB 
mongo_host Large  100 GB 
yakutat-1 Large  650 GB 
yakutat-2 Large  650 GB 
yakutat-3 Large  650 GB 
yakutat-4 Large  650 GB 
yakutat-5 Large  650 GB 
yakutat-6 Large  650 GB 
yakutat-7 Large  650 GB 
yakutat-8 Large  650 GB 
yakutat-9 Large  650 GB 
yakutat-10 Large  650 GB 
yakutat Large  N/A 
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The servers mongo_host and data_host are not a part of the primary data and computing architecture 
described in this section. Data_host is used as a persistent backup repository for purchased data. 
Mongo_host houses a MongoDB database containing a subset of the available data; it is used to support 
occasional one-off research tasks for researchers comfortable in that environment.  

Node Nifihost3 hosts the NiFi ETL process. 

Servers yakatut-1 through yakatut-10 host Elasticsearch data processes. Server yakatut acts as a cluster 
head node, where Ansible processes can be executed, and as a single point of interaction for an Apache 
web server based round robin DNS communicating to individual Elasticsearch data hosts on yakatut-1 
through yakatut-10. Large_httpnode is an HTTP only Elasticsearch node, allocated to support memory 
and compute intensive queries while minimizing potential cluster stability impacts that these queries may 
have. 

There are approximately 270 million social media records captured in the repository, occupying 
approximately 2TB of disk space across the 10 Yakutat data storage nodes. 

All systems are running Centos 7. Ops management tasks are conducted with Ansible, allowing 
deployment and update of files, services, and users and providing the ability to stop, start, and restart 
distributed services like Elasticsearch. 

5.2 ETL Pipeline 

5.2.1 High-level ETL 

The ETL pipeline used in the Chiron data and computing architecture is deployed in Apache NiFi 0.6.0, 
with two custom NiFi processor bundles (NAR format), including nifi-darism-0.4.1 and nifi-
elasticsearch-nar-0.4.1. These NARs contain, respectively, message enrichments and a custom processor 
to allow NiFi to write data to Elasticsearch before version 2.0. 

Social media data are delivered through a PNNL commercial contract and deposited on the data_host 
system. A CRON job periodically copies these files to a landing pad on Nifihost3 and moves the files into 
an archive filestructure. 

Once on Nifihost 3, the ETL pipeline shown in Figure 5.1is applied. 

 
Figure 5.1. The ETL Pipeline 
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In this pipeline, data are loaded from disk, unarchived, split into individual social media messages, and 
sent to data enrichment. Messages that fail data enrichment are sent to a failure queue and written to disk 
for debugging purposes. Successfully enriched messages are written to the Yakatut Elasticsearch cluster 

5.2.2 Enrichments 

Each message receives the enrichments shown in Figure 5.2. 

 
Figure 5.2. Enrichments for the Social Data Analytics Pipeline 

In order, these enrichments include: 

• EncryptTweetContent 

– Encrypts tweet content, including tweet ID, Twitter user IDs, and Twitter usernames, to allow 
anonymization. Encryption is conducted with the javax.crypto.Cipher library. The 
AES/ECB/PKCS5Padding algorithm is used. When provided a secret key, identical values will be 
encrypted to an identical hash, allowing anonymized aggregations of data to be conducted. 

• LanguageIdentificationEnrichment 

– Uses the carrotsearch implementation of langid.py to do language identification of the tweet body 
content. References: https://github.com/carrotsearch/langid-java and 
https://github.com/saffsd/langid.py. 

• TokenizerEnrichment 

– Tokenizes sentences and words in multiple languages in preparation for subsequent processors. 

• SentimentEnrichment 

https://github.com/carrotsearch/langid-java
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– When a language is identified as Arabic, German, English, Spanish, Persian, French, Italian, 
Dutch, Dari, Pashto, Russian, Serbian, Turkish, Urdu or Chinese, this processor checks tweet 
tokens against categorized word lists primarily derived from LIWC lexicons resulting in 
sentiment and emotion classifications including positive, negative, anger, death, religion, and 
sadness. 

