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Summary 

Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. 

commercial building stock and consume over 60% of total site energy. Many of these buildings use 

rudimentary controls that are mostly manual, with limited scheduling capability and no monitoring or 

failure management. Therefore, many of them are operated inefficiently and consume excess energy. 

SMBs typically use packaged rooftop units (RTUs) that are controlled by an individual thermostat.  

Many reasons drive the increased urgency to improve the operating efficiency of the existing U.S. 

commercial building stock; chief among them is the need to mitigate climate change impacts. Studies 

have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost 

savings. Another problem associated with RTUs is short cycling, where an RTU goes through ON and 

OFF cycles too frequently. Excessive cycling can lead to excessive wear and hence premature failure of 

the compressor or its components. Short cycling can result in a significantly decreased average efficiency 

(up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day 

scheduling is to start the RTUs before the building is occupied and shut it off when it is unoccupied. 

Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs, thereby leading to 

persistent building operations, can significantly increase the operational efficiency of SMBs. A growing 

trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent 

building operations.  

The work documented in this report describes three algorithms for detecting the zone set point 

temperature, RTU cycling rate, and occupancy schedule that can be deployed on low-cost infrastructure. 

These algorithms only require the zone temperature data for detection. The algorithms have been tested 

and validated using field data from a number of RTUs from six buildings in different climate locations. 

Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using 

the peak detection technique, and detecting the occupancy schedule using a symbolic aggregate 

approximation technique.  

This report describes the three algorithms, results from testing the algorithms using field data, how the 

algorithms can be used to improve SMBs efficiency, and presents related conclusions.  
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Acronyms and Abbreviations 

BAS building automated system 

HVAC heating, ventilation, and air-conditioning 

Hz hertz 

MAPE mean absolute percent error 

PAA Piecewise Aggregate Approximation 

PNNL Pacific Northwest National Laboratory 

RTU rooftop unit (air-conditioner) 

SAX Symbolic Aggregate Approximation 

SMB small- and medium-sized building 
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Nomenclature 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑐𝑠 accuracy of confusion matrix   

𝐴𝑐𝑡𝑢𝑎𝑙 a number of actual on/off cycling  [ea] 

BAS building Automation System   

C0 occupied schedule   

C1 unoccupied schedule   

HVAC heating, ventilation, and air-conditioning   

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 a number of on/off cycling perdition  [ea] 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇 minimum distance between two string formats   

N0,0 number of correctly identified C0  [ea] 

N1,0 number of C1 incorrectly identified as C0  [ea] 

N0,1 number of C0 incorrectly identified as C1  [ea] 

N1,1 number of correctly identified C1  [ea] 

𝑛 a number of predictions  [ea] 

P(x) mixture density function   

p(x|i) conditional probability of x    

P(wi|x) conditional probability of wi    

P(wi) prior density function   

𝑇𝑖  PAA representation   [°F] 

𝑇𝑛 normalized temperature   [°F] 

Tmax local maximum temperature  [°F] 

Tmin local minimum temperature   [°F] 

Tpeak array of maximum temperature   [°F] 

Toa outdoor air temperature   [°F] 

Tsp set point temperature   [°F] 

Tzone 
array (collection of data) of temperature measurements for a zone 

served by an RTU 
 [°F] 

Tvalley array of minimum temperature   [°F] 

𝑠 standard deviation of prediction   

t time series   

𝑡𝑐 t-value for corresponding confidence level   

xo threshold partitioned into two regions, R1 and R2   

𝑥̅ mean of prediction  [°F] 

w segment number  [ea] 
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1.1 

1.0 Introduction 

Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. 

commercial building stock and consume over 60% of total site energy (EIA 2012). These buildings 

generally do not have a dedicated building operator or an energy manager and therefore, the heating, 

ventilation, and air-conditioning (HVAC) equipment tends to be serviced as a result of occupant 

complaint or when the units fail. Even buildings that get periodic maintenance have a number of 

operational problems that go undetected. The operational problems result from improper control or 

incorrect commissioning, which leads to inefficient operation, increased energy use, and reduced 

equipment life (Mařík et al. 2011; Mills 2011; Wang et al. 2013). Several studies have documented that 

commercial buildings consume between 10% and 30% excess energy because of operational problems or 

performance degradation (Ardehali et al. 2002; Katipamula and Brambley 2004a,b; Breuker and Braun 

1998; and Jacobs 2003a). Therefore, improvements in HVAC system operations can lead to significant 

reductions in energy use and greenhouse gas emissions.  

Over 85% of the commercial buildings lack building automation systems (BASs), and most of these 

buildings are SMBs; they represent about 57% of the total commercial building area and consume about 

46% of the total site energy (EIA 2012). These buildings employ rudimentary controls that are mostly 

manual, with limited scheduling capability and no monitoring or failure management. Therefore, many of 

these buildings are operated inefficiently and consume excess energy. There are a number of reasons why 

these buildings do not deploy BASs: 1) lack of awareness, 2) lack of inexpensive packaged solutions, and 

3) sometimes the owner is not the tenant and has no incentive to invest in a BAS (Katipamula et al. 2012). 

SMBs without BASs may have limited ability to monitor or trend the data necessary for detecting system 

degradation or for performing supervisory controls. SMBs typically use packaged rooftop units (RTUs) 

that are controlled by an individual thermostat. The RTUs are often maintained poorly and degradation of 

performance and faults are only addressed when occupants complain or a unit fails. Cowan (2004) 

conducted a survey and analysis of 503 RTUs and found that 54% of the RTUs had problems: 42% 

exhibited improper airflow, 72% improper refrigerant charge, and 20% failed sensors. These problems led 

to an estimated excess energy consumption of 8%. Another study evaluated 109 RTUs in the field and 

found that 89 had fault conditions—31 had two or more faults (ADM 2009). The average energy 

efficiency ratio for the units increased from 6.6 before servicing to 7.0 after servicing, an average increase 

of over 6%. 

Another problem associated with RTUs is short cycling, an operational mode during which an RTU goes 

through ON and OFF cycles too frequently. Short cycling can be caused by equipment oversizing, poor 

thermostat location, low refrigerant charge, a clogged air filter, and other reasons. Excessive cycling of 

RTUs can lead to excessive wear and premature failure of the compressor or its components. Also, short 

cycling can result in a significantly decreased average efficiency, even if there are no physical failures in 

the equipment. According to the Small HVAC System Design Guide (Jacobs 2003b), the short cycling of 

RTUs can cause an efficiency penalty of approximately 10%. Hence, detecting the zone set point and 

frequent cycling is the first step in analyzing system performance, improving efficiency, and ensuring the 

desired persistence of building operations. There is a growing trend to use low-cost control infrastructure 

that can enable scalable and cost-effective intelligent building operations (Katipamula et al. 2016a,b). The 

inexpensive controls infrastructure can be leveraged to provide opportunities for control coordination and 

embedded diagnostics for SMBs.  

The primary objectives of the project conducted by Pacific Northwest National Laboratory (PNNL) and 

reported here were to:  
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 Design and develop three algorithms that can detect 1) zone set points, 2) frequent compressor 

ON/OFF cycling, and 3) the occupancy schedule based only on zone temperature measurement.  

 Program the algorithms in Python, enabling configuration and execution of these algorithms on the 

VOLTTRON™ platform.  

 Validate the performance of the three algorithms based on data from 26 RTUs from six different 

locations. 

The ensuing sections of this report describe the three algorithms for detecting the zone set point 

temperature, RTU cycling, and occupancy schedules that are compatible for deployment on low-cost 

controls infrastructure. These algorithms only require the zone temperature data for detection purposes. In 

addition, the output of the algorithms can be used as the control variable for analyzing system 

performance and developing more robust control methodologies that can be incorporated into existing 

building systems. The algorithms have been widely tested and validated using data from a number of 

RTUs in the field. The remainder of the report describes the results from testing the algorithms and 

presents related conclusions.  

 



 

2.1 

2.0 Description of Algorithms 

This section provides a brief description of the three algorithms for zone set point detection, ON/OFF 

cycling detection, and occupancy schedule detection. Detecting the zone set point, frequent cycling, and 

occupancy schedules is the first step in analyzing system performance, improving efficiency, and 

ensuring persistence of building operations. There is a growing trend to use low-cost control 

infrastructure that can enable scalable and cost-effective intelligent building operations (Katipamula et al. 

2016a,b). The inexpensive controls infrastructure can be leveraged to provide opportunities for control 

coordination and embedded diagnostics for SMBs. 

2.1 Zone Set Point Temperature Detection  

Some SMBs without BASs use programmable thermostats with a predefined control sequence that is 

executed based on some inputs (e.g., sensor data, time-of-day). The thermostat contains a temperature 

sensor (typically a thermistor) that measures the zone temperature and compares that temperature to a set 

point. In cooling mode, when the temperature exceeds the set point (plus dead band) the thermostat will 

send a signal to the RTU to activate cooling. Conversely, when the temperature drops below the set point 

(minus dead band) the thermostat will send a signal to the RTU to activate heating. A programmable 

thermostat can vary the temperature set point based on time-of-day and day-of-week, allowing for night 

setup or setback. However, the thermostat has limited ability to monitor or trend the data necessary for 

detecting system degradation or for use in control optimization. For instance, the thermostat often uses a 

single set point for each operating mode (e.g., occupied, unoccupied, heating, cooling, etc.). Many SMBs 

either do not have programmable thermostats or the thermostats are not programmed accurately to reflect 

the desired schedule or set point. Enforcing set points and schedules can result in energy savings of over 

20% (Katipamula et al. 2012). 

2.2 ON/OFF Cycling Detection 

Another problem associated with RTUs is short cycling, an operational mode during which an RTU goes 

through ON and OFF cycles too frequently. Short cycling can be caused by equipment oversizing, poor 

thermostat location, low refrigerant charge, clogged air filter, and other reasons. Excessive cycling of 

RTUs can lead to excessive wear and premature failure of the compressor or its components. Short 

cycling can also result in a significantly decreased average efficiency, even if there are no physical 

failures in the equipment. According to the Small HVAC System Design Guide (Jacobs 2003b), the short 

cycling of RTUs can cause an efficiency penalty of approximately 10%. Peak and valley detection can be 

used to quantify the number of times an RTU is ON cycling or OFF cycling in a given time period. 

2.3 Occupancy Schedule Detection 

Building occupants are critical determinants of energy consumption. Proper occupancy scheduling is one 

of the most simple control strategies for reducing energy costs in existing buildings (Murphy and Maldeis 

2009). Some SMBs without BASs use a programmable thermostat with time-of-day scheduling. The most 

common uses of time-of-day scheduling is to start the HVAC system before the building is occupied and 

to shut it off after the building is unoccupied.  

The programmable thermostats can vary the set point temperature based on time-of-day and day-of-the-

week. For example, when the building is scheduled to be occupied, the programmable thermostat controls 

the HVAC system to maintain the zone temperature within a desired comfort level. When the building is 
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scheduled to be unoccupied, the programmable thermostat resets the zone temperature to a value that is 

different from the occupied set point by a fixed amount, called night setback or setup. However, the 

programmable thermostat allows the occupants to override the schedule or change set points by using the 

temperature “hold” feature of the thermostat.  

It is challenging to recognize these overrides in set points and schedule changes without a BAS because 

thermostats are seldom networked. These temporary changes often remain permanent and can result in 

unnecessary excess energy use. Therefore, a simple method of detecting the occupancy schedule is 

required to automatically ensure the HVAC system is operating as intended and to identify improper 

schedule changes to maintain the energy savings expected by using proper time-of-day scheduling. Other 

opportunities also exist for using the occupancy scheduling detection approach to save energy in 

buildings. The occupancy schedule information can be inputs to other local control systems to optimize 

the control of the HVAC system. For example, when time-of-day scheduling is used, the HVAC system 

should start prior to occupancy and operate long enough for the zone temperature to reach the desired 

zone temperature. The optimal start approach is used to determine the length of time required to reach the 

occupancy set point temperature prior to occupancy time. The beginning of the occupied schedule can be 

used as input for the optimal start approach.  

Previous studies used a stochastic model to learn occupancy patterns and predict the occupancy schedule. 

Tebak and Vries (2010) proposed an occupancy schedule model using a probabilistic formula to predict 

the occurrence and frequency of intermediate break activities during an occupied time. Sun et al. (2014) 

developed a stochastic model based on an exponential distribution to predict the duration of overtime 

periods during unoccupied time. Stoppel and Leite (2014) presented a probabilistic-based model to 

predict the occupancy schedule for hourly occupant presence for weekday and weekend time periods. In 

recent years, data mining has gained popularity in the building science area, including mining data about 

occupant behavior, fault detection, and building energy performance. D' Oca et al. (2015) used data 

mining approaches to discover individualized occupancy schedules in office buildings. A data set of 16 

offices with 10-minute interval occupancy data over a 2-year period is mined through a decision tree 

model that predicts the occupancy presence. The cluster analysis is employed to obtain consistent patterns 

of occupancy schedules representative of typical single office working user profiles. However, previous 

studies based on data mining mostly required large measurement data sets to identify the occupancy 

schedule in the building. The method developed by PNNL and reported herein uses Symbolic Aggregate 

Approximation (SAX) and clustering to detect the occupancy structure of zone temperature data. The 

SAX method was developed by Lin et al. (2003) to mine information from time-series data. It is widely 

employed in pattern identification, sequence classification, abnormality detection, and other data mining 

research (Lin et al. 2007). 
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3.0 Field Test Data Used for Validation of the Algorithms 

To test and validate the PNNL-developed algorithms, field test data from 24 RTUs (air conditioners and 

heat pumps) from six different locations in the United States were used, as summarized in Table 3.1. 

Building A and Building B are office buildings located in suburban of Seattle, Washington, and Berkeley, 

California. Building C is a mechanical shop building with offices located in Richland, Washington. 

Building D is a machine product factory located in a suburb of South Paris, Maine. Building E and 

Building F are fitness centers located in Miami, Florida, and Cupertino, California. Buildings in different 

climate zones and local conditions were selected to evaluate the performance of the algorithms.  

The different data sets from each RTU were selected from existing field data based on the outdoor air 

temperature conditions (i.e., spring/fall, summer, and winter). Each data set contains five measurements 

(zone temperature, set point temperature, supply fan status, cooling/heating command, and outdoor 

temperature) from a 1-week period. Although the algorithms used only zone temperature, the remaining 

sensor data are used as “ground truth” data to verify the results of the algorithm.  

Table 3.1. Validation Data Set for Six Different Locations 

Building Location 

Number of 

RTUs 

Summer Data Set 

𝑻𝑶𝑨,𝒂𝒗𝒈 (°F) 

Winter Data Set 

𝑻𝑶𝑨,𝒂𝒗𝒈 (°F) 

Spring/Fall Data Set 

𝑻𝑶𝑨,𝒂𝒗𝒈 (°F) 

A Seattle, WA 4 77 42 54 

B Berkeley, CA 6 75 53 64 

C Richland, WA 8 76 47 66 

D South Paris, ME 2 73 - 61 

E Miami, FL 2 84 69 79 

F Cupertino, CA 2 73 50 60 

 





 

4.1 

4.0 Development and Validation of Zone Set Point 
Temperature Detection Algorithm 

This section describes the development of the set point detection algorithm using only zone temperature 

measurement as an input. The algorithm consists of three parts: preprocessing, peak detection, and 

classification. During preprocessing, the noise associated with the raw temperature data are filtered using 

a low pass filter. Next, peak detection is used to detect peaks in the data and to measure their positions, 

heights, and widths. The output of the peak detection is processed by a Bayesian classifier, which 

compares two adjacent set points to confirm whether they are same or different. The set point algorithm 

has been coded in Python and integrated with VOLTTRON, and is publicly available as part of the 

VOLTTRON distribution.  

4.1 Low Pass Filter for Preprocessor  

The presence of random noise in measured zone temperature data will cause false set point detection 

simply due to the noise. A low pass filter is employed during preprocessing (Orfanidis 1995; Smith 2013) 

to remove the noise. In signal processing, the low pass filter is a process that removes frequencies that are 

higher than a certain preset frequency threshold. The low pass filter can eliminate the noise in the zone 

temperature measurement that would potentially be incorrectly classified as the set point. The temperature 

measurement that is acquired in the time domain is converted to a frequency domain signal in which the 

independent variable is frequency rather than time.  

The Z-transform is performed on the time signals. It converts a discrete time domain signal into a 

complex frequency domain representation. The Z-transformation is defined as 

 

𝑋(𝑧) =  ∑ 𝑋(𝑛)𝑍−𝑛

∞

𝑛= −∞

 (1) 

 

where z is the complex number and X(n) is the time-series signal.  

The low pass filter allows low-frequency temperature from 0 Hz to the cutoff frequency while blocking 

frequencies higher than the cutoff frequency. Selection of a large cutoff frequency can lead to more stable 

states, but less input data for set point detection. On the other hand, smaller cutoff frequency increases the 

uncertainty of the set point detection outputs. Therefore, it is necessary to find cutoffs that minimize the 

uncertainty of the set point detection while maximizing the use of input data. The appropriate cutoff 

frequency is chosen based on the review of the time-series temperature data from several buildings. The 

frequency domain signal is then multiplied by the frequency response of a digital low pass filter that 

removes frequency components. The inverse Fourier transform then recovers the filtered time domain 

spectrum.  

4.2 Peak Detection Algorithm  

The detection of peaks in signals is an important step in many signal processing applications. The peak 

detection algorithm is used in nuclear monitoring (Azzini et al. 2004), mass spectrometry (Coombes et al. 

2005), processing (Jordanov et al. 2002; Harmer et al. 2008), and electronic systems (Schneider 2011). 

Peak (Valley) points denote the significant events where the function graph changes from increasing 
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(decreasing) behavior to decreasing (increasing) behavior in a time series (Palshikar 2009). The 

identification of these behaviors is important for analysis of the time-series data.  

Figure 4.1 shows the example of preprocessed zone temperature of an RTU during the summer season. 

When the zone temperature exceeds the cooling temperature set point (plus dead band), the zone 

temperature will reach a local maximum (denoted as Tmax, represented by the blue circles in Figure 4.1). 

As the RTU turns ON and provides cooling to the zone, the temperature will decrease until the zone 

temperature falls below the cooling temperature set point (minus dead band), at which time the RTU will 

stop cooling (local minimum denoted as Tmin, represented by the red circles in Figure 4.1). The heat pump 

operation in the heating mode is similar to the operation of a cooling mode. The difference is the 

sequence of local maximum and minimum. For example, the zone temperature will reach a heating 

temperature set point minus a dead band (local minimum denoted as Tmin) and then as the heat pump 

system provides heating to the zone the temperature will rise until the zone temperature is above a heating 

temperature set point plus dead band (denoted as Tmax), at which time the heat pump system will stop the 

heating operation. 

