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Executive Summary 

Recent glass formulation and melter testing data have suggested that significant increases in waste 

loading in high-level waste (HLW) and low-activity waste (LAW) glasses are possible over current 

system planning estimates. In 2013, a set of models and constraints based on these data were developed 

and published (Vienna et al. 2013). Since that report, roughly 200 additional glasses have been tested and 

lessons were learned in applying the preliminary set of models and constraints. This report summarizes 

the advancements in glass formulation and glass property estimation since the publication of Vienna et al. 

(2013) using the additional data and lessons learned. The report also updates the recommended set of 

enhanced glass property-composition models and constraints for use in River Protection Project (RPP) 

planning. 

The combined data (although limited in some cases1) were evaluated to determine a set of constraints 

and models that could be used to estimate the maximum loading of specific waste compositions in glass. 

It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass 

masses that would result if the current glass formulation studies are successfully completed. It is 

recognized that some of the models are preliminary in nature and will change in the coming years. In 

addition, the models do not currently address the prediction uncertainties that would be required before 

they could be used in plant operations. The models and constraints are only meant to give an indication of 

rough glass masses and are not intended to be used in quality-affecting activities or decisions. A current 

program is in place to develop the data, models, and uncertainty descriptions for that purpose. 

A fundamental tenet underlying the research reported in this document and in Vienna et al. (2013) 

was to be less conservative, but still realistic, compared to previous studies. This tenet was followed by 

implementing current enhanced glass formulation efforts to develop the constraints for estimating the 

masses of HLW and LAW glasses to be produced. The less conservative approach documented herein 

should allow for estimating glass masses that may be realized if the current efforts in enhanced glass 

formulations are completed over the coming years, and are as successful as results from the previous 

approximately four years of effort indicate they will be. However, at this stage of the work, there is an 

unquantifiable uncertainty in the ultimate glass mass projections due to model prediction uncertainties 

that must be considered, along with other system uncertainties, such as waste compositions and amounts 

to be immobilized, split factors between LAW and HLW, etc. A plan to estimate the impact of those 

uncertainties has been developed and a future update will document the results. 

 

                                                      
1 Data limitations primarily exist for (i) HLW sulfate solubility across the entire composition region, (ii) HLW 

Product Consistency Test (PCT) response for high alumina glasses, (iii) HLW glass nepheline formation and mass 

fraction for Hanford glasses with prototypic cooling curves, (iv) LAW melt refractory corrosion, (v) HLW melt 

spinel settling and equilibrium crystal fraction, (vi) HLW chromium solubility, and (vii) LAW glass PCT and Vapor 

Hydration Test responses for high alkali glasses.  
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Recommended Models and Constraints 

High-Level Waste Glass Models and Constraints 

Models that constrain the composition and loading of high-level waste (HLW) glasses include models 

to control the nepheline formation in canister-cooled glass, amount of spinel in the melter (cSp), sulfur 

tolerance of the melter feed, viscosity of the melt at 1150ºC (η1150), product consistency test (PCT) 

response, and liquidus temperature (TL) of zirconia-containing phases. Also reported are component 

concentration limits for model validity, chromium tolerance, and phosphate tolerance. The recommended 

models are given below, along with property and component concentration constraints.1 

The model form for predicting the probability of nepheline formation in HLW glass after canister 

centerline cooling is given by 

 
]exp[1

]exp[

2
3210

2
3210

XβYβXββ

XβYβXββ
p




  , (S.1) 

where 

 

 p = probability of nepheline formation for the HLW glass 

 

 βi = polynomial model coefficients for the submixture model 

 

 X =  location of the glass along the horizontal direction in the submixture ternary 

diagram X = gAlFe
* +

1

2
gSiB

*  

 

 Y = location in the vertical direction in the submixture ternary diagram *
SiBgY
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3
  

 

 
*

SiBg  = normalized concentration of the ternary submixture component involving SiO2 

and B2O3, where * SiB
SiB

Alk AlFe SiB

g
g

g g g


 
 and 

52322 76 OPOBSiOSiB gggg    

 

 
*

AlFeg  = normalized concentration of the ternary submixture component involving Al2O3 

and Fe2O3, where * AlFe
AlFe
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g
g
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
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3232 5 OFeOAlAlFe ggg   

 

 
*

Alkg  =  normalized concentration of the ternary submixture component involving the 

alkalis, where * Alk
Alk

Alk AlFe SiB

g
g

g g g


 
 and 

MgOCaOOKOLiONaAlk gggggg 4321 222
   

 

                                                      
1 See Section 1.3 for discussion of significant figures. 
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The model coefficients are listed in Table S.1. 

Table S.1.  Coefficients of the Recommended Model for Nepheline Formation in HLW Glass 

Coefficient(a) LR-SM Conservative 

1  (Li2O) 0.804 

3  (CaO)(b) 0.294 

6  (B2O3) 1.732 

0  -64.085 

1  498.338 

2  -102.179 

3  -522.382 

Threshold 0.30 

(a) In addition to the components listed in this 

column, Al2O3, Na2O, and SiO2 also appear in 

the logistic regression-submixture model (LR-

SM) with coefficients of one. 

(b) Note that other terms with coefficients α2, α4, 

α5, and α7 were found to be insignificant. 

The recommended T2% model for HLW glass is given by 

 

1
2

2%

1 1 1 1

 Selected
q q q q

i i ii i ij i j

i i i j i

T a g a g a g g


    

 
   

 
   , (S.2) 

where q is number of HLW glass components in the model, ai is model coefficient for the ith HLW glass 

component, gi mass fraction of the ith HLW glass component (so that g1 + … + gq=Others = 1.0), aii is the 

coefficient for the squared term of the ith component, and aij is the coefficient of the crossproduct term 

involving the ith and jth components. The model coefficients are given in Table S.2. 
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Table S.2.  Coefficients of the Recommended T2% Model for HLW Glasses, in °C 

Model Term Coefficient 

Al2O3 2058.4195 

B2O3 -281.516 

Bi2O3 1543.2359 

Cr2O3 11944.224 

Fe2O3 3673.0656 

Li2O -753.6015 

MgO 3553.9322 

MnO 3485.9411 

Na2O -1940.195 

NiO 11231.615 

RuO2 84418.014 

TiO2 2574.6514 

ZnO 4011.0211 

ZrO2 -987.8832 

Others 391.75396 

Al2O3×Na2O 9345.1684 

ZrO2×ZrO2 42569.129 

The model for the allowable weight percent SO3 concentration in the HLW melter feed (
3

Limit

SOw ) has 

the form 

 
3

1

q
Limit

SO i i

i

w s n


  (S.3) 

where q is the number of HLW glass components in the model, si is the coefficient of the ith component in 

HLW glass and ni is the concentration of the ith component in HLW glass normalized to a total mass 

fraction of 1.0 after removing SO3. Hence, )1(
3SOii g/gn  , where gi is the mass fraction of the ith 

component in HLW glass. The model coefficients are given in Table S.3. 
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Table S.3.  Coefficients for the Recommended
3SOw (in wt%) Model for HLW Glasses 

Model Term Coefficient 

Al2O3 -3.112 

B2O3 5.253 

CaO 10.679 

Cl -92.942 

Li2O 17.635 

Na2O 2.571 

SiO2 -2.438 

V2O5 8.638 

ZrO2 -2.696 

P2O5 4.737 

Fe2O3 2.375 

Others 4.165 

Note: The model is based on mass fractions 

of HLW glass compositions, but 

predicts 
3SOw in wt%. 

A model for HLW glass viscosity at 1150°C (η1150) was developed with the form 

 
1150

1

ln( , Pa s)
q

i i

i

b g


   (S.4) 

where bi is the coefficient of the ith HLW glass component, gi is the mass fraction of the ith HLW glass 

component, and q is the number of HLW glass components in the model. The model coefficients are 

given in Table S.4. 
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Table S.4.  Coefficients of the Recommended η1150 Model for HLW Glass Melts, in ln(Pa·s) 

Model Term Coefficient 

Al2O3 12.093093 

B2O3 -6.968649 

CaO -7.867327 

Cr2O3 10.263034 

F -18.405435 

LN2O3
(a) 3.5927373 

Li2O -34.656075 

MnO -6.137735 

Na2O -9.383399 

NiO 4.1828203 

P2O5 2.8993337 

SiO2 8.7348186 

SrO -5.661461 

TiO2 -9.632734 

UO3 2.4199882 

ZrO2 6.1936719 

Others -0.982565 

(a) LN2O3 is the combination of Y2O3 and 

all the rare-earth oxides (which are all 

assumed to be in the trivalent state). 

Models for the natural logarithm of normalized PCT-boron, -lithium, and -sodium responses for HLW 

glass were developed with the form 

  
2 3 2 3 2 3 2 3 2 3 2 3

2 3 4

1

ln PCT 2 3 4
q

i i Al O Al O Al O Al O Al O Al O

i

b g b g b g b g


     , (S.5) 

where ln[PCT] is the response (ln[PCT-B, g/m2], ln[PCT-Na, g/m2], or ln[PCT-Li, g/m2]), q is number of 

HLW glass components in the model, bi is the coefficient of the ith component in HLW glass, gi is the 

mass fraction of the ith component in HLW glass (so that g1 + … + gq=Others = 1.0), and 
32

2 OAlb ,
32

3 OAlb , 

32
4 OAlb   are the coefficients for higher-order terms involving the mass fraction of Al2O3. The model 

coefficients are listed in Table S.5. 
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Table S.5.  Coefficients of the Recommended ln[PCT] Models for HLW Glasses, in ln[g/m2] 

Model Term PCT-B PCT-Na PCT-Li 

Al2O3 -78.7836 -71.6595 -63.9519 

B2O3 11.8314 7.5035 9.7161 

CaO -4.2608 0.1647 -1.5756 

Fe2O3 -0.1367 -1.2469 -1.5209 

Li2O 26.6872 23.9739 21.5220 

MgO 22.2708 19.8924 16.0853 

Na2O 18.0511 20.0074 13.5925 

P2O5 -10.1336 -10.0559 -6.3595 

SiO2 -4.5104 -4.5442 -3.3104 

SO3 18.6514 17.5527 16.7191 

TiO2 -7.3229 -7.9836 -4.6582 

UO3 -8.6123 -7.9687 -6.6933 

ZnO -7.3998 -12.3124 -9.9948 

ZrO2 -8.8810 -9.7138 -8.0739 

Other 2.9184 3.9227 1.9047 

(Al2O3)2 638.3727 594.5920 523.1351 

(Al2O3)3 -2360.5420 -2330.9850 -1983.3580 

(Al2O3)4 3174.4550 3321.4927 2738.6894 

A model for the liquidus temperature (TL) of zirconium-containing phases in HLW glasses was 

developed and published previously and is recommended for use here. This model has the form 

 


q

i
iiL gtT

1

, (S.6) 

where q is the number of HLW glass components in the model, while ti and gi are the coefficient and mass 

fraction of the ith component in HLW glass, respectively. The model coefficients are listed in Table S.6. 
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Table S.6.  Coefficients of the Recommended TL-Zs Model for HLW Glasses, in °C 

Model Term Coefficient 

Al2O3 3193.3628 

B2O3 651.39721 

LN2O3
(a) 2156.4074 

Li2O -1904.417 

Na2O -1947.711 

SrO 13011.909 

ZrO2 3747.4241 

Others 1259.2233 

(a) LN2O3 is the combination of Y2O3 and all the 

rare-earth oxides (which are all assumed to be 

in the trivalent state). 

The recommended property constraints are listed in Table S.7 and the recommended component 

concentration constraints are listed in Table S.8. 

Table S.7.  HLW Glass Property Constraints 

Constraint Limit 

PCT Responses ln[PCT-B, Na, Li, g/m2] ≤ 1.386(a) 

Nepheline p ≤ 0.3 (probability) 

Spinel T2% ≤ 950°C 

Zirconium-containing phases 
TL-Zs ≤ 1050°C  

if 
2ZrOg > 0.04 (mass fraction) 

Viscosity at 1150°C 1.386 ≤ ln(η1150, Pa·s) ≤ 1.792(b) 

P2O5 and CaO concentrations 
2 5P O CaOw w  ≤ 6.5 (wt%)2 

Salt, SO3 concentration 
3 3

Limit

SO SOw w  (wt%) 

Eskolaite formation 
2 3

0.03Cr Og   (mass fraction) 

B2O3 and SiO2 concentrations 
2 2 3

0.32SiO B Og g   (mass fraction) 

(a) This corresponds to PCT-B, -Na, -Li ≤ 4 g/m2. 

(b) This corresponds to 4 ≤ η1150 ≤ 6 Pa·s. 
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Table S.8.  HLW Glass Component Concentration Constraints, in Mass Fractions 

Component Min Max 

Al2O3 0.1900 0.3000 

B2O3 0.0400 0.2200 

Bi2O3 0 0.0700 

CaO 0 0.1000 

CdO 0 0.0150 

Cr2O3 0 0.0300 

F 0 0.0250 

Fe2O3 0 0.2000 

K2O 0 0.0600 

Li2O 0 0.0600 

MgO 0 0.0600 

MnO 0 0.0800 

Na2O 0.0410 0.2400 

NiO 0 0.0300 

P2O5 0 0.0450 

SiO2 0.2200 0.5300 

SrO 0 0.1010 

ThO2 0 0.0600 

TiO2 0 0.0500 

UO3 0 0.0630 

ZnO 0 0.0400 

ZrO2 0 0.1350 

 

 The additives recommended for calculation purposes are Al2O3, B2O3, CaO, Li2O, MgO, Na2O, SiO2, 

V2O5, ZnO, and ZrO2. 

Low-Activity Waste Glass Models and Constraints 

Models to constrain the composition and loading of low-activity waste (LAW) glasses include models 

to control the sulfur tolerance of the melter feed PCT response, Vapor Hydration Test (VHT) response, 

η1150, and refractory corrosion. Also reported are component concentration limits for model validity, as 

well as the chromium, halide, phosphate, and alkali tolerance. The recommended models are given below 

along with property and component concentration constraints. 
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The model for the allowable weight percent SO3 concentration in the LAW melter feed (
3

Limit

SOw ) is 

given by 

 
3

1
2

1 1 11
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q q q q

ii i ij i j

Limit

SO

i i

i

i i j

i s n s nw ns n

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 
  


 


   (S.7) 

where si is the coefficient of the ith component in LAW glass, ni is the mass fraction of the ith component 

in LAW glass normalized after removing SO3 [ )1(
3SOii g/gn  , where gi is the mass fraction of the ith 

component in LAW glass], sii is the coefficient for the squared term of the ith component in LAW glass, sij 

is the coefficient of the crossproduct term involving the ith and jth components in LAW glass, and q is the 

number of normalized LAW glass components in the model. Note that that n1 + … + nq=Others = 1.0. The 

model coefficients are listed in Table S.9. 

Table S.9.  Coefficients of the Recommended 
3SOw Model for LAW Glasses, in wt% 

Model Term Coefficient 

Al2O3 -2.0919 

B2O3 3.044075 

CaO 4.442289 

Cl -22.6535 

Cr2O3 -13.1414 

K2O 0.615785 

Li2O 2.473926 

Na2O 2.897209 

P2O5 4.606083 

SiO2 0.240729 

SnO2 -1.77533 

V2O5 7.534548 

ZrO2 -1.87192 

Others -0.28027 

(Li2O)2 260.203 

A model for the average natural logarithm of normalized PCT-boron and -sodium response 

[ln(NL, g/L)] for LAW glasses was developed with the form 

 
1

2

1 1 11

ln ,  g / L Selected
q q q

ii i ij i j

i i j i

q

i i

i

b g b gb g gNL

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
 

   
 
  , (S.8) 

where q is number of LAW glass components in the model, bi is the coefficient of the ith component in 

LAW glass, gi is the mass fraction of the ith component in LAW glass (so that g1 + … + gq=Others = 1.0), bii 

is the coefficient for the squared term of the ith component in LAW glass, and bij is the coefficient of the 
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crossproduct term involving the ith and jth components in LAW glass. The model coefficients are given in 

Table S.10. 

Table S.10.  Coefficients of the Recommended ln(PCT NL) Model for LAW Glasses, in ln(g/L) 

Model Term Coefficient 

Al2O3 -4.7932 

B2O3 -31.2612 

CaO 3.8636 

K2O -13.5298 

Li2O -16.6826 

MgO 21.4263 

Na2O -25.2993 

P2O5 -5.1242 

SiO2 0.3093 

SnO2 -4.4031 

TiO2 -1.7604 

ZrO2 3.8966 

Others 6.2375 

B2O3×B2O3 157.3873 

K2O×K2O 201.4790 

Al2O3×Li2O -255.4098 

CaO×Li2O -128.0130 

Li2O×Li2O 474.3082 

B2O3×Na2O 81.1682 

K2O×Na2O 120.3814 

Li2O×Na2O 391.5456 

Na2O×Na2O 97.6643 

A model for the VHT alteration thickness in ln(D, µm) of LAW glasses was developed with the form 

 
1

2

1 1 11

ln ,  μm Selected
q q q

ii i ij i j

i

q

i

i j

i

ii

b g b gb gD g


   

 
   

 
  , (S.9) 

where q is number of LAW glass components in the model, bi is the coefficient of the ith component in 

LAW glass, gi is the mass fraction of the ith component in LAW glass (so that g1 + … + gq=Others = 1.0), bii 

is the coefficient for the squared term of the ith component in LAW glass, and bij is the coefficient of the 

crossproduct term involving the ith and jth components in LAW glass. The model coefficients are given in 

Table S.11. 
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Table S.11.  Coefficients of the Recommended ln(VHT D) Model for LAW Glasses, in ln(µm) 

Model Term Coefficient 

Al2O3 -3.1247 

B2O3 9.0537 

CaO -165.0264 

Fe2O3 -9.3359 

K2O -68.6719 

Li2O 308.9919 

Na2O 75.8436 

SiO2 -22.5420 

SnO2 -28.5312 

TiO2 -27.0704 

ZrO2 -48.6944 

Others 2.5197 

CaO×CaO 452.8308 

Li2O×Li2O -3040.2579 

K2O×Na2O 433.9384 

Li2O×Na2O -1273.4629 

CaO×SiO2 267.5427 

K2O×K2O 724.3290 

Li2O×SiO2 361.8056 

A model for LAW melt viscosity at 1150°C (η1150) was developed with the form 

1150

1

ln( , Pa s)
q

i i

i

b g


   (S.10) 

where q is number of LAW glass components in the model, bi is the coefficient of the ith component in 

LAW glass, and  gi is the mass fraction of the ith component in LAW glass. The model coefficients are 

given in Table S.12. 
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Table S.12.  Coefficients of the Recommended ln(η1150) Model for LAW Glasses, in ln(Pa∙s) 

Model Term Coefficient 

Al2O3 11.67007 

B2O3 -7.44665 

CaO -7.60545 

Fe2O3 -0.11082 

K2O -4.65558 

Li2O -32.67344 

MgO -4.26291 

Na2O -9.30809 

P2O5 7.94147 

SiO2 8.88092 

SnO2 4.73082 

TiO2 -4.93294 

V2O5 -2.64858 

ZnO -4.51330 

ZrO2 6.91854 

Others 2.74032 

A model for K3 corrosion at 1208°C is given by the form 

1
2

1208

1 1 11

l Selec( edn ) t
q q q

ii i ij i j

i

q

i i

i i j i

k k g k g gk g

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 
   

 
   (S.11) 

where k1208 is neck corrosion distance in the 6-day test at 1208°C (in inches), q is number of LAW glass 

components in the model, ki is the coefficient of the ith component in LAW glass, gi is the mass fraction of 

the ith component in LAW glass (so that g1 + … + gq=Others = 1.0), kii is the coefficient for the squared term 

of the ith component in LAW glass, and kij is the coefficient of the crossproduct term involving the ith and 

jth components in LAW glass. The model coefficients are given in Table S.13. 
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Table S.13.  Coefficients of the Recommended ln(k1208) Model for LAW Glasses, in ln(inch) 

Model Term Coefficient 

Al2O3 -23.696 

B2O3 -0.965 

CaO 6.590 

Cr2O3 -85.437 

Fe2O3 -4.315 

K2O 7.997 

Li2O 44.748 

MgO -37.185 

Na2O 20.337 

P2O5 117.297 

SiO2 -10.103 

SnO2 -38.779 

TiO2 90.238 

V2O5 -114.733 

ZnO -12.560 

ZrO2 -11.150 

Others -20.952 

Li2O×P2O5 -3092.687 

(MgO)2 716.072 

Na2O×P2O5 -579.772 

Na2O×V2O5 335.374 

SiO2×TiO2 -241.722 

SnO2×Others 2880.688 

V2O5×ZnO 1028.765 

The recommended property and multicomponent constraints are listed in Table S.14. The waste 

loading rules give an estimate of the loading of waste in glass, while the property limits, combined with 

property models described above, allow for optimization of the glass composition along with the 

recommended component concentration constraints that are listed in Table S.15. 

 The additives recommended for glass optimization approach calculation purposes are Al2O3, 

B2O3, CaO, Li2O, MgO, SiO2, SnO2, V2O5, ZnO, and ZrO2. 
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Table S.14.  LAW Glass Property and Multicomponent Concentration Constraints 

Waste Loading Rules Limit 

Alkali content 
2 2

0.66 24wt%Na O K Ow w   

Alkali and sulfur content 
2 2 3

0.66 33.94 11.69 ,wt%Na O K O SOw w w    

Sulfur content 
3

1.5wt%SOw    

Halide content  
3 2 3 2 5

0.01825 0.4936 1.761 2.971 0.1608SO Cl Cr O P Og g g g      

Property Limit 

Salt, SO3 concentration 
3 3

Limit

SO SOw w  

Combined zirconia, tin, and 

alumina constraint 2 2 2 3
0.17ZrO SnO Al Og g g    

Alkali minus sum of zirconia, 

tin, and lime constraint 2 2 2 2 2
0.66 2.07 0.15Na O K O Li O ZrO SnO CaOg g g g g g       

PCT response ln[PCT NL, g/L] ≤ 1.386 

VHT response ln[VHT D, µm] ≤ 6.116 

Viscosity at 1150°C 1.386 ≤ ln[η1150, Pa∙s] ≤ 1.792  

K-3 neck corrosion at 1208°C ln[k1208, in] ≤ -3.2189 

 

Table S.15.  LAW Glass Single Component Concentration Constraints, in Mass Fractions 

Component Min Max 

Al2O3 0.0553 0.1370 

B2O3 0.0600 0.1370 

CaO 0 0.1060 

Cl 0 0.0117 

Cr2O3 0 0.0100 

Fe2O3 0 0.0997 

K2O 0 0.0589 

Li2O 0 0.0503 

MgO 0 0.0350 

Na2O 0.0248 0.2600 

P2O5 0 0.0340 

SiO2 0.2983 0.5020 

SnO2 0 0.0501 

TiO2 0 0.0341 

V2O5 0 0.0401 

ZnO 0 0.0540 

ZrO2 0 0.0675 
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Quality Assurance 

This task was performed under the U.S. Department of Energy Office of River Protection Inter-Entity 

Work Order # M0ORV00020 and under Pacific Northwest National Laboratory’s (PNNL’s) Nuclear 

Quality Assurance Program (NQAP), which implements the requirements of ASME NQA-1-2012, with 

mapping to NQA-1-2008 with 2009 addendum and is graded in accordance with NQA-1-2012, 

Subpart 4.2, “Guidance on Graded Application of Quality Assurance for Nuclear-Related Research and 

Development.” The work reported here has been graded as “Basic Research.” No experimentation was 

conducted as part of the study reported here. The work reported included gathering data from the 

literature, screening and evaluating the data, fitting glass property models, and recommending constraints 

for glass formulation based on the literature data and glass formulation experiences. The data used in the 

evaluations and the models were taken from literature and were not formally evaluated or qualified for 

acceptability prior to reporting. Calculations and models were not verified and validated. The work has 

been peer reviewed at PNNL. Therefore, the models reported in this document cannot be used for quality 

impacting work or decisions as defined in NQA-1 (ASME 2012) or RW-0333P (DOE 2008) (e.g., design 

basis input, plant operations, waste form compliance). Instead the models and constraints are intended for 

use in mission planning activities. 