• GeoTagEnrichment 

– Normalizes geocoordinate and does some geo polygon calculations. 

• KeywordEnrichment 

– Uses PNNL-developed Rapid Automatic Keyword Extraction algorithm to extract relevant 
keywords from tweet body. 

• LowercaseEnrichment 

– Data storage enrichment, creates lower case versions of some fields. 

• NerEnrichment 

– Uses Stanford Conditional Random Field named entity recognition models to extract the names 
of people, places, and organizations mentioned in tweets. 

• MLSentimentEmotionEnrichment 

– Series of Python-trained machine-learning models exposed in a Java NiFi processor to provide 
machine-learning-based classification of both emotion and sentiment.  
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6.0 Understanding Readers’ Credibility Perceptions on Social 
Media Content: Case of Disease Outbreaks on Twitter 

Although social media has made information sharing and discovery much easier and faster than before, 
one of its inherent issues is that not all information is credible and originates from a reliable source. Prior 
studies have considered just the message text and/or a small subset of potentially influential factors for 
credibility evaluation. In this section, we present how different reader and author factors affect a reader’s 
credibility perception of information about disease outbreaks on Twitter. Our study results, based on 151 
responses, indicate that (1) respondents’ credibility perception significantly varies based on the way the 
information is presented, (2) the influence of an author bio is much more significant than other factors, 
and (3) a reader’s knowledge of topics influences the reliability of credibility assessment. 

Our study results show the importance of including available author factors and the reader’s domain 
knowledge when creating human labels for information credibility. 

6.1 Introduction 

Social media provides a quick and convenient way for individuals and organizations to openly share 
unlimited packets of information to any and all interested parties. However, one of the inherent issues of 
an open forum is information credibility, where a single false statement can quickly affect thousands 
(O’Donovan, et al. 2012). For example, Starbird et al. (2014) reported that many rumors appeared during 
Boston Marathon Bombing, where a majority of tweets (85–97%) were identified as misinformation. In 
the context of disease outbreaks, many news articles report the efforts to control the endless spread of 
misinformation of disease outbreaks in social media; for example, Oyeyemi et al. (2014) showed that 
55.5% of tweets related to Ebola were misinformation. Therefore, evaluating social media content to 
differentiate credible information from misinformation and rumors as well as understanding the 
characteristics of credible and non-credible information are important. 

Fogg and Tseng (1999) described credibility as a perceived quality and believability composed of 
multiple dimensions. Perceived credibility is subjective and varies depending on the representation of the 
entity and the characteristics of the person who makes the credibility assessment. As such, much research 
has attempted to identify important factors and how much each factor would influence a reader’s 
credibility of content in social media. To date, however, prior studies have only considered the message 
(Ammari and Schoenebeck 2015; O’Donovan 2012; Wang et al. 2015; Xia et al. 2012) or looked at a 
small subset of potentially influential factors (e.g., user profile image, profile name, location) for 
credibility evaluation (Morris, et al. 2012; Yang et al. 2013). 

In this section, we investigate a reader’s credibility perception based on factors pertaining to an author 
and the reader. Author factors, including author’s bio, author’s Twitter engagement, attention that 
author’s tweet gained, and characteristics of author’s other tweets, were considered. These factors are 
publicly available, easily, quickly accessed by readers, and may affect their credibility assessment. The 
reader factors included were age, gender, knowledge of disease outbreaks, and experience in social media. 
To measure the impacts of these factors, we designed a survey and collected 151 responses. 

Our work contributes to a better understanding of the influence of both reader and author factors on 
credibility perception of the information in social media. Our study results show the importance of 
including author factors and the reader’s domain knowledge when creating human labels for information 
credibility. 
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6.2 Related Work 

6.2.1 Understanding Credibility in Social Media 

A great body of research has investigated information credibility in social media (mostly Twitter) using 
machine learning. However, the results from prior studies are somewhat limited, because the training data 
were labeled based only on the text and other influential factors were mostly ignored. 

Most machine-learning studies have focused on identifying various features available in social media and 
obtaining data to build models that classify credible and non-credible information. 