 

Figure 4.1.  Zone Temperature and Four Criteria Used for Set Point Detection 

Peak detection uses the approach of finding the locations and amplitudes of Tmin and Tmax. Let Tzone be a 

given array of zone temperatures that represents the time-series data (Cormen 2009). A way to detect Tmax 

in Tzone is to use the property that a peak must be greater than its immediate neighbors. For example, given 

array Tzone with n elements, the algorithm finds the index i of peak element Tzone[i] where Tzone[i] ≥ Tzone[i-

1] and Tzone[i] ≥ Tzone[i+1] as shown in Equation (2).  

 

𝑇𝑝𝑒𝑎𝑘 = 𝑇𝑧𝑜𝑛𝑒[𝑖 − 1] < 𝑇𝑧𝑜𝑛𝑒[𝑖] >  𝑇𝑧𝑜𝑛𝑒[𝑖 + 1],   𝑖 = 2, 3, ⋯ , 𝑛 − 1 (2) 

For elements (i=1 or i=n) on the boundaries of the array, the element only needs to be greater than or 

equal to its lone neighbor to be considered a peak. The array of maximum temperatures (Tpeak) is defined 

as shown in Equation (3).  

 

𝑇𝑝𝑒𝑎𝑘 = 𝑇𝑧𝑜𝑛𝑒[1] > 𝑇𝑧𝑜𝑛𝑒[2]  

   𝑇𝑝𝑒𝑎𝑘 =  𝑇𝑧𝑜𝑛𝑒[𝑛 − 1] < 𝑇𝑧𝑜𝑛𝑒[𝑛]     
(3) 

In contrast, we define the array of minimum temperatures (Tvalley) as shown in Equation (4).  
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𝑇𝑣𝑎𝑙𝑙𝑒𝑦 = 𝑇𝑧𝑜𝑛𝑒[𝑖 − 1] > 𝑇𝑧𝑜𝑛𝑒[𝑖] <  𝑇𝑧𝑜𝑛𝑒[𝑖 + 1],   𝑖 = 2, 3, ⋯ , 𝑛 − 1 

𝑇𝑣𝑎𝑙𝑙𝑒𝑦 = 𝑇𝑧𝑜𝑛𝑒[1] < 𝑇𝑧𝑜𝑛𝑒[2] 

𝑇𝑣𝑎𝑙𝑙𝑒𝑦 = 𝑇𝑧𝑜𝑛𝑒[𝑛 − 1] > 𝑇𝑧𝑜𝑛𝑒[𝑛] 

(4) 

A key issue for the peak detection algorithm is the fact that peaks occur with different amplitudes and at 

different scales, which results in a large number of false positives among detected peaks. To filter out 

valid peak information or fail to reject false peaks, the algorithm can measure the position, height, width, 

and sequence of each peak. These measurements are compared to preset criteria to reduce identification of 

false peaks and ensure that the locations and amplitude results are reasonable while finding peaks and 

valleys. For example, it is possible to detect only the desired peaks and ignore peaks that are too small, 

too wide, or too narrow. A description of each threshold follows below. 

4.2.1 Minimum Period between Neighboring Peaks  

All RTU compressors need a minimum of 5 minutes of continuous run time to saturate bearings, warm 

surfaces, and equalize refrigerant side pressure. The compressor ON/OFF signals are valid if the time 

difference between the ON signal and OFF signal is at least 5 minutes. Therefore, the minimum period is 

set as 5 minutes as the default value (purple line shown in Figure 4.1). The period between the Tmax (Tmin) 

and neighboring Tmin (Tmax) must be greater than the minimum period. The minimum period may have to 

be adjusted based on the thermostat’s time delay or equipment internal setting. 

4.2.2 Sequence between Peak and Valley 

Compressor equipment ON-OFF cycling should be a sequential order of events (e.g., OFF signal → ON 

signal→ OFF signal). For instance, a valid Tmax point will be adjacent to two Tmin points as shown in 

Figure 4.1. The same signals (two adjacent Tmax) that are repeated can be removed from Tpeak (Tvalley). For 

example, the repeated ON-signal detection is considered to represent continuous compressor running 

(e.g., ON signal → ON signal→ ON signal → ON signals). 

4.2.3 Minimum Amplitude between Peak and Valley 

Tmax (Tmin) can be ignored if the amplitude between Tmax (Tmin) and neighboring Tmin (Tmax) is below 

minimum amplitude (red line as shown in Figure 4.1). When the amplitude is kept very small, all of the 

peaks including Tmax that resulted from noise in the temperature can be detected. When the difference is 

kept very large, it is difficult to detect Tmax. The suggested default for the minimum difference is 0.3°F. 

For example, Tmax is valid if the temperature difference between Tmax and neighboring Tmin is higher than 

0.3°F. The minimum amplitude can be adjusted based on the thermostat’s dead band value.  

4.2.4 Minimum Cycling Number  

The minimum cycling number is a minimum number of Tmax and Tmin per day required for accurate set 

point detection. If the number of Tmax and Tmin is less than this value, any Tmax and Tmin are ignored. The 

minimum number of cycling of 5/day is the suggested default as shown in Figure 4.1. For example, if the 

minimum cycling number is smaller than 5/day, then the set point detection indicates that the minimum 

number of cycles is not enough to detect the set point temperature.  

Table 4.2 shows the example of Tmax, Tmin, and temperature set point (denoted Tsp,pred). The set point 

detection algorithm uses a fixed-length moving average for detecting set point temperature. The moving 

average is obtained by taking the averages of fixed subsets of the number series. In this approach, the 
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number of fixed subsets (n) is set to be 5. For example, each Tsp,pred can be determined by averaging the 

zone temperature reading at the Tmax and Tmin. Five Tsp,pred in the fixed subsets are replaced by their 

average value (Tsp,avg) of the data points calculated using Equation (5). Then, the subset is modified by 

excluding the first number in the series and including the next number following the original subset in the 

series. This process is repeated over the entire data series. In this example, Tsp,avg for the fixed window is 

71.7°F, as shown in Table 4.2.  

 

𝑇𝑠𝑝,𝑎𝑣𝑔 =  

∑ (
(𝑇𝑚𝑎𝑥,𝑖 + 𝑇𝑚𝑖𝑛,𝑖)

2 )𝑛
𝑖=1

𝑛
==  

∑ (𝑇𝑠𝑝,𝑝𝑟𝑒𝑑,𝑖)𝑛
𝑖=1

𝑛
 

(5) 

Table 4.1.  Calculated Set Points Based on an Example of a Zone Temperature Profile 

i Tmax (°F) Tmin (°F) Tsp,pred (°F) 

1 71.9 71.5 71.7 

2 71.8 71.5 71.6 

3 72.0 71.5 71.7 

4 71.9 71.5 71.7 

5 71.9 71.5 71.7 

4.3 Classification-Based Bayesian Classifier 

When a building is occupied, the thermostat controls the RTU to maintain the zone temperature within a 

desired comfort level. When a building is unoccupied, the programmable thermostat allows the zone 

temperature to deviate from the occupied set point to an unoccupied set point, called night setup/setback. 

Therefore, the set point detection should identify all possible set point values.  

A statistical classifier can distinguish the different set point temperatures more effectively. Several 

possible classifiers identify to which set of categories (e.g., occupied cooling set point and occupied 

heating set point, etc.) a new set point belongs. A Bayesian classifier is optimal with respect to 

minimizing the classification error associated with current and new normal distributions (Fukunaga 

1990). Based on Bayes decision theorem, Equation (6) can be written as follows:  
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where  p(i|x) = the conditional probability of i having accounted for evidence x,  

 p(i) = prior probability,  

 p(x|i) = the class conditional probability of x, and 

 p(x) = the mixture density function.  

Because p(x) is positive and common to both sides of the inequality, the Bayes decision rule of Equation 

(6) can be expressed as 
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(7) 
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Figure 4.2 shows two conditional probabilities P(x|i), i = 1, 2, as functions of x in each of the classes. 

The dashed line at x0 is a threshold partitioned into two regions, R1 and R2. According to the Bayesian 

decision rule, for all x values in R1 the classifier decides 1 and for all x values in R2 it decides 2. 

However, there is overlapping probability, which is equal to the total shaded area under the curves 

belonging in R1 and R2, shown in Figure 4.2. The shaded area is the Bayesian classification error 

probability (ε), which is given by 
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                      (8) 

One of the most common probability density functions in practice is the normal probability density 

function. When P(x|i) is the normal distribution with mean μi and covariance Σi, shown in Equation (9): 
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where  x = a vector of current residuals,  

 μ1 = the mean describing the distribution of new set point,  

 Σ1 = the covariance describing the uncertainty of new set point, 

 μ2 = the mean describing the distribution of current set point, and 

 Σ2 = the covariance describing the uncertainty of current set point. 

The Bayesian classification error is calculated by integrating the overlap area between probability 

distributions that fall within each class region of the domain, shown in Figure 4.2. The classification error 

probability decreases as an error of estimated value becomes more significant and is therefore a useful 

measure for distinguishing the current set point from new set point temperature. The thresholds for the 

classification error were established by evaluating the statistical significance of a match or mismatch 

between the current and the new set point temperature. For this research, the threshold was determined to 

be 0.1 classification error using existing field data. 

 

Figure 4.2.  Bayesian Decision Rule for Minimum Error (1: new set point and 2: current set point) 
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4.4 Metric Used for Zone Set Point Temperature Detection 

In this section the metric used for the zone set point temperature detection is presented. According to 

International Standards Organization BS ISO 5725-1 (1994), the accuracy consists of both “trueness” and 

“precision.” “Trueness” refers to the closeness of agreement between the mean of a “large” number of test 

results and the reference value, and “precision” refers to the closeness of agreement between test results, 

as shown in Figure 4.3. The confidence interval with t-distribution is used to quantify the accuracy of the 

set point detection. The width of the interval depends upon the confidence level and the precision of the 

prediction as shown in Equation (10).  

 

𝑥̅ − 𝑡𝑐 ∙
𝑠

√𝑛
<  𝜇 <  𝑥̅ + 𝑡𝑐 ∙

𝑠

√𝑛
 (10) 

 

where 𝑡𝑐   = t-value for corresponding confidence level, 

 𝑥̅ = a mean of prediction, 

 𝑛  = a number of predictions, and 

 𝑠 = a standard deviation of prediction.  

 

Figure 4.3.  Definition of Accuracy (ISO 5725-1) 

The confidence level is used as an accuracy/validation metric for measuring the success of the algorithm. 

The confidence level is the probability of a set point prediction being within a confidence interval 

(Altman et al. 2013). Depending on the confidence level chosen, the interval margin of error and 

respective range also change. The difference between the identified set point and the actual set point is 

used as a residual input to identify an interval wherein the prediction will lie. The goal of the algorithm is 

to identify the set point temperature +/-1.0°F and with a 90% confidence level.  

4.5 Validation of Zone Set Point Detection Algorithm 

The set point detection approach is explained using data from RTU-1 in Building B during the 

Spring/Fall-Day2. Figure 4.4 shows zone temperature and filtered zone temperature profiles. The blue and 

green lines indicate the raw zone temperature, and filtered zone temperature, respectively. The noise in 

raw zone temperature (blue) is reduced, while the peak is remains the same in the filtered zone 

temperature (green), making it easier to measure the peak position, height, and width.  
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Figure 4.4.  (a) Zone Temperature (top) and (b) Filtered Zone Temperature (bottom) Using Data from 

Building B-B-RTU1-Spring/Fall-Day 2  

The first step in the set point detection process is to identify the set point or set points (for zones with 

multiple set points) in a 24-hour period (one day). Figure 4.5 shows zone temperature (blue) and the 

detected set point temperatures (green) over a 24-hour period. In this example, the zone has two distinct 

temperature set points: the first is the occupied cooling temperature set point (71.5°F) and the second is 

the unoccupied cooling temperature set point (75°F). The blue and red circles indicate Tmax (blue) and Tmin 

(red) estimated by set point detection algorithm. The total number of Tmax and Tmin points were 28 for this 

day. The Tsp was calculated using the average of corresponding Tmax and Tmin. The set point detection 

algorithm uses a fixed-length moving window average that creates series of average set point 

temperatures of different subsets of the full Tsp set. The size of subsets used for validation of the algorithm 

was 5 points. The first set point temperature was calculated by averaging the first five points from the Tsp, 

as shown in Figure 4.5. Then the subset was modified by excluding the first point from Tsp and adding the 

sixth point from Tsp. The average for points 2 to 6 represents the second set point temperature. This 

process is repeated over the full Tsp set. In this example, there will be 24 average set point temperatures 

(given that there are 28 points). 
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Figure 4.5.  Zone Temperature and Cooling Command (Building B-RTU-1-Spring/Fall-Day 2) 

The second step in the set point detection process, is to distinguish whether two adjacent detected set 

points are distinct and different. The probability distribution function is used to isolate distinct set points. 

Figure 4.6 shows an example of the probability distributions for two set points that correspond to the first 

and the eighth moving window subset. The mean for the first point (red dashed line) and eighth set point 

temperature (blue dashed line) are 71.9°F and 71.8°F, respectively. As discussed previously, the Bayesian 

classifier is used to estimate the classification error (overlap area) between the first and eighth 

distributions. The significant overlap between the first and eighth probability distributions indicates that 

there is no difference between the two sets. The classification errors based on the residuals between the 

first and eight set point is 0.59, indicating that there is no significant statistical difference between the two 

set point temperatures.  
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Figure 4.6.  Overlapping Normal Distribution between the First and Second (new) Set Point (Building B-

RTU1-Spring/Fall-Day 2)  

The third and the final step in the set point detection process is to compare the estimated set point with the 

ground truth. As discussed in the previous section, the confidence level is used as an accuracy metric for 

measuring the success of set point detection. The difference between the predicted and the actual set point 

is used as a residual input to the confidence interval to identify an interval in which the prediction will lie. 

As stated earlier, the goal of the set point algorithm is to identify the set point temperature within ±1.0°F 

at a 90% confidence level. Figure 4.7 shows the probability density function. Using a sample data set, the 

algorithm identified the set point within 0.5°F of the actual set point. The confidence interval for this 

sample data set at a 90% confidence level is between -0.09°F and 0.45°F. Because the upper bound 

(0.45°F) for the sample data set is smaller than 1.0°F, the identified set point is considered to be correct 

with 90% confidence.  

 

Figure 4.7. Probability Density Function of Correct Set Point Detetection (Building B-RTU2-Summer-

Day 2) 
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Now that the first and the eighth set points were considered to be the same and also met the accuracy 

metric, the next step is to compare the distribution of the first and the ninth set points. This process of 

comparing the distributions continues for all set points. Figure 4.8 compares the first and the eighteenth 

moving window subsets, and shows much larger difference between the first and the eighteenth set point 

probability distributions, indicating that the set points are distinct and different. The Bayesian error 

between two set points (first and eighth) is 0.07, which is less than the established threshold (0.1).  

 

Figure 4.8. Overlapping Normal Distribution between the Second and the Third Set Point Temperatures 

(Building B-RTU1-Spring/Fall-Day 2)  

Figure 4.9 shows the probability density function for the second distinct set point. The absolute difference 

between the predicted (75.1°F) and the actual (75.0°F) set point value is 0.1°F. The interval 

corresponding to the 90% confidence level lies between 0.2°F and 0.9°F. Because the upper bound of the 

confidence interval (0.9°F) is less than 1.0°F, the predicted set point is considered to be accurate to within 

90% confidence.  

 

Figure 4.9.  Probability Density Function for Set Point Detection (Building B-RTU-1-Spring/Fall-Day2) 
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Error! Reference source not found. shows the summary of the Building A data set used for validation 

of the set point detection algorithm and results. The evaluation was performed with a sample data from 

four RTUs spanning seven days of each season (summer, winter, and spring/fall) from four RTUs. The 

analysis included a total of 66 detections, including 61 correct and five incorrect detections. On 23 

occasions no detection was possible because the number of ON/OFF cycles were less than five. Because 

the RTUs were OFF during the weekend, most of the “no” detections were from the weekend data.  

Table 4.2.  Summary of the Building A Data Set Used for Set Point Detection and Results 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

A 
Seattle, 

WA 
4 

Summer 77  23 5  4 

Winter  43 18 0  10  

Spring/Fall  53 20 0  9 

Total number of detections 61 5 23 

Table 4.3 shows the summary of the Building B data set used for validation of the set point detection 

algorithm and results. The set point detection algorithm was evaluated using sample data from six RTUs 

spanning seven days for each season. The analysis included a total of 96 detections, including 88 correct 

and 8 incorrect detections. Six of the eight incorrect detections happened in spring/fall. Although the units 

cycled ON/OFF more than five times, it was not frequent enough to make correct detections. On 44 

occasions no detection was possible because the number of ON/OFF cycles were less than five and most 

of these days were from the weekend data. 

Table 4.3.  Summary of the Building B Data Set Used for Set Point Detection and Results 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

B 
Berkeley, 

CA 
6 

Summer 70 31 2 14 

Winter 51 26 0 16 

Spring/Fall 64 31 6 14 

Total number of detections 88 8 44 

Table 4.4 shows the summary of the Building C data set used for validation of the set point detection 

algorithm and results. The set point detection algorithm was evaluated using sample data from eight 

RTUs spanning seven days for each season. The analysis included a total of 116 detections, including 95 

correct and 21 incorrect detections. The number of incorrect detections for this building was relatively 

higher than for the other two buildings, and the reason for this is explained below (Figure 4.10). On 60 

occasions no detections were possible because the number of ON/OFF cycles were less than five; this 

situation occurred mostly during weekends. The number of “no” detections was also higher for this 

building than for the other two buildings because this building is open space and thus only some of eight 

RTUs were necessary to maintain the comfort in the space. 
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Table 4.4.  Summary of the Building C Data Set Used for Set Point Detection and Results 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

C 
Richland, 

WA 
8 

Summer 73 33 10 15 

Winter 41 25 4 28 

Spring/Fall 63 37 7 17 

Total number of detections 95 21 60 

Figure 4.10 shows the zone temperature profile and cooling command for the HP4 system in Building C 

during the cooling season. The blue, red, and black lines represent the zone temperature, set point 

temperature, and the cooling command signal, respectively. Regarding the 21 incorrect detections, in 

some cases the system was cycling before it reached the set point temperature of 70°F; therefore, the 

predicted set point value was higher than the actual zone set point temperature.  