 

xxiii 

Acknowledgments 

We gratefully acknowledge the financial support of Mr. William F. Hamel, Jr – Federal Project 

Director of the U.S. Department of Energy’s Waste Treatment and Immobilization Plant (WTP) under the 

direction of Dr. Albert A. Kruger. 

The authors also thank the following people for their technical review and consultations on the work 

leading to this report: 

 David Peeler (PNNL) for peer review of the document 

 Kirsten Meier (PNNL) for quality assurance review of the document 

 Derek Dixon (PNNL) for his careful technical review of the LAW viscosity dataset 

 Rod Gimpel (WTP), Bennett Rieck (WTP), Natalie Kirch (WRPS), and Jeremy Belsher (WRPS) for 

external technical review of the document   

 Albert Kruger (DOE-ORP) for management review 

This manuscript was masterfully formatted and edited, respectively, by Susan Tackett and Cary 

Counts. We thank Mike Schweiger for programmatic support during the conduct of this work. 

A large fraction of the data described in this report was generated by the Vitreous State Laboratory at 

The Catholic University of America (VSL). We are thankful to VSL (in particular Professor Ian Pegg) for 

sharing VSL data and providing assistance in data evaluation and interpretation. 

 





 

xxv 

Acronyms and Abbreviations 

ASTM American Society for Testing and Materials 

c950  equilibrium concentration of spinel in the melt at 950°C 

CCC canister centerline cooled 

CFR Code of Federal Regulations 

cSp equilibrium concentration of spinel in the melt 

CVS Composition Variation Study 

D Vapor Hydration Test response alteration depth after 24-day test 

DOE U.S. Department of Energy 

DWPF Defense Waste Processing Facility 

EA environmental assessment 

G2 WTP dynamic flowsheet model 

gi mass fraction of ith component in glass 

HASQARD Hanford Analytical Services Quality Requirements Document 

HDI How Do I? 

HLP Hanford LAW product acceptance 

HLW high-level waste 

HTM high temperature melter 

HTWOS Hanford Tank Waste Operations Simulator 

HWVP Hanford Waste Vitrification Plant 

IDF Integrated Disposal Facility 

ILAW immobilized low-activity waste 

INEEL Idaho National Engineering and Environmental Laboratory 

LAW low-activity waste 

L-BFGS limited memory-Broyden-Fletcher-Goldfarb-Shanno (algorithm) 

LMM linear mixture model 

ln(NL) normalized average loss of ln(NL B) and ln(NL Na) from an LAW glass after a 

 7-day PCT 

LR logistic regression 

MT metric ton 

NAlk normalized alkali oxide concentration 

ND nepheline discriminator 

NH normalized halogen concentration 

ni normalized mass fraction of ith component in glass 

NN neural network 

NQA nuclear quality assurance 

NSi normalized SiO2 concentration 



 

xxvi 

OB optical basicity 

ORP Office of River Protection 

PCT Product Consistency Test 

PDC polynomial discriminating curve 

PI prediction interval 

PNNL Pacific Northwest National Laboratory 

PQMM partial quadratic mixture model 

QA quality assurance 

QAP Quality Assurance Plan 

R2 R-squared (coefficient of determination) 

RMSE root mean squared error 

RPP River Protection Project 

RSD relative standard deviation 

SM submixture 

SRNL Savannah River National Laboratory 

SwRI Southwest Research Institute 

T1% temperature at one volume percent crystals in equilibrium with the melt 

T2% temperature at two volume percent crystals in equilibrium with the melt 

TCLP Toxicity Characteristic Leaching Procedure 

TL liquidus temperature 

TWRS Tank Waste Remediation System 

UTL upper tolerance limit 

VFT Vogel-Fulcher-Tammann 

VHT Vapor Hydration Test 

VSL the Vitreous State Laboratory at the Catholic University of America 

wi weight percent of the ith component in glass or melter feed 

WTP Hanford Tank Waste Treatment and Immobilization Plant 

WVDP West Valley Demonstration Project 

ε melt electrical conductivity 

η melt viscosity 

 



 

xxvii 

Contents 

Executive Summary ..................................................................................................................................... iii 

Recommended Models and Constraints ........................................................................................................ v 

Quality Assurance ...................................................................................................................................... xxi 

Acknowledgments .................................................................................................................................... xxiii 

Acronyms and Abbreviations ................................................................................................................... xxv 

1.0 Introduction ....................................................................................................................................... 1.1 

1.1 HLW Property Constraints and Loading Limitations ............................................................... 1.2 

1.2 LAW Property Constraints and Loading Limitations ............................................................... 1.5 

1.3 A Note on Significant Figures ................................................................................................... 1.7 

1.4 Assessing Model Goodness of Fit ............................................................................................. 1.8 

2.0 HLW Glass Models and Constraints ................................................................................................. 2.1 

2.1 Nepheline Limit......................................................................................................................... 2.1 

2.1.1 Description of Data on Nepheline Formation after Canister Centerline Cooling .......... 2.2 

2.1.2 Structure of the Polynomial Discriminating Curve-Submixture Model ......................... 2.5 

2.1.3 Nepheline Model Form and Fitting Methodology.......................................................... 2.7 

2.1.4 Results of Fitting the Logistic Regression-Submixture Model to Nepheline  

Formation Data ............................................................................................................... 2.9 

2.1.5 A Nonparametric Tolerance Limit Approach that Accounts for the Uncertainties in the 

LR-SM Model in Classifying Whether an HLW Glass Composition Forms Nepheline 

after Canister Centerline Cooling ................................................................................. 2.12 

2.1.6 Steps of the Logistic Regression-Submixture Model and Nonparametric Upper 

Tolerance Limit Approach for Predicting whether Nepheline May Form in an HLW 

Glass after Canister Centerline Cooling ....................................................................... 2.15 

2.1.7 Comparison of Logistic Regression-Submixture and Polynomial Discriminating  

Curve-Submixture Models ........................................................................................... 2.16 

2.1.8 Recommended Models for Predicting whether Nepheline May Form in an HLW  

Glass after Canister Centerline Cooling ....................................................................... 2.16 

2.1.9 Future Plans .................................................................................................................. 2.17 

2.2 Spinel Limits ........................................................................................................................... 2.18 

2.2.1 Model for Equilibrium Spinel Fraction at 950°C ......................................................... 2.23 

2.2.2 Model for Temperature at 2 vol% Spinel ..................................................................... 2.27 

2.2.3 Recommended Crystal Constraint ................................................................................ 2.31 

2.2.4 Future Plans .................................................................................................................. 2.32 

2.3 Sulfur Tolerance ...................................................................................................................... 2.32 

2.3.1 Sulfate Solubility Data for HLW Glasses .................................................................... 2.33 

2.3.2 Model for Sulfate Solubility of HLW Glasses ............................................................. 2.36 

2.3.3 Future Plans .................................................................................................................. 2.38 

2.4 Eskolaite Formation ................................................................................................................ 2.38 



 

xxviii 

2.4.1 Investigation of Eskolaite Formation ........................................................................... 2.39 

2.4.2 Future Plans .................................................................................................................. 2.41 

2.5 Viscosity .................................................................................................................................. 2.41 

2.5.1 Viscosity Data for HLW Glasses ................................................................................. 2.42 

2.5.2 Model #1 – Linear Mixture Model for Viscosity at 1150ºC Fit to Data for HLW  

and LAW Glasses ......................................................................................................... 2.45 

2.5.3 Model #2 – Linear Mixture Model for Viscosity at 1150ºC Fit to Data from HLW 

Glasses Only ................................................................................................................. 2.46 

2.5.4 Model #3 – Partial Quadratic Mixture Model for Viscosity at 1150ºC Fit to Data  

from HLW and LAW Glasses ...................................................................................... 2.48 

2.5.5 Summary and Recommended Model for Viscosity at 1150ºC ..................................... 2.50 

2.5.6 Future Plans .................................................................................................................. 2.51 

2.6 Product Consistency Test ........................................................................................................ 2.51 

2.6.1 Product Consistency Test Data for HLW Glasses ........................................................ 2.52 

2.6.2 Product Consistency Test Models for HLW Glasses ................................................... 2.55 

2.6.3 Future Plans .................................................................................................................. 2.62 

2.7 Zirconium-Containing Phases ................................................................................................. 2.62 

2.7.1 Model for Liquidus Temperature of Zirconium-Containing Phases ............................ 2.62 

2.7.2 Future Plans .................................................................................................................. 2.63 

2.8 Phosphate Limits ..................................................................................................................... 2.63 

2.8.1 Phosphate Constraints and a Liquidus Temperature Model for Phosphate- 

Containing Phases ........................................................................................................ 2.63 

2.8.2 Future Plans .................................................................................................................. 2.65 

2.9 Summary of Property Models and Component Concentration Limits for HLW Glasses ....... 2.66 

2.10 Example Calculations for HLW Glasses ................................................................................. 2.70 

3.0 Low-Activity Waste Glass Models and Constraints .......................................................................... 3.1 

3.1 Sulfur Tolerance ........................................................................................................................ 3.1 

3.1.1 SO3 Solubility Model for LAW Glasses ........................................................................ 3.1 

3.1.2 Sulfur Retention in the Melter ........................................................................................ 3.3 

3.1.3 Future Plans .................................................................................................................... 3.5 

3.2 Product Consistency Test Response .......................................................................................... 3.6 

3.2.1 Data and Model for PCT Response of LAW Glasses .................................................... 3.6 

3.2.2 Future Plans .................................................................................................................. 3.14 

3.3 Vapor Hydration Test Response ............................................................................................. 3.15 

3.3.1 Data and Model for VHT Response of LAW Glasses ................................................. 3.15 

3.3.2 Future Plans .................................................................................................................. 3.23 

3.4 Viscosity .................................................................................................................................. 3.23 

3.4.1 Data and Model for Viscosity at 1150ºC of LAW Glasses .......................................... 3.24 

3.4.2 Future Plans .................................................................................................................. 3.27 

3.5 Refractory Corrosion ............................................................................................................... 3.27 



 

xxix 

3.5.1 Model for Refractory Corrosion of LAW Glasses ....................................................... 3.28 

3.5.2 Future Plans .................................................................................................................. 3.28 

3.6 Loading Rules ......................................................................................................................... 3.30 

3.6.1 Future Plans .................................................................................................................. 3.33 

3.7 Summary of Property Models and Component Concentration Limits for LAW Glasses ....... 3.33 

3.8 Calculation Examples .............................................................................................................. 3.35 

4.0 Summary ............................................................................................................................................ 4.1 

4.1 HLW Glass Property Models .................................................................................................... 4.1 

4.2 LAW Glass Property Models .................................................................................................... 4.2 

5.0 References ......................................................................................................................................... 5.1 

Appendix A – Statistical Methods for Evaluating and Validating Models Fit to Experimental Data ...... A.1 
 



 

xxx 

Figures 

Figure 1.1.  Graphical Representation of HLW Models and Constraints .................................................. 1.3 

Figure 1.2.  Comparison of Na2O and SO3 Concentrations in LAW Waste Loading Rules ...................... 1.6 

Figure 2.1.  Submixture Ternary Diagram with Conservative Polynomial Line Fit to Discriminate  

HLW Glasses that Form Nepheline after Canister Centerline Cooling ............................................. 2.2 

Figure 2.2.  Scatterplot Matrix of 747 HLW Glasses Used to Model Nepheline Formation After  

Canister Centerline Cooling ............................................................................................................... 2.5 

Figure 2.3.  Plot of the False Negative and False Positive Misclassification Rates for the Full Dataset 

Using the Four Logistic Regression-Submixture Models (Table 2.3) for Nepheline Formation  

After Canister Centerline Cooling of HLW Glasses ........................................................................ 2.11 

Figure 2.4.  Plot of the Submixture Ternary and Discriminating Curves Corresponding to Predicted 

Probabilities of Nepheline Formation Equal to 0.10, 0.47, and 0.90 ............................................... 2.11 

Figure 2.5.  Illustration for Three Example Glasses of the Bootstrap Distribution of n = 2000 Predicted 

Probabilities of Nepheline Formation Using a Logistic Regression-Submixture Model................. 2.13 

Figure 2.6.  Plot Showing the Effect of Nepheline Mass on Normalized PCT-boron Release for  

Example HLW Glasses (from Riley et al. 2001) ............................................................................. 2.18 

Figure 2.7.  Predicted vs. Measured Plot of csp Values with 95% Prediction Intervals (vol%) Using  

HLW Glasses ................................................................................................................................... 2.20 

Figure 2.8.  Scatterplot Matrix for HLW Glass Compositions Used to Model c950 ................................. 2.24 

Figure 2.9.  Predicted vs. Measured Plot of c950 Values with 90% Prediction Intervals (vol%) Using  

the Partial Quadratic Mixture Model for HLW Glasses .................................................................. 2.27 

Figure 2.10.  Scatterplot Matrix for HLW Glass Compositions Used to Model T2% ............................... 2.29 

Figure 2.11.  Predicted vs. Measured Plot of T2% Values with 90% Prediction Intervals (vol%) Using  

the Partial Quadratic Mixture Model for HLW Glasses .................................................................. 2.31 

Figure 2.12.  Equilibrium Crystal Fraction vs. Temperature for Example Representative HLW 

Glasses  ...................................................................................................................................... 2.32 

Figure 2.13.  Validation Results of Sulfate Solubility Model for Recent HLW Glasses ......................... 2.33 

Figure 2.14.  Scatterplot Matrix and Histograms of HLW Glass Compositions for Modeling  

SO3 Solubility .................................................................................................................................. 2.34 

Figure 2.15.  Predicted vs. Measured SO3 Solubility (wt%) for HLW Glasses with 90% Prediction 

Intervals  ...................................................................................................................................... 2.38 

Figure 2.16.  Eskolaite vol% in High-Cr2O3 Crucible-Scale Glasses Heat Treated at 950°C for 

70 Hours  ...................................................................................................................................... 2.39 

Figure 2.17.  Optical Micrographs of Eskolaite in High-Cr2O3 HLW Glasses ........................................ 2.40 

Figure 2.18.  Scatterplot Matrix of Glass Compositions (mass fractions) in the Modeling Dataset  

for Viscosity at 1150°C .................................................................................................................... 2.44 

Figure 2.19.  Predicted vs. Measured Plot of ln(η1150) Values with 90% Prediction Intervals Using  

the Linear Mixture Model Fit to Data from HLW and LAW Glasses ............................................. 2.46 

Figure 2.20.  Predicted vs. Measured ln(η1150) Values with 90% Prediction Intervals [ln(η1150)] Using  

the Linear Mixture Model Fit to Data from HLW Glasses .............................................................. 2.48 

Figure 2.21.  Predicted vs. Measured ln(η1150) Values for the Partial Quadratic Mixture Model Fit to  

Data from LAW and HLW Glasses ................................................................................................. 2.50 



 

xxxi 

Figure 2.22.  Comparison of LMM Coefficients for ln(η1150) Fit to LAW-Only, HLW-Only, and 

Combined HLW+LAW Datasets ..................................................................................................... 2.51 

Figure 2.23.  Scatterplot Matrix and Histograms for Compositions (mass fractions) of 1712 HLW 

Glasses  ...................................................................................................................................... 2.54 

Figure 2.24.  Predicted vs. Measured Plot of ln(PCT-B) Values and 95% Prediction Intervals  

[ln(g/m2)] Using the Model in Table 2.22 Fit to HLW and LAW Glasses ...................................... 2.58 

Figure 2.25.  Predicted vs. Measured Plot of ln(PCT-Na) Values and 95% Prediction Intervals  

[ln(g/m2)] Using the Model in Table 2.22 Fit to HLW and LAW Glasses ...................................... 2.58 

Figure 2.26.  Predicted vs. Measured Plot of ln(PCT-Li) Values and 95% Prediction Intervals  

[ln(g/m2)] Using the Model in Table 2.22 Fit to HLW and LAW Glasses ...................................... 2.59 

Figure 2.27.  Component Effects Profiles for the HLW PCT-Boron Model ........................................... 2.60 

Figure 2.28.  Residuals vs. Validation Residuals: left ln(PCT-B), right ln(PCT-Na), in g/m2 ................ 2.61 

Figure 2.29.  |(R-RV)| for the ln(PCT-B) Model versus Al2O3 Concentration, where R = Residual and   

RV = Validation Residual ................................................................................................................. 2.61 

Figure 3.1.  Predicted vs. Measured Plot of SO3 Solubility Values with 90% Prediction Intervals (wt%) 

for Melter Test Data on 29 LAW Glasses Used to Validate the Model by Vienna et al. (2014) ....... 3.3 

Figure 3.2.  SO3 retention (wt%) as a Function of Target 
3SOw  for WTP Baseline Formulations ............ 3.4 

Figure 3.3.  Comparison of Target and Final Measured 
3SOw  from Melter Tests Performed with  

Advanced Glass Formulations at VSL, in wt% ................................................................................. 3.4 

Figure 3.4.  Calculated SO3 Retention in the Melt as a Function of Target 
3SOw  ..................................... 3.5 

Figure 3.5.  PCT Normalized Responses versus NAlk (Na2O + 0.66K2O + 2.07 Li2O in mass fraction)  

of LAW Glasses Reserved for Model Development ......................................................................... 3.8 

Figure 3.6.  Scatterplot Matrix of PCT Model Data for LAW Glasses.................................................... 3.10 

Figure 3.7.  Model and Validation Statistics for PCT ln(NL) Models on LAW Glasses versus  

Number of Model Terms ................................................................................................................. 3.12 

Figure 3.8.  Predicted vs. Measured Plot of Average (ln[NL]) Values with 95% Prediction Intervals  

Using the Partial Quadratic Mixture Model for LAW Glasses ........................................................ 3.14 

Figure 3.9.  VHT 24-d Test Alteration Depth versus NAlk (Na2O + 0.66K2O + 2.07 Li2O in mass  

fraction) of LAW Glasses ................................................................................................................ 3.17 

Figure 3.10.  Scatterplot Matrix of VHT Model Data.............................................................................. 3.19 

Figure 3.11.  Model and Validation Statistics for VHT ln(D) Models on LAW Glasses versus  

Number of Model Terms ................................................................................................................. 3.21 

Figure 3.12.  Predicted vs. Measured Plot of VHT ln(Alteration Depth) Values with 95% Prediction 

Intervals [ln(μm)] Using the Partial Quadratic Mixture Model for LAW Glasses .......................... 3.23 

Figure 3.13.  Predicted vs. Measured Plot of ln(η1150) Values with 90% Prediction Intervals for the  

Linear Mixture Model for LAW Glasses. ........................................................................................ 3.27 

Figure 3.14.  Overview of Waste Alkali Concentration (d = + 0.66 ) and SO3 Loadings  

for Advanced LAW Glasses ............................................................................................................ 3.30 

Figure 3.15.  Plot of Prediction Parameter vs.  ................................................................................. 3.32 

Figure 3.16.  Example Crystallized LAW Glass Photograph of Pour-patty (left) and Optical  

Micrograph Showing Cassiterite (SnO2) (right) .............................................................................. 3.34 

2Na Ow
2K Ow

3SOw



 

xxxii 

Figure 3.17.  Scatterplot Matrix Showing Composition Region of Difficulties in LAW Glasses ........... 3.35 

 



 

xxxiii 

Tables 

Table S.1.  Coefficients of the Recommended Model for Nepheline Formation in HLW Glass ................. vi 

Table S.2.  Coefficients of the Recommended T2% Model for HLW Glasses, in °C .................................. vii 

Table S.3.  Coefficients for the Recommended 
3SOw  (in wt%) Model for HLW Glasses ........................ viii 

Table S.4.  Coefficients of the Recommended η1150 Model for HLW Glass Melts, in ln(Pa·s) ................... ix 

Table S.5.  Coefficients of the Recommended ln[PCT] Models for HLW Glasses, in ln[g/m2] .................. x 

Table S.6.  Coefficients of the Recommended TL-Zs Model for HLW Glasses, in °C ................................ xi 

Table S.7.  HLW Glass Property Constraints .............................................................................................. xi 

Table S.8.  HLW Glass Component Concentration Constraints, in Mass Fractions ................................... xii 

Table S.9.  Coefficients of the Recommended 
3SOw  Model for LAW Glasses, in wt% ............................ xii 

Table S.10.  Coefficients of the Recommended ln(PCT NL) Model for LAW Glasses, in ln(g/L) ........... xiv 

Table S.11.  Coefficients of the Recommended ln(VHT D) Model for LAW Glasses, in ln(µm) ............. xv 

Table S.12.  Coefficients of the Recommended ln(η1150) Model for LAW Glasses, in ln(Pa∙s) ................ xvi 

Table S.13.  Coefficients of the Recommended ln(k1208) Model for LAW Glasses, in ln(inch) ............... xvii 

Table S.14.  LAW Glass Property and Multicomponent Concentration Constraints .............................. xviii 

Table S.15.  LAW Glass Single Component Concentration Constraints, in Mass Fractions .................. xviii 

Table 1.1.  Attributes of HLW Models and Constraints Sets ..................................................................... 1.4 

Table 1.2.  Attributes of LAW Models and Constraints Sets ..................................................................... 1.6 

Table 2.1.  Summary of Data for HLW Glasses Used in Developing and Evaluating Models for  

Nepheline Formation after Canister Centerline Cooling(a)................................................................. 2.3 

Table 2.2.  Component Ranges (mass fractions) of 747 HLW Glasses with Data on Nepheline  

Formation after Canister Centerline Cooling. These ranges specify the model validity region. ....... 2.4 

Table 2.3.  Estimated Coefficients and Standard Deviations for Nepheline Formation in HLW Glasses 

Along with Misclassification Counts for the Logistic Regression-Submixture Models with and 

without P2O5 and/or K2O in the Submixtures Using a pi = 0.47 Threshold ..................................... 2.10 

Table 2.4.  Values of k for the kth Order Statistic Out of n = 2000, 1000, 500, or 200 Bootstrap Samples 

for Selected Combinations of U and V to Use as the Nonparametric U%/V% Upper Tolerance Limit 

with the Logistic Regression-Submixture Model for Nepheline Formation in HLW Glasses ........ 2.14 

Table 2.5.  Comparison of Logistic Regression-Submixture Models (LR-SM) to Polynomial 

Discriminating Curve-Submixture Models (PDC-SM) (from Vienna et al. 2016) for Nepheline 

Formation in HLW Glasses ............................................................................................................. 2.17 

Table 2.6.  Summary of Existing Data on HLW Glasses used in Evaluating Predictive Models for 

Limiting Spinel Formation(a) ............................................................................................................ 2.21 

Table 2.7.  Glass Compositions (in mass fractions) for 11 Varied Components (Al2O3 to ZrO2) and  

One Fixed Component (Others) Comprising the HLW Spinel Phase 1 Test Matrix ....................... 2.22 

Table 2.8.  Crystal Fractions, and the Phases Present, Versus Temperature for the HLW Spinel Test  

Phase 1 Test Matrix Glasses ............................................................................................................ 2.22 

Table 2.9.  HLW Glass Component Concentration Ranges (in mass fractions) for Validity of the c950 

Model  ...................................................................................................................................... 2.23 



 

xxxiv 

Table 2.10.  Coefficients for the Linear Mixture Model (LMM) and Partial Quadratic Mixture  

Model for c950 ................................................................................................................................... 2.26 

Table 2.11.  HLW Glass Component Concentration Ranges (in mass fractions) for Validity of the  

T2% Model  ...................................................................................................................................... 2.28 

Table 2.12.  Coefficients for the Linear Mixture Model (LMM) and Partial Quadratic Mixture Model 

(PQMM) for T2% .............................................................................................................................. 2.30 

Table 2.13.  Component Ranges (mass fractions) for Validity of the SO3 Solubility Model for  