Note that, in this paper, a feature refers to a variable used for modeling, whereas a factor points to the one 
that influences credibility perception. For example, Castillo et al. (2011) used more than 50 features 
obtained from messages, profiles, topics, and propagations. Similarly, O’Donovan et al. (2012) used 34 
features obtained from author’s social networks, message content, and behaviors; Xia et al. (2012) used 
25 features from author, content, topic, and diffusion in emergency situations; and Wang et al. (2015) 
used more than 50 features based on profiles, photos, messages, friends, and shares. For this type of 
research, eliciting unique features and showing greater performance of their classification models (i.e., 
whether the information is credible or not) is one of the main research goals. However, this way of 
obtaining human labels on information credibility is somewhat problematic, because only the text 
messages were presented to human annotators and no other factors were considered. As credibility is a 
perceived quality and believability comprises multiple dimensions (Fogg and Tseng 1999), humans may 
not be able to make an accurate and reliable decisions on information credibility from the message only. 
This is especially true for short tweet messages, consisting of a maximum of 140 characters, making it 
even more difficult for readers to assess credibility. 

The majority of human-computer interaction studies aimed to identify underlying factors that influence 
one’s credibility assessment. For example, Morris et al. (2012) show that users are influenced by 
heuristics such as message topic, user name, and user profile image when making credibility assessments. 

Similarly, Yang et al. (2013) studied the impact of name style, profile image, location, and degree of 
reader network overlap on credibility perceptions and compared the results among U.S. and Chinese 
audiences to identify a potential cultural influence. Shariff et al. (2016) presented a correlation analysis of 
readers’ demographics (e.g., gender, age, education, and location) and tweet credibility perception. 

However, these research projects only examined the effect of a small subset of all the potentially 
influential available user factors and/or include reader factors in their study. 

In this section, we strive to identify other important factors, from both author and reader, and investigate 
their impacts on a reader’s information credibility perception. 

6.3 Study Goals 

Based on our literature review findings, our research aims to address the following questions. 

• RQ1: What Twitter features influence readers in evaluating their perceived credibility of social media 
content?  

• RQ2: In what ways does a reader’s perception of credibility in social media respond to additional 
contextual information about authors? 
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• RQ3: What are the impacts of both reader and author factors on a reader’s perceived credibility of 
social media content? 

6.4 Study Design 

We designed and conducted a survey study to gain insight into our research questions. The survey 
consisted of four types of tasks (Figure 6.1). In the first task, we asked participants about their 
demographics, use of social media, and knowledge of disease outbreaks to capture reader factors (RQ3). 
In the second task, we asked participants to answer the impact of different Twitter features on their 
credibility perception (RQ1). In the third task, we asked participants to assess the credibility of 16 
different tweets without providing any other information. In the final task, we repeated the third task, but 
this time, each tweet message was presented with four additional types of information, where each type 
represented an author factor that we were interested in (RQ2,3). 
Personal 

 
Figure 6.1.  Procedure of the Survey. After answering personal information, respondents were asked to 

complete four types of tasks. The same 16 tweets were used in Tasks 3 and 4, and the 
corresponding 16 tweet pages were randomly assigned to survey respondents. 

Regarding the fourth task, we designed the tasks to capture the following four author factors: (1) 
Attention: How much attention does the author’s tweet receive? (2) Self-description: Does the author’s 
biographical text describe him/herself? (3) Engagement: How much does the author engage in Twitter? 
(4) Professionalism: Are the author’s other tweets personal or professionally written tweets? Again, these 
are the factors that are publicly available, easily, quickly accessed by readers, which we believe may 
affect the readers’ credibility assessment. 

Figure 6.2 illustrates an example of the tweet page presented with four factors. Each author factor has two 
conditions, making sixteen tasks (2x2x2x2) in total. Sixteen different, real tweets about Zika, Ebola, and 
Chikungunya were used for each task (blue box in Figure 6.2). To focus the participants’ credibility 
judgments on just the four factors, two domain experts reviewed and confirmed that the tweets looked 
professionally written and described plausible information, which could be true or false. For all questions, 
including perceived credibility of the tweet, we applied a 5-point Likert scale (1 – not credible; 5 – very 
credible). 
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Figure 6.2.  Example of the Tweet Page Used in Task 4. Four author factors (two conditions per factor) 

were measured. We have 200,000 samples of users who posted tweets related to disease 
outbreaks, and High and Low conditions in Tweet Attention and Author Engagement were 
decided based on the medians of each case from our samples. Note the High and Low 
conditions for each factors. 