 

Figure 4.10.  Temperature Profile and Cooling Command (Building C-HP4-Summer/Day2) 

Table 4.5 shows the summary of the Building C data set used for validation of the set point detection 

algorithm and results. No winter data are used because both RTUs are air conditioners only. The set point 

detection algorithm was evaluated using sample data from two RTUs spanning seven days. The analysis 

included 22 correct and 1 incorrect detection and on 5 occasions detection was not possible. During 

summer, all set points were detected correctly with one exception, because the building was a grocery 

store with a single set point all week.  

Table 4.5.  Summary of the Building D Data Set and Results for Set Point Detection 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

D 
South 

Paris, ME 
2 

Summer 73 13 1 0 

Spring/Fall 60 9 0 5 

Total number of detections 22 1 5 
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Table 4.6 shows the summary of the Building E data set for validation of the set point detection algorithm 

and results. All set points were correctly detected with one exception.  

Table 4.6.  Summary of the Building E Data Set and Results for Set Point Detection 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

E 
Miami, 

FL 
2 

Summer 84 13 1 0 

Winter 69 14 0 0 

Spring/Fall 80 14 0 0 

Total number of detections 41 1 0 

Table 4.7 shows the summary of Building F for validation of the set point detection algorithm and results. 

The analysis included 37 detections—29 correct and 8 incorrect. Five set points could not be detected 

because the building has a single set point (Figure 4.10).  

Table 4.7.  Summary of the Building F Data Set and Results for Set Point Detection 

Building Location 

Number 

of RTUs Season 

TOA,AVG 

°F 

Number of 

Correct 

Detection 

Number 

of Incorrect 

Detection 

Number 

of  “NO” 

Detection 

F 
Cupertino, 

CA 
2 

Summer 73 12 1 1 

Winter 50 9 4 1 

Spring/Fall 61 8 3 3 

Total number of detections 29 8 5 

Table 4.8 shows the validation summary for the set point detection algorithm. The algorithm correctly 

detected 354 out of 399 set point temperatures. The details of the results for each RTU in three of the 

buildings are presented in Error! Reference source not found.. Although the absolute difference 

between the predicted and actual set point temperature for 45 cases was greater than 1.0°F, the difference 

between the predicted and actual value was within ±1.5°F (see red shaded data in Error! Reference 

source not found.) for most of these cases. Because the set point detection algorithm requires a minimum 

number of peaks and valleys to predict set point temperature, it had difficulty when the number of peaks 

and valleys was less than five (see gray shaded data in Error! Reference source not found.) or relatively 

small. Overall, the performance of the algorithm was good; it estimated the set point accurately to within 

1°F 88% of the time and within 1.5°F 100% of the time.  

Table 4.8.  Summary of the Validation Results for the Set Point Detection Algorithm 

Total Number of 

Set Point Temperatures Detected 

Total Number of correct 

Set point temperatures detected 

Total Number of Incorrect 

Set Point Temperatures Detected 

390 356 45 

The set point detection algorithm has been shown to provide accurate set point temperature estimates 

using just the zone temperature data from a number of RTUs in diverse climate locations and building 

types. The set point detection algorithm can be deployed on SMBs that do not have BASs using a low-

cost single board computers (e.g., Raspberry PI, BeagleBone, etc.) with a single inexpensive temperature 

sensor to measure zone temperature. The algorithm can generate actionable information, including 

detecting incorrect temperature set points (set points changed by someone) or an override of the 

thermostat.  





 

5.1 

5.0 Development and Validation of ON/OFF Cycling Detection 
Algorithm 

This section describes the methodology used to detect RTU ON/OFF cycling based on zone temperature 

measurement. The RTU can provide mechanical cooling (direct expansion vapor compression), from cool 

outside air (economizing) or a combination of mechanical cooling and economizing (when economizing 

alone cannot meet the cooling needs of the conditioned zone). The ON/OFF cycling algorithm is useful 

when the thermostat’s cooling command value is not available. ON/OFF cycling detection can be used to 

quantify the number of times an RTU is ON or OFF in a given time period. The number of detected 

cycles being higher than a predefined threshold during a certain time period indicates an RTU short 

cycling problem. RTU cycling is a function of a number of variables, including oversizing and 

temperature differences between the indoors and outdoors. The RTU is expected to cycle more often 

when the temperature difference between indoors and outdoors is high or when the unit is significantly 

oversized. 

5.1 Development of ON/OFF Cycling Detection 

In a zone temperature profile, the peak indicates “ON” and the valley indicates “OFF.” The peak 

detection (Peak Detection Algorithm) can detect the number of peaks (ON)/valleys (OFF) in the daily 

zone temperature time-series data. The algorithm reads Tzone, searches for valid peaks and valleys, and 

keeps track of the total number of peaks and valleys found. The overall number of ON/OFF cycles in a 

day can be calculated by the sum of the number of peaks. The algorithm can detect excessive equipment 

ON/OFF cycling and equipment that remains in an ON or OFF state for significant periods of time. The 

technique does not require any supervised learning or extra additional sensor installation, which is costly 

and time consuming. Two thresholds, which are user adjustable configuration parameters, are described 

below: 

5.1.1 Maximum Number of Cycles 

The maximum cycling number represents the maximum number of cycles expected per day. A cycling 

problem is detected when the number of cycles exceeds the maximum cycling number (default value 

100). If the number of detected cycles is higher than a predefined threshold during a certain time period, it 

indicates an RTU is short cycling.  

5.1.2 Minimum Number of Cycles 

The minimum cycling number represents the minimum number of cycles per day. A cycling problem is 

detected when an RTU remains either in the ON or OFF state for significant period of time (default 

minimum is value 0). 

5.2 Metric Used for ON/OFF Cycling Detection 

This section describes the metric used for the ON/OFF cycling detection. The mean absolute percent error 

(MAPE) estimate is used to quantify the accuracy of the ON/OFF cycling detection algorithm. The 

MAPE between identified and actual value is a widely used accuracy metric. The MAPE can be 

calculated as the average absolute percent error, as shown in Equation (11). The ON/OFF cycling 

algorithm estimates the number of ON/OFF cycles over the 24-hour period. The goal of the ON/OFF 
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cycling detection algorithm is to identify the number of ON/OFF cycles with a MAPE value of less than 

20%. 

 

𝑀𝐴𝑃𝐸 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (%) = (1 − 
1

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
|

𝑖=𝑛

𝑖=1

) × 100 (11) 

The MAPE is scale sensitive and should not be used when working with limited amount of test data. 

Because "Actual" is in the denominator of Equation (11), the MAPE is undefined when “Actual” is quite 

small, the MAPE will often take on extreme values.  

5.3 Validation of ON/OFF Cycling Detection 

First, the cycling detection algorithm is explained using cooling season data from RTU-1 in Building D. 

Figure 5.1 shows the zone temperature profile and cooling command for RTU-1 in Building D during the 

cooling season. The blue and black lines indicate the zone temperature and compressor signal, 

respectively. As seen in the figure, the Tmax and Tmin correctly correspond to compressor signals 0 (OFF) 

and 1 (ON), respectively. The total number of cycles predicted by the algorithm was 35/day and the actual 

number of cycles was 34/day. The corresponding MAPE metric is 97%, indicating an accurate prediction 

of ON/OFF cycles.  

 

Figure 5.1.  Zone Temperature Profile and Cooling Command (Building D-RTU1-Summer/Day 1) 

Table 5.1 shows the summary of the Building A data set used for validation of the ON/OFF cycling 

detection algorithm and results. The results are split into two groups: 1) a group of days when the 

ON/OFF cycles numbered more than 15 events and 2) a group of days when the ON/OFF cycles 

numbered more than 5. For days when the ON/OFF cycles exceeded 15, the algorithm was more 

successful in detecting the ON/OFF cycles than when the ON/OFF cycles exceeded 5.  
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Table 5.1.  Summary of the Building A Data Set and Results for the ON/OFF Cycling Detection 

Location Season 

TOA,AVG 

°F 

Daily ON/OFF Cycles Greater 

than 5 

Daily ON/OFF Cycles Greater 

than 15 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Seattle, 

WA 

Summer 77 16 7 9 3 

Winter  43 14 4 9 1 

Spring/Fall  53 18 3 10 0 

Total number of detections 48 14 28 4 

% of correct/incorrect detection 77% 23% 88% 12% 

Table 5.2 shows the summary of Building B data set used for the validation of the ON/OFF cycling 

detection algorithm and results. The data with more than 5 daily ON/OFF cycles were 80% accurate. The 

accuracy increased to 85% when the data only included days with 15 or more ON/OFF cycles. 

Table 5.2.  Summary of the Building B Data Set and Results for the ON/OFF Cycling Detection 

Location Season 

TOA,AVG 

°F 

Daily ON/OFF Cycles Greater 

than 5 

Daily ON/OFF Cycles Greater 

than 15 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Berkeley, 

CA 

Summer 70 26 6 16 3 

Winter 51 17 4 17 3 

Spring/Fall 64 15 5 12 2 

Total number of detections 58 15 45 8 

% of correct/incorrect detection 80% 20% 85% 15% 

Table 5.3 shows the summary of the Building C data set used for validation of the ON/OFF cycling 

detection algorithm and results. The data with more than 5 daily ON/OFF cycles was 65% accurate, while 

the accuracy increased to 88% when only data with 15 or more cycles were used. The incorrect detections 

are explained in Figure 5.2. 

Table 5.3.  Summary of the Building C Data Set and Results for the ON/OFF Cycling Detection 

Location Season 

TOA,AVG 

°F 

Daily ON/OFF Cycles Greater 

than 5 

Daily ON/OFF Cycles Greater 

than 15 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Richland, 

WA 

Summer 70 32 18 22 4 

Winter 51 21 9 10 2 

Spring/Fall 64 28 17 18 1 

The total number of detections 81 44 50 7 

% of correct/incorrect detection 65% 35% 88% 12% 

Figure 5.2 shows the zone temperature profile and cooling command of the HP3 system in Building C 

during the cooling season. The blue and red lines indicate the zone temperature and cooling command 

signal, respectively. As shown, the cooling command signals are not corresponding to the zone 

temperature trend. This is because several RTUs in Building C serve open space. Therefore, unknown but 



 

5.4 

highly possible inter-zonal convective coupling is occurring due to close interactions between the 

different RTUs and their thermostats, non-uniformly distributed diffusers, and non-uniform heat gains. 

 

Figure 5.2.  Temperature Profile and Cooling Command (Building C-HP3-Summer/Day 2) 

Table 5.4 shows the summary of the Building D data set used for validation of the ON/OFF cycling 

detection algorithm and results. The data with more than 5 daily ON/OFF cycles were 87% accurate, 

while the accuracy increased to 100% when only data with 15 or more cycles were used.  

Table 5.4.  Summary of ON/OFF Cycling Detection Results for Building D 

Location Season 

TOA,AVG 

°F 

Daily ON/OFF Cycles Greater 

than 5 

Daily ON/OFF Cycles Greater 

than 15 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

Number 

of Correct 

Detection 

Number of 

Incorrect 

Detection 

South 

Paris, ME 

Summer 73 14 0 12 0 

Spring/Fall 60 6 3 2 0 

Total number of detections 20 3 14 0 

% of correct/incorrect detection 87% 13% 100% 0% 

Excessive (short) cycling of the system can lead to premature failure of the compressor or its components. 

Short cycling also can result in a significantly decreased average efficiency, even if there are no physical 

failures in the equipment. According to the Architectural Energy Corporation’s Small HVAC System 

Design Guide (Jacobs 2003b), short cycling can cause an efficiency penalty of approximately 10%. Table 

5.5 shows the summary results of the ON/OFF cycling detection algorithm. For data with more than five 

ON/OFF cycles, the algorithm detected 203 out of 283 cycles correctly. For data with more than 15 

ON/OFF cycles, the algorithm detected 133 out of 156 cycles correctly. Because the goal is to detect 

frequent ON/OFF cycles, lower accuracy of detection when there are fewer cycles than 15 is not critical. 

The details of the results for each RTU in three the buildings are presented in  

– 

Validation of On/Off Cycle Algorith. 
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Table 5.5.  Summary of Daily ON/OFF Cycle Detection Results 

Daily ON/OFF Cycles Greater than 5  

(A total of 359) 

Daily ON/OFF Cycles Greater than 15  

(A total of 196) 

Number of Correct 

ON/OFF Cycles 

Detection (>80%) 

Number of Incorrect 

ON/OFF Cycles 

Detection (<80%) 

Number of Correct 

ON/OFF Cycles 

Detection (>80%) 

Number of Incorrect 

ON/OFF Cycles 

Detection (<80%) 

203 80 133 23 

Table 5.6 shows the summary of weekly ON/OFF cycling detection. The weekly MAPE was calculated 

based on a sum of cycling over a 1-week period. For data with more than 75 weekly ON/OFF cycles, the 

algorithm was incorrect only once. 

Table 5.6.  Summary of Weekly ON/OFF Cycle Detection Results 

Weekly ON/OFF Cycles Greater than 25 

(A total of 64) 

Weekly ON/OFF Cycles Greater than 75 

(A total of 47) 

Number of Correct 

ON/OFF Cycles 

Detection (>80%) 

Number of Incorrect 

ON/OFF Cycles 

Detection (<80%) 

Number of Correct 

ON/OFF Cycles 

Detection (>80%) 

Number of Incorrect 

ON/OFF Cycles 

Detection (<80%) 

49 5 30 1 
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6.0 Development and Validation of Occupancy Schedule 
Detection Algorithm 

The goal was to develop, implement, and validate methods for estimating the occupancy schedule without 

additional sensor requirements. The building operator may have difficulty trying to validate the 

occupancy schedules based upon zone temperature history charts without other measurements (e.g., 

supply fan signal). The method reported here for detecting the occupancy schedule is based only on zone 

temperature measurement from continuous time-series data. To detect the occupancy information from 

the zone temperature, we use SAX to detect the occupancy schedule from a daily zone temperature 

profile. The detected schedule can help the building operator identify the occupancy schedule patterns and 

the changes in or overrides of the schedule. Also, the scheduling information derived from this algorithm 

can be used to optimize the operating schedules (e.g., precooling, time-of-day scheduling) of RTUs to 

restore energy-efficient operation. To validate the performance of the algorithm, the predicted occupancy 

schedule was compared with actual occupancy information using a confusion matrix.  

The development of occupancy schedule detection is broken down into three steps—data preprocessing, 

SAX transformation, and data clustering—designed to detect the daily schedule from zone temperature 

time series. In the data preprocessing step, the temperature data are normalized to a mean of zero and a 

standard deviation of one. Next, the normalized temperature is transformed into the SAX representation 

by creating groups of SAX words from daily windows. This approach can preserve meaningful patterns 

from the temperature data and produce competitive results for classifying schedules (Lin et al. 2003). The 

basic idea of SAX is to convert the time-series data into a discrete format with a small alphabet size. In 

this case, every part of the representation contributes about the same amount of information about the 

shape of the time series. The additional clustering step beyond the SAX transformation adds the ability to 

aggregate the daily occupancy profiles. The field test data (summer season data from RTU-3 at Building 

A) are used to describe the development of the schedule detection algorithm.  

6.1 Data Preprocessing  

In the data mining approach, data preprocessing is an important step for cleaning and standardizing the 

data (Goldin and Kanellakis 1995). In this effort, the temperature data are normalized to use the Gaussian 

distribution as the data model. The normalized temperature is calculated by subtracting the mean and 

dividing the standard deviation as show in Equation (12).  

 

𝑇𝑛(𝑡) =  
𝑇𝑧𝑜𝑛𝑒(𝑡) − 𝜇𝑋

𝜎𝑋
 (12) 

 

where  Tn(t) = the normalized temperature time series of length n,  

 Tzone (t) = the temperature time series of length n, 

  𝜇𝑋 = the mean of Tzone (t), and 

   𝜎𝑋 = the standard deviation of Tzone (t).  

In the current algorithm, n is 1440 (24 hours of 1-minute frequency data). Figure 6.1 shows the zone 

temperature and normalized zone temperatures of RTU-3 in Building A during the summer season. Each 

temperature time series was normalized, which does not affect the original shape of zone temperature 

measurements and scales the data to be comparable.  
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Figure 6.1. Zone Temperature and Normalized Zone Temperatures (Building A-RTU-3-Summer 

Season) 

6.2 Data Mining Approaches Based on SAX Transformation 

To convert a normalized temperature into SAX symbols, two steps of discretization are performed.  

6.2.1 Piecewise Aggregate Approximation  

First, the data are transformed into the Piecewise Aggregate Approximation (PAA) representation. The 

time series Tn(t) of length n is divided into w equal-sized segments (typically w << n). In the current 

approach, w is chosen as a 1-hour segment due to the focus on hourly schedule characterization in 

buildings. The values in each segment are then approximated and replaced by the average of the data 

points in each segment (Keogh et al. 2000). The ith element of 𝑇̅ is calculated by Equation (13). Because 

w is typically much smaller than n, PAA representation can often largely reduce the dimensionality and 

makes the computation of the time-series data more efficient. 

 



 

6.3 

𝑇̅𝑖 =  
𝑤

𝑛
 ∑ 𝑇𝑛(𝑗)

𝑛
𝑤

∙𝑖

𝑗=
𝑛
𝑤

(𝑖−1)+1

 (13) 

Figure 6.2 shows the example result of PAA dimensional reduction of RTU-3 in Building A during the 

summer seasons. The blue and red lines indicate PAA representation and normalized temperature profiles. 

The normalized temperature time series is converted into PAA representation. This dimensionality 

reduction technique preserves the general shape of temperature data. To reduce the time series from 1440 

dimensions (1-minute interval) to 24 equal size segment (1-hour interval), the temperature data are 

divided into 24 equal-sized segments. The temperature measurements in each segment are replaced by the 

average value of the data points.  
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Figure 6.2.  PAA Representation and Normalized Zone Temperature (Building A-RTU-3-Summer 

Season) 

6.2.2 Discretization Based on Symbol 

After having transformed the temperature time series into the PAA representation, an alphabetic symbol 

is assigned according to where the mean lies with a set of vertical breakpoints. These breakpoints are 

calculated according to a chosen number of alphabet size, A to create equi-probable regions based on a 

Gaussian distribution because the normalized time series have highly Gaussian distributions (Keogh and 

Lin 2005). Based on a chosen number of A, each PAA representation is transformed into SAX words. A 
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larger alphabet size creates SAX words with more diverse ranges of characters and captures more relative 

to resolution magnitude. For the current work, four alphabet sizes were selected to create three 

breakpoints (-0.67, 0, and 0.67) on the x-axis by looking them up in a statistical table. Three breakpoints 

can produce four equal-sized areas under the Gaussian curve as shown in in Figure 6.3. Three red dashed 

line indicate the breakpoints. Each region is represented by symbols A, B, C, and D.  