HLW Glasses ................................................................................................................................... 2.35 

Table 2.14.  SO3 Solubility Linear Mixture Models for HLW Glasses ................................................... 2.37 

Table 2.15.  Component Concentration Ranges (mass fractions) in the η1150 Modeling Dataset  

Including HLW and LAW Glasses .................................................................................................. 2.43 

Table 2.16.  Model Coefficients and Selected Statistics for a Linear Mixture Model of the Natural 

Logarithm of Viscosity at 1150ºC Fit to All HLW and LAW Glasses ............................................ 2.45 

Table 2.17.  Model Coefficients and Selected Statistics for a Linear Mixture Model of the Natural 

Logarithm of Viscosity at 1150ºC Fit to All HLW Glasses ............................................................. 2.47 

Table 2.18.  Model Coefficients and Selected Statistics for a Partial Quadratic Mixture Model of the 

Natural Logarithm of Viscosity at 1150ºC Fit to All HLW and LAW Glasses ............................... 2.49 

Table 2.19.  Data for PCT Modeling of HLW Glasses ............................................................................ 2.52 

Table 2.20.  PCT (g/m2), ln(PCT, g/m2), and Component (mass fraction) Ranges of the Dataset Used  

to Model the PCT Response of HLW Glasses ................................................................................. 2.53 

Table 2.21.  R2 and  for Various Numbers of Nonlinear Terms Included in the Model for  

ln[PCT-B] with HLW Glasses ......................................................................................................... 2.56 

Table 2.22.  Summary of ln[PCT, g/m2] Response Model Coefficients and Fit Statistics for HLW 

Glasses  ...................................................................................................................................... 2.57 

Table 2.23.  TL-Zr Linear Mixture Model Coefficients and Selected Fit Statistics.................................. 2.63 

Table 2.24.  Partial Quadratic Mixture Model for TL of Phosphate Containing Phases ........................... 2.65 

Table 2.25.  Comparison of HLW Melt and Glass Constraints Used in HLW Glass Mass Estimation .. 2.68 

Table 2.26.  Summary of Single Component Model-Validity Constraints (mass fractions) for HLW 

Glasses  ...................................................................................................................................... 2.69 

Table 2.27.  Summary of Example Calculation Results. All compositions are in mass fractions ........... 2.71 

Table 3.1.  SO3 Solubility Partial Quadratic Mixture Model Coefficients and Component Validity  

Ranges (mass fractions) for LAW Glasses ........................................................................................ 3.2 

Table 3.2.  Summary of PCT Dataset for LAW Glasses ........................................................................... 3.7 

Table 3.3.  Component Concentration Ranges (in Mass Fraction) for PCT Model Data on LAW 

Glasses  ........................................................................................................................................ 3.9 

Table 3.4.  PCT Response Model Coefficients and Fit Statistics for the 22-Term Partial Quadratic  

Mixture Model for LAW Glasses, ln(NL, g/L) ................................................................................ 3.13 

Table 3.5.  Summary of VHT 24-Day Datasets for LAW Glasses .......................................................... 3.16 

Table 3.6.  Component Concentration Ranges (in Mass Fractions) for VHT Model Data on LAW 

Glasses  ...................................................................................................................................... 3.18 

Table 3.7.  VHT Model Coefficients and Fit Statistics for the 19-Term Partial Quadratic Mixture Model 

for LAW Glasses, ln(D, µm) ........................................................................................................... 3.22 

Table 3.8.  Summary of Viscosity Datasets for LAW Glasses ................................................................ 3.24 

2

PredR



 

xxxv 

Table 3.9.  Coefficients and Selected Fit Statistics of the Linear Mixture Model for Viscosity at  

1150ºC Fitted to Data from 429 LAW Glasses. ............................................................................... 3.26 

Table 3.10.  K-3 Corrosion Model Coefficients and Component Concentration Ranges ........................ 3.29 

Table 3.11.  Summary of Enhanced LAW Correlation Glasses (wt%) .................................................... 3.31 

Table 3.12.  Summary of LAW Glass Model Validity Constraints, mass fractions ................................ 3.34 

Table 3.13.  Selected Waste Compositions, mass fractions ..................................................................... 3.36 

Table 3.14.  Waste Loading (wt%) and Liming Factor Results from Example Calculations .................. 3.37 

 

 





 

1.1 

1.0 Introduction 

The Hanford Tank Waste Operations Simulator (HTWOS) and the Hanford Tank Waste Treatment 

and Immobilization Plant (WTP) dynamic flowsheet model (G2) are software tools used to evaluate the 

impacts of process assumptions on the Hanford tank waste cleanup mission (Allen et al. 2014, Deng 

2014). Both contain modules that calculate the high-level waste (HLW) and low-activity waste (LAW) 

glass mass to be produced from each batch of tank waste transferred to the WTP. The sum of the glass 

masses over the life of the Hanford tank waste cleanup mission is a key output of the models. That output 

may significantly influence cleanup costs and schedules, which form part of the basis for the project 

baseline (e.g., the River Protection Project [RPP] system plan) (Certa 2011). It is important, therefore, to 

incorporate the most up-to-date information that dictate waste loading in glasses into these models. 

A multi-year program initiated and led by the U.S. Department of Energy (DOE) Office of River 

Protection (ORP) is being conducted by researchers from Pacific Northwest National Laboratory (PNNL), 

The Vitreous State Laboratory at the Catholic University of America (VSL), Savannah River National 

Laboratory (SRNL), and ORP to develop the data and models needed to process the full range of HLW 

and LAW compositions at high waste loadings in glass (see for examples: Peeler et al. 2015a and 2015b). 

Vienna et al. (2013) summarized the state-of-the-art in Hanford waste loading estimates in glass and 

recommend a set of glass property-composition models and constraints that can be used in HTWOS and 

G2 to estimate the range of likely HLW and LAW glass masses that would result if the current glass 

formulation studies are continued and the models ultimately implemented. Those models were 

incorporated into both HTWOS and G2 as options for estimating glass masses and used in various 

planning cases (see for example: Jenkins et al. 2013 and DOE 2014). Since 2013 significant additional 

data have been developed along with progress in glass property models and glass formulations. The 

purpose of this report is to summarize the advancements in glass formulation and glass property 

estimation since publication of Vienna et al. (2013) and update the recommended set of glass property-

composition models and constraints for use in RPP planning. 

It is recognized that some of the models are preliminary in nature and will change in the coming 

years. In addition, the models do not currently address the prediction uncertainties that would be needed 

before they could be used in plant operations. The models and constraints are only meant to give an 

indication of rough glass masses and are not intended to be used in quality-affecting activities or 

decisions. A current research program is in place to develop the data, models, and uncertainty descriptions 

for those purposes. 

A fundamental tenet underlying the research reported in the Vienna et al. (2013) and this document is 

to be less conservative, yet still realistic, than previous studies when developing constraints for estimating 

glass masses to be produced by implementing current enhanced glass formulation efforts. The less 

conservative approach documented herein should allow the estimating glass masses that may be realized 

if the current efforts in enhanced glass formulations are completed over the coming years and are as 

successful as early indications suggest they may be. Because of this approach, there is an unquantified 

uncertainty in the ultimate glass mass projections due to model prediction uncertainties that must be 

considered, along with other system uncertainties, such as waste compositions and amounts to be 

immobilized, split factors between LAW and HLW, etc. A plan has been developed to obtain a reasonable 

estimate of the prediction and vitrification plant operation uncertainties which will be documented in a 

future study. 
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1.1 HLW Property Constraints and Loading Limitations 

Estimates of HLW glass masses are based on optimizing the loading of the waste batch in a 

borosilicate glass, while simultaneously meeting a full range of predicted property and composition limits 

or constraints. The constraints typically considered for HLW glasses are: 

 Constraints to avoid the accumulation of crystals in the melter during normal operating conditions 

and extended periods of melter idling. These constraints generally are of the form of limits on the 

concentration of spinel and other phases in equilibrium at a specific temperature. 

 Constraints on viscosity (η) at the processing temperature to ensure sufficient processing rate and 

flow of glass while minimizing corrosion of melter construction materials. 

 Constraints on electrical conductivity (ε) at the processing temperature to ensure sufficient energy 

can be supplied by the power source without exceeding current density limits of the power system. 

Note that electrical conductivity rarely influences the loading of HLW in glass, so it was not 

modeled or recommended as a constraint for the purposes of this work. 

 Product Consistency Test (PCT) response limits for waste form acceptance dictated by the WTP 

contract and the Waste Acceptance Product Specification (WAPS, DOE 1996). 

 Waste form phase stability constraints to avoid the risk of forming nepheline and other phases that 

may dramatically change the PCT responses of glass in an unpredictable way. 

 Salt accumulation constraints to avoid excessive corrosion of melter construction materials and 

increase radionuclide volatility. 

Model validity or data availability constraints to maintain glass compositions within the ranges over 

which the predictive models and formulation approaches are valid. Three sets of models and constraints 

have been used for HLW glass mass estimates at Hanford (with slight variations). These include: 

1. The WTP Algorithm (also referred to as: WTP Baseline, WTP Commissioning, and 2008) models 

and constraints. These models (Piepel et al. 2008) were developed under the WTP project and QA 

program appropriate for plant operation, have been reviewed and approved by DOE-ORP and a 

preliminary Technical Review Group for application in waste form compliance, and are 

incorporated in the Preliminary Immobilized High-Level Waste Formulation Algorithm (Vienna 

and Kim 2014) for use in plant commissioning. They were developed based on a limited set of 

tank waste feed (AY-102/C-106, AZ-101, AZ-102, and AY-101/C-104) and used modest waste 

loadings, slightly above the contract minimum waste loading limits (TS-1.1 in DOE 2000). 

Because three of the four waste compositions had high iron content (primarily PUREX waste), the 

WTP algorithm does not cover the breadth of expected waste compositions. Since the objective of 

the development work that generated these models was to successfully commission the new HLW 

vitrification plant, they do not challenge the possible range of waste loadings. All tank wastes 

could likely be processed using these models but would result in double or more the necessary 

amount of HLW glass. 

2. The 2009 (also referred to as: HTWOS, Glass Shell Version 2, System Plan) models and 

constraints. These models were originally documented in Vienna et al. (2009) then were updated 

in McCloy and Vienna (2010). They were developed to estimate more realistic, yet still 

conservative, HLW glass masses based on the wealth of glass property data developed by PNNL, 
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VSL, SRNL, and others but not all used in the WTP Algorithm models. These models were 

implemented in HTWOS (Bergmann 2010) and G2 (Gimpel 2009) codes and were applied in the 

RPP System Plan, Revisions 5 (Certa et al. 2010), 6 (Certa et al. 2011), and 7 (DOE 2014) and 

virtually all WTP dynamic flowsheet models since 2009 (e.g., Jenkins et al. 2010). These models, 

and the data used to produce them, are not fully QA compliant for plant operation and so should be 

used only as an estimation tool. 

3. The Enhanced (also referred to as: 2013, Kruger) models and constraints documented by Vienna et 

al. (2013). These models were developed to allow for a systematic estimate of the potential 

impacts of the ongoing enhanced glass formulation program on RPP mission assumptions. The 

available data from enhanced glass formulations generated from roughly 2006 through 2012 were 

incorporated in these models and constraints. They were the first set of models and constraints 

aimed at non-conservative, yet still realistic, glass mass estimates. They were implemented in both 

HTWOS and WTP G2 models to estimate glass masses in sensitivity cases of the life-cycle 

mission glass mass estimates (Jenkins et al. 2013, DOE 2014). These models, and the data used to 

produce them, are not fully QA compliant for plant operation and so should be used only as an 

estimation tool. 

These three sets of models and constraints are contrasted in Table 1.1 and Figure 1.1 below. The objective 

of this report is to update the third set of models and constraints (i.e., enhanced) by incorporating (i) data 

collected between 2012 and 2016 and (ii) lessons learned from the implementation and validation of those 

models and constraint sets. 

 

Figure 1.1.  Graphical Representation of HLW Models and Constraints 
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Table 1.1.  Attributes of HLW Models and Constraints Sets 

Model/Constraint WTP Baseline HTWOS 2009 Enhanced 2013 

Full QA for plant 

operation 
Yes No No 

Waste loading Conservative 
Modest, yet still 

conservative 

Highest practical based on 

current data 

Tanks considered 
AY-101/C-104, AZ-101, 

AZ-102, AY-102/C-106 
All All 

Intended Purpose WTP Commissioning Mission Planning Mission Planning 

Spinel limit 1 vol%, 950°C 1 vol%, 950°C 2 vol%, 950°C 

Al2O3 concentration limit 

in glass 
13 wt% 20 wt% 28 wt% 

Cr2O3 concentration limit 

in glass 
0.6 wt% 1.2 wt% 3 wt% 

Estimated full mission 

glass cans* 

18,400 (Leach) 

31,600 (No Leach) 

10,800 (Leach) 

19,500(no Leach) 

8,000 (Leach) 

13,500 (no Leach) 

* Glass mass estimates described in Appendix A of Vienna et al. (2013) for “Leach” waste feeds and Jenkins  

et al. 2013 for “no Leach” waste feeds. 

The loading of Hanford HLW in glass has repeatedly been found (Vienna et al. 2013) to be most 

strongly influenced by: 

 Model-validity constraints (particularly Al2O3, Cr2O3, F and CaO in the case of WTP Baseline; 

SiO2 and B2O3 in the case of 2013 Enhanced). 

 Combined nepheline, spinel, viscosity, and PCT constraints. As multicomponent constraints, the 

optimization process would simultaneously meet as many constraints as degrees of freedom 

available (e.g., number of glass-forming additives). 

 Sulfur or salt accumulation constraints 

 Phosphate and phosphate-calcium constraints. 

Additional effort for the results in this report focused on evaluating and updating the most influential 

constraints and property models. In addition, several lessons were learned by the implementation and 

informal validation of the 2013 Enhanced models and constraints. For example: 

 The previous approach of using a neural network model top predict nepheline formation was both 

impractical and not as predictive as previously applied model approaches (e.g., see Vienna et al. 

2016). 

 Dividing composition space into local (or sub) regions can significantly reduce prediction 

uncertainties. For example PCT response models for low-, intermediate-, and high-Al2O3 

concentration regions were more precise than global models covering the entire composition 

region. Unfortunately, these sub-region models resulted in step-function changes in predicted 

responses at the boundaries causing problems in formulation optimization routines. 

 Modeling spinel crystal fraction as functions of both temperature and composition results in 

significantly less precise (and potentially less accurate) models than predicting composition effects 
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on either temperature of a fixed crystal fraction (e.g., 2 vol%) or crystal fraction at a fixed 

temperature (e.g., 950°C). 

Modeling approaches were changed in the current study to address these lessons learned. 

1.2 LAW Property Constraints and Loading Limitations 

The loading of LAW in glass has been found to be limited by two factors (Kim et al. 2011; Kim and 

Vienna 2012; Matlack et al. 2007b; Muller et al. 2010; Vienna t al. 2013): 

 Alkali content of the glass (primarily Na2O, but also K2O in some wastes), which causes poor 

chemical durability in general and more specifically fails the current WTP contract constraints for 

PCT and Vapor Hydration Test (VHT) responses (DOE 2000). 

 Salt formation in the melter that is promoted by SO3 concentration and to lesser extents Cr2O3, Cl, 

and F. 

The fraction of waste limited by each of these two factors depends on the constraint sets and waste 

composition estimates used. Three methods of estimating the loading of LAW glass have been used to 

estimates masses of LAW glass: 

1. The DOE-2004 (also referred to as HTWOS, Vienna 2004) model determines loading of LAW by 

the lesser of 20 wt% Na2O or 0.8 wt% SO3 in glass. Note that other models are based on melter 

feed while this model is based on glass after volatile loss). This model (Hamel et al. 2003, Vienna 

et al. 2004) was an attempt in 2003-2004 to estimate the waste loading that would result from 

higher waste loading glass development, testing, and demonstration that was likely to occur 

shortly after WTP commissioning. Hence, this model was expected to result in more accurate 

estimates of waste loading in glass for the Hanford mission. This model was not developed under a 

QA program based on NQA-1 nor has it been demonstrated at greater than crucible scale. This 

model was applied in HTWOS in 2004 and used in the RPP System Plan (revisions 3 [Certa et al. 

2008], 3A [Certa et al. 2008], 4 [Certa et al. 2009], 5 [Certa et al. 2010], 6 [Certa et al. 2011] and 

7 [DOE 2014]), usually as the baseline case. 

2. The WTP Baseline (also referred to as Algorithm, 2009, 2007, Isabelle Rule) model determines 

the target glass composition for production during operation. The model in various forms has been 

documented in several places (Muller et al. 2004, Vienna 2005, Kim and Vienna 2012, Arakali et 

al. 2011, Jenkins et al. 2013). This model is based on the interpolation of successfully tested glass 

compositions (up to pilot scale) with reasonable estimated composition variation (due to 

uncertainty and process variation). The glass loading is determined by 21.5 wt% Na2O+0.66 K2O, 

0.7 wt% SO3, or Na2O wt% < 35.875 to 42.5 SO3 wt% in melter feed (Muller et al. 2004) with 

additional constraints for Cr2O3, Cl, F, and P2O5 (Vienna and Kim 2007). This model was 

developed under a full QA program and thus could be applied to plant operation and is the basis of 

the WTP design. However, this model is significantly more conservative in waste loading than is 

necessary or appropriate for application across the full mission. Application in the WTP glass 

formulation algorithm includes uncertainty quantification; although applications in WTP G2 and 

HTWOS do not. 

3. The Enhanced 2013 (also referred to as Kruger) model determines the waste loading of LAW by 

the lesser of 24 wt% Na2O or 1.5 wt% SO3 with additional constraints for halides. This model 
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(Vienna et al. 2013) was an attempt in 2013 to estimate the waste loading that would result from 

higher waste loading glass development, testing, and demonstration that was likely to occur 

shortly after WTP commissioning. Hence, this model was expected to result in more accurate 

estimates of loading in glass for the Hanford mission (e.g., an updated model to meet the 

objectives of the DOE-2004 model). This model was not developed under a QA program. 

However, it is based on significant melter and crucible testing. This model was applied in 

sensitivity cases in the RPP System Plan revision 7 (DOE-2014), the Tank Utilization Assessment 

(Jenkins et al. 2013), and estimates for the Secretary of Energy (Kim 2013). 

These three sets of models and constraints are contrasted in Figure 1.2 and Table 1.2 below. The objective 

of this report is to update the third set of constraints and limits (i.e., Enhanced) by incorporating data 

collected between 2012 and 2016 and lessons learned from the implementation and validation of those 

models and constraint sets. 

 

Figure 1.2.  Comparison of Na2O and SO3 Concentrations in LAW Waste Loading Rules 

 

Table 1.2.  Attributes of LAW Models and Constraints Sets 

Model/Constraint WTP Baseline DOE-2004 Enhanced 2013 

Max Na2O 21 wt% 20 wt% -- 

Max Na2O+0.66 K2O 21.5 wt% -- 24 wt% 

Max SO3 0.7 wt% 0.8 wt% 1.5 wt% 

Na2O and SO3 Line Na2O ≤ 35.875-42.5SO3 -- Na2O+0.66K2O ≤ 33.94-11.69SO3 

Additional constraints Cl and F vs SO3, Cr2O3 vs 

P2O5 and K2O 

-- Cl and F vs SO3, Cl, F, and Cr2O3 vs 

SO3 

Life-Cycle Glass* 797,829 MT 647,822 MT 482,723 MT 

* Glass mass estimates described in Kim (2013) 
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In addition to the loading limits for LAW glass, a series of property constraints must be met that 

determine the overall glass composition and in some cases may reduce the overall waste loading in glass 

(see Kim and Vienna 2012 for example). These properties include: 

 Constraints on viscosity (η) at the processing temperature to ensure sufficient processing rate and 

flow of glass while minimizing corrosion of melter construction materials. 

 Constraints on electrical conductivity (ε) at the processing temperature to ensure sufficient energy 

can be supplied by the power source without exceeding current density limits of the power system. 

 PCT response limits for waste form acceptance dictated by the WTP contract (DOE 2000). 

 VHT response limits for waste form acceptance dictated by the WTP contract (DOE 2000). 

 Salt accumulation constraints to avoid excessive corrosion of melter construction materials and 

increase radionuclide volatility. 

 Model validity or data availability constraints to maintain glass compositions within the ranges 

over which the predictive models and formulation approaches are valid. 

In the case of the WTP Baseline approach, glasses are formulated by first determining the waste 

loading based on rules described above (Table 1.2), then the concentrations of glass-forming chemicals 

are obtained by interpolating between successful glasses that span the range of loadings (Muller et al. 

2004). The properties with associated uncertainties are evaluated. If any property exceeds its associated 

limit, the composition is adjusted until all property constraints are met as described by Kim and Vienna 

(2012). In the case of the DOE-2004 and Enhanced 2013 models and constraints, the glass composition is 

determined by optimizing the additive concentrations to simultaneously meet the loading limits and all 

property constraints. A current effort is in progress to develop a method of interpolating between 

successful high loading formulations (e.g., Muller et al. 2015a). However, at the time of this report, those 

methods are not yet ready for use. 

Additional effort for the results in this report focused on evaluating and updating the most influential 

constraints and property models. In addition several lessons were learned by the implementation and 

informal validation of the 2013 Enhanced models and constraints. The previous approach of using a 

neural network model for the VHT response was both impractical and not as predictive as previously 

applied model approaches. Combined LAW and HLW sulfur solubility modeling was found to perform 

worse than individual LAW and HLW glass sulfur solubility models. Confusion was caused by reporting 

two different approaches to limiting halides in the Enhanced 2013 model report. Modeling approaches 

were changed in the current study to address these lessons learned. 

1.3 A Note on Significant Figures 

Throughout this document, model coefficients and other values are reported with a higher number of 

figures than may be significant. Also, not all model coefficients were reported to the same number of 

significant figures in software output. Ideally, the appropriate number of figures to report should be 

evaluated in detail so that the predicted property values are accurate to the same number of figures to 

which as the property is typically measured. However, no such evaluations were performed. We therefore 

suggest using all reported figures in the model coefficients for consistency with example calculations 

supplied in this report. 



 

1.8 

1.4 Assessing Model Goodness of Fit 

Sections 2.0 and 3.0 present models for various properties of enhanced HLW and LAW glasses, 

respectively. For each glass property with quantitative values, several numerical statistics and a graphical 

method are used to assess how well the model performs for (i) the data used to fit the models, and 

(ii) validation data not used to fit the model. 

In some cases there were no separate validation data because all appropriate data within the desired 

HLW or LAW glass composition region were used in model fitting. In such cases, a data-splitting 

approach was used. With this approach, the modeling dataset was split into five subsets (referred to as 

“groups”). The groups were selected by ordering the property values in the modeling dataset from 

smallest to largest, and numbering them 1, 2, 3, 4, 5, 1, 2, …, etc. Each number represents a 

representative group of approximately 20% of the data, which roughly span the same range of property 

values. Then, each group was used as a validation data set, with the model being fit to the remaining four 

groups of data. 

The model goodness of fit was summarized using the coefficient of determination (R2), which 

describes the fraction of the variation in the data that is accounted for by the model. Three other variations 

of the R2 statistics were also used: (i) R2 adjusted for the number of coefficients used to fit the model 

( 2

AdjR ), (ii) R2 in which each data point is “left out of the fit” in evaluating how well the model predicts the 

property for each data point ( 2

PredR ), and (iii) R2 calculated from data used to validate the model that was 

not used in model fitting ( 2

ValR ). The 2

PredR  statistic estimates the fraction of variability that would be 

explained in predicting new observations drawn from the same composition space. Generally 0 < 2

PredR  < 

2

AdjR  < R2 < 1. However, it is possible for very poor fitting models or models with very influential points 

that 2

PredR  or 2

ValR  can be negative. 