After obtaining an approval from our Internal Review Board, we distributed the survey to people via 
mailing lists of our organization, word of mouth, and social media/networks. The survey took 
approximately 15-20 minutes to complete and we collected 162 responses. We excluded 11 incomplete 
responses and analyzed the remaining 151 survey responses. 

6.5 Results 

Our data analysis was based on 2,416 individual questions for Task 3 and Task 4 each. We fit a mixed-
effects analysis of variance model with a normal conditional distribution and random effects for repeated 
measures to account for the non-independent nature of the data. 

6.5.1 Survey Respondent Demographics 

Our survey respondents consisted of 73 males and 78 females. Sixty-two respondents were between 20-30 
years old, 51 were between 30-40 years old, and 38 were more than 40 years old. The average number of 
years someone participated in social media—e.g., Twitter—was 2–3 years. Respondent knowledge of 
disease outbreaks was fairly high, averaging 3.78 (3: neutral, 4: somewhat familiar) out of 5. 

6.5.2 RQ1: Impact of Features on Perceived Credibility 

We measured the impact of nine author-based (Figure 6.3) and ten tweet-based (Figure 6.4) features on a 
reader’s credibility perception. For author features, the author’s bio showed the greatest impact (Mean: 
4.22) followed by having primary topics from author’s tweets (3.92). This indicates that the respondents 
considered what and how the author describes him/herself in the bio and what the author says on Twitter 
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to be very important. Author’s profile image and name, which were identified as main factors in prior 
studies (Morris et al. 2012; Yang et al. 2013), did not show much impact in our study. 

 
Figure 6.3. Impacts of Author-based Features on Credibility Assessment 

 
Figure 6.4. Impacts of Tweet-based Features on Credibility Assessment 

Regarding the tweet features, tweets containing a link that details tweet content was ranked the highest 
(4.19). The second highest feature was having an additional image, video, or link (3.77), similar to the 
highest-ranked feature. Because of limited space in a single tweet, the respondents may have felt that 
additional information sources increase the credibility of the tweet. The results also indicated that other 
users who retweeted or liked the tweet are the important factors on credibility. An interesting insight here 
relates to the types of “other users,” as there is a difference among users they trust (3.65), users verified 
by Twitter (3.21), and users they follow (3.09). We see that the respondents rated users they trust higher 
than verified users, emphasizing a subjective nature of credibility perception. 

6.5.3 RQ2: Variance in Perceived Credibility 

When comparing the results of credibility assessments between Task 3 (tweets only) and Task 4 (tweets 
with other info), we identified differences for all 16 tweets (Figure 6.5). Additional information caused a 
significant difference (p < 0.05) in perceived credibility in 13 tweets (81%), where 9 of them decreased in 
Task 4. This result indicates that one’s credibility perception can be highly influenced by other factors, 
stressing the importance of considering various factors and giving the readers more contextual 
information when making credibility assessments. 
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Figure 6.5.  Difference in Credibility Assessments between Task 2 and Task 3 for the Same 16 Tweets. 

Overall, respondents’ credibility judgments were significantly influenced by other factors (p 
< 0.05). 

6.5.4 RQ3: Reader and Author Factors on Perceived Credibility 

We found significant impacts of specific author and reader factors on a reader’s credibility perception 
(see Table 6.1). For author factors, all four factors showed significant influence, yet the impact of the 
author’s bio was much higher than any other factors. This finding implies that the level of detail an author 
uses to describe him/herself is a critical factor in readers’ credibility perception. Figure 6.6 shows the 
difference between two conditions for each factor. Note that Low in the author bio means there is no 
description about the author, and Low in the other tweets means there are only personal (non-
professionally written) tweets. 