 

Figure 6.3.  Breakpoint by Using the Gaussian Distribution 

Figure 6.4 shows the frequency of the SAX strings of RTU-3 in Building A during the summer seasons. 

The blue and red lines indicate the SAX representation and normalized temperature for the example 1-

week data. The normalized temperature is discretized by first obtaining a PAA representation and then 

using an alphabet string to map the PAA representations into SAX symbols. Each breakpoint is replaced 

by the string symbol A, B, C or D. For example, the PAA representations that are below -0.67 are mapped 

to the symbol D, PAA representation greater than or equal to -0.67 and less than 0 are mapped to the 

symbol C. In the example, for July 1, the zone temperate time series is mapped to the string, 

“DDDDDBAAABAAAAAAABCDD DDD.” The SAX method can roughly preserve the general shape 

of the normalized zone temperature with large dimensionality reduction. The SAX string is helpful from 

an interpretative point of view in that each letter corresponds consistently to subsequent data from the 

daily temperature profile. For example, the string D describes the pattern for the hours of night. 

Therefore, a SAX word whose first letter is A would have low temperature, B and C would indicate 

relative average temperatures, and D would correspond to high temperature.  

The key parameters of SAX representation creation are the w segment and alphabet size A. Decreasing the 

number of parameters creates a more simplified situation that should be considerably easier to interpret; 

however, the downside is the low level of detail. Increasing the number of parameters creates the most 

detailed patterns, which may be overwhelming in an analysis situation. To get the best values of the two 

parameters, we used the temperature time series from several buildings and made a search of patterns 

with several combinations of values. Based on these observations of the A and w, it was found that the 

setting w = 24 and A = 3 resulted in the best balance between the number of patterns generated and 

resolution of detail needed to adequately detect occupancy schedule in a 24-hour period. While these 

findings are specific to our case studies, we hypothesize that similar settings will be useful when 

analyzing other zone temperature data due to the generally reoccurring daily patterns. These initial 

parameter settings may be used as a default when implementing the occupancy schedule algorithm and 

adjusted accordingly based on the temperature profiles and measurement frequency.    
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Figure 6.4.  One-Week Sample SAX Representation (Building A-RTU-3-Summer Season) 

Once the SAX words are created, the next step is to identify each occupancy schedule. The results of 

applying the occupancy process to RTU-3 data in Building A during the summer seasons are shown in 

Figure 6.5. The blue and red dashed lines indicate the predicted and actual occupancy schedule. The 

actual weekday occupancy schedule is from 5:00 a.m. to 4:00 p.m. and the building is not occupied over 

the weekend. The patterns between “Occupied schedule” and “Unoccupied schedule” can be 

distinguished according to SAX symbols. The SAX representations “A” and “B” are set to “Occupied 

schedule.” Otherwise, the SAX representation C or D is set to “Unoccupied schedule.” Based on this 

notation, the predicted weekday occupancy schedule for July 1 is 4:00 a.m. to 5:00 p.m. The SAX method 

was able to predict the occupied schedule.  
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Figure 6.5. Comparison between the Actual and Predicted Schedule (Building A-RTU-3-Summer 

Season) 

6.3 Clustering 

After creating the occupancy profile candidates, the algorithm clusters the occupancy candidates to create 

possible schedules (e.g., weekend, weekday). The clustering step is supplementary if the SAX 

transformation process produces too many occupancy candidates (Lin et al. 2003). Clustering would be 

useful, for example, if seven occupancy candidates are created and the user wants to further aggregate 

those candidates into one or two more typical occupancy schedule(s).  
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For the current approach, a distance measure function, MINDIST, is used to cluster the daily occupancy 

profiles after creating the possible candidate. MINDIST is defined to identify patterns after transforming 

to SAX representation, as shown in Equation ((14). The distance between two SAX representations 

requires looking up the distances between each pair of symbols, squaring them, summing them, taking the 

square root, and finally multiplying by the square root of the compression rate. This function returns the 

minimum distance between the expected time series and its observed time series. For example, if two 

schedules are similar, then the distance measurement between their SAX representations is less than the 

target distance. In this approach, the target distance is set as 2.0 to distinguish two different schedules. 

 

𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝐶𝑎𝑠𝑒 1, 𝐶𝑎𝑠𝑒 2) = √
𝑛

𝑤
 √∑ (𝑑𝑖𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙 1, 𝑠𝑦𝑚𝑏𝑜𝑙 2 ))

2𝑤

𝑖=1
 (14) 

where the dist function is implemented by using the lookup table for the particular set of the breakpoints 

as shown in Table 6.1. The distance between two symbols can be read off by examining the 

corresponding row and column. Entries for both A ↔ B and B ↔ C have identical values. For example, 

dist(A, B) = dist(B, A) = 0 and dist(A,C) = dist(C,A) =  0.67. 

Table 6.1.  Distance between Two Symbols 

 A (=area 1) B (=area 2) C (=area 3) D (=area 4) 

A (=area 1) 0 0 0.67 1.34 

B (=area 2) 0 0 0 0.67 

C (=area 3) 0.67 0 0 0 

D (=area 4) 1.34 0.67 0 0 

Table 6.2 shows two daily profiles (Building A-RTU-3- July 1 and July 2) that are converted to the SAX 

words. The distance between the two SAX representations returns a value of 0 based on Table 6.2. The 

schedule extracted from July 1 is the same as the schedule from July 2.  

Table 6.2. Example of Distance between Two SAX Representations (Building A-RTU-3- July 1 and July 

2) 

Hour 1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2  

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

July.1st  d d d d d b b b b b b b  b a b a a b d d d d d d 
 ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕  ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ 

July.2nd  d d d d c c a b b b a b  a b b b b b d d d d d d 
Distance 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 

Table 6.3 shows two daily profiles (Building A-RTU-3- July 1 and July 6) that are converted to the SAX 

words. When the distance between the two zone temperatures is higher than 2.0, the two time series 

should be considered the result of different schedules. Therefore, the schedule extracted from July 1 is 

different from that of July 6. 

Table 6.4 shows the summary of distance results using RTU-3 data in Building A during the summer 

seasons. The distances between July 1 and all other days were calculated to create distinct groups of daily 

profiles. Two candidates appear to be the typical weekday and weekend schedule. Figure 6.6 shows two 

detected weekday schedules and weekend schedules for the example one-week data.   
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Table 6.3. Example of Distance between Two SAX Representations (Building A-RTU-3- July 1 and 

July6) 

Hour 1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

July.1st d d d d d b b b b b b b B a b a a b d d d d d d 
 ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ 

July.6th d d d d d d c c c c d d D d d d d d d d d d d d 
Distance 0 0 0 0 0 0 0 0 0 0 .7 .7 .7 1. .7 1. 1. .7 0 0 0 0 0 0 

Table 6.4.  Summary of Distance Results (Building A-RTU-3-Summer Season) 

 Weekday Weekend 
 

July 2 July 3 July 4 July 5 July 6 July 7 

July 1st 0 0 0 0 2.86 3.16 

 

 

 

Figure 6.6.  Weekday and Weekend Occupancy Schedule (Building A-RTU-3-Summer Season) 

6.4 Metric Used for the Scheduling Detection Approach 

This section describes the metric used for the detection of scheduling. A confusion matrix (Provost and 

Kohavi 1998) was used to quantify the accuracy of the schedule detection algorithm. The matrix shows 

the number of correct and incorrect predictions made by the algorithm compared with the actual 

occupied/unoccupied schedule in the test data. Table 6.5 shows the confusion matrix for the schedule 

detection algorithm. The rows and columns of the matrix correspond to the number of actual schedules in 

the test data and the number of predicted schedules made by the algorithm, respectively.  

Table 6.5.  Confusion Matrix for the Schedule Detection Algorithm 

 
Identified Schedule 

Occupied Schedule (C0) Unoccupied Schedule (C1) 

Actual 

Schedule 

Occupied Schedule (C0) 
N0,0 = Number of correctly 

identified C0  

N0,1 = Number of C0 incorrectly 

identified as C1 

Unoccupied Schedule (C1) 
N1,0 = Number of C1 incorrectly 

identified as C0  

N1,1 = Number of correctly 

identified C1  
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Equation ((15) is used to estimate the accuracy of the schedule identification, which is the ratio of the 

number of correctly identified schedules (N0,0+N1,1) and total number of schedules (N0,0+N1,0+N0,1+N1,1). 

The goal of the schedule detection algorithm is to identify the occupied/unoccupied schedules with an 

accuracy of at least 85%. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑐𝑠 (%) =  (
(𝑁0,0 + 𝑁1,1)

(𝑁0,0 + 𝑁1,0 + 𝑁0,1 + 𝑁1,1)
) × 100 (15) 

Table 6.6 shows an example of the confusion matrix for the schedule detection algorithm (July 1 and July 

2). The schedule detection algorithm identifies the schedules over the 24-hour period. The algorithm 

correctly identified the occupied schedule 8 times and incorrectly identified it 1 time. Also, the algorithm 

correctly identified the unoccupied schedule 14 times and incorrectly identified it 1 time. Therefore, the 

accuracy of schedule detection algorithm is 92%.  

Table 6.6.  Confusion Matrix for Occupancy Schedule Detection (Building A-RTU-3- July 1 and July 2) 

Accuracy = 92% 
Predicted Schedule 

Occupied Schedule (C0) Unoccupied Schedule (C1) 

Actual 

Schedule 

Occupied Schedule (C0) 8 2 

Unoccupied Schedule (C1) 0 14 

Table 6.7 shows the example of the confusion matrix for the schedule detection algorithm (July 1 and July 

6). The schedule detection algorithm identifies the schedules over the 24-hour period. The algorithm 

correctly identified the unoccupied schedule 24 times. Therefore, the accuracy of schedule detection 

algorithm is 100%.  

Table 6.7.  Confusion Matrix for Occupancy Schedule Detection (Building A-RTU-3- July 1 and July 6) 

Accuracy  =100% 
Predicted Schedule 

Occupied Schedule (C0) Unoccupied Schedule (C1) 

Actual 

Schedule 

Occupied Schedule (C0) 0 0 

Unoccupied Schedule (C1) 0 24 

6.5 Validation of Occupancy Schedule Detection Algorithm  

As discussed in the previous section, a confusion matrix was used to quantify the accuracy of the schedule 

detection algorithm. Existing data were used to demonstrate and validate the performance of the 

scheduling detection algorithm. The occupancy scheduling was identified from the zone temperature time 

series and compared with supply fan signals (which is the ground truth). Figure 6.7 shows the example of 

the comparison between predicted and actual schedules, and the corresponding confusion matrix for HP-1 

in Building C during the cooling season. The schedule detection algorithm estimated the occupancy 

schedules over the 24-hour period. The algorithm correctly predicted the occupied schedule for 11 hours 

and incorrectly predicted it for 1 hour. The algorithm also correctly predicted the unoccupied schedule for 

10 hours and incorrectly predicted it for 2 hours. Therefore, the accuracy of schedule detection algorithm 

is 88% ([11+10]/24), satisfying the accuracy level of 85%.  
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Figure 6.7.  Comparison between Predicted and Actual Schedule and the Corresponding Confusion 

Matrix (Building C-HP-1-Summer-Day1) 

Table 6.8 provides a summary of the occupancy schedule detection results for Building A. The results 

show that the algorithm detected the schedules correctly 50 times and incorrectly 60 times. All incorrect 

detections happened during summer and spring/fall seasons when the average outdoor temperatures was 

close to the zone set point during occupancy (between 69°F and 64°F). When the outdoor temperature is 

close to zone set point, RTUs generally start operating late morning or early afternoon; therefore, using 

just the zone temperature to detect the schedule failed because there is no variation in the zone 

temperature when the RTU is not actively cooling or heating. 

Table 6.8.  Summary of Occupancy Schedule Detection Results for Building F 

Building Location 

Number of 

RTUs Season 

TOA,AVG °

F 

Number of Correct 

Detection 

(≥85%) 

Number 

of Incorrect 

Detection 

(< 85%) 

B 
Berkeley, 

CA 
6 

Summer 69 10 30 

Winter 51 28 0 

Spring/Fall 64 12 30 

Total number of detections 50 60 

Table 6.9 shows the summary of occupancy detection results for Building B. Unlike Building A, the 

results show higher detection accuracy—79 correct and only 2 incorrect detections. The average outdoor 

temperatures at this site were either lower than 50°F (during winter) or higher than 75°F (during summer).  

Table 6.9.  Summary of Occupancy Schedule Detection Results for Building B 

Building Location 

Number of 

RTUs Season 

TOA,AVG °

F 

Number of Correct 

Detection (≥85%) 

Number 

of Incorrect 

Detection 

(< 85%) 

A Seattle, WA 4 

Summer 77 27 1 

Winter  43 26 2 

Spring/Fall  53 26 2 

The total number of detections 79 5 
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Table 6.10 summarizes the results of occupancy schedule detection for Building C and lists 82 correct and 

64 incorrect detections. Most of the incorrect detections happened during winter and spring/fall when the 

average outdoor temperatures was between 50°F and 63°F. Although the average outdoor temperature 

was close to 50°F during winter, the number of incorrect detections was high because the building was 

open space and thus only a few of eight RTUs operated simultaneously.  

Table 6.10.  Summary of Occupancy Schedule Detection Results for Building C 

Building Location 

Number of 

RTUs Season 

TOA,AVG 

°F 

Number of 

Correct Detection 

(≥85%) 

Number of Incorrect 

Detection (< 85%) 

C 
Richland, 

WA 
8 

Summer 73 48 1 

Winter 51 10 38 

Spring/Fall 63 24 25 

Total number of detections 82 64 

Table 6.11 summarizes the results for occupancy schedule detection for Building D and lists 11 correct 

and 18 incorrect detections. Fourteen out of 18 incorrect detections occurred during spring/fall when the 

average outdoor temperature was around 60°F. 

Table 6.11.  Summary of Occupancy Schedule Detection Results for Building D 

Building Location 

Number of 

RTUs Season 

TOA,AVG 

°F 

Number of 

Correct Detection 

(≥85%) 

Number of Incorrect 

Detection (< 85%) 

D 
South Paris, 

ME 
2 

Summer 73 10 4 

Spring/Fall 60 1 14 

Total number of detections 11 18 

Table 6.12 summarizes the occupancy schedule detection results for Building E. The results also show a 

significantly high detection accuracy—23 correct and only 1 incorrect detection. The results were good 

even during the winter season. 
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Table 6.12.  Summary of Occupancy Schedule Detection Results for Building E 

Building Location 

Number of 

RTUs Season 

TOA,AVG 

°F 

Number of 

Correct Detection 

(≥85%) 

Number of Incorrect 

Detection (< 85%) 

E Miami, FL 2 

Summer 84 14 0 

Winter 69 13 1 

Spring/Fall 80 14 0 

Total number of detections 23 1 

Table 6.13 shows the summary of occupancy schedule detection results for Building F. There were 23 

correct and 19 incorrect detections for two RTUs.  

Table 6.13.  Summary of Occupancy Schedule Detection Results for Building F 

Building Location 

Number of 

RTUs Season 

TOA,AVG 

°F 

Number of 

Correct Detection 

(≥85%) 

Number of Incorrect 

Detection (< 85%) 

F 
Cupertino, 

CA 
2 

Summer 73 7 7 

Winter 50 8 6 

Spring/Fall 61 8 6 

Total number of detections 23 19 

Table 6.14 shows the summary of schedule detection performance based on outdoor temperature range. 

The schedule detection algorithm detected occupied and unoccupied schedules correctly when outdoor 

temperatures were higher than 75°F (summer) and lower than 50°F (winter). The algorithm, however, 

showed some limitations when the outdoor air temperatures were between 50°F and 75°F (spring/fall). 

During this period, the systems are not typically running early in the day, making schedule detection 

difficult. The details of the results for each RTU and heat pump system in three buildings are presented in  

– 

Validation of Schedule Detection Algorithm. Overall, the occupancy schedule detection algorithm using 

the SAX method performs well under summer (hot) and winter (cold) weather conditions, when energy 

use is highest. The algorithm can also distinguish different schedules and generate clusters of occupancy 

scheduling based on zone temperature measurements alone.  

Table 6.14.  Summary of Schedule Detection Algorithm Results 

Outdoor air temperature (°F) 

Total Number of Correct 

Detected Schedules (>85%) 

Total Number of Incorrect 

Detected Schedules (<85%) 

Higher than 75°F 83 9 

Between 50°F and 75°F 71 115 

Lower than 50°F 128 46 

 

 





 

7.1 

7.0 How to Use the Algorithms to Improve SMBs Efficiency 

Increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. is 

driven by many reasons, chief among them being to mitigate the impacts of climate change. Many cities 

(e.g., New York, Seattle, etc.) are passing ordinances that require periodic retro-commissioning of 

commercial buildings. The U.S. climate action plan will give new impetus to many states and cities to 

follow the examples of Seattle and New York. Although traditional retro-commissioning processes can be 

effective, they cannot ensure the persistence of building operations beyond few months and they are also 

perceived to be costly. A technology-based solution can deliver retro-commissioning service at a lower 

cost and also ensure the persistence of building operations because it represents a continuous process.  

The technology-based solution requires software algorithms and applications that can be deployed in the 

Cloud or on low-cost platforms (Raspberry PI and BeagleBone, etc.) in SMBs. The work reported in this 

report covers two such algorithms: 1) one to detect zone set points and 2) one to detect the number of 

RTU ON/OFF cycles. These algorithms can be used to ensure the persistence of building operations in 

SMBs by enforcing set points and mitigating the reasons for RTU short cycling. The algorithms can also 

automatically detect system overrides. 

 





 

8.1 

8.0 Conclusions 

Three algorithms—to detect zone set points, RTU cycling, and occupancy schedule—were developed, 

tested, and validated.  

To validate the algorithms, monitored data from number of zones/RTUs from six buildings in different 

climate locations were used. The set point and cycling detection algorithms use a peak detection 

technique that only requires one measured temperature to detect peaks/valleys in any given time-series 

data. The occupancy schedule detection algorithm was developed based on the symbolic mapping 

technique for time-series data. These algorithms do not require supervisory learning or additional sensor 

installation other than the zone temperature sensors.  