Another statistic used to assess model goodness of fit that is reported in Sections 2.0 and 3.0 is the 

root mean square error (RMSE). It is the square root of the mean squared difference between predicted 

and measured response values. The RMSE is an estimate of the experimental plus measurement standard 

deviation if the model does not have a statistically significant lack-of-fit. The formulas and additional 

discussion of RMSE and the various R2 statistics are given in Appendix A. 

Finally, predicted vs. measured plots were also used to assess model performance. Such a plot has the 

predicted property values (or their natural logarithm for some models) of the modeling dataset on the 

y-axis, and the measured property values (or their natural logarithms) on the x-axis. The plot also contains 

a 45º line corresponding to predicted values equaling measured values. Groups of points that tend to be 

above (below) the 45º line for certain ranges of measured property values correspond to the model 

overpredicting (underpredicting) the property in that range of values. The scatter of points around the 45º 

line roughly indicates the precision of model predictions. Finally, some of the predicted vs. measured 

plots contain 90% or 95% prediction intervals (PI)1, which correspond to the uncertainty in model 

predictions for single new data points. Not all of the predicted vs. measured plots have PIs included 

                                                      
1 PIs with 90% confidence were used for processing properties, while PIs with 95% confidence were used for 

properties with repository acceptance constraints. 
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because different technical staff using different software developed various property models and predicted 

vs. measured plots.
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2.0 HLW Glass Models and Constraints 

Section 2.0 describes the models to be used in estimating HLW glass properties including: nepheline 

limits (Section 2.1), spinel limits (Section 2.2), sulfur tolerance (Section 2.3), eskolaite limits 

(Section 2.4), viscosity (Section 2.5), PCT response (Section 2.6), zirconium-containing phases 

(Section 2.7), and phosphate limits (Section 2.8). The proposed HLW glass formulation approach is given 

in Section 2.9 followed by example calculations in Section 2.10. 

2.1 Nepheline Limit 

High-alumina waste glasses are prone to nepheline precipitation during canister centerline cooling 

(CCC). If sufficient nepheline forms, the chemical durability of the glass can be significantly impacted. 

Overly conservative constraints have been developed and used to avoid the deleterious effects of 

nepheline formation in the WTP Baseline and HTWOS 2009 constraint sets (Li et al. 1997, Vienna and 

Kim 2014, Vienna et al. 2009). The constraints used have been shown to significantly limit the loading of 

waste in glass at Hanford and therefore the cost and schedule of cleanup. The Enhanced 2013 model 

report recommended the use of a neural network (NN) model to constrain the composition and avoid 

nepheline formation on CCC. That model was difficult to implement, was extremely challenging to 

quantify uncertainties and ultimately did not validate well with a new dataset that was not used to develop 

the model (see Vienna 2016 for further discussion). Since the 2013 models report, a new 90-glass study 

was performed to develop an improved understanding of the impacts of glass composition on the 

formation of nepheline during CCC. The CCC crystallinity data from these glasses were combined with 

657 glasses found in the literature (Vienna et al. 2013). 

Vienna et al. (2016) proposed a ternary submixture (SM) model to identify the glass composition 

region prone to nepheline precipitation. The details of this model are given in Vienna et al. (2016) but are 

summarized here for completeness, because a new model described subsequently uses aspects of the 

Vienna et al. (2016) model. 

The ternary submixture model of Li et al. (1997) was extended to include the effects of other 

component concentrations (B2O3, CaO, Fe2O3, K2O, Li2O, MgO, and P2O5) that have either been 

measured or hypothesized to effect nepheline formation in HLW glasses. Ultimately, a submixture ternary 

with axes of SiO2 + 1.98B2O3, Na2O + 0.653Li2O + 0.158CaO, and Al2O3 was found to divide glasses that 

precipitate nepheline during CCC from those that do not as shown in Figure 2.1. 
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Figure 2.1.  Submixture Ternary Diagram with Conservative Polynomial Line Fit to Discriminate HLW 

Glasses that Form Nepheline after Canister Centerline Cooling (from Vienna et al. 2016) 

In this work, the SM model was extended using logistic regression (LR) as described in the following 

subsections. Section 2.1.1 describes the dataset used to develop the new LR model. Section 2.1.2 presents 

the structure of the polynomial discriminating curve (PDC) version of the SM discussed by Vienna et al. 

(2016) using formats that can be extended to statistical analyses and generalized fitting methods. 

Section 2.1.3 discusses the form of a modified SM developed using LR, referred to as a LR-SM. 

Section 2.1.4 presents the results from fitting the LR-SM to experimental data. Sections 2.1.5 and 2.1.6 

discuss the method and application of bootstrapping to estimate prediction uncertainties of the LR-SM 

model. Section 2.1.7 compares the LR-SM and PDC-SM methods and Section 2.1.8 recommends the 

method to be used in formulation efforts. 

2.1.1 Description of Data on Nepheline Formation after Canister Centerline 
Cooling 

A large and growing dataset of simulated HLW glasses has been previously reported for the study of 

crystal formation on CCC (Vienna et al. 2013). Table 2.1 and Table 2.2 summarize 657 existing waste 

glasses with CCC heat treatment crystallinity data from the literature plus the 90 new compositions (last 

two rows in Table 2.1). Figure 2.2 shows a pairwise scatterplot matrix of the major component 

concentrations in these glasses. It is clear from the figure that three glasses significantly extended the 

range of P2O5 (0.036 to 0.09 mass fraction), one glass significantly extended the range of Li2O (0.081 to 

0.126 mass fraction) and one glass significantly increases the range of MgO (0.08 to 0.12 mass fraction). 

These five glasses were originally excluded from any model fitting, however, their inclusion or exclusion 

was found not to impact model parameters or goodness of fit and ultimately they were included in the 

final dataset. 

It is worth noting that glasses designed for a number of different waste streams, processing plants, 

and using different CCC heat treatments were included in this dataset. It is anticipated that using such a 

diverse dataset in modeling will likely increase the model prediction uncertainty. The data and models are 
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not fully QA compliant and therefore are not intended to be used in quality-affecting activities or 

decisions (e.g., design basis input, plant operations, waste form compliance). Instead the models and 

constraints are intended for use in mission planning activities. 

Table 2.1.  Summary of Data for HLW Glasses Used in Developing and Evaluating Models for Nepheline 

Formation after Canister Centerline Cooling(a) 

Glass Family # Lab 

Heat 

Treatment Citation 

IWL 17 PNNL WTP CCC Kim et al. 2011 

A 6 PNNL WTP CCC Hrma et al. 2010, Rodriguez et al. 2011 

PNNL-Al-24-X 13 PNNL WTP CCC Rodriguez et al. 2011 

HLW-E-ANa-X 24 PNNL WTP CCC Rodriguez et al. 2011 

HAL 19 PNNL/SRNL WTP CCC Rodriguez et al. 2011, Kim et al. 2008 

EM07/09 47 PNNL WTP CCC Schweiger et al. 2011 

EM09-Li 10 PNNL WTP CCC Rodriguez et al. 2011 

HLW-E-Al 14 VSL WTP CCC Rodriguez et al. 2011, Matlack et al. 2007 

HLW-E-ANa 13 VSL/PNNL WTP CCC Rodriguez et al. 2011, Matlack et al. 2007 

HWI-Al 23 VSL WTP CCC Rodriguez et al. 2011, Matlack et al. 2008 and 2010a 

HWI-ALS 13 VSL DWPF CCC Matlack et al. 2010b 

NP 20 PNNL WTP CCC Li et al. 1997 

CVS1, CVS2 121 PNNL HWVP CCC Hrma et al. 1994 

CVS3 39 PNNL HTM CCC Vienna et al. 1996 

ICCM 15 SRNL DWPF CCC Peeler et al. 2002 

SB4NEPH 12 SRNL DWPF CCC Rodriguez et al. 2011, Peeler et al. 2005 

NEPH2 28 SRNL DWPF CCC Rodriguez et al. 2011, Peeler et al. 2006 

NEPH3 16 SRNL DWPF CCC Rodriguez et al. 2011, Fox et al. 2006 

NP2 25 SRNL DWPF CCC Rodriguez et al. 2011, Fox et al. 2008 

NE3 29 SRNL DWPF CCC Rodriguez et al. 2011, Fox et al. 2009 

EM 30 SRNL DWPF CCC Johnson and Edwards 2009 

SRNL-JB 18 SRNL DWPF CCC Boerstler and Amoroso 2011 

SRNL-JB02 20 SRNL DWPF CCC Boerstler and Amoroso 2011 

SB5NEPH 40 SRNL DWPF CCC Fox et al. 2007 

US 45 PNNL/SRNL DWPF CCC Fox et al. 2008 

Ph1-3 45 PNNL WTP CCC Kroll et al. 2016 

Ph4 (EWG) 45 PNNL WTP CCC Chou et al. 2016 

(a)  PNNL – Pacific Northwest National Laboratory, VSL – The Catholic University of America, SRNL - Savannah River 

National Laboratory, DWPF - Defense Waste Processing Facility, HWVP - Hanford Waste Vitrification Plant, HTM – 

High Temperature Melter. 
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Table 2.2.  Component Ranges (mass fractions) of 747 HLW Glasses with Data on Nepheline Formation 

after Canister Centerline Cooling. These ranges specify the model validity region. 

Component Min Max 

Al2O3 0 0.3900 

B2O3 0 0.2660 

Bi2O3 0 0.1640 

CaO 0 0.1820 

CdO 0 0.0134 

Cr2O3 0 0.0297 

F 0 0.0250 

Fe2O3 0 0.2000 

K2O 0 0.0614 

La2O3 0 0.0155 

Li2O 0 0.1255(a) 

MgO 0 0.1201(a) 

MnO 0 0.0609 

Na2O 0.0200 0.3900 

Nd2O3 0 0.0855 

NiO 0 0.0291 

P2O5 0 0.0900* 

SiO2 0.1740 0.6000 

SrO 0 0.1008 

TiO2 0 0.0212 

UO3 0 0.1568 

ZnO 0 0.0200 

ZrO2 0 0.1600 

(a) If the five extreme glass compositions were 

excluded, the resulting maximum concentrations 

of Li2O, MgO, and P2O5 would be 0.081, 0.08, 
and 0.036 mass fractions, respectively. 
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Figure 2.2.  Scatterplot Matrix of 747 HLW Glasses Used to Model Nepheline Formation After Canister 

Centerline Cooling. Component concentrations are shown in mass fractions. Red points 

precipitated nepheline, while blue points did not. 

 

2.1.2 Structure of the Polynomial Discriminating Curve-Submixture Model 

In the PDC-SM approach of Vienna et al. (2016), multicomponent HLW glasses were projected onto 

a submixture ternary. Then, a polynomial curve was fitted to experimental data to partition the submixture 

ternary into two regions in which nepheline is predicted to form or not form after CCC. The submixture 

ternary had three submixture components expressed as linear combinations of glass oxide components. 

The first submixture component includes alkali and alkaline earth oxides, and is given by 
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 MgOCaOOKOLiONaAlk gggggg 4321 222
 

 (2.1) 

The second submixture component includes Al2O3 and Fe2O3 

 gAlFe = gAl2O3
+a5gFe2O3

, (2.2) 

while the final submixture component includes SiO2, B2O3, and P2O5 

 gSiB = gSiO2
+a6gB2O3

+a7gP2O5
. (2.3) 

For each submixture component, 
ig  represents the mass fraction of the ith HLW glass component and 

71  ,...,  are coefficients to be estimated using experimental data. Each of the 
j  coefficients is 

assumed to be non-negative (i.e., 0j ) for 71 ,...,j  . In order to form a submixture ternary, the 

submixture components gAlk , gAlFe , and gSiB  must be rescaled to sum to one 

 SiBand,AlFe,Alki,
ggg

g
g

SiBAlFeAlk

i*
i 


  (2.4) 

where gAlk , gAlFe , and gSiB  are defined in Equations (2.1), (2.2) and (2.3), respectively. The asterisk on 

𝑔𝑖
∗ gi

*denotes rescaled mass fractions of the three submixture components. Note that there is no coefficient 

for the mass fraction of the first oxide in each of the three submixture components (namely Na2O, Al2O3, 

and SiO2), because the sum-to-one constraint 

 1 
SiBAlFeAlk ggg  (2.5) 

would otherwise make the coefficients non-identifiable. 

Vienna et al. (2016) transformed the three rescaled submixture components (which are 

mathematically dependent because of Equation (2.5)) to two Cartesian-coordinate variables denoted X 

and Y (which are mathematically independent) to enable formation of a ternary plot in Excel. The 

formulas for X and Y are 

 X = gAlFe
* +

1

2
gSiB

*  and *
SiBgY

2

3
  .  (2.6) 

The form of the PDC-SM model developed by Vienna et al. (2016) was a quadratic polynomial model in 

X and a predicted value for Y, denoted Ŷ , given by 

  2cXbXaŶ   (2.7) 

where a, b, and c are coefficients to be estimated by fitting the model to data. This model is the equation 

of a PDC so that HLW glass compositions with (X, Y) points on or above the curve in Equation (2.7) are 
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predicted not to form nepheline after CCC, while HLW glass compositions with (X, Y) points below the 

curve are predicted to form nepheline after CCC. 

The difference between the observed and predicted values for Y is given by 

 ,a
ggcgbgb

ŶY SiBAlFeAlFeSiB 








4

)2( 

2

 2)3( 2

 (2.8) 

where a, b, and c are the coefficients from Equation (2.7). Vienna et al. (2016) estimated the 10 PDC-SM 

coefficients (
71  ,..., , a, b, c) by minimizing the sum of squared Y - Ŷ  values that correspond only to 

misclassified data points. Note that the difference defined in Equation (2.8) is equivalent to the distance 

denoted P in Equation (3) of Vienna et al. (2016). 

2.1.3 Nepheline Model Form and Fitting Methodology 

The LR-SM discussed in this section is based on the same submixture and ternary ideas as the PDC-

SM, but there are some key differences. The PDC-SM approach uses a PDC to predict whether or not 

nepheline will form after CCC. The LR-SM approach uses logistic regression to predict the probability 

that nepheline will form after CCC. Then, different threshold values for the probability of nepheline 

formation can then be used to predict whether or not nepheline will form after CCC of a given HLW 

glass. Another difference between the LR-SM and the PDC-SM is the way in which the model 

coefficients are estimated. For the LR-SM, the model coefficients are estimated by maximizing the 

Bernoulli likelihood 

 1

1

(1 )i i

n
z z

i

i

p p




 , (2.9) 

where iz  = 1 (0) if nepheline is present (absent) after CCC of the ith HLW glass and ip  is the probability 

that nepheline forms after CCC of the ith HLW glass composition. The rescaled submixture ternary 

compositions (

Alkg , 


AlFeg , 


SiBg ) are first mapped onto a two-dimensional coordinate system represented 

by (X, Y) pairs. Then the (X, Y) pairs are connected to the probability of nepheline formation ip  through 

the logit transformation 

 
2

3210
1

ln iii

i

i XYX
p

p
 












, (2.10) 

where Xi and Yi are defined in Equation (2.6) and “ln” denotes the natural logarithm. In addition to this 

model, the following model with two additional terms was investigated: 

 iiiiii

i

i YXYXYX
p

p
5

2
4

2
3210

1
ln  












. (2.11) 

However, the additional model terms did not improve the predictive accuracy of the LR-SM in Equation 

(2.10). It is interesting to note that the model in Equation (2.11) is equivalent to the model 
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 












SiBAlFeSiBAlkAlFeAlkSiBAlFeAlk

i

i ggggggggg
p

p
231312321

1
ln  , (2.12) 

which for convenience does not include the “i” subscripts on the right-hand side. Note Equation (2.12) 

has a Scheffé full quadratic mixture experiment model (Cornell 2002) on the right-hand side. The LR-SM 

in Equation (2.10) is equivalent to a specific reduced form of the model in Equation (2.12). However, this 

topic is not discussed further because the LR-SM model of the form in Equation (2.10) was used. 

Finally, note that the form of the model described by Equation (2.10) directly parallels the parabola 

approach described in Vienna et al. (2016). In particular, Equation (2.10) can be rewritten in a form 

similar to Equation (2.7) as follows 

 2

2

3

2

1

2

0
1

ln

XX
p

p

Y
i

i































 .

 

(2.13) 

Note that the first term on the right-hand side of Equation (2.13) is not a constant that is the same for all 

HLW glasses in the dataset as is the coefficient a in Equation (2.7). Specifically, the first term in Equation 

(2.10) depends on the probability of nepheline formation for each HLW glass, which will not be constant 

across the dataset used to fit the model. 

A final key difference is that the LR-SM approach uses all data points to fit the model, whereas the 

PDC-SM approach uses only the data points that misclassify nepheline formation to fit the model. Hence, 

the PDC-SM approach gives weights of zero to glasses for which nepheline formation is correctly 

classified. On the other hand, the LR-SM approach uses all data points (with equal weights) and is then 

able to predict the probability of nepheline formation for any HLW glass composition (whether used to fit 

the model or not). 

The seven coefficients  71  ,...,  of the scaled submixture components and the four regression 

coefficients b 0,b 1,b2,b3( )  in the LR-SM were estimated using the limited memory-Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm implemented in the “stan” software (Stan Development Team 

2015, Chapter 7.2 of Nocedal and Wright 2006). The coefficients a1,...,a7
 were restricted to be non-

negative, as described in Section 2.1.1. A dataset of 747 HLW glass compositions and results on whether 

or not nepheline formed after CCC (see Vienna et al. 2016) were used to estimate the model coefficients. 

The LR-SM in Equation (2.10) predicts the natural logarithm of the odds ratio (the probability that 

nepheline forms divided by the probability that nepheline does not form) for a given (i.e., ith) HLW glass. 

The probability of nepheline forming after CCC of a given HLW glass can be calculated for that glass 

using  

 
]exp[1

]exp[

2
3210

2
3210

XβYβXββ

XβYβXββ
p




 , (2.14) 
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where “exp” is the exponential function, X and Y are defined in Equation (2.6), and the 

ig  in the 

equations for X and Y are defined in Equation (2.4). To use the LR-SM to predict whether or not 

nepheline will form after CCC, a threshold value of pi must be chosen. Typically a threshold value of pi = 

0.5 is used, but another value can be specified to strike a desirable balance between two types of 

misclassifications: false positive (FP) and false negative (FN). In this context, a FN (predicting nepheline 

will not form when in reality it does) is considered worse than a FP. Therefore, the threshold value for pi 

was chosen by a post-hoc analysis to achieve a desirable balance between the two misclassification types 

achieved with different threshold values. 

The L-BFGS optimization method produces maximum likelihood estimates for the 11 coefficients as 

well as estimates of the coefficient uncertainties, but the non-negativity constraints placed on the aj 

coefficients violate the assumptions necessary for such estimates of uncertainty to be reliable. We 

therefore used a standard nonparametric bootstrap (Chapter 6 of Efron and Tibshirani 1994) to estimate 

uncertainties in the 11 coefficient estimates. In short, the entire dataset was sampled with replacement to 

generate a bootstrap sample that was the same size as the original dataset (747 data points). The 11 

coefficients were re-estimated using the resampled data exactly as was done for the original data. Note 

that this process results in different estimates of the aj coefficients, and hence a different rescaling, for 

each bootstrap sample of 747 data points. This bootstrap sampling and model fitting process was repeated 

2000 times to produce a distribution of possible estimates for each of the 11 coefficients. The resulting 

standard deviation of each coefficient’s distribution is an estimate of the uncertainty in the estimate of 

each coefficient. 

2.1.4 Results of Fitting the Logistic Regression-Submixture Model to Nepheline 
Formation Data 

Coefficient estimates with bootstrap standard deviations for different variations of the LR-SM 

approach are reported in Table 2.3 along with the number of FN and FP misclassifications in the full 

dataset as well as in the subset of glasses from nepheline study Phases 1-4 (P1-4) when the threshold for 

pi in Equation (2.10) is set to 0.47. The threshold value 0.47 was chosen after computing the FN and FP 

misclassification rates for various thresholds and selecting the threshold that resulted in the lowest 

possible FN rate while maintaining a moderate FP rate (Figure 2.3). The four different variations of the 

LR-SM approach are differentiated by the inclusion or exclusion of P2O5 and/or K2O. In addition to 

Al2O3, Na2O3, and SiO2 (which did not have coefficients to estimate, as discussed in Section 2.1.2), only 

the components included in Table 2.3 were found to be important in predicting nepheline formation of 

HLW glasses after CCC. Specifically, Fe2O3 and MgO were removed from all variations of the model 

because their estimated coefficients were statistically indistinguishable from zero. The same two 

components were found to be insignificant in the PDC-SM approach of Vienna et al. (2016). 

The four model variations shown in Table 2.3 result in similar misclassification (FN and FP) rates for 

the full dataset. This can be visualized by the nearly indistinguishable lines in Figure 2.3, which plots FN 

versus FP rates for different threshold values of pi. For the Phases 1 through 4 set of glasses, the FN and 

FP misclassification percentages in Table 2.3 are also similar for the four model variations. Comparing 

the misclassification percentages for the full and P1-4 dataset, the percentages of FNs are similar, but the 

percentages of FPs are higher for the P1-4 dataset than for the full dataset. A likely explanation for this 

observation is because the P1-4 dataset covered a smaller composition region than the full dataset, which 

would increase the chances of FPs in the P1-4 dataset. 
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Table 2.3.  Estimated Coefficients and Standard Deviations for Nepheline Formation in HLW Glasses 

Along with Misclassification Counts for the Logistic Regression-Submixture Models with and 

without P2O5 and/or K2O in the Submixtures Using a pi = 0.47 Threshold 

P2O5 and K2O Status P2O5, K2O No P2O5 No K2O No P2O5, K2O 

Estimated Coefficients and Standard Deviations 

Coeff. Comp.(a) Estimate SD(b) Estimate SD(b) Estimate SD(b) Estimate SD(b) 

1  Li2O 0.7808 0.1524 0.8012 0.1560 0.7870 0.1544 0.8040 0.1556 

2  K2O 0.2045 0.1423 0.1827 0.1415 − − − − 

3  CaO 0.2835 0.0549 0.2896 0.0592 0.2889 0.0538 0.2940 0.0547 

6  B2O3 1.6782 0.1106 1.7307 0.1136 1.6863 0.1111 1.7317 0.1151 

7  P2O5 0.8333 0.5975 − − 0.7414 0.5623 − − 

0  − -66.414 15.159 -65.527 15.089 -64.684 14.487 -64.085 14.430 

1  − 516.178 77.780 508.658 76.481 503.731 73.141 498.338 72.013 

2  − -106.016 11.347 -103.900 10.937 -103.860 10.958 -102.179 10.497 

3  − -540.637 79.825 -533.755 78.626 -527.064 74.830 -522.382 73.812 

Misclassification Counts (Percentages) with pi  = 0.47 Threshold 

    FN(c) 29/212 (13.7%) 28/212 (13.2%) 31/212 (14.6%) 30/212 (14.2%) 

    FP(d) 29/535 (5.4%) 31/535 (5.8%) 28/535 (5.2%) 29/535 (5.4%) 

    FN P1-4(e) 4/38 (10.5%) 4/38 (10.5%) 5/38 (13.2%) 5/38 (13.2%) 

    FP P1-4(f) 7/52 (13.5%) 9/52 (17.3%) 6/52 (11.5%) 7/52 (13.5%) 

(a) In addition to the components listed in this column, Al2O3, Na2O, and SiO2 also appear in the LR-SMs with coefficients 

of one. 

(b) Standard deviation estimates are based on a bootstrap sample size of 2000. 

(c) FN = false negative, where xx/yyy means there were yyy positives in the full dataset with xx of them being falsely 
predicted by a model as negatives. 

(d) FP = false positive, where xx/yyy means there were yyy negatives in the full dataset with xx of them being falsely 
predicted by a model as positives. 

(e) FN P1-4 = false negative, where xx/yy means there were yy positives in the P1-4 dataset with xx of them being falsely 

predicted by a model as negatives. 

(f) FP P1-4 = false positive, where xx/yy means there were yy negatives in the P1-4 dataset with xx of them being falsely 
predicted by a model as positives. 