Table 6.1.  Summary of the Influence of Author and Reader Factors on Credibility Perception. All author 
factors showed significant influences, but the impact of author bio was incomparable to other 
factors. 

Type Factor F-value Df Sig (p-value) 
Author Author Bio 

Other Tweets 
Author Engagement 
Tweet Attention 

421.83 
67.72 
25.71 
7.37 

1 
1 
1 
1 

0.000 
0.000 
0.000 
0.007 

Reader Topic Familiarity 
Age 
Gender 
Twitter Experience 

4.07 
1.58 
0.97 
0.21 

2 
2 
1 
4 

0.017 
0.206 
0.323 
0.933 
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Figure 6.6.  Difference in Credibility Ratings in Task 4 between Two Conditions for Each Author Factor. 

All factors showed significant differences (p < 0.05). Note that Low in the author bio refers 
to no author description, and Low in the other tweets refers to non-professional tweets. 

We further measured the impact of each author factor on the changes of credibility perception with 
respect to the difference between Task 3 and 4 as a dependent variable (Figure 6.7). In general, the 
respondents gave lower rates to the same tweets in Task 4. The author description exhibited the most 
significant impact on it, and we found only one case where the rating increased when there is an author 
description in the bio. 

 
Figure 6.7.  Difference in Credibility Ratings between Task 3 and 4 (all p < .05). Note that Low in the 

author bio refers to no author description, and Low in the other tweets refers to non-
professional tweets. 

This result again indicates the importance of author information in credibility assessments. For reader 
factors, only topic familiarity showed a significant impact (Table 6.1). Respondents with high domain 
familiarity (Mean: 3.47 in Task 3; 3.14 in Task 4) exhibited higher credibility perception than the low 
group (3.28 in Task 3; 2.97 in Task 4; p < .05). We also found the same result from the responses in Task 
3, which indicates a strong influence of topic familiarity on credibility assessments. 

Lastly, we extended the comparison analysis of credibility assessments among topic familiarity groups by 
looking into reliability (i.e., consistency) of their assessments. To measure this, we used the standard 
deviations of the mean scores for each group. For the responses in Task 3, the high topic familiarity group 
was smaller (1.20) than the middle (1.30) and low (1.22) groups. The responses in Task 4 showed greater 
differences: high (1.15), middle (1.24), and low (1.23). This result indicates that there is generally less 
variation in the credibility assessment from people who are more familiar with the topic of the tweets 
(high) and potentially more variability in people who know only a small amount (middle). 
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6.6 Discussion and Conclusion 

This study has shown evidence that various Twitter features influence a reader’s information credibility 
assessments. We presented the influence of both author and reader factors on a reader’s credibility 
perception on social media content related to disease outbreaks. We first showed the significant 
differences between Task 3 and Task 4, indicating a reader’s credibility perception can be highly 
influenced by other factors. This finding emphasizes a careful design of measuring information 
credibility, which has not been well considered in many prior studies. We specifically focused the 
influence of four author factors (two conditions each) and four reader factors on a reader’s credibility 
perception. Although all four author factors showed significant influences, the author bio exhibited 
significant influence compared to other factors and was the only factor that increased credibility 
assessment in Task 4 (Figure 6.7). This is consistent with what the respondents indicated in Task 2. 
Because all four factors were important, the result still emphasizes the importance of making various 
author’s credentials accessible at a glance to accurately measure content credibility. 

In fact, some of the features, such as a bio length, bio word count, number of tweets, favorites, followers, 
and followings, which pertain to the four author factors, have been used in classification modeling 
(Castillo et al. 2011; O’Donovan et al. 2012; Wang et al. 2015). In addition, our study results suggest 
using corresponding additional features derived from the author’s bio (e.g., does the author’s bio describe 
her interest, job, etc.?) and other tweets (e.g., are the author’s other tweets consistent with respect to 
readability or topic?, what is the proportion of professionally written tweets?) to build models for 
classifying credible and non-credible information. 