The three different metrics were used to validate the three different algorithms. To evaluate the accuracy 

of algorithms, three different data sets for each zone/RTU were selected from the field data for different 

periods of the year (i.e., spring/fall, summer, and winter). Each selected data set contained five 

measurements (zone temperature, set point temperature, supply fan status, cooling/heating command, and 

outdoor temperature) of a 1-week period. Although only zone temperature was used by the algorithm, the 

remainder of the data was used as “ground truth” to verify the results of the algorithm.  

Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using 

the peak detection technique. The occupancy schedule detection approach achieved an overall prediction 

accuracy of over 85% when outdoor temperatures were higher than 75°F (summer) and lower than 55°F 

(winter). Because these algorithms only use zone temperature for identification, if the RTUs are not 

actively heating/cooling, the algorithms will not be able to accurately identify set point, ON/OFF cycles, 

and schedules accurately. 
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A.1 

Appendix A 

 

Validation of Set Point Detection Algorithm 

Error! Reference source not found.shows the overall set point algorithm performance for 18 different 

RTU and heat pump systems at 3 different locations. The red, gray, and yellow shaded data indicate 

“incorrect detection,” “unable to detect,” and “at the accuracy threshold of ±1.0 °F,” respectively. 

Table A.1.  Overall Set Point Detection Algorithm Performance 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

Building A 

RTU1-

Summer 

Day1 74 74 73.7 -0.5 -0.2 

Day2 76 74 73.5 -0.7 -0.3 

Day3 73 74 73.6 -0.7 -0.2 

Day4 71 74 73.5 -0.8 -0.3 

Day5 76 74 73.6 -0.7 -0.1 

Day6 82 80 80.1 -1.0 1.3 

Day7 79 80  -   -   -  

RTU1-

Winter 

Day1 44 72 72.4 0.3 0.4 

Day2 41 72 72.3 0.2 0.3 

Day3 38 74 74.1 0.1 0.1 

Day4 38 74 74.1 0.0 0.1 

Day5 40 74 74.1 0.1 0.2 

Day6 48 80  -   -   -  

Day7 50 80  -   -   -  

RTU1-

Spring/ Fall 

Day1 57 75 75.4 0.3 0.4 

Day2 55 75 75.1 0.0 0.0 

Day3 53 
72 72.2 -0.6 1.0 

74 73.4 -1.0 -0.3 

Day4 50 74 73.5 -0.5 -0.5 

Day5 51 74 73.5 0.0 0.0 

Day6 58 80  -   -   -  

Day7 58 80  -   -   -  

RTU2-

Summer 

Day1 76 
74 74.3 0.1 0.3 

80 80.8 -1.3 2.8 

Day2 78 
72 72.1 0.1 0.1 

80 80.6 0.5 0.8 

Day3 74 71 71.0 -0.3 0.2 

Day4 75 
73 73.3 0.2 0.4 

80 80.1 -0.2 0.5 

Day5 78 
73 73.1 -0.6 0.8 

80 80.6 0.5 0.6 

Day6 82 80 80.4 0.1 0.7 

Day7 77 80 80.4 0.1 0.6 

RTU2-

Winter 

Day1 42 75 75.1 -0.2 0.4 

Day2 39 80  -   -   -  

Day3 39 80  -   -   -  

Day4 35 75 75.1 -0.1 0.2 

Day5 37 75 75.1 -0.2 0.3 

Day6 45 80  -   -   -  

Day7 45 80  -   -   -  

RTU2-

Spring/ Fall 

Day1 57 73 73.5 0.4 0.6 

Day2 52 72 71.6 -0.8 0.0 

Day3 49 72 71.8 -0.3 -0.2 

Day4 47 72 71.8 -0.3 -0.2 

Day5 48 72 71.9 -0.3 0.0 

Day6 52  -   -   -   -  

Day7 54  -   -   -   -  

RTU3-

Summer 

Day1 75 72 72.1 0.1 0.2 

Day2 77 72 72.2 -0.3 0.5 



 

A.2 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

Day3 73 72 72.1 0.0 0.2 

Day4 73 72 72.8 -0.5 2.1 

Day5 77 72 72.0 -0.2 0.2 

Day6 84 80 80.8 0.5 1.1 

Day7 80  -   -   -   -  

RTU3-

Winter 

Day1 48 73 73.3 0.3 0.4 

Day2 44 73 73.3 0.3 0.4 

Day3 44 73 73.5 0.4 0.6 

Day4 44 73 73.4 0.3 0.5 

Day5 48 73 73.5 0.6 0.7 

Day6 61 80  -   -   -  

Day7 58 80  -   -   -  

RTU3-

Spring/ Fall 

Day1 59 73 73.5 0.4 0.6 

Day2 56 73  -   -   -  

Day3 54 73 72.4 -1.1 -0.1 

Day4 51 73 73.4 0.2 0.5 

Day5 52 73 73.3 0.2 0.5 

Day6 61 80  -   -   -  

Day7 60 80  -   -   -  

RTU4-

Summer 

Day1 75 74 74.3 -0.2 0.8 

Day2 78 74 74.3 0.0 0.7 

Day3 74 74 74.4 0.2 0.6 

Day4 73 74 74.6 0.1 1.1 

Day5 77 74 74.3 0.0 0.6 

Day6 83 80 80.8 -1.1 2.6 

Day7 77 80  -   -   -  

RTU4-

Winter 

Day1 44 72 71.8 -0.3 -0.2 

Day2 37 72 71.6 -0.6 -0.3 

Day3 29 
72 71.6 -0.5 -0.3 

74 74.6 0.5 0.6 

Day4 33 74 74.2 0.0 0.3 

Day5 40 74 74.2 0.1 0.3 

Day6 47 80  -   -   -  

Day7 50 80  -   -   -  

RTU4-

Spring/ Fall 

Day1 54 72 72.4 0.4 0.5 

Day2 51 72 72.4 0.3 0.4 

Day3 49 72 72.3 0.3 0.3 

Day4 47 72 72.2 0.2 0.3 

Day5 43 72 72.2 0.2 0.3 

Day6 47 80  -   -   -  

Day7 49 80  -   -   -  

Building B 

RTU1-

Summer 

Day1 65 74 73.5 -0.6 -0.4 

Day2 65 74 73.5 -0.6 -0.4 

Day3 68 74 73.5 -0.7 -0.3 

Day4 71 74 73.5 -0.6 -0.4 

Day5 74 74 73.5 -0.8 -0.3 

Day6 80 80 80.6 0.6 0.7 

Day7 80 80 80.7 0.6 0.7 

RTU1-
Winter 

Day1 49 72 71.5 -0.6 -0.5 

Day2 49 72 71.6 -0.5 -0.3 

Day3 49 72 71.5 -0.6 -0.4 

Day4 51 72 71.7 -0.4 -0.3 

Day5 52 72 71.7 -0.3 -0.3 

Day6 56  -  -  -  - 

Day7 56  -  -  -  - 

RTU1-

Spring/ Fall 

Day1 56 
72 71.8 -0.8 0.5 

76 76.2 0.0 0.5 

Day2 56 72 71.7 -0.4 -0.2 

Day3 62 
72 71.5 2.4 -0.4 

76 75.7 -0.5 -0.2 

Day4 68 76 75.4 -0.7 -0.4 

Day5 64 76 75.7 -0.4 -0.3 

Day6 72  -  -  -  - 

Day7 69  -  -  -  - 

Day1 63 74 73.6 -0.8 0.0 
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Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

RTU2-
Summer 

Day2 64 74 73.7 -0.4 -0.3 

Day3 71 74 73.5 -0.6 -0.4 

Day4 75 74 73.4 -0.8 -0.3 

Day5 78 74 73.3 -0.8 -0.7 

Day6 86  -  -  -  - 

Day7 85  -  -  -  - 

RTU2-

Winter 

Day1 50 72 72.3 0.2 0.3 

Day2 48 72 72.1 -0.1 0.2 

Day3 50 72 71.9 -0.3 0.0 

Day4 49 72 71.9 -0.3 0.0 

Day5 48 72 71.9 -0.2 0.0 

Day6 55  -  -  -  - 

Day7 55  -  -  -  - 

RTU2-

Spring/ Fall 

Day1 61 72 72.5 0.4 0.5 

Day2 60 
72 72.4 0.3 0.4 

76 75.5 -1.1 -0.3 

Day3 58 
72 72.3 0.3 0.3 

76 75.8 -0.7 0.3 

Day4 61 
72 72.0 -0.6 0.6 

76 76.6 0.3 0.9 

Day5 60 
72 72.2 0.0 0.5 

76 75.5 -1.1 0.2 

Day6 66  -  -  -  - 

Day7 58  -  -  -  - 

RTU3-

Summer 

Day1 63  -  -  -  - 

Day2 65 71 71.5 0.1 0.9 

Day3 71 
71 70.9 -0.5 0.3 

73 73.1 -0.4 0.6 

Day4 75 73 73.3 0.1 0.4 

Day5 77 73 73.2 0.2 0.3 

Day6 86  -  -  -  - 

Day7 86  -  -  -  - 

RTU3-

Winter 

Day1 49 72 72.0 -0.1 0.1 

Day2 49 72 72.1 0.1 0.2 

Day3 49 
70 69.7 -0.7 0.0 

72 72.1 -0.5 0.3 

Day4 51 
70 69.7 -0.3 -0.3 

72 71.9 -0.5 0.2 

Day5 52 72 71.9 -0.1 0.0 

Day6 56  -  -  -  - 

Day7 56  -  -  -  - 

RTU3-

Spring/ Fall 

Day1 56 70 69.2 -0.8 -0.7 

Day2 62 
70 69.5 -0.6 -0.5 

74 73.3 -0.9 -0.6 

Day3 64 
70 69.5 -0.5 -0.4 

74 73.1 -1.1 -0.7 

Day4 65 
70 69.6 -0.5 -0.3 

74 73.3 -0.8 -0.7 

Day5 62 70 69.5 -0.6 -0.5 

Day6 66  -  -  -  - 

Day7 66  -  -  -  - 

RTU4-

Summer 

Day1 69 76 75.6 -0.4 -0.3 

Day2 63  -  -  -  - 

Day3 63 72 71.7 -0.5 -0.2 

Day4 60 
72 71.5 -0.6 -0.5 

76 75.3 -0.8 -0.6 

Day5 63 
72 71.5 -0.5 -0.5 

76 75.4 -0.9 -0.3 

Day6 74  -  -  -  - 

Day7 73  -  -  -  - 

RTU4-

Winter 

Day1 50 72 71.3 -0.8 -0.7 

Day2 48 72 71.1 -1.0 -0.8 

Day3 50 72 71.6 -0.6 -0.2 

Day4 49 72 71.3 -0.8 -0.5 

Day5 48 72 71.4 -0.9 -0.2 
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Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

Day6 55 60 59.5 -0.5 -1.5 

Day7 55 60 59.5 -0.5 -0.5 

RTU4-
Spring/ Fall 

Day1 61 72 72.3 0.3 0.4 

Day2 57 72 72.3 0.0 0.4 

Day3 60 72 72.4 0.2 0.5 

Day4 60 72 72.6 0.2 1.1 

Day5 61 72 72.5 0.5 0.6 

Day6 64  -  -  -  - 

Day7 61  -  -  -  - 

RTU5-

Summer 

Day1 73 76 75.3 -0.8 -0.7 

Day2 58  -  -  -  - 

Day3 60  -  -  -  - 

Day4 60 
72 71.1 -1.8 -0.4 

76 75.5 -1.1 0.1 

Day5 65 
72 71.3 -0.7 -0.7 

76 75.2 -0.8 -0.7 

Day6 77  -  -  -  - 

RTU5-

Winter 

Day1 62  -  -  -  - 

Day2 60  -  -  -  - 

Day3 61  -  -  -  - 

Day4 56 71 70.6 -0.4 -0.3 

Day5 53  -  -  -  - 

Day6 50  -  -  -  - 

Day7 54  -  -  -  - 

RTU5-

Spring/ Fall 

Day1 72 76 75.3 -0.8 -0.6 

Day2 66 76 75.2 -0.8 -0.7 

Day3 68 76 75.9 -2.1 1.9 

Day4 68 76 75.2 -1.0 -0.6 

Day5 57 76 74.9 -1.9 -0.4 

Day6 63  -  -  -  - 

Day7 77  -  -  -  - 

RTU6-
Summer 

Day1 73 74 73.5 -0.7 -0.4 

Day2 58  -  -  -  - 

Day3 60  -  -  -  - 

Day4 60 
70 69.3 -0.8 -0.6 

74 73.4 -0.8 -0.3 

Day5 65 74 73.4 -0.7 -0.6 

Day6 77  -  -  -  - 

RTU6-
Winter 

Day1 58  -  -  -  - 

Day2 59  -  -  -  - 

Day3 62  -  -  -  - 

Day4 56 70 69.3 -0.7 -0.7 

Day5 53  -  -  -  - 

RTU6-
Spring/ Fall 

Day1 66 72 71.7 -0.4 -0.1 

Day2 65 72 71.6 -0.8 -0.1 

Day3 64  -  -  -  - 

Day4 66  -  -  -  - 

Day5 70 74 73.9 -0.3 0.1 

Day6 67  -  -  -  - 

Day7 73  -  -  -  - 

Building C 

HP1-

Summer 

Day1 88 
74 74.5 0.3 0.6 

80 80.7 0.4 1.1 

Day2 88 72 72.9 0.7 1.0 

Day3 78 72 72.8 0.4 0.8 

Day4 73 72  -  -  - 

Day5 68 72 72.5 0.4 0.7 

Day6 68 80 80.6 0.5 0.7 

Day7 71 80 80.4 -0.2 0.9 

HP1-Winter 

Day1 48 72 71.2 -1.2 -0.5 

Day2 46 72 71.5 -0.8 -0.1 

Day3 47 72 71.4 -1.0 -0.4 

Day4 46 72 71.4 -0.8 -0.4 

Day5 44 72 71.4 -0.8 -0.4 

Day6 49 80  -  -  - 

Day7 52 80  -  -  - 
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Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

HP1-Spring/ 

Fall 

Day1 65 72 72.5 0.5 0.6 

Day2 65 72 72.9 0.7 1.2 

Day3 69 72 72.5 0.3 0.6 

Day4 73 72 72.8 0.5 1.0 

Day5 67 72 72.6 0.4 0.7 

Day6 65 80  -  -  - 

Day7 62 80  -  -  - 

HP2-

Summer 

Day1 88 72 72.7 0.4 0.9 

Day2 88 72 71.5 -1.7 0.7 

Day3 78 72 71.4 -0.9 -0.8 

Day4 73 72 71.7 0.6 0.7 

Day5 68 72 71.1 -1.2 0.5 

Day6 68 80 - - - 

Day7 71 80 - - - 

HP2-Winter 

Day1 48 72 71.3 -0.9 -0.4 

Day2 46 72 71.5 -0.8 -0.1 

Day3 47 70 70.7 0.2 1.3 

Day4 46 
70 69.7 -0.6 -0.1 

75 75.1 -0.5 0.7 

Day5 44 
70 69.6 -0.9 0.0 

75 74.3 -1.8 0.3 

Day6 49  -  -  -  - 

Day7 52 70 70.8 0.6 1.0 

HP2-Spring/ 

Fall 

Day1 65 72 72.6 0.3 0.9 

Day2 65 72 72.9 0.6 1.2 

Day3 69 72 72.8 0.3 1.9 

Day4 73 72 72.6 0.3 0.9 

Day5 67 72 72.8 0.5 1.0 

Day6 65 72 72.5 -0.2 1.3 

Day7 62  -  -  -  - 

HP3-

Summer 

Day1 89 72 74.9 2.6 3.1 

Day2 88 72 71.3 -0.5 1.6 

Day3 78 72 72.9 0.7 1.2 

Day4 73 72 72.7 0.6 0.7 

Day5 68 72 72.7 0.6 0.8 

Day6 68 72  -  -  - 

Day7 71 72  -  -  - 

HP3-Winter 

Day1 48 72 71.4 -0.7 -0.6 

Day2 46 72  -  -  - 

Day3 47 72  -  -  - 

Day4 46 72  -  -  - 

Day5 44 72 71.4 -1.0 -0.2 

Day6 49 72  -  -  - 

Day7 52 72  -  -  - 

HP3-Spring/ 
Fall 

Day1 65 74  -  -  - 

Day2 65 74  -  -  - 

Day3 69 74 74.5 0.3 0.8 

Day4 73 74 74.5 0.3 0.8 

Day5 67 74 74.6 0.4 0.7 

Day6 65 74  -  -  - 

Day7 62 74  -  -  - 

HP4-

Summer 

Day1 72 70  -  -  - 

Day2 64 70  -  -  - 

Day3 63 70 71.2 0.7 1.7 

Day4 67 70 71.1 0.7 1.5 

Day5 66 70 70.9 0.6 1.1 

Day6 64 70  -  -  - 

Day7 71 70  -  -  - 

HP4-Winter 

Day1 48 72  -  -  - 

Day2 46 72  -  -  - 

Day3 47 72  -  -  - 

Day4 46 72  -  -  - 

Day5 44 72  -  -  - 

Day6 49 80  -  -  - 

Day7 52 80  -  -  - 



 