 

Because the coefficients of P2O5 and K2O did not appear to be significantly different from zero and 

the predictive accuracy of the four models did not differ significantly, the LR-SM model with P2O5 and 

K2O removed (last column of Table 2.3) was chosen. The classification results using this LR-SM with 

three different threshold values for pi (0.10, 0.47, and 0.90) are illustrated in Figure 2.4. 
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Figure 2.3.  Plot of the False Negative and False Positive Misclassification Rates for the Full Dataset 

Using the Four Logistic Regression-Submixture Models (Table 2.3) for Nepheline Formation 

After Canister Centerline Cooling of HLW Glasses. The plotted points depict the FN and FP 

misclassification rates for threshold values of 0.1, 0.47 and 0.9 (from left to right). The figure 

on the right is a detailed view of the area outlined in gray in the figure on the left. 

 

 

Figure 2.4.  Plot of the Submixture Ternary and Discriminating Curves Corresponding to Predicted 

Probabilities of Nepheline Formation Equal to 0.10, 0.47, and 0.90 (from top to bottom) 

Using the Logistic Regression-Submixture Model in the Last Column of Table 2.3 
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The plotting symbols in Figure 2.4 are red circles for HLW glass compositions that formed nepheline 

after CCC, and blue triangles for glass compositions that did not form nepheline after CCC. The solid 

black line represents the discriminating curve obtained using the pi = 0.47 threshold, which produces the 

misclassification rates reported in the last column of Table 2.3. Glass compositions below the solid black 

line have predicted probabilities of nepheline formation greater than 0.47, while glass formulations above 

the solid line have predicted probabilities of nepheline formation less than 0.47. Similarly, the top and 

bottom dashed black lines correspond to predicted 0.10 and 0.90 probabilities of nepheline formation, 

respectively. For example, points below the lower dashed black line have predicted probabilities of 

nepheline formation greater than 0.90. As a final example, points above the upper dashed black line have 

probabilities of nepheline formation less than 0.10. Hence, using pi = 0.10 as a threshold would reduce the 

number of FNs (red circles above the top, dashed black line) compared to the number of FNs (red circles 

above the solid black line) when using pi = 0.47 as a threshold. However, using pi = 0.10 instead of pi = 

0.47 as the threshold would also increase the number of FPs (blue triangles below the top, dashed black 

line and the solid black line, respectively). 

2.1.5 A Nonparametric Tolerance Limit Approach that Accounts for the 
Uncertainties in the LR-SM Model in Classifying Whether an HLW Glass 
Composition Forms Nepheline after Canister Centerline Cooling 

Figure 2.4 does not take into account the uncertainties associated with the LR-SM in the last column 

of Table 2.3. Specifically, Figure 2.4 does not take into account the uncertainties of the submixture 

ternary coefficient (i.e.,
71  ,..., ) estimates nor the uncertainties of the LR coefficient (i.e., 

30  ,..., ) 

estimates. Hence, the uncertainties in the coefficients estimated using the nonparametric bootstrap are not 

reflected in Figure 2.4. The bootstrap procedure used to quantify coefficient uncertainty produced n = 

2000 distinct scaled submixture ternaries and discriminating curves, which results in n = 2000 figures 

similar to Figure 2.4. The method chosen to account for these uncertainties in the LR-SM and classify 

whether a given HLW glass is predicted to form nepheline is described next. In what follows, a generic n 

is used to provide the flexibility for choosing the value chosen in implementing the approach. 

To develop a nepheline classification method based on the LR-SM that accounts for the uncertainty in 

the predicted probability of nepheline formation for each glass, a nonparametric upper tolerance limit 

(UTL) approach (Beal 2012) was applied together with the bootstrap approach for quantifying 

uncertainties. In particular, the n vectors of model coefficient estimates from n nonparametric bootstrap 

samples can be used to produce n predicted probabilities of nepheline formation for each glass in the full 

dataset. Figure 2.5 illustrates the distribution of n = 2000 predicted probabilities of nepheline formation 

for three example glasses (Neph-NN-1-2, IWL-SLC20-1, and EWG-OL-03208) from the full dataset. 

Note that the n = 2000 vectors of model coefficient estimates can be applied to any arbitrary HLW glass 

composition within the composition validity region of the model to produce n = 2000 predicted 

probabilities of nepheline formation. Hence, a HLW glass need not be one of the ones in the model-

development dataset. 

A nonparametric U%/V% upper tolerance limit (U%/V% UTL) provides at least U% confidence that 

at least V% of the population of possible probabilities of nepheline formation for a given HLW glass are 

less than the UTL. Here “possible probabilities” refers to the probabilities of nepheline formation for a 



 

2.13 

 

Figure 2.5.  Illustration for Three Example Glasses of the Bootstrap Distribution of n = 2000 Predicted 

Probabilities of Nepheline Formation Using a Logistic Regression-Submixture Model of the 

Form Given in the Last Column of Table 2.3. For each glass, (i) the solid black vertical line 

represents a threshold of 0.47 for the predicted probability of nepheline formation, and (ii) the 

dashed red vertical line depicts the nonparametric 95%/95% UTL for the distribution of 

predicted probabilities of nepheline formation. 

given HLW glass that could conceptually be obtained if the same size dataset on the same glasses were 

collected a large number of times and each time a LR-SM model was fitted to the resulting data. With this 

U%/V% UTL approach, instead of (i) a single predicted probability of nepheline formation from the fitted 

LR-SM being compared to the 0.47 threshold value to assess whether a given HLW glass will form 

nepheline after CCC, (ii) a U%/V% UTL is compared to the 0.47 threshold value. In this way the 

uncertainties in the estimated coefficients of the LR-SM are accounted for to conservatively assess 

whether a given HLW glass might form nepheline after CCC. 

In this situation, a U%/V% UTL is obtained by first sorting the n predicted probabilities of nepheline 

formation for a given HLW glass from smallest to largest. Then the mth largest value (referred to as the kth 

order statistic, where k = n – m + 1) is calculated according to the following formula (Beal 2012). The kth 

order statistic is then the U%/V% UTL. The value of k is the smallest integer value that satisfies 
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where 

 

 k = value corresponding to the kth order statistic of the predicted probabilities of 

nepheline formation for a given HLW glass 

 U = confidence in percent (e.g., 90, 95, or 99) desired for use in the U%/V% UTL 

statement 
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 V = percentage of the population (e.g., 90, 95, or 99) of predicted probabilities of 

nepheline formation for a given HLW glass after CCC about which it is desired to 

make a U%/V% UTL statement 

 n = number of bootstrap samples. 

Note that the formula in Equation (2.15) is based on the binomial distribution rather than the usual 

formula for nonparametric UTLs based on the incomplete beta function. This difference is because the 

literature notes that the incomplete beta function is overly conservative when   .Vn 51001   For 

n = 2000, this quantity takes values of 200 and 100 for V = 90 and 95, respectively. The quantity would 

be even larger for larger values of n. These values are very much greater than 5, so the use of Equation 

(2.15) is warranted. Further, Equation (2.15) provides the exact solution to this problem, whereas 

historical formulas and tables using the incomplete beta function are approximations. 

Table 2.4 contains the values of k calculated using Equation (2.15) for common choices of U and V 

with values of n = 2000, 1000, 500, and 200. Table 2.4 shows that for n = 2000 the k values for the kth 

order statistic correspond to slightly larger percentiles [i.e., 100(k/2000)] of the distribution than the 

nominal V values. The values are only slightly larger because of the large number of bootstrap samples (n 

= 2000) used. The percentiles corresponding to the kth order statistics do not increase much when moving 

from n = 2000 to n = 1000 and 500. The increase is more noticeable for n = 200, but not substantial. 

Ultimately it was decided to use n = 2000 for calculating nonparametric U%/V% UTLs in order to reduce 

the noise inherent in the bootstrap procedure. 

Table 2.4.  Values of k for the kth Order Statistic Out of n = 2000, 1000, 500, or 200 Bootstrap Samples 

for Selected Combinations of U and V to Use as the Nonparametric U%/V% Upper Tolerance 

Limit with the Logistic Regression-Submixture Model for Nepheline Formation in HLW 

Glasses 

n U(a) V(a) k 100(k/n) 

2000 90 90 1817 90.85 

 95 95 1916 95.80 

 99 99 1990 99.50 

1000 90 90 912 91.20 

 95 95 961 96.10 

 99 99 997 99.70 

500 90 90 459 91.80 

 95 95 483 96.60 

 99 99 499 99.80 

200 90 90 185 92.50 

 95 95 195 97.50 

 99 99 200 100.00 

(a) It is not necessary that U = V, but doing so is common. The k values 

can be calculated for other combinations of U and V if desired. 
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2.1.6 Steps of the Logistic Regression-Submixture Model and Nonparametric 
Upper Tolerance Limit Approach for Predicting whether Nepheline May 
Form in an HLW Glass after Canister Centerline Cooling 

This section provides the steps of the process for applying the proposed LR-SM plus nonparametric 

U%/V% UTL approach for predicting whether a given HLW glass will form nepheline after CCC. 

Step 1: Using the glass composition of the given HLW glass in mass fractions, calculate gAlk , gAlFe , and 

gSiB  using Equations (2.1) to (2.3), with the estimated values of a1,a3, and a6
 from the last 

column of Table 2.3 

Step 2: Calculate 

Alkg , 


AlFeg , and 


SiBg  for the given HLW glass composition according to Equation 

(2.4), and verify that these three values sum to 1.0 per Equation (2.5). 

Step 3: Calculate X and Y using the formulas in Equation (2.6). 

Step 4: Using the estimates of 
3210 and  ,,, in the last column of Table 2.3, calculate the predicted 

probability of nepheline formation in the given HLW glass after CCC (denoted pi) using 

Equation (2.14). If pi ≥ 0.47 (the threshold value chosen in Section 2.1.4) then the HLW glass is 

predicted to form nepheline after CCC. However, this prediction does not account for the 

uncertainties in the coefficient estimates of a1,a3,a6,b0,b1,b2, and b3
. 

Step 5: To account for the uncertainties in the coefficient estimates, repeat 2000 times the calculations in 

Steps 1 to 4 using the n = 2000 bootstrap sets of coefficient estimates. The result will be 2000 

values of pi for the given HLW glass. Sort these 2000 values of pi from smallest to largest. Then, 

the U%/V% UTL on the probability of nepheline formation for the given HLW glass is given by 

the kth order statistic of the n = 2000 values (denoted p(k)), where k = 1817, 1916, or 1990 

depending on whether U%/V% = 90/90, 95/95, or 99/99 is chosen. 

Step 6: Finally, after accounting for uncertainties in the LR-SM model given in the last column of 

Table 2.3, the given HLW glass is predicted not to form nepheline with at least U% confidence 

at least V% of the time1 when p(k) < 0.47. If p(k) ≥ 0.47, there is not at least U% confidence that at 

least V% of the time the given HLW glass is predicted not to form nepheline. This statement 

unfortunately is somewhat awkward, involving a double negative, but is the statistically correct 

way to make the statement. Calculating a U%/V% UTL = p(k) and comparing it to the threshold 

0.47 provides for conservatively avoiding glasses that have a high enough probability of forming 

nepheline after CCC, when accounting for uncertainties in the LR-SM model in the last column 

of Table 2.3. 

The use of the U%/V% UTL approach is now illustrated for the three example glasses (Neph-NN-1-2, 

IWL-SLC20-1, and EWG-OL-03208) discussed in Kroll et al. (2016). The 95%/95% UTL value for each 

of the three glasses is shown as a dashed red line on each distribution in Figure 2.5. If the dashed red line 

is below the threshold value of 0.47 (represented as a solid black vertical line), there is at least 95% 

confidence that at least 95% of the time the glass is not predicted to form nepheline. It follows that glasses 

Neph-NN-1-2 and IWL-SLC20-1 are predicted to not result in nepheline formation because the 95%/95% 

                                                      
1 Here, “at least V% of the time” refers to the data collection and modeling process conceptually being repeated a 

large number of times, and that at least V% of the times the given HLW glass after CCC would not form nepheline. 
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UTL for each distribution is below 0.47. Conversely, it cannot be stated with 95% confidence that 95% of 

the time EWG-OL-03208 is not predicted to result in nepheline formation. Hence, the EWG-OL-03208 

glass should be classified as if nepheline formation may occur. For these three glasses, comparing the 

95%/95% UTLs to the 0.47 threshold yields correct classifications (i.e., nepheline forming or not). 

2.1.7 Comparison of Logistic Regression-Submixture and Polynomial 
Discriminating Curve-Submixture Models 

This subsection compares the results from three LR-SMs to the results from the two PDC-SMs 

reported in Table V of Vienna et al. (2016). The first two LR-SMs utilize p = 0.47 and 0.30 as the 

thresholds for classifying whether a given HLW glass may form nepheline after CCC. Neither of these 

directly accounts for the uncertainties in the estimated model coefficients. However, the version with the 

0.30 threshold was chosen as an indirect way to account for uncertainties. The third version of the LR-SM 

uses the nonparametric 95%/95% UTL approach applied to results from fitting the LR-SM model form to 

n = 2000 bootstrap samples of the model-development dataset. This third approach compares the 

95%/95% UTL to the p = 0.47 threshold, and directly accounts for the uncertainties in the estimated 

coefficients of the LR-SM model. 

For each of the three LR-SMs and two PDC-SMs, Table 2.5 includes coefficient estimates, threshold 

values or data weights as applicable, and misclassification counts for the entire dataset as well as those for 

the P1-4 subset of data discussed previously. Compared to the “PDC-SM Optimal” model, the LR-SM 

using a threshold of p = 0.47 has slightly different misclassification rates for the full dataset (30/212 vs. 

29/212 for FN, and 29/535 vs. 33/535 for FP). Compared to the “PDC-SM Conservative” model, the LR-

SM using a threshold of p = 0.30 has a better FP misclassification rate for the P1-4 dataset (13/52 vs. 

25/52) while only increasing the FN count to one. For the full dataset, the FN rate increases more 

significantly (0/212 to 17/212) but the FP rate falls dramatically (133/535 to 50/535). Finally, the 

95%/95% UTL approach represents a proper composition dependent uncertainty and has roughly the 

same misclassification rates as the conservative LR-SM (threshold value p = 0.30) and returns modest FN 

and FP rates in both the full dataset (17/212 and 51/535, respectively) and P1-4 subset (1/38 and 14/52, 

respectively). 

2.1.8 Recommended Models for Predicting whether Nepheline May Form in an 
HLW Glass after Canister Centerline Cooling 

The “Conservative LR-SM” with coefficients listed in Table 2.5 with a threshold of 0.30 is 

recommended. Steps 1 to 4 in Section 2.1.6 give concise instructions for using this model. Using the 

“Conservative LR-SM” with a conservative threshold of 0.30 is a more practical approach (compared to 

the 95%/95% UTL approach) for mission planning calculations. Also the misclassification results, at least 

for the modeling dataset, match closely to the more rigorous approach of a using a 95%/95% UTL to 

account for modeling uncertainties. 
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Table 2.5.  Comparison of Logistic Regression-Submixture Models (LR-SM) to Polynomial 

Discriminating Curve-Submixture Models (PDC-SM) (from Vienna et al. 2016) for Nepheline 

Formation in HLW Glasses 

Coefficient(a) 

Optimal 

LR-SM 

Conservative 

LR-SM 

95%/95% UTL 

with LR-SM Coefficient(a) 

Optimal 

PDC-SM 

Conservative 

PDC-SM 

1  (Li2O) 0.804 0.804 N/A(b) 
1  (Li2O) 1.031 0.653 

2  (K2O) - - N/A 
2  (K2O) 0.390 0.000 

3  (CaO) 0.294 0.294 N/A 
3  (CaO) 0.307 0.158 

6  (B2O3) 1.732 1.732 N/A 
6  (B2O3) 1.739 1.982 

0  -64.085 -64.085 N/A a -0.559 -0.592 

1  498.338 498.338 N/A b 4.671 4.922 

2  -102.179 -102.179 N/A c -4.997 -5.171 

3  -522.382 -522.382 N/A − − − 

Threshold 0.47 0.30 0.47 Weight 1 1E+07 

FN(c) 30/212 17/212 17/212 FN(a) 29/212 0/212 

FP(d) 29/535 50/535 51/535 FP(b) 33/535 133/535 

FN P1-4(e) 5/38 1/38 1/38 FN P1-4 4/38 0/38 

FP P1-4(f) 7/52 13/52 14/52 FP P1-4 8/52 25/52 

(a) In addition to the components listed in this column, Al2O3, Na2O, and SiO2 also appear in the LR-SMs and PDC-SMs with 

coefficients of one. 

(b) N/A = not applicable. The U%/V% UTL approach discussed in Section 2.1.5 and summarized in Section 2.1.6 does not 
provide/use a single set of model coefficients. 

(c) FN = false negative, where xx/yyy means there were yyy positives in the full dataset with xx of them being falsely predicted 
by a model as negatives. 

(d) FP = false positive, where xx/yyy means there were yyy negatives in the full dataset with xx of them being falsely predicted 

by a model as positives. 

(e) FN P1-4 = false negative, where xx/yy means there were yy positives in the P1-4 dataset with xx of them being falsely 

predicted by a model as negatives. 

(f) FP P1-4 = false positive, where xx/yy means there were yy negatives in the P1-4 dataset with xx of them being falsely 
predicted by a model as positives. 

 

2.1.9 Future Plans 

The “Conservative LR-SM” is intended to be effective at conservatively separating HLW glass 

compositions that are likely to form nepheline during one of many CCC schedules. Future testing should 

focus on glasses representative of Hanford high-alumina waste glasses with the current WTP CCC 

schedule. This is likely to reduce the prediction uncertainty for compositions and plant operating plans 

important to Hanford. In addition to generating “pass-fail” data, the concentration of nepheline formed 

and its impact on PCT response will be measured and modeled. It is clear from many studies that some 

nepheline can be tolerated while still maintaining adequate PCT responses as shown in Figure 2.6. After 

the fraction of nepheline and its impact on PCT can be predicted, less conservative approaches can be 

taken to formulation glass for Hanford high-alumina wastes. 
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Figure 2.6.  Plot Showing the Effect of Nepheline Mass on Normalized PCT-boron Release for 

Example HLW Glasses (from Riley et al. 2001) 

 

2.2 Spinel Limits 

As discussed previously (Vienna et al. 2013), crystal fraction and crystal size in laboratory testing and 

melter modeling can potentially be useful as predictors of melter failure caused by spinel build-up (Hrma 

2002, Hrma et al. 2003, Hrma and Vienna 2003, Hrma 2010). Preceding the establishment of crystal size 

and fraction restrictions, limits on the spinel formation (in the form of liquidus temperature (TL) 

constraints) were used to control glass composition at the Defense Waste Processing Facility (DWPF) and 

the West Valley Demonstration Project (WVDP) (Jain et al. 1992, Jantzen 1991a, Jantzen and Brown 

2007a,b). An arbitrary distinction of a 1 vol% spinel temperature limit (T1%) at 950°C was adopted 

(Vienna and Kim 2014) as a place holder until a less arbitrary constraint is available. This constraint was 

viewed as too conservative, which prompted additional work to develop a replacement constraint. 

Previous studies utilizing test melters (Jantzen 1986, Rankin et al. 1982) and data from the DWPF 

melter (Jantzen et al. 2004) have shown that the most likely process to cause failure due to spinel 

formation is the clogging of the pour-spout riser by crystal accumulation as suggested by Maytas et al. 

(2010a,b). As discussed in Section 2.1 of Vienna et al. (2013), a limit of 2 vol% at 950°C represents a 

reasonable compromise between the overly conservative T1% limit and the incomplete data suggesting 

concentrations as high as 4.5 vol% could be acceptable (Matyas et al. 2013) and 4.2 vol% demonstrated in 

short term melter tests (Matlack et al. 2009b). Until sufficient data on spinel accumulation in the melter is 

obtained, a spinel fraction at 950°C limit of 2 vol% is recommended. 

There are three approaches to limit the spinel fraction at 950°C to 2 vol%: (i) model the spinel 

equilibrium fraction as functions of both temperature and composition, (ii) model the equilibrium fraction 

of spinel at 950°C, and (iii) model the temperature at an equilibrium spinel fraction of 2 vol%. The first of 
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these three approaches has been implemented in the past, but the other two approaches have also now 

been investigated. 

The equation generally utilized to model the equilibrium crystal fraction as a function of temperature, 

based on the freezing point depression equation for an ideal mixture, is 

 ,0

1 1
1 expSp sp L

L

c c B
T T

    
      

     , 
(2.16) 

where T is the absolute temperature in K, csp,0 is the equilibrium fraction of spinel as T approaches 0K, 

and BL is a fit parameter related to the enthalpy of crystallization of the universal gas constant (Hrma and 

Vienna 2003). 

The coefficients cSp,0, TL, and BL can be expressed as functions of melt composition (typically as 

linear mixture models, LMMs). Over a relatively narrow range of low cSp values, the model in Equation 

(2.16) can be approximated by 

 Spc a bT 
, (2.17) 

where a and b are linear fit coefficients. These coefficients can be expressed as LMMs, yielding the 

equation 

  
1

q

Sp i i i i

i

c a g bTg


  ,  (2.18) 

where 

 q = number of HLW glass components 

 ai = temperature-independent coefficient of the ith component 

 bi = temperature-dependent coefficient of the ith component 

 gi = mass fraction in the melt of the ith component, such that g1 + … gq = 1. 

 T = temperature (not necessarily absolute temp) in ºC (Hrma and Vienna 2003). 

A set of cSp, T, and composition data was compiled and fitted to the simplified model in Equation 

(2.18) by Vienna et al. (2013). The fit was not precise (with a RMSE of 0.47 vol% spinel). However, at 

that time the model was thought to be sufficient for estimating the mass of glass to be produced from 

Hanford HLW (Vienna et al. 2013). This model tended to overpredict small crystal fractions and 

underpredict high crystal fractions with more realistic predictions focused around 1.5 vol% (see Figure 

2.7). Not surprisingly, new glasses formulated with predicted c950 concentrations of 2 vol% were 

underpredicted with high uncertainty (see Chou et al. 2016). 
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Figure 2.7.  Predicted vs. Measured Plot of csp Values with 95% Prediction Intervals (vol%) Using HLW 

Glasses (from Vienna et al. 2013) 

In a new study, an attempt was made to reduce the uncertainty and improve the accuracy of model 

prediction by using the other two modeling approaches (i.e., modeling either c950 or T2% as a function of 

composition). These models were developed using (i) the data of 730 glasses reported in Vienna et al. 

(2013), (ii) additional data reported in the literature (glass families and references listed in Table 2.6), and 

(iii) data from a new study with compositions and equilibrium crystal fractions listed in Table 2.7 and 

Table 2.8, respectively. The composition of Others in this new study (with mass fractions summing to 

0.058), includes Ag2O = 0.0005, Bi2O3 = 0.012, CaO = 0.013, F = 0.002, K2O = 0.0045, La2O3 = 0.005, 

MgO = 0.003, P2O5 = 0.013, and PbO = 0.005. 