Finally, we found that topic familiarity from reader factors influenced the reader’s credibility perception. 
Respondents with high topic familiarity exhibited more positive credibility perception than those who 
were not familiar with the topic. More importantly, those high familiarity group respondents were more 
consistent in credibility assessment. The reliability of assessment is important, because not every tweet 
has ground truth, which sometimes could be difficult even for the high familiarity group respondents to 
evaluate social media content correctly. Especially for the information related to disease outbreaks, 
collecting and using credibility evaluations that yield a high degree of consensus from multiple evaluators 
will be important. While our study offers a number of insights, the results may not be generalized, 
because we only considered tweets related to disease outbreaks. Prior studies indicate that people’s 
credibility judgment can vary depending on topics (Morris et al. 2012; Shariff et al. 2016; Yang et al. 
2013); thus, our study results might be influenced by the topic of disease outbreaks. Therefore, our future 
work will be to study if our findings are reproducible across different topics. We also would like to apply 
our insights into classification models and evaluate their performance on credibility assessment. In 
summary, our work contributes to a better understanding of the influence of different author and reader 
factors on a reader’s credibility perception and to providing insights on extracting new features and using 
them in machine-learning training models for classifying credible and non-credible information. 
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7.0 Software Delivered 

• Generalized Time Series Exploratory Analysis app is now live and available in the BSVE app store. 

• SODA POP time series app 

– http://chiron-shiny.pnnl.gov/shiny/roun308/soda_pop/ 

– user: shiny_app  

– password : shiny_app_1234! 

• Military facility ILI app 

– http://chiron-shiny.pnnl.gov/shiny/roun308/mil_fac_ili/  
– user: shiny_app  

– password : shiny_app_1234!  

• DARISM Social Media Analytics Pipeline 

 

 

 

 

http://chiron-shiny.pnnl.gov/shiny/roun308/soda_pop/
http://chiron-shiny.pnnl.gov/shiny/roun308/mil_fac_ili/
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8.0 Publications 

[in PA review] Volkova, S, E Ayton, K Porterfield, and CD Corley. “Forecasting Influenza-like Illness 
Dynamics for Military Populations using Neural Networks and Social Media” in prep for PLoS ONE. 

[In Review] Anderson, Aryk, K Shaffer, A Yankov, CD Corley, and NO Hodas. “Beyond Fine Tuning: A 
Modular Approach to Learning on Small Data”. Submitted to ICLR 2017. 

[Accepted] Ayton, Ellyn and Volkova, S. “Predicting Influenza Dynamics with Neural Networks Using 
Signals from Social Media” in Women in Machine Learning 2016. 

[Accepted] Rounds, J and CD Corley “Soda Pop: A Time-Series Clustering, Alarming and Forecasting 
App in the Biosurveillance Ecosystem” ISDS 2016 

[Accepted with revisions] Volkova, S, LE Charles-Smith, J Harrison, and CD Corley. “Uncovering the 
Relationships Between Military Community Health and Affects” submitted to EJP Data Science 

 [Accepted] Pavalanathan U, Datla VV, Volkova S, Charles-Smith LE, Pirrung MA, Harrison JJ, 
Chappell AR, Corley CD  2016.  “Studying Military Community Health, Well-being, and Discourse 
through the Social Media Lens.”  Lecture Notes in Computer Science 

Poster and flash talk for BSVE TIM 2016 meeting.  

[Accepted] Pavalanathan, U, V Datla, S Volkova, LE Charles-Smith, J Harrison, M Pirrung, A Chappell, 
CD Corley. “Discourse, Health and Well-being of Military Populations through the Social Media Lens” 
AAAI W3PHI, Phoenix, AZ, Feb 2016. 

[Accepted, Lightning Talk] Charles-Smith LE, AG Rittel, U Pavalanathan, and CD Corley. “Towards 
Influenza Surveillance in Military Populations using Novel and Traditional Sources.”  Abstract in the 
International Society for Disease Surveillance, Denver, CO. December 2015.  

[Accepted] W Smith, AR Chappell, and CD Corley. “Medical and Transmission Vector Vocabulary 
Alignment with Schema.org” Proceedings of the International Conference on Biomedical Ontology. July 
2015 
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