A.6 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

HP4-Spring/ 

Fall 

Day1 57 71 71.4 0 0.5 

Day2 60 71 71.3 -0.1 0.6 

Day3 60 71 71.6 0.3 0.9 

Day4 64 71 71.4 0.3 0.5 

Day5 61 71 71.3 0.3 0.4 

Day6 63 70  -  -  - 

Day7 64 70  -  -  - 

HP5-

Summer 

Day1 88 72 72.9 0.7 1.0 

Day2 88 72 72.7 0.6 0.8 

Day3 78 72 72.6 0.5 0.7 

Day4 73 72 72.5 0.5 0.5 

Day5 68 72 72.6 0.4 0.8 

Day6 68 72  -  -  - 

Day7 71 72  -  -  - 

HP5-Winter 

Day1 48 72 71.6 -0.5 -0.4 

Day2 46 72 71.6 -0.6 -0.3 

Day3 47 72 71.6 -0.5 -0.3 

Day4 46 72 71.5 -0.6 -0.5 

Day5 44 72 71.5 -0.6 -0.4 

Day6 49 72  -  -  - 

Day7 52 72  -  -  - 

HP5-Spring/ 
Fall 

Day1 65 
72 71.5 -0.7 -0.3 

76 76.3 -0.3 0.8 

Day2 65 
72 71.6 -0.4 -0.3 

76 76.4 0.3 0.4 

Day3 69 
72 71.7 -0.4 -0.3 

76 76.3 0.1 0.5 

Day4 73 76 76.3 0.1 0.9 

Day5 67 76 76.4 0.3 0.4 

Day6 65 76  -  -  - 

Day7 62 76  -  -  - 

HP6-

Summer 

Day1 88 
74 74.7 -0.1 1.4 

80 80.3 0.5 0.7 

Day2 88 80 80.5 0.5 0.6 

Day3 78 72 72.6 0.5 0.7 

Day4 73 72 72.5 0.4 0.5 

Day5 68 72 72.6 0.5 0.6 

Day6 68 80 80.3 0.2 0.3 

Day7 71 80 80.3 0.2 0.3 

HP6-Winter 

Day1 48 74 73.3 -0.7 -0.6 

Day2 46 74 73.3 -0.8 -0.7 

Day3 47 74 73.3 -0.8 -0.5 

Day4 46 74 73.4 -0.8 -0.5 

Day5 44 74 73.3 -0.7 -0.6 

Day6 49 74  -  -  - 

Day7 52 74  -  -  - 

HP6-Spring/ 

Fall 

Day1 65 77 77.3 0.3 0.3 

Day2 65 
77 77.5 0.4 0.6 

80 80.0 -0.5 0.6 

Day3 69 
77 77.4 0.3 0.4 

80 80.3 0.3 0.4 

Day4 73 77 77.4 0.3 0.5 

Day5 67 77 77.3 0.1 0.4 

Day6 65 77  -  -  - 

Day7 62 77  -  -  - 

HP7-
Summer 

Day1 72 70 70.6 0.5 0.7 

Day2 64 70 70.6 0.6 0.7 

Day3 63 70 70.6 0.6 0.6 

Day4 67 70 70.5 0.5 0.6 

Day5 66 70 70.6 0.5 0.7 

Day6 64 70  -  -  - 

Day7 65 70  -  -  - 

HP7-Winter 

Day1 48 69 68.6 -1.0 0.2 

Day2 46 69 69.0 -0.7 0.7 

Day3 47 69 68.9 -0.4 0.3 



 

A.7 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

Day4 46 69 69.7 -0.2 1.5 

Day5 44 69 69.2 -0.3 0.6 

Day6 49 69  -  -  - 

Day7 52 69  -  -  - 

HP7-Spring/ 

Fall 

Day1 57 74 75.0 0.7 1.2 

Day2 61 74 74.4 0.0 0.8 

Day3 60 74 74.3 -0.5 1.1 

Day4 64 74 74.5 0.5 1.5 

Day5 61 74 74.0 -0.2 0.2 

Day6 63 74  -  -  - 

Day7 64 74  -  -  - 

HP8-

Summer 

Day1 88 74 74.5 0.3 0.6 

Day2 88 74 74.8 0.7 0.9 

Day3 78 74 74.6 0.5 0.7 

Day4 73 74 74.4 0.4 0.5 

Day5 68 74 74.5 0.4 0.7 

Day6 68 74  -  -  - 

Day7 71 74  -  -  - 

HP8-Winter 

Day1 48 74  -  -  - 

Day2 46 74  -  -  - 

Day3 47 74  -  -  - 

Day4 46 74  -  -  - 

Day5 44 74  -  -  - 

Day6 49 74  -  -  - 

Day7 52 74  -  -  - 

HP8-Spring/ 
Fall 

Day1 65 74 74.4 0.3 0.5 

Day2 65 74 74.4 0.3 0.4 

Day3 69 74 74.4 0.1 0.7 

Day4 73 74 74.4 0.2 0.6 

Day5 67 74 74.4 0.2 0.6 

Day6 65 74  -  -  - 

Day7 62 74  -  -  - 

Building D 

RTU-1-
summer 

Day1 68.2 71 71.4 71.2 71.7 

Day2 71.3 71 71.5 71.1  71.8 

Day3 75.4 71 71.5 71.5 71.6 

Day4 75.1 71 71.6 71.5 71.7 

Day5 75.4 71 71.6 71.6 71.6 

Day6 73.7 71 71.4 71.2 71.6 

Day7 68.1 71 71.5 71.4 71.5 

RTU-1-

spring/fall 

Day1 47.0 71 - - - 

Day2 58.4 71 - - - 

Day3 60.5 71 - - - 

Day4 59.2 71 - - - 

Day5 62.0 71 71.5 71.5 71.6 

Day6 64.7 71 71.6 71.5 71.6 

Day7 62.0 71 71.3 71.0 71.6 

RTU-2-

summer 

Day1 73.0 71 71.9 71.8 71.9 

Day2 67.8 71 71.7 71.6 71.7 

Day3 67.6 71 71.8 71.7 71.9 

Day4 71.6 71 71.6 71.6 71.7 

Day5 77.6 71 71.8 71.8 72.1 

Day6 70.7 71 71.7 71.6 71.7 

Day7 72.1 71 71.6 71.6 71.7 

RTU-2-

spring/fall 

Day1 47.7 71 - - - 

Day2 58.9 71 71.7 71.6 71.9 

Day3 61.3 71 71.7 71.5 71.8 

Day4 59.2 71 71.5 71.2 72.0 

Day5 62.5 71 71.7 71.7 71.8 

Day6 65.2 71 71.4 71.0 71.9 

Day7 62.0 71 71.5 71.4 71.6 

Building E 
RTU1-

Summer 

Day1 71.0 71.8 72.4 72.2 72.5 

Day2 70.8 71.8 72.4 72.0 72.8 

Day3 72.9 71.8 71.9 71.6 72.2 

Day4 72.9 71.8 72.0 71.6 72.5 

Day5 72.3 71.8 72.8 72.6 73.0 



 

A.8 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

Day6 79.2 71.8 72.3 72.1 72.5 

Day7 82.3 71.8 72.4 72.3 72.6 

RTU1-
Winter 

Day1 44.1 68.7 69.5 69.1 69.9 

Day2 44.2 68.7 70.6 70.5 70.8 

Day3 45.7 68.7 70.4 70.0 70.8 

Day4 46.8 70.7 - - - 

Day5 44.6 70.7 70.4 70.2 70.6 

Day6 47.3 70.7 71.0 70.7 71.2 

Day7 50.2 70.7 70.7 70.5 71.0 

RTU1-
Spring/ Fall 

Day1 56.2 70.7 71.7 71.5 71.9 

Day2 56.9 70.7 72.6 72.3 72.8 

Day3 61.8 74.7 72.9 72.7 73.1 

Day4 65.5 74.7 - - - 

Day5 60.1 74.7 - - - 

Day6 61.4 74.7 - - - 

Day7 61.0 74.7 74.1 73.7 74.5 

RTU2-

Summer 

Day1 78.7 72 72.5 72.5 72.6 

Day2 72.3 72 - - - 

Day3 71.7 72 72.5 72.5 72.6 

Day4 70.8 72 72.6 72.5 72.7 

Day5 70.7 72 72.5 72.5 72.5 

Day6 71.4 72 72.5 72.4 72.6 

Day7 70.5 72 72.4 72.1 72.8 

RTU2-

Winter 

Day1 51.6 71 69.8 69.5 70.2 

Day2 49.7 71 70.4 70.2 70.7 

Day3 51.3 71 70.2 70.0 70.4 

Day4 54.3 71 70.5 70.2 70.8 

Day5 54.7 71 70.6 70.3 70.8 

Day6 55.9 71 70.4 70.3 70.6 

Day7 63.0 71 70.8 70.6 71.1 

RTU2-

Spring/ Fall 

Day1 68.9 73 73.6 73.4 73.8 

Day2 68.0 73 73.6 73.3 73.8 

Day3 62.8 71 71.8 71.5 72.1 

Day4 56.7 71 70.7 70.4 71.0 

Day5 56.6 71 70.6 70.5 70.8 

Day6 55.5 71 70.4 70.0 70.7 

Day7 55.8 71 70.4 70.3 70.5 

Building F 

RTU1-
Summer 

Day1 83.1 70 70.9 70.5 71.3 

Day2 84.1 70 70.5 70.0 70.8 

Day3 84.4 70 70.1 69.8 70.4 

Day4 83.0 70 70.7 70.4 71.0 

Day5 82.5 70 70.8 70.7 70.9 

Day6 83.0 70 71.0 70.9 71.0 

Day7 86.3 70 70.7 70.3 71.0 

RTU1-
Winter 

Day1 64.2 70 70.3 70.0 70.6 

Day2 73.0 70 70.6 70.3 70.9 

Day3 75.3 70 70.6 70.5 70.7 

Day4 75.3 70 70.3 70.0 70.7 

Day5 63.3 70 70.5 70.4 70.7 

Day6 65.5 70 70.4 70.0 70.8 

Day7 71.0 70 70.7 70.6 70.8 

RTU1-

Spring/ Fall 

Day1 82.7 70 70.3 70.1 70.4 

Day2 80.1 70 70.5 70.3 70.7 

Day3 83.1 70 70.4 70.3 70.5 

Day4 82.0 70 70.3 70.1 70.6 

Day5 81.8 70 70.6 70.2 70.9 

Day6 82.4 70 70.5 70.3 70.6 

Day7 82.4 70 70.5 70.2 70.9 

RTU2-

Summer 

Day1 82.2 70 69.8 69.6 69.9 

Day2 77.0 70 69.2 69.1 69.3 

Day3 83.1 70 69.6 69.3 70.0 

Day4 85.0 70 70.4 70.4 70.5 

Day5 86.0 70 70.5 70.4 70.6 

Day6 86.9 70 70.6 70.5 70.8 

Day7 85.2 70 70.6 70.4 70.7 



 

A.9 

Building Test code Day TOD,avg °F Tsp °F  Tsp,pred  °F Tsp with 90 [%] confidence interval  °F 

RTU2-

Winter 

Day1 64.1 70 70.0 69.9 70.2 

Day2 73.6 70 70.3 70.1 70.5 

Day3 75.3 70 69.3 69.2 69.4 

Day4 71.3 70 69.1 69.0 69.2 

Day5 62.8 70 69.7 69.3 70.0 

Day6 65.2 70 70.0 69.9 70.2 

Day7 70.3 70 70.4 70.2 70.5 

RTU2-

Spring/ Fall 

Day1 80.4 70 70.1 70.0 70.2 

Day2 77.8 70 70.3 70.2 70.3 

Day3 80.2 70 70.4 70.2 70.6 

Day4 80.7 70 70.2 70.1 70.3 

Day5 77.6 70 69.9 69.8 70.0 

Day6 79.0 70 69.8 69.5 70.0 

Day7 78.7 70 70.3 70.1 70.4 
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B.1 

Appendix B 

 

Validation of On/Off Cycle Algorithm 

Table B.1 shows the overall ON-OFF cycle algorithm performance for 18 different RTU and heat pump 

systems at 3 different locations. The red, gray, and yellow shaded data indicate “incorrect detection,” 

“unable to detect,” and “at the accuracy threshold of 80 (%),” respectively. 

Table B.1.  Overall ON/OFF Cycle Detection Algorithm Performance 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 
cycling [ea]  

Weekly         

ON/OFF cycling 
detection [ea] 

Weekly 

MAPE 
[%]  

Building A 

RTU1-
Summer 

Day1 74 7 6 14% 

38 40 5% 

Day2 76 8 8 0% 

Day3 73 5 6 20% 

Day4 71 6 7 17% 

Day5 76 6 6 0% 

Day6 82 4 5 25% 

Day7 79 2 2 0% 

RTU1-
Winter 

Day1 44 14 17 21% 

85 86 1% 

Day2 41 19 19 0% 

Day3 38 18 18 0% 

Day4 38 18 18 0% 

Day5 40 16 14 13% 

Day6 48 0 0  - 

Day7 50 0 0  - 

RTU1-

Spring/ Fall 

Day1 57 13 13 0% 

65 64 2% 

Day2 55 11 11 0% 

Day3 53 14 13 7% 

Day4 50 14 14 0% 

Day5 51 13 13 0% 

Day6 58 0 0  - 

Day7 58 0 0  - 

RTU2-

Summer 

Day1 76 22 27 23% 

235 233 1% 

Day2 78 26 27 4% 

Day3 74 40 38 5% 

Day4 75 37 39 5% 

Day5 78 46 48 4% 

Day6 82 47 34 28% 

Day7 77 17 20 18% 

RTU2-

Winter 

Day1 42 4 8 100% 

20 34 70% 

Day2 39 3 3 0% 

Day3 39 2 7 250% 

Day4 35 2 6 200% 

Day5 37 3 4 33% 

Day6 45 2 3 50% 

Day7 45 4 3 25% 

RTU2-

Spring/ Fall 

Day1 57 15 16 7% 

83 88 6% 

Day2 52 18 18 0% 

Day3 49 15 16 7% 

Day4 47 11 14 27% 

Day5 48 19 19 0% 

Day6 52 4 4 0% 

Day7 54 1 1 0% 

RTU3-

Summer 

Day1 75 7 7 0% 

48 49 2% Day2 77 7 7 0% 

Day3 73 6 9 50% 



 

B.2 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

Day4 73 8 6 25% 

Day5 77 8 10 25% 

Day6 84 9 7 22% 

Day7 80 3 3 0% 

RTU3-
Winter 

Day1 48 13 12 8% 

57 54 5% 

Day2 44 11 10 9% 

Day3 44 10 9 10% 

Day4 44 12 11 8% 

Day5 48 10 9 10% 

Day6 61 0 1  - 

Day7 58 1 2 100% 

RTU3-
Spring/ Fall 

Day1 59 8 7 13% 

37 31 16% 

Day2 56 3 4 33% 

Day3 54 7 5 29% 

Day4 51 11 9 18% 

Day5 52 8 6 25% 

Day6 61 0 0  - 

Day7 60 0 0  - 

RTU4-
Summer 

Day1 75 13 17 31% 

107 121 13% 

Day2 78 27 29 7% 

Day3 74 16 19 19% 

Day4 73 21 24 14% 

Day5 77 25 25 0% 

Day6 83 4 5 25% 

Day7 77 1 2 100% 

RTU4-

Winter 

Day1 44 44 44 0% 

214 213 0% 

Day2 37 44 43 2% 

Day3 29 45 45 0% 

Day4 33 40 40 0% 

Day5 40 41 41 0% 

Day6 47 0 0  - 

Day7 50 0 0  - 

RTU4-

Spring/ Fall 

Day1 54 34 35 3% 

204 204 0% 

Day2 51 40 39 3% 

Day3 49 46 46 0% 

Day4 47 44 43 2% 

Day5 43 40 41 3% 

Day6 47 0 0  - 

Day7 49 0 0  - 

Building B 

RTU1-

Summer 

Day1 65 6 7 17% 

137 134 2% 

Day2 65 17 18 6% 

Day3 68 28 27 4% 

Day4 71 27 25 7% 

Day5 74 33 31 6% 

Day6 80 14 14 0% 

Day7 80 12 12 0% 

RTU1-

Winter 

Day1 49 40 41 3% 

176 184 5% 

Day2 49 29 33 14% 

Day3 49 21 26 24% 

Day4 51 40 39 3% 

Day5 52 46 45 2% 

Day6 56 0 0  - 

Day7 56 0 0  - 

RTU1-

Spring/ Fall 

Day1 56 18 19 6% 

130 116 11% 

Day2 56 27 27 0% 

Day3 62 29 26 10% 

Day4 68 29 21 28% 

Day5 64 25 20 20% 

Day6 72 2 2 0% 

Day7 69 0 1  - 



 

B.3 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

RTU2-
Summer 

Day1 63 2 6 200% 

178 161 10% 

Day2 64 24 30 25% 

Day3 71 49 36 27% 

Day4 75 55 39 29% 

Day5 78 46 46 0% 

Day6 86 0 0  - 

Day7 85 2 4 100% 

RTU2-
Winter 

Day1 50 60 61 2% 

283 287 1% 

Day2 48 53 56 6% 

Day3 50 53 57 8% 

Day4 49 57 55 4% 

Day5 48 60 57 5% 

Day6 55 0 1  - 

Day7 55 0 0  - 

RTU2-

Spring/ Fall 

Day1 61 15 19 27% 

108 118 9% 

Day2 60 21 24 14% 

Day3 58 23 27 17% 

Day4 61 28 27 4% 

Day5 60 21 21 0% 

Day6 66 0 0  - 

Day7 58 0 0  - 

RTU3-

Summer 

Day1 63 0 3  - 

89 99 11% 

Day2 65 12 15 25% 

Day3 71 23 24 4% 

Day4 75 26 25 4% 

Day5 77 27 28 4% 

Day6 86 0 1  - 

Day7 86 1 3 200% 

RTU3-

Spring/ Fall 

Day1 56 14 16 14% 

61 72 18% 

Day2 62 12 16 33% 

Day3 64 12 14 17% 

Day4 65 12 14 17% 

Day5 62 11 12 9% 

Day6 66 0 0  - 

Day7 66 0 0  - 

RTU4-
Summer 

Day1 69 13 15 15% 

52 65 25% 

Day2 63 0 4 - 

Day3 63 5 7 40% 

Day4 60 12 14 17% 

Day5 63 15 18 20% 

Day6 74 3 3 0% 

Day7 73 4 4 0% 

RTU4-
Winter 

Day1 50 27 27 0% 

130 128 2% 

Day2 48 23 22 4% 

Day3 50 27 25 7% 

Day4 49 20 19 5% 

Day5 48 14 16 14% 

Day6 55 7 7 0% 

Day7 55 12 12 0% 

RTU4-

Spring/ Fall 

Day1 61 9 11 22% 

75 79 5% 

Day2 57 24 23 4% 

Day3 60 18 17 6% 

Day4 60 11 15 36% 

Day5 61 13 13 0% 

Day6 64 0 0  - 

Day7 61 0 0  - 

RTU5-

Summer 

Day1 73 14 8 43% 

51 41 20% 
Day2 58 1 1 0% 

Day3 60 5 4 20% 

Day4 60 15 11 27% 



 