Because the compositions with c950 and T2% data are slightly different, the datasets are described 

independently in the following Sections 2.1 and 2.2. 
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Table 2.6.  Summary of Existing Data on HLW Glasses used in Evaluating Predictive Models for 

Limiting Spinel Formation(a) 

Glass Family # Lab Citation 

IWL 10 PNNL Kim et al. 2011 

SP 20 PNNL Mika et al. 2007 

MS 23 PNNL Hrma 1999, Wilson et al. 2002 

HLW-E 142 VSL Rodriguez et al. 2011, Matlack et al. 2007 

HAL 19 PNNL Rodriguez et al. 2011, Kim et al. 2008 

EM07 38 PNNL Schweiger et al. 2011 

Ni/Fe/Cr/Al/Mn/Ru 11 PNNL Matyas et al. 2012 

HLW-ALG 65 VSL Kot et al. 2006 

HWI-Al 20 VSL Rodriguez et al. 2011, Matlack et al. 2008/2010a 

HWI-ALS 12 VSL Matlack et al. 2010b 

HLW02/03 101 VSL Piepel et al. 2007, Piepel et al. 2008 

HLW05/06 65 VSL Kot et al. 2005 

HLW07 40 VSL Kruger et al. 2013 

HLW-BP-X 10 VSL Vienna et al. 2013 

US 39 PNNL Riley et al. 2009 

LSi 30 PNNL Vienna et al. 2013 

SPA 36 PNNL Vienna et al. 2013 

ICCM 13 PNNL Vienna et al. 2013 

WTP-TI 15 PNNL Vienna et al. 2013 

CCIM 9 PNNL Vienna et al. 2013 

INEL 4 VSL Vienna et al. 2013 

HLW-Bi 4 VSL Vienna et al. 2013 

HLW-N101 12 VSL Vienna et al. 2013 

HLW-NG 20 VSL Vienna et al. 2013 

(a) PNNL – Pacific Northwest National Laboratory, VSL – the Vitreous State Laboratory at the Catholic 

University of America 
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Table 2.7.  Glass Compositions (in mass fractions) for 11 Varied Components (Al2O3 to ZrO2) and One 

Fixed Component (Others) Comprising the HLW Spinel Phase 1 Test Matrix 

Glass ID Al2O3 B2O3 Cr2O3 Fe2O3 Li2O MnO Na2O NiO RuO2 SiO2 ZrO2 Others 

CT16-IL-01 0.10066 0.09500 0.01580 0.15000 0.01979 0.01000 0.17500 0.00550 0.00025 0.36000 0.01000 0.05800 

CT16-IL-02 0.13023 0.09500 0.00700 0.07000 0.02865 0.03000 0.17500 0.01631 0.00025 0.36000 0.02956 0.05800 

CT16-IL-03 0.13000 0.14000 0.01000 0.10000 0.01650 0.02000 0.15000 0.01100 0.00050 0.34150 0.02250 0.05800 

CT16-IL-04 0.18615 0.16050 0.01580 0.07000 0.00830 0.03000 0.17500 0.00550 0.00075 0.28000 0.01000 0.05800 

CT16-IL-05 0.19000 0.09500 0.00700 0.07392 0.02900 0.03000 0.15203 0.00550 0.00075 0.34880 0.01000 0.05800 

CT16-IL-06 0.13695 0.17000 0.00700 0.07000 0.00830 0.03000 0.12444 0.00550 0.00025 0.36000 0.02956 0.05800 

CT16-IL-07 0.19000 0.17000 0.00700 0.10281 0.02900 0.01000 0.12871 0.00550 0.00025 0.28873 0.01000 0.05800 

CT16-IL-08 0.18067 0.17000 0.00700 0.07000 0.01402 0.01000 0.17500 0.00550 0.00025 0.28000 0.02956 0.05800 

CT16-IL-09 0.12083 0.16558 0.00700 0.07000 0.00830 0.01000 0.17500 0.01750 0.00075 0.35704 0.01000 0.05800 

CT16-IL-10 0.13000 0.14000 0.01000 0.10000 0.01650 0.02000 0.15000 0.01100 0.00050 0.34150 0.02250 0.05800 

CT16-IL-11 0.13699 0.17000 0.01580 0.07398 0.02900 0.01000 0.12998 0.00550 0.00075 0.36000 0.01000 0.05800 

CT16-IL-12 0.18263 0.09500 0.00700 0.07000 0.02662 0.01000 0.17500 0.00550 0.00025 0.36000 0.01000 0.05800 

CT16-IL-13 0.09500 0.17000 0.00700 0.15000 0.00966 0.03000 0.11750 0.00594 0.00025 0.34665 0.01000 0.05800 

CT16-IL-14 0.15268 0.12394 0.01580 0.07000 0.00830 0.01000 0.17500 0.01603 0.00025 0.36000 0.01000 0.05800 

CT16-IL-15 0.12802 0.09500 0.00700 0.15000 0.00830 0.01000 0.16744 0.00550 0.00075 0.34043 0.02956 0.05800 

CT16-IL-16 0.14488 0.17000 0.00700 0.07000 0.02900 0.01000 0.11750 0.01750 0.00075 0.34581 0.02956 0.05800 

Note: The mass fractions of the 12 components all sum to exactly 1.00000. 
 

Table 2.8.  Crystal Fractions, and the Phases Present, Versus Temperature for the HLW Spinel Test  

Phase 1 Test Matrix Glasses 

 Spinel/Crystal Content (wt%) 

by Temperature (ºC) 

 

 Glass ID Quench 950 900 850 Phases Present (by XRD)  

CT16-IL-1 3.7 4.6 4.9 5.5 Spinel 

CT-16-IL-2 2.1 3.6 4.0 5.3 Spinel + KAlSi2O6  

CT-16-IL-3 3.4 4.4 5.1 5.9 Spinel 

CT-16-IL-4 4.2 5.2 4.4 8.0 Spinel + Nepheline  

CT-16-IL-5 3.0 4.2 18.7 26.5 Spinel + Na6.65Al6.24Si9.76O32  

CT-16-IL-6 1.9 3.3 4.1 5.0 Spinel + Na2Al2(B2O7) + Mn2+Mn3+
6SiO12  

CT-16-IL-7 3.4 5.3 5.8 6.8 Spinel 

CT-16-IL-8 1.7 2.3 2.7 3.3 Spinel 

CT-16-IL-9 1.5 2.3 3.3 3.8 Spinel 

CT-16-IL-10 3.2 4.2 4.6 4.6 Spinel 

CT-16-IL-11 2.4 2.9 3.3 3.6 Spinel 

CT-16-IL-12 1.5 2.3 15.0 2.3 Spinel, Na6.65Al6.24Si9.76O32  

CT-16-IL-13 3.0 6.2 6.7 8.2 Spinel + Fe2O3 (Hematite) (9%) + Na2Al2B2O7 (5%) 

CT-16-IL-14 4.3 5.0 5.2 5.6 Spinel 

CT-16-IL-15 2.6 4.3 5.1 8.3 Spinel + Fe2O3 Hematite + Na6.65Al6.24Si9.76O32  

CT-16-IL-16 2.8 4.6 5.2 5.6 Spinel 
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2.2.1 Model for Equilibrium Spinel Fraction at 950°C 

The first modeling approach discussed is modeling the equilibrium spinel concentration at 950°C as a 

function of HLW glass composition. The data used for modeling cover the HLW glass composition 

region given in Table 2.9 and are shown graphically in a scatterplot matrix in Figure 2.8. 

Table 2.9.  HLW Glass Component Concentration Ranges (in mass fractions) for Validity of the c950 

Model 

Component Min Max 

Al2O3 0.0180 0.2900 

B2O3 0.0430 0.2200 

CaO 0 0.1420 

Cr2O3 0 0.0450 

Fe2O3 0 0.2130 

K2O 0 0.1120 

Li2O 0 0.0601 

MnO 0 0.0800 

Na2O 0.0358 0.2500 

NiO 0 0.0300 

P2O5 0 0.0648 

SiO2 0.2140 0.5300 

SrO 0 0.1000 

TiO2 0 0.0209 

ZnO 0 0.0450 

Others 0.0012 0.1990 
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Figure 2.8.  Scatterplot Matrix for HLW Glass Compositions (in mass fractions) Used to Model c950 

The dataset for modeling c950 was generated using a combination of data from PNNL and VSL. The 

total number of glasses intended for use in the model was 730. However, 87 glasses had no values 

measured at 950°C and hence were removed from the dataset. Also, to improve the model goodness of fit, 

glasses with extreme c950 data were removed including 158 glasses with c950 = 0, and 7 glasses with c950 > 

6 vol% (HLW03-07, HLW03-08, HLW03-10, HLW06-30, HLW06-31, HLW-E-Al-8, and HLW-E-ANa-

16). Also, in preliminary fitting, two of the five HLW glasses with SiO2 concentrations < 0.20 mass 

fraction were found to be outliers (based on Studentized residuals > 3.5). Therefore, all five glasses with 

SiO2 concentrations < 0.20 mass fraction were removed from the dataset. Additionally, HLW-E-ES-09 

was found to be a compositional outlier due to high TiO2 content (> 0.02 mass fraction) and was removed 

from the dataset as well. During the model fitting, six additional glasses were also identified as model-fit 
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outliers with Studentized residuals > 3.5 (LSi-Li-05, HLW03-01, HLW03-09, HLW06-07, HLW06-19, 

HLW-ALG-46, and HLW-E-Al-9). These glasses were removed from the dataset used for the final model 

fits. The resulting final glass model validity region is summarized in Table 2.9. 

The data for the remaining 440 HLW glasses were used to fit a LMM and a partial quadratic mixture 

model (PQMM). The LMM was of the form 

 



q

i
ii gac

1
950  (2.19) 

where 

q = number of HLW glass components in the model 

ai = model coefficient for the ith HLW glass component 

gi = mass fraction of the ith HLW glass component, so that g1 + … + gq=Others = 1.0. 

 

The PQMM (Piepel et al. 2002) was of the form 
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where q, ai, and gi are as previously defined, aii is the coefficient for the squared term of the ith 

component, and aij is the coefficient of the crossproduct term involving the ith and jth components. Only 

selected quadratic terms can be chosen because of the constraint g1 + … + gq=Others = 1.0. See Piepel et al. 

(2002) for more discussion of PQMMs. 

Table 2.10 lists the coefficients and summary statistics for the LMM and PQMM fit to the c950 data. 

The LMM and PQMM, with R2 values of 0.7034 and 0.7302, account for over 70% and 73% fractions of 

the variability in the data, respectively, although larger values would be better. Also, RMSE = 0.5825 and 

0.5519 for the LMM and PQMM, respectively, are much larger than what the experimental and 

measurement uncertainty is for c950. This suggests these models have some lack-of-fit (LOF).  The 

average 2

ValR  value for the PQMM is almost identical to the 2

PredR  value of 0.70. Hence, the PQMM should 

give predictions of unknown data within the model-validity region (Table 2.9) nearly as well as for the 

model-fit data. However, the model appears to have some LOF. 

Figure 2.9 shows the predicted versus measured plot for the PQMM. The figure indicates that the 

PQMM tends to overpredict smaller values of c950 (< 1) and to underpredict larger values of c950 (> 3). 

The scatter of points around the 45º line in Figure 2.9 is fairly large in general, which supports the 

previous indication of some model LOF. It is believed that the high scatter is due, at least in part, to the 

combination of data from PNNL and VSL which use different experimental method and have shown 

differences in results in previous studies. 
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Table 2.10.  Coefficients for the Linear Mixture Model (LMM) and Partial Quadratic Mixture Model 

(PQMM) for c950 (in vol% and mass fractions of oxides) of HLW Glasses 

Model Term 

LMM 

Coefficient 

PQMM 

Coefficient 

Al2O3 15.7907 17.064329 

B2O3 -5.1773 -6.988394 

CaO -14.7991 -14.25455 

Cr2O3 83.6096 72.638851 

Fe2O3 23.0435 20.646002 

Li2O -15.4088 -16.27009 

MnO 16.8047 91.361724 

Na2O -14.9755 -16.45675 

NiO 86.2595 88.862223 

P2O5 -6.3533 -9.001111 

SiO2 -3.1977 -1.445045 

TiO2 -3.6153 -20.10877 

ZnO 17.9636 19.803191 

ZrO2 10.7290 (a) 

K2O -9.5954 3.8116497 

SrO -6.9026 -7.827833 

RuO2 281.9318 (a) 

Others 7.8413 8.3602731 

MnO×SiO2 - -178.7683 

Al2O3×K2O - -116.663 

Model Fit Summary 

# data points 440 439 

# model terms 17 18 

RMSE 0.5825 0.5519 

2R  0.7034 0.7302 

2

AdjR  0.6915 0.7193 

2

PredR  0.6728 0.7023 

2

ValR  - 0.7000 

(a) These components were included in Others for this model. 
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Figure 2.9.  Predicted vs. Measured Plot of c950 Values with 90% Prediction Intervals (vol%) Using the 

Partial Quadratic Mixture Model for HLW Glasses  

 

2.2.2 Model for Temperature at 2 vol% Spinel 

This subsection discusses modeling the temperature at an equilibrium spinel fraction of 2 vol% (T2%) 

as a function of HLW glass composition. The data used for modeling T2% over the composition region 

given in Table 2.11 are shown graphically in a scatterplot matrix in Figure 2.10. Similar to the c950 model, 

the T2% model was generated using a combination of data from PNNL and VSL, beginning with the 730 

glasses. Many (280) glasses did not have a 2 vol% value measured and/or did not have sufficient data to 

interpolate a temperature for the 2% value. Additionally, any glasses that did not crystallize spinel as the 

major phase at or near T2% were removed (106 glasses). To improve the goodness of fit, a glass with 

extreme T2% data (HLW03-12, T2% < 500°C) was removed from the modeling dataset. During the model 

fitting, three additional glasses were also identified as model-fit outliers with Studentized residuals > 3.0 

(LSi-Li-05, HLW03-38, and WTP-TL-03). Two of these three glasses (LSi-Li-05 and WTP-TL-03) were 

identified as outliers in the original study documents (Jiřička et al. 2003 and Vienna et al. 2003, 

respectively). All three glasses were removed from the final model fits. Ultimately, 340 data points were 

used to fit the model. The resulting final model validity region is summarized in Table 2.11. 
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Table 2.11.  HLW Glass Component Concentration Ranges (in mass fractions) for Validity of the T2% 

Model 

Component Min Max 

Al2O3 0.019 0.30 

B2O3 0.03 0.22 

Bi2O3  0 0.0738 

CaO  0 0.14 

CdO  0 0.02 

Cr2O3  0 0.045 

F  0 0.02 

Fe2O3  0 0.2128 

K2O  0 0.082 

La2O3  0 0.012 

Li2O  0 0.0632 

MgO  0 0.06 

MnO  0 0.08 

Na2O 0.0358 0.25 

NiO  0 0.03 

P2O5  0 0.0548 

SiO2 0.020 0.53 

SO3  0 0.008 

SrO  0 0.10 

ThO2  0 0.0597 

TiO2  0 0.0525 

UO3  0 0.065 

ZnO  0 0.045 

ZrO2  0 0.096 
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Figure 2.10.  Scatterplot Matrix for HLW Glass Compositions (in mass fractions) Used to Model T2% 

The data for the remaining 340 glasses were used to fit a LMM and a PQMM, where the model forms 

are the same as in Equations (2.19) and (2.20), except with T2% on the left hand sides. The fits of the 

LMM and PQMM for T2%, as represented by the various R2 values, were determined similarly as for the 

c950 models, as described in Section 2.2.1. Table 2.12 lists the coefficients and summary statistics for the 

T2% LMM and PQMM. The LMM and PQMM, with R2 values of 0.6945 and 0.7292 respectively, account 

for over 69% and 72% of the variability in the data, although larger values would be better. Also, RMSE 

= 77.98 and 73.64 for the LMM and PQMM, respectively, are much larger than what the experimental 

and measurement uncertainty is for T2%. This suggests these models have some LOFs.  The average 2

ValR  

for the PQMM is almost identical to the 2

PredR  value of 0.697. Hence, the PQMM should give predictions 
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of unknown data within the model-validity region (Table 2.11) nearly as well as for the model-fit data. 

However, the model appears to have some LOF. 

Table 2.12.  Coefficients for the Linear Mixture Model (LMM) and Partial Quadratic Mixture Model 

(PQMM) for T2% (in vol% and mass fractions of oxides) 

Model Term 

LMM 

Coefficient 

PQMM 

Coefficient 

Al2O3 2988.319 2058.4195 

B2O3 -523.853 -281.516 

Bi2O3 1778.341 1543.2359 

Cr2O3 11750.02 11944.224 

Fe2O3 3440.954 3673.0656 

Li2O -686.862 -753.6015 

MgO 3421.658 3553.9322 

MnO 3596.64 3485.9411 

Na2O -1123.95 -1940.195 

NiO 10034.92 11231.615 

RuO2 71492.63 84418.014 

TiO2 1985.837 2574.6514 

ZnO 4310.519 4011.0211 

ZrO2 1762.619 -987.8832 

Others 294.2597 391.75396 

Al2O3×Na2O - 9345.1684 

ZrO2×ZrO2 - 42569.129 

Model Fit Summary 

# data points 340 340 

# model terms 14 16 

RMSE 77.98 73.64 

2R  0.6945 0.7292 

2

AdjR  0.6813 0.7157 

2

PredR  0.6638 0.6970 

2

ValR  - 0.6970 

 

Figure 2.11 shows the predicted versus measured plot of T2% values for the PQMM fit. Predicted 

values below roughly 800°C tend to be over predicted. This has little practical importance for the 

proposed application of limiting T2% to 950°C.  There is considerable scatter of the data point around the 

45º line, which is the source of the model LOF mentioned previously.  This scatter is thought to be 

caused, at least in part, by combining data from PNNL and VSL which use different methods and have 

seen some differences in results. 
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Figure 2.11.  Predicted vs. Measured Plot of T2% Values with 90% Prediction Intervals (vol%) Using the 

Partial Quadratic Mixture Model for HLW Glasses 

 

2.2.3 Recommended Crystal Constraint 

To determine which of the two crystal models and corresponding constraints to use, we consider first 

the goodness of fit and potential for biased prediction at the desired placeholder constraint of 2 vol% at 

950ºC. The c950 model data range from 0 (at which it is cutoff) to 5.5 vol% with a median of 1.1 vol% 

(mean of 1.37 vol%), and are highly skewed toward the low end of range. The T2% data are symmetrically 

distributed around roughly 900ºC with a minimum of 511ºC and maximum of 1293ºC. The c950 model 

tends to overpredict smaller values of c950 (< 1) and to underpredict larger values of c950 (> 3).     

The RMSE of the c950 and T2% models are 0.552 vol% and 73.6ºC, respectively. To compare these, we 

considered typical example spinel forming glasses as shown in Figure 2.12. The slopes dc/dT range from 

-0.0092 to -0.0041 with an average of -0.0075. Estimating the average vol% impact of change in 73.6ºC is 

0.55 vol%. We also considered the number of data points and the distribution of data, which slightly favor 

the T2% model. Finally, the validation statistics slightly favor the c950 model. 

Considering all of the above pros and cons, we recommend using the T2% model with a 2 vol% limit 

as the place holder constraint until the crystal settling model becomes available. The data and models are 

not fully QA compliant and therefore are not intended to be used in quality-affecting activities or 

decisions (e.g., design basis input, plant operations, waste form compliance). Instead the models and 

constraints are intended for use in mission planning activities. 
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Figure 2.12.  Equilibrium Crystal Fraction vs. Temperature for Example Representative HLW Glasses 

(from Matyas 2013) 

 

2.2.4 Future Plans 

Recent results have demonstrated successful melter processing with higher concentrations of spinel in 

the melt. It was determined by Hrma et al. (2001) that the allowable spinel fraction is likely to be 

controlled by a combination of crystal size and fraction which are both functions of melt composition.  

Therefore Matyas et al. (2010, 2012, and 2013) have begun development and validation of spinel crystal 

accumulation models. These models need to be expanded to a broader composition region of interest for 

Hanford HLW and be fully validated in scaled melter tests. Efforts will continue to develop data and 

models to predict crystal accumulation in the melter. 

 

2.3 Sulfur Tolerance 

Sulfur is commonly observed as sulfate ion in the glass network, although solubility is limited to 

between 0.3 and 2.0 wt % depending upon the glass composition. Above the sulfur solubility limit for a 

glass, it also forms sulfates rich in alkali, alkaline earths, and chromate. Sulfate rich salts can form in the 

cold cap region during the feed-to-glass melt conversation process leading to a molten salt layer above the 

glass melt. Understanding sulfur solubility in the HLW glass melts is important to avoid creation of 

separated molten salts in the melters. To accomplish this, it is important to predict the solubility of SO3 in 

glass melts as a function of glass composition. 

Empirical mixture models for sulfur solubility were previously examined for the HLW and LAW 

glasses. Vienna et al. (2013) recommended a combined LAW and HLW sulfate solubility model based on 

the data available at that time. However, crucible tests performed since that model was generated showed 
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it significantly underpredicted the measured sulfate solubility for HLW glasses (see Figure 2.13). 

Although the model was found to be conservative, a more accurate model is desired. There were enough 

differences between the HLW and LAW melter feed compositions that separate models are now required. 

This subsection describes the development of a sulfate solubility model for HLW glasses only. 

 

Figure 2.13.  Validation Results of Sulfate Solubility Model for Recent HLW Glasses (from  

Vienna et al. 2013) 

 

2.3.1 Sulfate Solubility Data for HLW Glasses 

Measured SO3 solubility data were available for 61 Hanford HLW glasses collected by two different 

methods: saturation and bubbling plus seven glasses measured for SO3 tolerance during melter testing. 

Only data for the saturation and bubbling methods (61 glasses) were considered for modeling. The 

following HLW glasses were considered for fitting the SO3 solubility model: 

 HWI-Al-19, HLW-NGFe2, HLW-E-Bi-6, HLW-EANa-22, HLW-E-Al-27, HLW-ALG-03, 

HLWS-1 to HLWS-20 (Matlack et al. 2012) 

 HLW98-77 to -96, HLW02-15 to -50, HLW03-01 and -03, HLW04-07S1 and -09, HLW06-16 to 

-32 (Kot et al. 2006) 

 HLWS-21 to -33 (Matlack et al. 2013). 

Two glasses (HLW06-27 and -29) were found to be extreme in ZrO2 concentration (
2ZrOg  = 0.115) and 

were found to be outliers in initial model fitting.  Therefore, the model validity region was reduced to 

2
0.0884ZrOg    and the two glasses were excluded from the dataset used to fit the final model. Figure 

2.14 shows a scatterplot matrix of the compositions for the 59 glasses. The glass compositions with SO3 

normalized out were used for the purpose of modeling SO3 solubility. Table 2.13 lists the minimum and 

maximum measured SO3 solubility and individual component ranges for the data used to develop the 

HLW SO3 model. The melter data were not used for modeling because true solubility was not measured 
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using melters. However, the melter data are shown in figures for comparison purposes as was done for the 

LAW glass sulfate solubility model (Vienna et al. 2014). 

 

 

Figure 2.14.  Scatterplot Matrix and Histograms of HLW Glass Compositions for Modeling SO3 

Solubility. Blue + symbols are for melter glasses not used in fitting of the model. 
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Table 2.13.  Component Ranges (mass fractions) for Validity of the SO3 Solubility Model for HLW 

Glasses 

Component Min Max 

Al2O3 0.0188 0.2387 

B2O3 0.0431 0.2030 

Bi2O3  0 0.0670 

CaO  0 0.0856 

CdO  0 0.0165 

Cr2O3  0 0.0099 

F  0 0.0079 

Fe2O3 0.0140 0.1707 

K2O  0 0.0164 

La2O3  0 0.0123 

Li2O  0 0.0607 

MgO  0 0.0117 

MnO  0 0.0800 

Na2O 0.0400 0.2000 

Nd2O3  0 0.0080 

NiO  0 0.0168 

P2O5  0 0.0508 

PbO  0 0.0091 

SiO2 0.02703 0.5305 

SO3 0.0053 0.0178 

SrO  0 0.1032 

ThO2  0 0.0596 

TiO2  0 0.0100 

UO3  0 0.0652 

ZnO  0 0.0401 

ZrO2  0 0.0884 
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2.3.2 Model for Sulfate Solubility of HLW Glasses 

To model the effect of HLW glass composition on SO3 solubility (
3SOw ), the glass compositions were 

renormalized with SO3 removed. The LMM 

 
3

1

,wt%
q

SO i i

i

w s n


  (2.21) 

was investigated, where 

 

 q = number of HLW glass components in the model 

 si = coefficient of the ith component 

 ni = mass fraction of the ith component normalized after removing SO3, so that 

   n1 + … + nq=Others = 1.0 

Components that did not significantly contribute to the model were combined into the Others 

component based on (i) one of the LMM reduction approaches discussed by Piepel et al. (2009) and (ii) 

knowledge of component effects on sulfate solubility. Two components (Na2O and Fe2O3) were near the 

last components considered for combining into Others, but were left in the model because they are major 

components and would significantly increase the concentration of the Others component in all glasses.  