B.4 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

Day5 65 15 16 7% 

Day6 77 1 1 0% 

RTU5-
Winter 

Day1 62 0 0  - 

32 27 16% 

Day2 60 1 2 100% 

Day3 61 8 3 63% 

Day4 56 22 21 5% 

Day5 53 1 1 0% 

Day6 50 0 0  - 

Day7 54 0 0  - 

RTU5-

Spring/ Fall 

Day1 72 12 9 25% 

60 48 20% 

Day2 66 15 11 27% 

Day3 68 13 10 23% 

Day4 68 12 10 17% 

Day5 57 7 7 0% 

Day6 63 0 0  - 

Day7 77 1 1 0% 

RTU6-
Summer 

Day1 73 15 12 20% 

42 41 2% 

Day2 58 1 2 100% 

Day3 60 1 2 100% 

Day4 60 10 11 10% 

Day5 65 15 14 7% 

Day6 77 0 0  - 

RTU6-

Winter 

Day1 58 1 0 100% 

17 19 12% 

Day2 59 0 0  - 

Day3 62 4 4  - 

Day4 56 12 15 25% 

Day5 53 0 0 0% 

RTU6-
Spring/ Fall 

Day1 66 13 10 23% 

42 34 19% 

Day2 65 12 9 25% 

Day3 64 6 5 17% 

Day4 66 3 4 33% 

Day5 70 8 6 25% 

Day6 67 0 0  - 

Day7 73 0 0  - 

Building C 

HP1-

Summer 

Day1 88 22 23 5% 

92 95 3% 

Day2 88 25 21 16% 

Day3 78 14 16 14% 

Day4 73 4 5 25% 

Day5 68 12 11 8% 

Day6 68 5 6 20% 

Day7 71 10 13 30% 

HP1-Winter 

Day1 48 13 13 0% 

43 40 7% 

Day2 46 8 8 0% 

Day3 47 7 6 14% 

Day4 46 7 6 14% 

Day5 44 8 7 13% 

Day6 49 0 0 0% 

Day7 52 0 0 0% 

HP1-Spring/ 

Fall 

Day1 65 15 14 7% 

90 84 7% 

Day2 65 12 13 8% 

Day3 69 18 16 11% 

Day4 73 24 21 13% 

Day5 67 21 20 5% 

Day6 65 0 0 0% 

Day7 62 0 0 0% 

HP2-
Summer 

Day1 88 8 5 38% 

87 93 7% 
Day2 88 3 5 67% 

Day3 78 12 14 17% 

Day4 73 16 18 13% 



 

B.5 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

Day5 68 16 15 6% 

Day6 68 12 14 17% 

Day7 71 20 22 10% 

HP2-Winter 

Day1 48 23 21 9% 

102 102 0% 

Day2 46 13 16 23% 

Day3 47 14 14 0% 

Day4 46 12 13 8% 

Day5 44 15 17 13% 

Day6 49 13 10 23% 

Day7 52 12 11 8% 

HP2-Spring/ 

Fall 

Day1 65 21 21 0% 

98 87 11% 

Day2 65 12 12 0% 

Day3 69 13 13 0% 

Day4 73 24 16 33% 

Day5 67 15 11 27% 

Day6 65 7 10 43% 

Day7 62 6 4 33% 

HP3-
Summer 

Day1 89 7 15 114% 

16 78 388% 

Day2 88 2 17 750% 

Day3 78 2 10 400% 

Day4 73 2 15 650% 

Day5 68 1 12 1100% 

Day6 68 0 6  - 

Day7 71 2 3 50% 

HP3-Winter 

Day1 48 10 16 60% 

36 39 8% 

Day2 46 4 4 0% 

Day3 47 5 6 20% 

Day4 46 8 5 38% 

Day5 44 9 8 11% 

Day6 49 0 0 0% 

Day7 52 0 0 0% 

HP3-Spring/ 

Fall 

Day1 65 1 1 0% 

6 28 367% 

Day2 65 1 2 100% 

Day3 69 1 7 600% 

Day4 73 2 10 400% 

Day5 67 1 8 700% 

Day6 65 0 0  - 

Day7 62 0 0  - 

HP4-

Summer 

Day1 72 3 5 67% 

23 27 17% 

Day2 64 7 6 14% 

Day3 63 6 6 0% 

Day4 67 5 5 0% 

Day5 66 2 5 150% 

Day6 64 0 0  - 

Day7 71 0 0  - 

HP4-Winter 

Day1 48 3 4 33% 

5 17 240% 

Day2 46 2 4 100% 

Day3 47 0 2  - 

Day4 46 0 0  - 

Day5 44 0 3  - 

Day6 49 0 2  - 

Day7 52 0 2  - 

HP4-Spring/ 

Fall 

Day1 57 12 9 25% 

56 55 2% 

Day2 60 10 6 40% 

Day3 60 14 12 14% 

Day4 64 8 9 13% 

Day5 61 12 13 8% 

Day6 63 0 0 0% 

Day7 64 0 6 0% 



 

B.6 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

HP5-
Summer 

Day1 88 28 23 18% 

153 133 13% 

Day2 88 39 33 15% 

Day3 78 17 19 12% 

Day4 73 36 23 36% 

Day5 68 29 28 3% 

Day6 68 0 1 0% 

Day7 71 4 6 50% 

HP5-Winter 

Day1 48 27 30 11% 

116 109 6% 

Day2 46 28 26 7% 

Day3 47 13 11 15% 

Day4 46 26 24 8% 

Day5 44 22 18 18% 

Day6 49 0 0 0% 

Day7 52 0 0 0% 

HP5-Spring/ 
Fall 

Day1 65 31 32 3% 

158 173 9% 

Day2 65 28 33 18% 

Day3 69 29 33 14% 

Day4 73 36 38 6% 

Day5 67 34 37 9% 

Day6 65 0 0 0% 

Day7 62 0 0 0% 

HP6-

Summer 

Day1 88 29 28 3% 

179 168 6% 

Day2 88 25 23 8% 

Day3 78 10 9 10% 

Day4 73 25 20 20% 

Day5 68 28 28 0% 

Day6 68 27 21 22% 

Day7 71 35 39 11% 

HP6-Winter 

Day1 48 42 41 2% 

150 140 7% 

Day2 46 31 28 10% 

Day3 47 18 16 11% 

Day4 46 30 32 7% 

Day5 44 29 23 21% 

Day6 49 0 0  - 

Day7 52 0 0  - 

HP6-Spring/ 
Fall 

Day1 65 29 30 3% 

164 175 7% 

Day2 65 28 30 7% 

Day3 69 36 39 8% 

Day4 73 39 41 5% 

Day5 67 32 35 9% 

Day6 65 0 0 0% 

Day7 62 0 0 0% 

HP7-
Summer 

Day1 72 29 22 24% 

135 112 17% 

Day2 64 26 21 19% 

Day3 63 24 21 13% 

Day4 67 32 23 28% 

Day5 66 16 17 6% 

Day6 64 3 2 33% 

Day7 65 5 6 20% 

HP7-Winter 

Day1 48 9 13 44% 

18 34 89% 

Day2 46 4 5 25% 

Day3 47 3 5 67% 

Day4 46 1 3 200% 

Day5 44 1 8 700% 

Day6 49 0 0  - 

Day7 52 0 0  - 

HP7-Spring/ 
Fall 

Day1 57 15 8 47% 

68 57 16% 
Day2 61 17 10 41% 

Day3 60 8 9 13% 

Day4 64 22 15 32% 



 

B.7 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

Day5 61 1 7 600% 

Day6 63 2 5 150% 

Day7 64 3 3 0% 

HP8-
Summer 

Day1 88 27 23 15% 

100 87 13% 

Day2 88 22 19 14% 

Day3 78 13 12 8% 

Day4 73 24 21 13% 

Day5 68 14 12 14% 

Day6 68 0 0  - 

Day7 71 0 0  - 

HP8-Winter 

Day1 48 2 0 100% 

9 14 56% 

Day2 46 2 2 0% 

Day3 47 3 2 33% 

Day4 46 0 4  - 

Day5 44 2 3 50% 

Day6 49 0 2  - 

Day7 52 0 1  - 

HP8-Spring/ 

Fall 

Day1 65 16 14 13% 

112 96 14% 

Day2 65 22 18 18% 

Day3 69 25 23 8% 

Day4 73 26 22 15% 

Day5 67 23 19 17% 

Day6 65 0 0  - 

Day7 62 0 0  - 

Building D 
 

RTU-1 

summer 

Day1 68.2 15 17 87% 

197 199 99% 

Day2 71.3 23 22 96% 

Day3 75.4 34 32 94% 

Day4 75.1 35 36 97% 

Day5 75.4 37 37 100% 

Day6 73.7 21 23 90% 

Day7 68.1 32 32 100% 

RTU-1 

spring/fall 

Day1 47.0 0 - - 

26 26 100% 

Day2 58.4 0 - - 

Day3 60.5 1 - - 

Day4 59.2 3 - - 

Day5 62.0 10 11 90% 

Day6 64.7 9 10 89% 

Day7 62.0 3 5 60% 

RTU-2 

summer 

Day1 73.0 13 14 92% 

138 148 93% 

Day2 67.8 32 31 97% 

Day3 67.6 16 19 84% 

Day4 71.6 21 23 90% 

Day5 77.6 13 14 92% 

Day6 70.7 27 27 100% 

Day7 72.1 16 20 80% 

RTU-2 

spring/fall 

Day1 47.7 0 - - 

65 75 85% 

Day2 58.9 10 13 77% 

Day3 61.3 10 9 90% 

Day4 59.2 10 11 90% 

Day5 62.5 13 17 77% 

Day6 65.2 13 16 82% 

Day7 62.0 9 9 100% 

Building E 
RTU-1 
summer 

Day1 71.0 11 9 82% 

60 63 95% 

Day2 70.8 9 8 89% 

Day3 72.9 7 15 47% 

Day4 72.9 9 6 67% 

Day5 72.3 7 9 78% 

Day6 79.2 6 6 100% 

Day7 82.3 11 10 91% 



 

B.8 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

RTU-1 
winter 

Day1 44.1 1 - - 

26 56 46% 

Day2 44.2 1 8 13% 

Day3 45.7 3 8 38% 

Day4 46.8 2 - - 

Day5 44.6 5 7 71% 

Day6 47.3 7 17 41% 

Day7 50.2 7 12 58% 

RTU-1 

spring/fall 

Day1 56.2 1 6 17% 

18 40 45% 

Day2 56.9 1 8 13% 

Day3 61.8 3 6 50% 

Day4 65.5 5 - - 

Day5 60.1 1 - - 

Day6 61.4 5 - - 

Day7 61.0 2 6 33% 

RTU-2 
summer 

Day1 78.7 13 10 77% 

85 74 87% 

Day2 72.3 5 - - 

Day3 71.7 17 13 76% 

Day4 70.8 5 6 83% 

Day5 70.7 14 12 86% 

Day6 71.4 7 11 64% 

Day7 70.5 24 22 92% 

RTU-2 

winter 

Day1 51.6 7 7 100% 

63 77 82% 

Day2 49.7 17 22 77% 

Day3 51.3 7 11 64% 

Day4 54.3 13 16 81% 

Day5 54.7 7 9 78% 

Day6 55.9 6 7 86% 

Day7 63.0 6 5 83% 

RTU-2 

spring/fall 

Day1 68.9 9 10 90% 

43 58 74% 

Day2 68.0 8 11 73% 

Day3 62.8 2 11 18% 

Day4 56.7 7 6 86% 

Day5 56.6 5 8 63% 

Day6 55.5 5 6 83% 

Day7 55.8 7 6 86% 

Building F 

RTU-1 

summer 

Day1 83.1 39 29 74% 

253 225 89% 

Day2 84.1 43 34 80% 

Day3 84.4 18 25 72% 

Day4 83.0 55 35 64% 

Day5 82.5 46 38 83% 

Day6 83.0 32 33 97% 

Day7 86.3 20 31 65% 

RTU-1 

winter 

Day1 64.2 32 30 94% 

174 177 98% 

Day2 73.0 26 25 96% 

Day3 75.3 12 18 67% 

Day4 75.3 12 28 43% 

Day5 63.3 28 24 86% 

Day6 65.5 36 30 83% 

Day7 71.0 28 22 80% 

RTU-1 

spring/fall 

Day1 82.7 35 31 89% 

240 231 96% 

Day2 80.1 39 34 87% 

Day3 83.1 39 35 90% 

Day4 82.0 35 32 91% 

Day5 81.8 38 30 80% 
Day6 82.4 30 38 80% 
Day7 82.4 24 31 77% 

RTU-2 

summer 

Day1 82.2 7 37 19% 

139 217 44% Day2 77.0 12 29 41% 

Day3 83.1 17 36 47% 



 

B.9 

Building Test code Day TOD,avg °F 
ON/OFF 

cycling [ea]  

ON/OFF cycling 

detection [ea] 

MAPE 

[%] 

Weekly 

ON/OFF 

cycling [ea]  

Weekly         

ON/OFF cycling 

detection [ea] 

Weekly 

MAPE 

[%]  

Day4 85.0 23 38 61% 

Day5 86.0 24 25 96% 

Day6 86.9 32 27 84% 

Day7 85.2 24 25 96% 

RTU-2 

winter 

Day1 64.1 51 33 65% 

248 220 89% 

Day2 73.6 28 34 82% 

Day3 75.3 16 30 53% 

Day4 71.3 38 23 61% 

Day5 62.8 47 35 74% 

Day6 65.2 40 35 88% 

Day7 70.3 28 30 93% 

RTU-2 
spring/fall 

Day1 80.4 8 30 27% 

53 183 -145% 

Day2 77.8 10 26 38% 

Day3 80.2 8 23 35% 

Day4 80.7 5 24 21% 

Day5 77.6 8 27 30% 

Day6 79.0 6 26 23% 

Day7 78.7 8 27 30% 
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C.1 

Appendix C 

 

Validation of Schedule Detection Algorithm 

Table C.1 shows the overall schedule algorithm performance for 18 different RTU and heat pump systems 

at 3 different locations. The red, gray, and yellow shaded data indicate “incorrect detection,” “unable to 

detect,” and “at the accuracy threshold of 85 (%),” respectively. 

Table C.1.  Overall Schedule Detection Algorithm Performance 

Building Test code Day 
TOD, avg 

°F 
Unoccpancy/ 

Unoccpancypred 
Unoccpancy/ 
Occpancypred 

Occpancy/ 
Unoccpancypred 

Occpancy/ 
Occpancypred 

Accuracy 
Weekly 

Accuracy 

Building 
A 

RTU1-

Summer 

Day1 74 11 0 2 11 92% 

93% 

Day2 76 11 0 2 11 92% 

Day3 73 11 0 2 11 92% 

Day4 71 11 0 2 11 92% 

Day5 76 9 0 3 11 88% 

Day6 82 24 0 0 0 100% 

Day7 79 24 0 0 0 100% 

RTU1-

Winter 

Day1 44 10 0 3 10 88% 

90% 

Day2 41 10 1 2 11 88% 

Day3 38 10 1 2 11 88% 

Day4 38 10 1 2 11 88% 

Day5 40 10 1 2 11 88% 

Day6 48 24 0 0 0 100% 

Day7 50 24 0 0 0 100% 

RTU1-
Spring/ 

Fall 

Day1 57 10 1 2 11 88% 

93% 

Day2 55 12 0 1 11 96% 

Day3 53 11 1 2 10 88% 

Day4 50 11 0 2 11 92% 

Day5 51 11 0 2 11 92% 

Day6 58 24 0 0 0 100% 

Day7 58 24 0 0 0 100% 

RTU2-
Summer 

Day1 76 5 6 4 9 58% 

89% 

Day2 78 11 2 1 10 88% 

Day3 74 11 0 0 13 100% 

Day4 75 12 0 1 11 96% 

Day5 78 12 0 2 10 92% 

Day6 82 21 3 0 0 88% 

Day7 77 24 0 0 0 100% 

RTU2-
Winter 

Day1 42 10 1 2 11 88% 

86% 

Day2 39 10 1 2 11 88% 

Day3 39 9 3 3 9 75% 

Day4 35 10 2 1 11 88% 

Day5 37 10 2 1 11 88% 

Day6 45 24 0 0 0 100% 

Day7 45 18 0 5 1 79% 

RTU2-

Spring/ 
Fall 

Day1 57 10 0 3 11 88% 

92% 

Day2 52 11 0 2 11 92% 

Day3 49 11 0 2 11 92% 

Day4 47 11 0 2 11 92% 

Day5 48 10 0 3 11 88% 

Day6 52 22 0 2 0 92% 

Day7 54 24 0 0 0 100% 

RTU3-

Summer 

Day1 75 12 0 1 11 96% 

95% 

Day2 77 10 0 3 11 88% 

Day3 73 11 0 3 11 92% 

Day4 73 12 0 1 11 96% 

Day5 77 11 1 1 11 92% 

Day6 84 24 0 0 0 100% 

Day7 80 24 0 0 0 100% 



 

C.2 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

RTU3-
Winter 

Day1 48 11 0 1 12 96% 

90% 

Day2 44 10 0 3 11 88% 

Day3 44 10 1 3 11 88% 

Day4 44 10 1 2 11 88% 

Day5 48 11 1 1 11 92% 

Day6 61 10 1 2 11 88% 

Day7 58 11 1 1 11 92% 

RTU3-

Spring/ 

Fall 

Day1 59 9 0 4 11 83% 

90% 

Day2 56 10 0 3 11 88% 

Day3 54 10 0 3 11 88% 

Day4 51 9 0 4 11 83% 

Day5 52 10 1 2 11 88% 

Day6 61 24 0 0 0 100% 

Day7 60 24 0 0 0 100% 

RTU4-

Summer 

Day1 75 12 0 1 11 96% 

89% 

Day2 78 11 0 3 10 88% 

Day3 74 11 0 3 10 88% 

Day4 73 10 0 3 11 88% 

Day5 77 10 0 3 11 88% 

Day6 83 10 0 3 11 88% 

Day7 77 10 0 3 11 88% 

RTU4-

Winter 

Day1 44 16 1 1 6 92% 

92% 

Day2 37 14 0 1 9 96% 

Day3 29 12 0 2 10 92% 

Day4 33 11 0 2 11 92% 

Day5 40 11 0 2 11 92% 

Day6 47 11 0 2 11 92% 

Day7 50 11 0 2 11 92% 

RTU4-
Spring/ 

Fall 

Day1 54 11 0 2 11 92% 

94% 

Day2 51 10 0 3 11 88% 

Day3 49 11 0 1 12 96% 

Day4 47 11 0 1 12 96% 

Day5 43 11 0 1 12 96% 

Day6 47 11 0 1 12 96% 

Day7 49 11 0 1 12 96% 

Building 
B 

RTU1-
Summer 

Day1 65 6 0 5 13 79% 

80% 

Day2 65 7 0 5 12 79% 

Day3 68 2 0 9 13 63% 

Day4 71 6 0 7 11 71% 

Day5 74 10 0 2 12 92% 

Day6 80 21 0 3 0 79% 

Day7 80 21 0 3 0 79% 

RTU1-
Winter 

Day1 49 10 0 2 12 92% 

93% 

Day2 49 14 0 1 9 96% 

Day3 49 10 0 3 11 88% 

Day4 51 10 0 2 12 92% 

Day5 52 8 1 2 13 88% 

Day6 56 24 0 0 0 100% 

Day7 56 24 0 0 0 100% 

RTU1-

Spring/ 

Fall 

Day1 56 9 3 5 5 58% 

60% 

Day2 56 9 3 7 7 67% 

Day3 62 7 5 6 6 54% 

Day4 68 8 5 6 5 54% 

Day5 64 10 3 8 3 54% 

Day6 72 14 0 10 0 58% 

Day7 69 18 0 6 0 75% 

RTU2-

Summer 

Day1 63 10 0 7 7 71% 

85% 

Day2 64 9 0 8 7 67% 

Day3 71 7 0 5 12 79% 

Day4 75 12 2 0 10 92% 

Day5 78 13 4 0 7 83% 

Day6 86 24 0 0 0 100% 

Day7 85 24 0 0 0 100% 

Day1 50 10 0 2 12 92% 95% 



 