 The current dataset is not ideal for several components. Crossproduct and squared terms (for 

PQMMs) were evaluated, but were not found to significantly improve the model fit for this current 

dataset of glasses. Hence, a LMM was fit to the modeling dataset of 59 glasses, with the coefficients and 

the various goodness-of-fit statistics (see Section 1.4) listed in Table 2.14.  

 The  and  values of 0.821 and 0.827 are significantly lower than the R2 value of 0.893. This 

is thought to be due to the relatively small size of the data set and the few data points that appear to be 

significant outliers (HLWS-19, HLWS-16, and HLW02-24; all with high Studentized residuals).  

However, no justification could be found for removing these data points from the modeling dataset. 

The RMSE should estimate the experimental and measurement uncertainty in determining SO3 

solubility values if the LMM does not have a significant LOF. However, the, RMSE = 0.1344 is larger 

than what the experimental and measurement uncertainty in SO3 solubility is typically seen to be. Hence, 

this indicates the LMM has some LOF. 

 

  

  

2

PredR
2

ValR
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Table 2.14.  SO3 Solubility Linear Mixture Models for HLW Glasses 

Model Term Coefficient 

Al2O3  -2.4906 

B2O3 4.9038 

CaO 10.6949 

Cl  -34.2573 

Fe2O3 0.4100 

Li2O 13.1713 

Na2O 3.0563 

SiO2  -1.5986 

V2O5 6.8123 

ZrO2  -2.7024 

Others 2.6712 

Model Fit Summary 

# of data points 59 

# model terms 11 

Mean of SO3 Solubility Values, wt% 1.0789 

RMSE 0.1334 

2R  0.8926 

2

AdjR  
0.8702 

2

PredR  0.8209 

2

ValR  0.8274 

 Figure 2.15 shows the predicted versus measured plot of 
3SOw  values for the LMM fit. Measured 

values above roughly 1.4 wt% tend to be underpredicted. This suggests that the model is somewhat 

conservative over this subrange and could be improved to improve future estimation of glass mass.  There 

is considerable scatter of the data point around the 45º line, which contributes to the model LOF 

mentioned previously.   



 

2.38 

 

Figure 2.15.  Predicted vs. Measured SO3 Solubility (wt%) for HLW Glasses with 90% Prediction 

Intervals 

 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

2.3.3 Future Plans 

The modeling dataset for SO3 solubility of HLW glasses used in this report provides incomplete 

coverage of the current component ranges for the enhanced high-SO3 HLW glass composition region. 

Hence, additional SO3 solubility data are needed to properly cover the composition space of high-SO3 

HLW glasses at Hanford. Many other HLW glasses have been tested (many with lower concentrations of 

SO3), but SO3 solubility was not determined for them. New data points should be statistically designed to 

provide, at a minimum, good coverage of the extreme vertices. Particular attention will be given to extend 

the range of Cr2O3 in the dataset. Also, if possible, addition of HLW glasses using a space-filling 

experimental design should be implemented to provide complete coverage of the HLW glass composition 

space. These data points will provide a more complete dataset to determine the component effects on SO3 

solubility of HLW glasses for Hanford. 

2.4 Eskolaite Formation 

 

 If the content of chromium in the melter feed is too high, one or a combination of three things will 

most likely occur (Hrma 2006): 

1. A chromate- (and sulfate-) containing salt will accumulate on the melt surface. This typically, but 

not always, occurs in melts high in sulfate, nitrate, and other salt-forming compounds. 

2. Transition metal spinel, (Fe,Ni,Mn,Zn)(Fe,Cr)2O4, will form. This typically occurs in melts with 

relatively high concentrations of iron, nickel, manganese, and/or zinc. 
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3. Eskolaite, Cr2O3, will form. This typically occurs only in melts that are relatively low in sulfur, 

nitrate, iron, nickel, manganese, and/or zinc. 

Additionally, chromate species, such as Na2Cr2O7, are semi-volatile and partition to some extent to the 

off-gas system, where they are captured and eventually recycled back to the melter (e.g., Jantzen 1991b). 

This volatile loss is partially offset by the addition of small amounts of chromium from corrosion/erosion 

of high-chromium melter materials such as K-3 and Inconel 690. 

2.4.1 Investigation of Eskolaite Formation 

The formation of salt in waste glasses is clearly influenced by the chromium content of the feed, as 

seen in the sulfate solubility model for LAW glasses, but less so with HLW glasses (likely because of the 

higher prevalence of three valent chromium in HLW). The Cr2O3 content of the melt also strongly 

increases the amount of spinel formed at a given temperature as seen in the spinel models described in 

Section 2.2. 

A series of high Cr2O3 glasses were formulated and tested in the DM-100 melter (Matlack et al. 

2009b). The Cr2O3 content of these glasses extended up to 6 wt%. Crucible-scale testing of these glasses 

showed that for the glasses specifically formulated to have low sulfur and transition metals (e.g., those 

prone to eskolaite formation), the fraction of eskolaite in the melt after 70-hour heat treatments at 950°C 

roughly corresponded to the total Cr2O3 content of the glass. This is shown in Figure 2.16, where the blue 

data points (“ES series” glasses) have eskolaite concentrations roughly equal to the maximum amount of 

all Cr2O3 precipitated in the form of eskolaite. There is a slightly higher eskolaite fraction for the glasses 

with >3 wt% Cr2O3, which is likely caused by the inclusion of some Al2O3 and/or Fe2O3 in the eskolaite, 

because they are known to form solid solutions (Hrma et al. 2006). Also shown in the plot is a single “M-

series” glass that precipitated both spinel and eskolaite and became an outlier to the general trend 

observed in glasses that precipitated eskolaite only—only the eskolaite fraction is shown on the plot. 

 

Figure 2.16.  Eskolaite vol% in High-Cr2O3 Crucible-Scale Glasses Heat Treated at 950°C for 70 Hours 

(data from Matlack et al. 2009b) 
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Eskolaite crystals are typically small, plate-like crystals that do not settle readily in glass melts. An 

example of the morphology is shown in Figure 2.17. It is thus theorized that on an equal volume basis, 

eskolaite is less likely to cause melter-operation problems than spinel that typically grows to an 

octahedron or similar. 

  

Figure 2.17.  Optical Micrographs of Eskolaite in High-Cr2O3 HLW Glasses 

 

Two melter tests were performed to develop an initial indication of the eskolaite behavior in the 

melter (Matlack et al. 2009b). In the first melter test, a glass with 2 vol% eskolaite was fabricated (2 vol% 

was obtained from crucible-scale glass heat treated at 950°C for 70 hours). In the second melter test a 

glass with 4.2 vol% combined eskolaite and spinel was fabricated (4.2 vol% was obtained from crucible-

scale glass heat treated at 950°C for 70 hours). These melter tests were operated for roughly 50 hours 

each of continuous feeding in the DM-100 melter. The melter was then idled for 181 to 299 hours. The 

results did not indicate any potential problems with this amount of crystals. However, the results are too 

limited (up to only 299 hours) to clearly determine if this amount of crystals could be processed over 

extended time periods. Additionally, it was shown that during idling, the spinel settled significantly faster 

than either eskolaite or hematite crystals, which is consistent with the theory based on particle 

morphology. 

By assuming that eskolaite and spinel can be tolerated equally well in the melter, preliminary limits 

for Cr2O3 in glass can be postulated. Taking a conservative assumption that all of the Cr2O3 precipitates in 

the form of either high-chromium spinel ([Fe,Mn,Ni,Zn]Cr2O4) or eskolaite (Cr2O3), the maximum 

amount of crystal formed for each mass fraction increase in Cr2O3 would range between 0.46 and 0.77 

vol% (assuming densities of 2.5, 5.2, and 4.6 for melt, eskolaite, and spinel, respectively). This maximum 

value represents 72 to 120% of the effect of Cr2O3 on c950. This suggests that using the c950 model will 

give a reasonable estimate of the maximum fraction of crystals to form in high Cr2O3 glasses. If all Cr2O3 

crystallized as eskolaite and there was a 2 vol% limit on eskolaite at 950°C, then the maximum 
2 3Cr Ow  

would be 4 wt%. This compares well with the spinel limit model validity range of up to 4.5 wt% Cr2O3. 

Recommended Cr2O3 concentration limit is given in Section 2.9 where all single component model 

validity constraints are discussed. 
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2.4.2 Future Plans 

Additional data are needed to measure and model the formation of eskolaite in representative Hanford 

HLW glasses. These data will be collected along with eskolaite accumulation rate data as an extension of 

the efforts to manage spinel in the melter, as described in Section 2.2. 

2.5 Viscosity 

The viscosity of waste glass melts should be maintained between roughly 2 and 8 Pa·s (20 to 80 P) at 

the melting temperature (nominally 1150°C) for ideal processing. Perez (2006) summarizes this need as 

follows. 

Joule-heated ceramic melters (JHCM) have been under development and application by DOE and 

internationally for the production of borosilicate glass in radioactive environments. As operating 

conditions, glass formulations, and materials of construction have been assessed the practical limits 

of glass viscosity have been established. For melters operating at a nominal bulk tank temperature of 

1150°C, waste glass composition have been tailored to achieve a glass viscosity of between 20 and 

80 Poise. The lower limit of 20 Poise has its roots in the following historical considerations; 

1) limiting refractory and metal alloy corrosion of the melter components in contact with the molten 

glass, 2) limiting glass penetration through the refractory lining and 3) minimizing the potential for 

an energetic water-glass reaction (the so-called steam explosion) and 4) achieving acceptable 

pouring of the glass over the pour tip of the discharge trough. These considerations when combined 

with providing a reasonable range for glass formulations that also have acceptable electrical 

conductivity and durability (leach resistance) result in the 20 Poise value for a lower viscosity limit. 

The upper limit of 80 Poise is based on the following considerations; 1) obtaining an acceptable 

convective heat transfer rate between the bulk glass and the cold cap solids, 2) minimizing the 

stability and accumulation of foam caused by gases formed during the melting process, 3) acceptable 

transfer of glass from the tank through the riser/discharge using the airlift transfer system, and 

4) acceptable filling of the canister, i.e., no voids near the canister wall. Again when these 

considerations are combined with providing a reasonable range for glass formulations that also have 

acceptable electrical conductivity result in the 80 Poise value for an upper viscosity limit. 

Although the acceptable range of η1150 is 2 to 8 Pa·s, current glass formulations and optimal performance 

are centered closer to 5 Pa·s. Therefore, a narrower viscosity range of 4 ≤ η1150 ≤ 6 Pa·s is recommended 

for estimating loading of HLW (and LAW) in glass. 

Sufficient new viscosity data for HLW glasses have been generated since the HTWOS 2009 and WTP 

Baseline glass property models were developed to justify a new viscosity model. Several approaches have 

been used to model the temperature and composition effects on viscosity in the past. For the current 

purpose, the effect of composition on the viscosity at 1150°C is of most interest. LMMs and PQMMs for 

the natural logarithm of viscosity data at 1150°C were investigated. The LMM has the form 

 
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while the PQMM has the form 
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where 

q = number of HLW glass components in the model 

ai = model coefficient for the ith HLW glass component 

gi = mass fraction of the ith HLW glass component, so that g1 + … + gq=Others = 1.0 

aii = coefficient for the squared term of the ith HLW glass component 

aij = coefficient of the crossproduct term involving the ith and jth HLW glass components. 

Only selected quadratic terms in Equation (2.23) can be chosen because of the constraint g1 + … + 

gq=Others = 1.0. See Piepel et al. (2002) for more discussion of PQMMs. 

2.5.1 Viscosity Data for HLW Glasses 

Data from several different sets of HLW and LAW glasses were combined to create the dataset used 

for modeling η1150 of HLW glasses. The datasets included the following 

 Set 1: EM07 glasses (Schweiger et al. 2011) 

 Set 2: HTWOS HLW models; filename (Vienna et al. 2009) 

 Set 3: VSL ORP HLW dataset 2012 (Muller et al. 2012) 

 Set 4: VSL-15T3800-1 (Kot et al. 2015) 

 Set 5: EWG dataset (Chou et al. 2016) 

 Set 6: VSL-15R3250-1 Rev. 0 (Matlack et al. 2015b) 

 Set 7: VSL-15R3420-1 Rev. 0 (Gan et al. 2015) 

 Set 8: VSL-15R3440-1, Rev. 0 (Matlack et al. 2015a) 

 Set 9: DWPF Startup Frit (Crum et al. 2012) 

 Set 10: LAW dataset (see Table 3.8) 

The combined dataset includes 725 LAW and 785 HLW glasses with η1150 data ranging from 0.47 to 

99.4 Pa·s (LAW) and 0.279 to 245.5 Pa·s (HLW). The major component concentration ranges are given 

in Table 2.15 and the pairwise distributions of glass compositions are shown in a scatterplot matrix in 

Figure 2.18. 
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Table 2.15.  Component Concentration Ranges (mass fractions) in the η1150 Modeling Dataset Including 

HLW and LAW Glasses 

 HLW LAW 

Component Min Max Min Max 

Al2O3 0 0.3000 0.0350 0.1821 

B2O3 0 0.2200 0 0.1380 

Bi2O3 0 0.1641 0 0.0002 

CaO 0 0.1820 0 0.1273 

Cr2O3 0 0.0300 0 0.0060 

F 0 0.0281 0 0.0130 

Fe2O3 0 0.2639 0 0.1198 

K2O 0 0.0899 0 0.0809 

LN2O3
(a) 0 0.1127 0 0.0489 

Li2O 0 0.0788 0 0.0633 

MgO 0 0.0801 0 0.0815 

MnO 0 0.1360 0 0.0006 

Na2O 0.01 0.3000 0.0245 0.3500 

NiO 0 0.0851 0 0.0017 

P2O5 0 0.0702 0 0.0403 

SiO2 0.1944 0.6002 0.3350 0.6278 

SnO2 0 0.0068 0 0.0503 

SO3 0 0.0128 0.0002 0.0246 

SrO 0 0.2990 0 0.0788 

ThO2 0 0.0601 0 0 

TiO2 0 0.0171 0 0.0399 

UO3 0 0.1255 0 0 

V2O5 0 0.0250 0 0.0570 

ZnO 0 0.0400 0 0.0978 

ZrO2 0 0.1548 0 0.0675 

(a) LN2O3 is the combined mass fractions of Y2O3 and all the rare-earth oxides 

(which are all assumed to be in the trivalent state). 
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Figure 2.18.  Scatterplot Matrix of Glass Compositions (mass fractions) in the Modeling Dataset for 

Viscosity at 1150°C. Red points represent HLW glasses, while blue points represent LAW 

glasses. 

After the HLW and LAW glass datasets were assembled separately, they were carefully combined 

into a single spreadsheet. Each data point (each separate Glass ID) was labeled with a “HLW” or “LAW” 

tag to designate each type of glass. Additionally, the rare-earths were grouped into a single component 

called “LN2O3” so that the combined effect of rare-earths could be investigated during model 

development. 

The HLW and LAW data were fit to several LMMs and a PQMM to identify components having 

significant effects on η1150. A LMM for the combined HLW and LAW glasses was the first model 

attempted, followed by a LMM with HLW glasses only. Finally, a PQMM was developed with both 
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HLW and LAW glasses included. These models are discussed in Sections 2.5.2, 2.5.3, and 2.5.4, 

respectively. The LMM with LAW glasses only is discussed in Section 3.4. 

2.5.2 Model #1 – Linear Mixture Model for Viscosity at 1150ºC Fit to Data for 
HLW and LAW Glasses 

A LMM was fit to the combined HLW and LAW dataset. The coefficients and summary statistics for 

this LMM are listed in Table 2.16. The R2 = 0.9107 indicates the model fits very well. The 2

AdjR  = 0.9097 

value being very close to the 2R  value indicates that there are not several unneeded terms in the model. 

The 2

PredR  and 2

ValR  values are also very close to the model fit R2. This suggests that across the breadth of 

the combined LAW and HLW glass composition and viscosity data, the LMM accounts for roughly 90% 

of the variation in data both used to fit the model and not used to fit the model. The RMSE = 0.2405 in 

ln(Pa·s) indicates an %RSD = 24.04 for “measured” η1150 values. This %RSD value is larger than the 

experimental and measurement uncertainty in the process of measuring viscosity at temperature data, 

fitting a Voget-Fulcher-Tammann (VFT) equation, and calculating the η1150 for a given glass. Hence, the 

RMSE value indicates that the model has some LOF. 

Table 2.16.  Model Coefficients and Selected Statistics for a Linear Mixture Model of the Natural 

Logarithm of Viscosity at 1150ºC Fit to All HLW and LAW Glasses 

Model Term 

Coefficient, 

ln(η1150, Pa·s) Statistic Value 

Al2O3 12.415516 # of glasses 1510 

B2O3 -7.801257 Average ln(η1150, Pa·s) 1.589 

CaO -7.522078 RMSE, ln(η1150, Pa·s) 0.2405 

F -12.809553 2R  0.9107 

K2O -3.277962 2

AdjR
 

0.9097 

LN2O3 2.0426415 2

PredR
 

0.9068 

Li2O -34.591303 2

ValR
 

0.9075 

MnO -6.016994   

Na2O -9.469464   

P2O5 5.1318727   

SiO2 9.0203141   

SnO2 3.4888111   

SrO -5.737294   

TiO2 -6.633455   

UO3 1.9888519   

ZnO -3.649457   

ZrO2 6.367637   

Others -0.807473   
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Figure 2.19 shows a plot of predicted vs. measured ln(η1150) values with 90% PIs for the 1510 HLW 

and LAW glasses used to fit the LMM in Table 2.16. If a 90% PI overlaps the 45º line, then the predicted 

and measured values are not statistically different (with 90% confidence) after accounting for data and 

model uncertainties. The 90% PIs for 1415 of the 1510 glasses (93.7%) in Figure 2.19 overlap the 45º 

line. Thus, the predicted ln(η1150) values are generally within prediction uncertainties of the measured 

ln(η1150) values. Ignoring the PIs, Figure 2.19 shows the LMM has a tendency to underpredict ln(η1150) 

below approximately -0.5 and above approximately 4.0. In η1150 units of Pa·s, these values are 0.6 and 

54.6, respectively. These are well outside the constraint limits for η1150 of 4 to 6 Pa·s. Hence, the LMM in 

Table 2.16 predicts η1150 without substantive bias within the limiting range of 4 to 6 Pa·s. 

 

Figure 2.19.  Predicted vs. Measured Plot of ln(η1150) Values with 90% Prediction Intervals Using the 

Linear Mixture Model Fit to Data from HLW and LAW Glasses 

2.5.3 Model #2 – Linear Mixture Model for Viscosity at 1150ºC Fit to Data from 
HLW Glasses Only 

A LMM was fit to the HLW-only dataset of compositions and η1150 values for 785 HLW glasses. The 

major component concentration ranges for these glasses are given in Table 2.15. The coefficients and 

summary statistics for this LMM are listed in Table 2.17. The model fits quite well with R2 = 0.9027, and 

the 2

AdjR , 2

PredR  and 2

ValR  values are only slightly smaller. Hence, this suggests that across the HLW glass 

composition and viscosity data, the LMM accounts for roughly 90% of the variation in data both used to 

fit the model and not used to fit the model. Interestingly, the R2 values are slightly lower (and RMSE 

value slightly higher) for the HLW-only model than the combined LAW and HLW model. This is likely 

due to the HLW-only data covering a smaller glass composition region with a smaller range of η1150 

values. 
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Table 2.17.  Model Coefficients and Selected Statistics for a Linear Mixture Model 

of the Natural Logarithm of Viscosity at 1150ºC Fit to All HLW Glasses 

Model Term 

Coefficient, 

ln(η1150, Pa·s) Statistic Value 

Al2O3 12.093093 # of glasses 785 

B2O3 -6.968649 Average ln(Pa·s) 1.527 

CaO -7.867327 RMSE, ln(Pa·s) 0.2685 

Cr2O3 10.263034 2R  0.9027 

F -18.405435 
2

AdjR  0.9007 

LN2O3 3.5927373 
2

PredR  0.8930 

Li2O -34.656075 
2

ValR  0.8954 

MnO -6.137735   

Na2O -9.383399   

NiO 4.1828203   

P2O5 2.8993337   

SiO2 8.7348186   

SrO -5.661461   

TiO2 -9.632734   

UO3 2.4199882   

ZrO2 6.1936719   

Others -0.982565   

The LMM in Table 2.17 has RMSE = 0.2685 in ln(Pa·s), which indicates an %RSD = 26.85 for 

“measured” η1150 values. This %RSD value is larger than the experimental and measurement uncertainty 

in the process of measuring viscosity at temperature data, fitting a VFT equation, and calculating the η1150 

for a given glass. Hence, the RMSE value indicates that the model has some LOF. 

Figure 2.20 shows a plot of predicted vs. measured ln(η1150) values with 90% PIs for the 785 LAW 

glasses used to fit the LMM in Table 2.17. If a 90% PI overlaps the 45º line, then the predicted and 

measured values are not statistically different (with 90% confidence) after accounting for data and model 

uncertainties. The 90% PIs for 736 of the 785 glasses (93.8%) in Figure 2.20 overlap the 45º line. Thus, 

the predicted ln(η1150) values are generally within prediction uncertainties of the measured ln(η1150) values. 

Ignoring the PIs, Figure 2.20 shows the LMM has a tendency to underpredict ln(η1150) below 

approximately -0.5 and above approximately 3.5. In η1150 units of Pa·s, these values are 0.6 and 33.1, 

respectively. These are well outside the constraint limits for η1150 of 4 to 6 Pa·s. Hence, the LMM in Table 

2.17 predicts η1150 without substantive bias within the limiting range of 4 to 6 Pa·s. 
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Figure 2.20.  Predicted vs. Measured ln(η1150) Values with 90% Prediction Intervals [ln(η1150)] Using the 

Linear Mixture Model Fit to Data from HLW Glasses 

2.5.4 Model #3 – Partial Quadratic Mixture Model for Viscosity at 1150ºC Fit to 
Data from HLW and LAW Glasses 

In the third model developed, the LMM was augmented by a limited number of quadratic terms 

(three) to form a PQMM (Piepel et al. 2002). This model was fit to the combined data from LAW and 

HLW glasses. The coefficients and summary statistics for this model are listed in Table 2.18. The model 

fit is improved by the addition of the three quadratic terms, which result in R2 = 0.9253. The 2

AdjR , 2

PredR  

and 2

ValR  values are only slightly smaller. This suggests that across the combined LAW and HLW 

composition and viscosity data, the PQMM is able to account for roughly 92% in the variation in data 

both used to fit the model and not used to fit the model. 