C.3 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

RTU2-

Winter 

Day2 48 11 0 1 12 96% 

Day3 50 11 0 1 12 96% 

Day4 49 10 0 2 12 92% 

Day5 48 10 0 2 12 92% 

Day6 55 24 0 0 0 100% 

Day7 55 24 0 0 0 100% 

RTU2-

Spring/ 

Fall 

Day1 61 6 6 6 6 50% 

67% 

Day2 60 7 7 5 5 50% 

Day3 58 8 4 6 6 58% 

Day4 61 11 2 8 3 58% 

Day5 60 6 6 6 6 50% 

Day6 66 24 0 0 0 100% 

Day7 58 24 0 0 0 100% 

RTU3-
Summer 

Day1 63 15 7 2 0 63% 

74% 

Day2 65 5 0 8 11 67% 

Day3 71 12 6 1 5 71% 

Day4 75 12 7 1 4 67% 

Day5 77 13 11 0 0 54% 

Day6 86 24 0 0 0 100% 

Day7 86 24 0 0 0 100% 

RTU3-

Winter 

Day1 49 11 0 2 11 92% 

92% 

Day2 49 11 0 2 11 92% 

Day3 49 11 0 2 11 92% 

Day4 51 9 0 3 12 88% 

Day5 52 7 1 2 13 88% 

Day6 56 24 0 0 0 100% 

Day7 56 24 0 0 0 100% 

RTU3-
Spring/ 

Fall 

Day1 56 10 12 0 2 50% 

64% 

Day2 62 8 3 7 6 58% 

Day3 64 8 4 7 5 54% 

Day4 65 9 5 7 3 50% 

Day5 62 9 4 7 4 54% 

Day6 66 22 2 0 0 92% 

Day7 66 22 0 0 0 92% 

RTU4-

Summer 

Day1 69 13 9 0 2 63% 

70% 

Day2 63 9 3 4 8 71% 

Day3 63 10 4 3 7 71% 

Day4 60 9 4 3 8 71% 

Day5 63 11 5 1 7 75% 

Day6 74 13 0 11 0 54% 

Day7 73 20 0 4 0 83% 

RTU4-
Winter 

Day1 50 10 1 1 12 92% 

93% 

Day2 48 10 1 1 12 92% 

Day3 50 8 1 2 13 88% 

Day4 49 11 1 1 11 92% 

Day5 48 10 1 1 12 92% 

Day6 55 24 0 0 0 100% 

Day7 55 24 0 0 0 100% 

RTU4-

Spring/ 
Fall 

Day1 61 4 0 3 17 88% 

93% 

Day2 57 11 0 2 11 92% 

Day3 60 10 0 2 12 92% 

Day4 60 10 0 3 11 88% 

Day5 61 10 0 2 12 92% 

Day6 64 24 0 0 0 100% 

Day7 61 24 0 0 0 100% 

RTU5-

Summer 

Day1 73 16 3 4 1 71% 

49% 

Day2 58 3 8 1 12 63% 

Day3 60 0 0 11 13 54% 

Day4 60 3 8 4 9 50% 

Day5 65 8 6 5 5 54% 

Day6 77 13 11 0 0 54% 

RTU5-

Spring/ 

Fall 

Day1 72 1 9 2 12 54% 

61% Day2 66 3 7 4 10 54% 

Day3 68 6 7 1 10 67% 



 

C.4 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

Day4 68 1 8 4 11 50% 

Day5 57 3 9 1 11 58% 

Day6 63 9 0 7 8 71% 

Day7 77 16 0 6 2 75% 

RTU6-
Summer 

Day1 73 0 3 0 20 88% 

58% 

Day2 58 5 7 0 12 71% 

Day3 60 4 5 5 10 58% 

Day4 60 4 7 3 10 58% 

Day5 65 5 3 5 8 54% 

Day6 77 20 0 3 0 88% 

RTU6-
Spring/ 

Fall 

Day1 66 6 0 4 14 83% 

71% 

Day2 65 8 0 2 14 92% 

Day3 64 5 9 2 8 54% 

Day4 66 1 9 1 13 58% 

Day5 70 0 0 10 14 58% 

Day6 67 16 0 8 0 67% 

Day7 73 20 0 4 0 83% 

Building 

C 

HP1-

Summer 

Day1 88 15 0 0 9 100% 

95% 

Day2 88 6 3 0 15 88% 

Day3 78 15 0 1 8 96% 

Day4 73 12 0 1 11 96% 

Day5 68 11 0 3 10 88% 

Day6 68 14 0 0 10 100% 

Day7 71 23 0 1 0 96% 

HP1-
Winter 

Day1 48 9 1 5 9 75% 

70% 

Day2 46 8 3 5 8 67% 

Day3 47 5 2 8 9 58% 

Day4 46 7 0 8 9 67% 

Day5 44 6 1 8 9 63% 

Day6 49 17 0 7 0 71% 

Day7 52 21 0 3 0 88% 

HP1-

Spring/ 

Fall 

Day1 65 9 0 6 9 75% 

74% 

Day2 65 11 0 4 9 83% 

Day3 69 10 0 5 9 79% 

Day4 73 13 0 2 9 92% 

Day5 67 8 0 7 9 71% 

Day6 65 14 0 9 0 58% 

Day7 62 15 0 9 0 63% 

HP2-

Summer 

Day1 88 14 3 0 7 88% 

88% 

Day2 88 9 3 4 12 88% 

Day3 78 9 0 3 12 88% 

Day4 73 12 3 0 9 88% 

Day5 68 12 2 1 9 88% 

Day6 68 12 1 3 8 83% 

Day7 71 10 0 2 12 92% 

HP2-

Winter 

Day1 48 10 2 1 11 88% 

63% 

Day2 46 10 3 0 11 88% 

Day3 47 4 6 7 7 46% 

Day4 46 7 5 6 6 54% 

Day5 44 6 6 5 7 54% 

Day6 49 9 2 9 4 54% 

Day7 52 10 0 10 4 58% 

HP2-

Spring/ 

Fall 

Day1 65 3 5 6 10 54% 

53% 

Day2 65 8 7 4 5 54% 

Day3 69 5 7 4 8 54% 

Day4 73 9 5 1 9 75% 

Day5 67 6 2 7 9 63% 

Day6 65 8 0 13 3 46% 

Day7 62 5 1 17 1 25% 

HP4-
Summer 

Day1 72 13 1 1 9 92% 

95% 

Day2 64 13 1 1 8 88% 

Day3 63 13 0 2 9 92% 

Day4 67 14 0 1 9 96% 

Day5 66 14 0 1 9 96% 



 

C.5 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

Day6 64 24 0 0 0 100% 

Day7 71 24 0 0 0 100% 

HP4-

Winter 

Day1 48 14 8 2 0 58% 

34% 

Day2 46 12 8 4 0 50% 

Day3 47 8 4 8 4 50% 

Day4 46 0 3 16 5 21% 

Day5 44 5 4 11 4 38% 

Day6 49 5 0 19 0 21% 

Day7 52 0 0 24 0 0% 

HP4-

Spring/ 
Fall 

Day1 57 13 0 2 9 92% 

94% 

Day2 60 13 0 2 9 92% 

Day3 60 13 0 2 9 92% 

Day4 64 13 0 2 9 92% 

Day5 61 13 0 2 9 92% 

Day6 63 24 0 0 0 100% 

Day7 64 24 0 0 0 100% 

HP5-

Summer 

Day1 88 14 2 0 8 92% 

95% 

Day2 88 14 1 0 9 96% 

Day3 78 15 1 0 8 96% 

Day4 73 14 0 2 8 92% 

Day5 68 14 0 0 10 100% 

Day6 68 21 0 3 0 88% 

Day7 71 24 0 0 0 100% 

HP5-
Winter 

Day1 48 11 0 4 9 83% 

85% 

Day2 46 9 1 4 10 79% 

Day3 47 15 2 2 5 83% 

Day4 46 9 1 6 8 71% 

Day5 44 10 2 4 8 75% 

Day6 49 24 0 0 0 100% 

Day7 52 24 0 0 0 100% 

HP5-

Spring/ 

Fall 

Day1 65 9 4 6 5 58% 

67% 

Day2 65 9 3 7 5 58% 

Day3 69 7 4 8 5 50% 

Day4 73 6 1 10 7 54% 

Day5 67 12 0 6 6 75% 

Day6 65 21 0 3 0 88% 

Day7 62 21 0 3 0 88% 

HP6-

Summer 

Day1 88 13 4 0 7 83% 

91% 

Day2 88 14 3 0 7 88% 

Day3 78 15 0 0 9 100% 

Day4 73 12 0 2 10 92% 

Day5 68 11 0 3 10 88% 

Day6 68 21 0 3 0 88% 

Day7 71 24 0 0 0 100% 

HP6-

Winter 

Day1 48 8 3 5 8 67% 

68% 

Day2 46 7 4 6 7 58% 

Day3 47 5 4 8 7 50% 

Day4 46 4 1 10 9 54% 

Day5 44 6 4 8 6 50% 

Day6 49 24 0 0 0 100% 

Day7 52 24 0 0 0 100% 

HP6-
Spring/ 

Fall 

Day1 65 11 0 3 10 88% 

88% 

Day2 65 11 0 3 10 88% 

Day3 69 12 0 2 10 92% 

Day4 73 14 1 1 8 92% 

Day5 67 9 0 5 10 79% 

Day6 65 21 0 3 0 88% 

Day7 62 22 0 2 0 92% 

HP7-

Summer 

Day1 72 12 0 1 11 96% 

92% 

Day2 64 12 0 1 11 96% 

Day3 63 10 0 3 11 88% 

Day4 67 12 0 2 10 92% 

Day5 66 12 0 4 10 92% 

Day6 64 23 0 1 0 96% 



 

C.6 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

Day7 65 21 0 3 0 88% 

HP7-
Winter 

Day1 48 8 8 0 8 67% 

70% 

Day2 46 9 5 3 7 67% 

Day3 47 8 6 6 4 50% 

Day4 46 8 4 5 7 63% 

Day5 44 6 6 7 5 46% 

Day6 49 24 0 0 0 100% 

Day7 52 24 0 0 0 100% 

HP7-

Spring/ 
Fall 

Day1 57 8 3 6 7 63% 

58% 

Day2 61 8 5 6 5 54% 

Day3 60 8 4 6 6 58% 

Day4 64 8 6 6 4 50% 

Day5 61 9 3 4 8 71% 

Day6 63 13 0 11 0 54% 

Day7 64 14 0 10 0 58% 

HP8-

Summer 

Day1 88 12 3 0 9 88% 

89% 

Day2 88 13 2 1 8 88% 

Day3 78 15 0 0 9 100% 

Day4 73 13 0 3 8 88% 

Day5 68 12 0 4 9 88% 

Day6 68 21 0 3 0 88% 

Day7 71 21 0 3 0 88% 

HP8-
Winter 

Day1 48 8 8 0 8 67% 

57% 

Day2 46 8 4 4 8 67% 

Day3 47 8 4 6 6 58% 

Day4 46 8 3 5 8 67% 

Day5 44 6 5 7 6 50% 

Day6 49 22 0 2 0 92% 

HP8-
Spring/ 

Fall 

Day1 65 13 0 1 10 96% 

94% 

Day2 65 14 0 0 10 100% 

Day3 69 13 1 0 10 96% 

Day4 73 14 0 1 9 96% 

Day5 67 13 0 1 10 96% 

Day6 65 21 0 3 0 88% 

Day7 62 21 0 3 0 88% 

Building 

D 

RTU1-
summer 

Day1 68.2 0 12 0 12 50% 

80% 

Day2 71.3 0 8 2 14 58% 

Day3 75.4 0 0 5 19 80% 

Day4 75.1 0 0 0 24 100% 

Day5 75.4 0 0 4 20 83% 

Day6 73.7 0 1 1 22 92% 

Day7 68.1 0 0 0 24 100% 

RTU1-
spring/fall 

Day1 47.0 0 24 0 0 0% 

51% 

Day2 58.4 0 12 0 12 50% 

Day3 60.5 0 8 0 16 67% 

Day4 59.2 1 9 0 14 63% 

Day5 62.0 0 10 1 13 54% 

Day6 64.7 0 8 0 16 67% 

Day7 62.0 0 10 0 14 58% 

RTU2-

summer 

Day1 73.0 0 0 0 24 100% 

93% 

Day2 67.8 0 1 2 21 88% 

Day3 67.6 0 7 2 15 63% 

Day4 71.6 0 0 0 24 100% 

Day5 77.6 0 0 0 24 100% 

Day6 70.7 0 0 0 24 100% 

Day7 72.1 0 0 0 24 100% 

RTU2-

spring/fall 

Day1 47.7 0 24 0 0 0% 

51% 

Day2 58.9 0 12 0 12 50% 

Day3 61.3 0 8 0 16 67% 

Day4 59.2 0 10 0 14 58% 

Day5 62.5 0 10 1 13 54% 

Day6 65.2 0 8 0 16 67% 

Day7 62.0 0 9 0 15 63% 

Day1 71.0 0 4 0 20 83% 74% 



 

C.7 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

Building 

E 

RTU1-

summer 

Day2 70.8 1 7 2 14 63% 

Day3 72.9 0 9 2 13 54% 

Day4 72.9 0 7 2 15 63% 

Day5 72.3 0 1 1 22 92% 

Day6 79.2 0 6 1 17 71% 

Day7 82.3 0 0 1 23 96% 

RTU1-
winter 

Day1 44.1 7 2 1 14 88% 

88% 

Day2 44.2 7 2 2 13 83% 

Day3 45.7 7 2 1 14 88% 

Day4 46.8 7 0 2 15 92% 

Day5 44.6 7 0 3 14 88% 

Day6 47.3 9 0 2 13 92% 

Day7 50.2 8 0 3 13 88% 

RTU1-
spring/fall 

Day1 56.2 10 0 11 3 54% 

67% 

Day2 56.9 6 5 4 9 63% 

Day3 61.8 4 4 4 12 67% 

Day4 65.5 3 3 5 13 67% 

Day5 60.1 3 3 6 12 63% 

Day6 61.4 6 0 5 13 80% 

Day7 61.0 7 0 5 12 80% 

RTU2-

summer 

Day1 78.7 0 0 0 24 100% 

70% 

Day2 72.3 1 0 4 19 83% 

Day3 71.7 0 0 0 24 100% 

Day4 70.8 1 9 1 13 58% 

Day5 70.7 0 1 0 23 96% 

Day6 71.4 0 10 2 12 50% 

Day7 70.5 0 2 3 1 4% 

RTU2-

winter 

Day1 51.6 6 7 3 8 58% 

70% 

Day2 49.7 6 6 3 9 63% 

Day3 51.3 6 6 2 10 67% 

Day4 54.3 5 5 3 11 67% 

Day5 54.7 6 5 2 11 71% 

Day6 55.9 7 2 4 11 75% 

Day7 63.0 7 1 2 14 88% 

RTU2-

spring/fall 

Day1 68.9 5 2 1 16 88% 

82% 

Day2 68.0 3 2 5 14 71% 

Day3 62.8 2 1 7 14 67% 

Day4 56.7 8 3 1 12 83% 

Day5 56.6 8 2 0 14 92% 

Day6 55.5 11 3 0 10 88% 

Day7 55.8 11 3 0 10 88% 

Building 

F 

RTU1-
summer 

Day1 83.1 10 0 0 14 100% 

92% 

Day2 84.1 9 1 2 12 88% 

Day3 84.4 9 1 2 12 88% 

Day4 83.0 9 1 1 13 92% 

Day5 82.5 9 2 1 12 88% 

Day6 83.0 8 0 2 14 92% 

Day7 86.3 11 0 1 12 96% 

RTU1-

winter 

Day1 64.2 1 0 9 14 63% 

85% 

Day2 73.0 7 0 3 14 88% 

Day3 75.3 8 0 2 14 92% 

Day4 75.3 8 0 2 14 92% 

Day5 63.3 7 0 3 14 88% 

Day6 65.5 7 0 4 13 83% 

Day7 71.0 9 0 3 12 88% 

RTU1-

spring/fall 

Day1 82.7 7 0 3 14 88% 

89% 

Day2 80.1 8 0 2 14 92% 

Day3 83.1 8 0 2 14 92% 

Day4 82.0 7 0 3 14 88% 

Day5 81.8 7 0 3 14 88% 

Day6 82.4 8 0 2 14 92% 

Day7 82.4 10 0 3 11 88% 

RTU2-

summer 

Day1 82.2 8 0 2 14 92% 
91% 

Day2 77.0 8 0 3 13 88% 



 

C.8 

Building Test code Day 
TOD, avg 

°F 

Unoccpancy/ 

Unoccpancypred 

Unoccpancy/ 

Occpancypred 

Occpancy/ 

Unoccpancypred 

Occpancy/ 

Occpancypred 
Accuracy 

Weekly 

Accuracy 

Day3 83.1 8 0 2 14 92% 

Day4 85.0 8 0 2 14 92% 

Day5 86.0 8 0 2 14 92% 

Day6 86.9 8 0 2 14 92% 

Day7 85.2 11 0 2 11 92% 

RTU2-

winter 

Day1 64.1 7 3 0 14 88% 

91% 

Day2 73.6 9 1 1 13 92% 

Day3 75.3 9 0 1 14 96% 

Day4 71.3 9 0 1 14 96% 

Day5 62.8 9 0 1 14 96% 

Day6 65.2 8 2 2 12 83% 

Day7 70.3 10 2 1 11 88% 

RTU2-
spring/fall 

Day1 80.4 8 0 2 14 92% 

92% 

Day2 77.8 8 0 2 14 92% 

Day3 80.2 8 0 2 14 92% 

Day4 80.7 8 0 2 14 92% 

Day5 77.6 8 0 2 14 92% 

Day6 79.0 8 0 2 14 92% 

Day7 78.7 11 0 2 11 92% 
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