Figure 2.21 shows a plot of predicted vs. measured ln(η1150) values with 90% PIs for the 1510 HLW 

and LAW glasses used to fit the PQMM in Table 2.18. If a 90% PI overlaps the 45º line, then the 

predicted and measured values are not statistically different (with 90% confidence) after accounting for 

data and model uncertainties. The 90% PIs for 1408 of the 1510 glasses (93.2%) in Figure 2.21 overlap 

the 45º line. Thus, the predicted ln(η1150) values are generally within prediction uncertainties of the 

measured ln(η1150) values. Ignoring the PIs, Figure 2.21 shows the PQMM has a tendency to underpredict 

ln(η1150) below approximately -0.5 and above approximately 3.5. In η1150 units of Pa·s, these values are 

0.6 and 33.1, respectively. These are well outside the constraint limits for η1150 of 4 to 6 Pa·s. Hence, the 

LMM in Table 2.18 predicts η1150 without substantive bias within the limiting range of 4 to 6 Pa·s. 
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Table 2.18.  Model Coefficients and Selected Statistics for a Partial Quadratic Mixture Model of the 

Natural Logarithm of Viscosity at 1150ºC Fit to All HLW and LAW Glasses 

Model Term 

Coefficient, 

ln(η1150, Pa·s) Statistic Value 

Al2O3 12.34002 # of glasses 1510 

B2O3 -8.136744 Average ln(Pa·s) 1.589 

CaO -7.540488 RMSE, ln(Pa·s) 0.2203 

Cr2O3 8.8445457 2R  0.9253 

F -18.217558 
2

AdjR  0.9243 

K2O -3.697342 
2

PredR  0.9208 

Li2O -34.400958 
2

ValR  0.9218 

MnO -5.91489   

Na2O -9.675683   

NiO 3.8137787   

P2O5 4.3595093   

SiO2 8.9079268   

SnO2 4.2538858   

SrO -5.932515   

TiO2 -3.20823   

UO3 1.9226832   

ZnO -2.798958   

ZrO2 6.5218116   

Others -0.660038   

B2O3×B2O3 24.99695   

Al2O3×Na2O 26.937827   

B2O3×Na2O -24.314018   
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Figure 2.21.  Predicted vs. Measured ln(η1150) Values for the Partial Quadratic Mixture Model Fit to Data 

from LAW and HLW Glasses 

2.5.5 Summary and Recommended Model for Viscosity at 1150ºC 

For each model, the signs (positive or negative) of the individual components were the same, but with 

different magnitudes. The following components had an increasing effect on viscosity: Al2O3, Cr2O3, 

LN2O3, NiO, P2O5, SiO2, SnO2, UO3, and ZrO2. The following components had a decreasing effect on 

viscosity: B2O3, CaO, F, K2O, Li2O, MnO, Na2O, SrO, TiO2, ZnO, and Others. Figure 2.22 shows a 

comparison of the LMM coefficients for the LAW-only (Section 3.4), HLW-only (Section 2.5.3), and 

HLW+LAW (Section 2.5.2) datasets. It is clear from the figure that the models generally have similar 

coefficients for each component. 

Although the combined HLW+LAW model has improved 2R  over the HLW-only model, the 2R  for 

HLW-only data calculated using the combined HLW+LAW model is actually lower than the HLW-only 

model (0.898 vs 0.903). In addition, the LAW-only model presented in Section 3.4 shows improved fit 

statistics compared to the combined HLW+LAW model given here. It is therefore recommended that 

Model 2 (HLW-only, LMM) be used for predicting ln(η1150) of HLW glasses. 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

. 
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Figure 2.22.  Comparison of LMM Coefficients for ln(η1150) Fit to LAW-Only, HLW-Only, and 

Combined HLW+LAW Datasets 

2.5.6 Future Plans 

Viscosity models will need to be developed for plant operation. While models predicting the ln(η1150) 

are sufficient for glass mass estimation, models that predict the temperature impact of viscosity will be 

useful for many plant operating applications (including meeting design constraints at 1100 and 1200°C). 

Therefore, as additional HLW glass property testing continues, the measurement of viscosity will 

continue to be performed over a range of temperatures. When plant operating models are needed, these 

viscosity data will be fitted to functions of both composition and temperature.  

 

2.6 Product Consistency Test 

The WTP contract (DOE 2000), the Waste Acceptance Product Specifications (DOE 1996), and the 

Waste Acceptance System Requirements Document (OCRWM 2008) all require the PCT responses of 

HLW glasses to meet the standard, with sufficient confidence, and be reported during production. The 

standard is that the PCT responses of B, Li, and Na, normalized to their concentration in the glass, be 

below those of the DWPF Environmental Assessment (EA) glass (Jantzen et al. 1993). 

The latest existing PCT model (Vienna et al. 2013) was evaluated to determine if it adequately 

predicted the PCT responses of new enhanced HLW glasses that were not used to fit the model. Vienna et 

al. (2013) clearly demonstrated that Al2O3 has a nonlinear impact on PCT response that was fitted using 

higher-order polynomial terms for Al2O3 (2nd, 3rd, and 4th order Al2O3 terms). This model more accurately 

estimated the PCT response when Al2O3 was at low (0 – 6 wt%), moderate (6 – 20 wt%) and high 

(> 20 wt%) concentrations that were used to fit the model. However, the model still did not accurately 

predict the PCT response for very high Al2O3 glasses ( > 25 wt%) that were not used to fit the model. This 

was expected because of the lack of data in the high and very high Al2O3 region. There are also other 

possible reasons for the poor prediction performance such as nonlinear blending effects of components 
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(i.e., curvature and interaction effects, which are partially confounded). Nonlinear blending effects of 

components are likely variable within the large composition space of this global model. In an attempt to 

find additional nonlinear effects a few different modeling approaches were examined besides the 

approach previously taken by Vienna et al. (2013). These approaches are discussed in Section 2.6.2. 

2.6.1 Product Consistency Test Data for HLW Glasses 

A dataset of 2758 HLW glasses was compiled to model the PCT response of quenched glasses over 

the composition region of interest for HLW at Hanford, see Table 2.19. The multivalent components were 

normalized to a consistent valance state (for example, FeO, Fe2O3, and Fe3O4 were converted to Fe2O3) 

after which the compositions (in mass fractions) were renormalized to a total of one to prepare them for 

modeling. 

Table 2.19.  Data for PCT Modeling of HLW Glasses 

# Data  Dataset/study Reference 

1283 Existing data 2013 model Vienna et al. 2013 

1302 SRNL dataset Taylor et al. 2004 

50 EWG study Chou et al. 2016 

31 Nepheline matrix study Kroll et al. 2016 

20 CCIM study Smith et al. 2014 

72 VSL studies Kot et al. 2015 

 

The database was trimmed down to 1712 data points by excluding glasses with extreme 

concentrations to achieve desirable component distributions (as an example, one or a few glasses with a 

concentration ≥ 12 wt% for a certain component are removed if all other glasses had a reasonable 

distribution up to 8 wt%). The resulting model validity range and ranges of PCT responses are given in 

Table 2.20. The components that were trimmed included F, BaO, CaO, Fe2O3, K2O, Li2O, MgO, MnO, 

Nd2O3, P2O5, SrO, SO3, ThO2, TiO2, UO3, ZnO, ZrO2, and “Others”. HLW glasses designed for Idaho 

waste streams (calcine and sodium bearing waste) were excluded based on historical LOF evidence for 

PCT models applicable to Hanford. Twenty one additional data points were removed from the dataset as 

outliers because they did not fit any of the models generated: 5 and 24 (Oksoy et al. 1994), PEI (Feng 

et al. 1996), NP-B-1 (Li et al. 1996), SRL-202-G and -P (Shade 1991), HLW98-27B, -31, -51R, -52R,  

-56, -58, -60, 62, -77, and -77CG (VSL-07R1240-04), SB5NEPH-25, -33, and -37 (SRNL WSRC-STI-

2007-00659), and EWG-OL-2463 (PNNL). Three additional data points were found to be outliers in the 

PCT-Li model and were excluded; DG-WV29 and 30 (Brouns et al. 1988a) and HLW98-94 (VSL-

07R1240-04). 
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Table 2.20.  PCT (g/m2), ln(PCT, g/m2), and Component (mass fraction) Ranges of the Dataset Used to 

Model the PCT Response of HLW Glasses 

Property or Component Min Max 

PCT-B (g/m2) 0.045 43.82 

PCT-Na (g/m2) 0.032 35.52 

ln(PCT-B, g/m2) -3.10 3.78 

ln(PCT-Na, g/m2) -3.44 3.57 

Al2O3 0.0000 0.3600 

B2O3 0.0392 0.2200 

F 0.0000 0.0083 

Fe2O3 0.0000 0.2065 

Li2O 0.0000 0.0747 

MgO 0.0000 0.0500 

Na2O 0.0389 0.2390 

SiO2 0.2000 0.6235 

TiO2 0.0000 0.0499 

ZnO 0.0000 0.0486 

ZrO2 0.0000 0.1300 

Components Combined into Others Component 

BaO 0.0000 0.0118 

CaO 0.0000 0.1001 

CdO 0.0000 0.0147 

K2O 0.0000 0.0723 

MnO 0.0000 0.0488 

Nd2O3 0.0000 0.0284 

P2O5 0.0000 0.0351 

SO3 0.0000 0.0143 

SrO 0.0000 0.0488 

ThO2 0.0000 0.0495 

UO3 0.0000 0.0431 

Sum of Others 0.0000 0.0498 

A scatterplot matrix of the 1712 glasses in Figure 2.23 graphically shows the scatter of the data for 

each component relative to other components that were modeled, as well as a histogram for each 

component. Highly correlated components hinder accurate regression analysis; namely, separation of 

individual component effects. The most correlated components were Al2O3 to SiO2 (-0.7409), followed by 

SiO2 to B2O3 (-0.4945), UO3 to B2O3 and B2O3 to Fe2O3 (-0.4736), and Al2O3 to Fe2O3 (-0.4682). It was 
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not surprising to see these were components negatively correlated because they were major components 

that were typically varied at the expense of one another to optimize key properties. However, the negative 

correlation between Al2O3 to SiO2 is large enough that model fitting methods may not be able to correctly 

separate the (i) linear effects of Al2O3 and SiO2 and (ii) nonlinear blending effects involving these two 

components. If this problem occurs, the resulting models should still have predictive ability 

commensurate with the goodness of fit of the model. However, it will be necessary to exercise caution in 

interpreting the effects of Al2O3 and SiO2 based on the fitted models. 

 

 

Figure 2.23.  Scatterplot Matrix and Histograms for Compositions (mass fractions) of 1712 HLW Glasses 
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2.6.2 Product Consistency Test Models for HLW Glasses 

Three modeling approaches were investigated to identify the best approach to model the PCT 

response over the large HLW glass composition space. With a large composition space the HLW glass 

structure changes significantly, possibly resulting in nonlinear blending effects (curvature and/or 

interactions, which are partially confounded) for some components. As previously mentioned, Vienna et 

al. (2013) found that Al2O3 has significant nonlinear curvature effects. It was possible that other major 

components such as SiO2, Alkali, B2O3, also have significant nonlinear blending effects. Models that were 

attempted included (i) global PQMMs in mass fraction oxides (like Vienna et al 2013), (ii) global 

nonlinear regression models with a non-bridging oxygen, Q3, Q4, N3 and N4 components along with 

mole fraction oxides for other major components of the glass, and (iii) separate LMMs or PQMMs for 

each of three subregions determined by the mass fraction of Al2O3. The results of these investigations 

determined that the approach taken by Vienna et al. (2013) provides the best overall model for the PCT 

response of HLW glasses. The other approaches attempted provide equally predictive models, however 

they are more difficult to implement. For example, significant calculations are required to determine the 

NBO, Q3, Q4, N3, and N4 values and the overall fits are similar to the global mixture model. The 

approach with three separate LMMs or PQMMs for subranges of Al2O3 concentrations result in 

discontinuities (i.e., abrupt changes in PCT response at the Al2O3 boundaries), making it difficult to 

implement this model for glass formulation. Because these alternative models were more complex and did 

not offer a significant improvement, they were abandoned and a global PQMM, using mass fraction 

oxides, was chosen like the one used by Vienna et al. (2013) 
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where 

 

 ln[PCT] = PCT response, either ln[PCT-B, g/m2], ln[PCT-Na, g/m2], or 

   ln[PCT-Li, g/m2] 

 bi  = coefficient for the ith HLW glass component, 

 bij = coefficient for the crossproduct of the ith and jth HLW glass 

components, where a squared term results when i = j 

 gi, gj = mass fraction of the ith and jth HLW glass components 

 
2 3

2Al Ob , 
2 3

3Al Ob , 
2 3

4Al Ob  = coefficients for higher-order Al2O3 mass fraction terms. 

During the modeling effort, both the model-fit and validation statistics improved with the higher-order 

Al2O3 terms, as was expected. Squared and crossproduct terms for other components were considered, but 

were not found to significantly improve the fit using the 2

PredR  metric (see Table 2.21). 2

PredR , 2

ValR , and 

validation residuals were used to decide which first-order terms and how many higher-order Al2O3 terms 

to include. 
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Table 2.21.  R2 and  for Various Numbers of Nonlinear Terms Included in the Model for ln[PCT-B] 

with HLW Glasses 

Nonlinear Term 

# of Nonlinear 

Terms Included R2 
2

PredR  R2 − 2

PredR  

None 0 0.6397 0.6292 0.0104 

(Al2O3)2 1 0.7823 0.7755 0.0068 

(Al2O3)3 2 0.7841 0.7754 0.0086 

(Al2O3)4 3 0.8117 0.8043 0.0073 

(B2O3)2 4 0.8226 0.8152 0.0074 

Al2O3×B2O3 5 0.8268 0.8186 0.0082 

Al2O3×MgO 6 0.8315 0.8232 0.0083 

Al2O3×Na2O 7 0.8345 0.8258 0.0087 

B2O3×Na2O 8 0.8381 0.8285 0.0096 

Al2O3×Li2O 9 0.8409 0.8304 0.0105 

Li2O×Na2O 10 0.8423 0.8316 0.0130 

(SiO2)2 11 0.8440 0.8329 0.0111 

B2O3×Li2O 12 0.8455 0.8337 0.0119 

(TiO2)2 13 0.8469 0.8350 0.0119 

SiO2×Fe2O3 14 0.8481 0.8357 0.0123 

B2O3×Fe2O3 15 0.8484 0.8354 0.0130 

(Na2O)2 16 0.8487 0.8351 0.0136 

 

The final model terms and fit statistics are summarized in Table 2.22. The 2R values range from 

0.7611 for the ln(PCT-Li) model to 0.8117 for the ln(PCT-Na) model. The data-splitting approach 

described in Section 1.4 was used to validate the models, with the average of the five 2

ValR values reported 

in Table 2.22. The 2

AdjR , 2

PredR  and 2

ValR  values are only slightly smaller than the 2R values for each of the 

three models in Table 2.22, which indicate no problems with overfitted models or highly influential data 

points. The RMSE values in ln(PCT, g/m2) units range from 0.4086 (PCT-Li) to 0.4781 (PCT-B). 

Because of the natural log transformation, these RMSE (standard deviation) values can be interpreted as 

%RSD values ranging from 40.86 to 47.81%. The experimental and measurement uncertainty in PCT 

responses are much smaller than this, which indicates that the models have some LOFs. This is likely a 

result of nonlinear blending effects (and possibly linear blending effects) of HLW components on PCT 

responses not being constant over the whole HLW glass composition region for which data were available 

and used for modeling. However, the models in Table 2.22 account for a high enough proportion of the 

variation of PCT responses in the data sets to be useful for the intended purposes of models in this report. 

2

PredR
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Table 2.22.  Summary of ln[PCT, g/m2] Response Model Coefficients and Fit Statistics for HLW Glasses 

Model Term 

ln[PCT-B] 

Coefficient 

ln[PCT-Na] 

Coefficient 

ln[PCT-Li] 

Coefficient 

Al2O3 -78.7836 -71.6595 -63.9519 

B2O3 11.8314 7.5035 9.7161 

CaO -4.2608 0.1647 -1.5756 

Fe2O3 -0.1367 -1.2469 -1.5209 

Li2O 26.6872 23.9739 21.5220 

MgO 22.2708 19.8924 16.0853 

Na2O 18.0511 20.0074 13.5925 

P2O5 -10.1336 -10.0559 -6.3595 

SiO2 -4.5104 -4.5442 -3.3104 

SO3 18.6514 17.5527 16.7191 

TiO2 -7.3229 -7.9836 -4.6582 

UO3 -8.6123 -7.9687 -6.6933 

ZnO -7.3998 -12.3124 -9.9948 

ZrO2 -8.8810 -9.7138 -8.0739 

Other 2.9184 3.9227 1.9047 

(Al2O3)2 638.3727 594.5920 523.1351 

(Al2O3)3 -2360.5420 -2330.9850 -1983.3580 

(Al2O3)4 3174.4550 3321.4927 2738.6894 

Summaries of Model Fits 

# Observations 1712 1710 1635 

Mean of ln[PCT] -0.5532 -0.6016 -0.5466 

RMSE 0.4781 0.4173 0.4086 

2R  0.7875 0.8117 0.7611 

2

AdjR  0.7854 0.8098 0.7586 

2

PredR  0.7805 0.8043 0.7516 

2

ValR  0.7786 0.8005 0.7500 
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The fits of the three models are shown graphically as overlaid predicted vs. measured plots in Figures 

2.24, 2.25, and 2.26. Generally speaking, there is slightly less scatter for the ln(PCT-Na) model than for 

the ln(PCT-B) model, and the ln(PCT-Li) model has slightly more scatter than either of the models. 

However, all of the models have very similar fits to their data. The models tend to underpredict ln(PCT) 

values: (i) less than approximately -2.6 (0.074 g/m2) and (ii) and between approximately 1.0 (2.72 g/m2) 

and 1.5 (4.48 g/m2). The models also tend to overpredict ln(PCT) values greater than approximately 2.2 

(9.03 g/m2). Because the limit for PCT responses is 4 g/m2, the above discussion indicates the models 

may underpredict PCT responses below the limit. However, as noted previously, the models can be used 

for the intended purpose, recognizing that there is some uncertainty in the model predictions. 

 

Figure 2.24.  Predicted vs. Measured Plot of ln(PCT-B) Values and 95% Prediction Intervals [ln(g/m2)] 

Using the Model in Table 2.22 Fit to HLW and LAW Glasses 

 

 

Figure 2.25.  Predicted vs. Measured Plot of ln(PCT-Na) Values and 95% Prediction Intervals [ln(g/m2)] 

Using the Model in Table 2.22 Fit to HLW and LAW Glasses 
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Figure 2.26.  Predicted vs. Measured Plot of ln(PCT-Li) Values and 95% Prediction Intervals [ln(g/m2)] 

Using the Model in Table 2.22 Fit to HLW and LAW Glasses 

The prediction profile plots in Figure 2.27 show the predicted impact of each component on the 

ln(PCT-B) responses based on individual changes (solid black lines) from the composition denoted by the 

red dashed lines in the plots. The blue dashed lines estimate the uncertainty in the prediction profiles as a 

function of concentration for each component. The uncertainty appears to be larger at higher Al2O3 

concentrations as would be expected, because less data are in this region to support the model fits. Note 

that Figure 2.27 is an example showing the model-predicted effects of varying each component from its 

value in a particular starting HLW glass composition.1 If the starting composition is altered from the 

current location (red dashed lines), the plots (solid black lines) all change somewhat relative to what is 

shown. The Al2O3 plot shows the combined impact of the second-, third-, and fourth-order terms. The 

effect of Al2O3 dramatically reduces the PCT response below 5 wt% Al2O3, moderately reduces the 

response between 5 and 26 wt% Al2O3, and dramatically increases the response above 28 wt% Al2O3. 

                                                      
1 Because the mass fractions of a glass composition sum to 1.0, it is not possible to vary a single component without 

offsetting changes in that component with changes in one or more other components. The prediction profile plots 

offset the changes in one component so as to keep all remaining components in the same relative proportions as the 

starting composition. 
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Figure 2.27.  Component Effects Profiles for the HLW PCT-Boron Model 

 

To validate the two models, the dataset was split into five groups and each group (20% of the data) was 

separately excluded from the model fitting. Then the excluded data were used to determine the 2

ValR . This 

resulted in five different 2

ValR  for the five separate groups. The mean of these five 2

ValR  is given in 

Table 2.22 for PCT models. Similar to previous models, the 2

ValR  for the two models were very close to 

the R2 of the models, indicating the models can predict future data well overall. Additionally, the 2

PredR  for 

each of the models was calculated and they also were close to the R2 providing further evidence the 

models will predict well overall. 

The PCT response models in Table 2.22 may have difficulty predicting the PCT response for HLW 

glasses with Al2O3 > 0.25 mass fraction, because of the small number of data points above that value. For 

this reason, the individual data points were examined by plotting the residuals of the validation models 

(80% datasets) versus the residuals of the fitted model (100% dataset) to identify poor fitting data points. 

Figure 2.28 shows the plots for the PCT-B and PCT-Na responses. Generally speaking, all of the data 

points have similar residuals versus validation residuals, resulting in an excellent linear relationship. 

However, three HLW glasses with Al2O3 > 0.36 mass fraction (C36-9, C36-20 and C36-21) significantly 

deviate from the linear relationship. These data points illustrate likelihood of less accurate and/or precise 

predictions of PCT responses for HLW glasses with Al2O3 concentrations > 0.36. As each of these data 
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points were removed during the validation process, the models no longer accurately predicted these 

glasses. The data points were also plotted in Figure 2.29 with |(R-RV)| from the ln(PCT-B) model versus 

Al2O3 concentration in glass, where R = residual and RV = validation residual. Figure 2.29 shows that (i) 

the vast majority of glasses are below an Al2O3 mass fraction of 0.20, (ii) there is clearly a lack of data 

above an Al2O3 mass fraction of 0.25, and (iii) the model stops predicting well above an Al2O3 mass 

fraction of 0.30. 

       

Figure 2.28.  Residuals vs. Validation Residuals: left ln(PCT-B), right ln(PCT-Na), in g/m2  

 

 

Figure 2.29.  |(R-RV)| for the ln(PCT-B) Model versus Al2O3 Concentration, where R = Residual and  

RV = Validation Residual 
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2.6.3 Future Plans 

Given the difficulty with pretreatment, for example Al-dissolution may not be available at the time, 

the waste received at the WTP HLW melters may be high Al2O3 for at least a portion of the mission. 

Hence, such glasses will be limited by high concentrations of Al2O3 that tends to promote crystallization 

of nepheline and spinel. It is vital to expand the glass dataset and PCT-composition models to higher 

Al2O3 concentrations to accommodate glass formulations for these high Al2O3 waste streams. The major 

improvement of the PCT models in this report relative to the 2013 models was the expansion to higher 

Al2O3 concentrations. The models now can predict glasses up to an Al2O3 mass fraction of 0.30. However, 

Figure 2.28 and Figure 2.29 point out the need for more high-Al2O3 glasses to improve the predictability 

in the high-Al2O3 region. A high-Al2O3 test matrix with systematic changes of major glass components is 

needed to provide enough data to adequately support refitting the PCT models with nonlinear Al2O3 

terms. Additionally, these new glasses should be designed for melting temperatures inside a joule heated 

melter (~ 1150°C). Current high-Al2O3 glasses above 0.30 mass fraction were designed for higher-

temperature melters. Also note, the data and models are not NQA-1 compliant and therefore are not 

intended to be used in quality-affecting activities or decisions. Additional fully NQA-1 compliant data 

and models are needed for implementation in plant process control. 

2.7 Zirconium-Containing Phases 

The recommended TL model for zirconium-containing phases is discussed in Section 2.7.1. Future 

plans are discussed in Section 2.7.2. 

2.7.1 Model for Liquidus Temperature of Zirconium-Containing Phases 

Enhanced glass formulation efforts have not yet focused on expanding the range of glasses containing 

significant concentrations of zirconium. Therefore, there is little basis for changing the 

zirconium-containing phase TL model or limit. It is recommended that the HTWOS 2009 model and 

constraints (Vienna et al. 2009) be used for the present (2016) enhanced glass formulations until 

additional data are developed and this model can be updated or validated for higher zirconium based 

glasses. 

This model is of the following form 

 
1

-Zr
q

L i i

i

T t g


  , (2.25) 

where TL is the liquidus temperature (in °C), ti is the coefficient of the ith HLW glass component, and gi is 

the mass fraction of the ith HLW glass component. This model (coefficients and select statistical 

parameters) is summarized in Table 2.23. Similar to the other models, the HLW glass composition is in 

mass fractions. This model was shown to validate well and be predictive as long as the glasses were 

sufficiently high in ZrO2 concentration (Vienna et al. 2009). The minimum 
2ZrOg for which the model is 

valid is 0.04 mass fraction (i.e., 4 wt%). This model should not be applied to glasses with lower 
2ZrOg , 

which are assumed not to form zirconium-containing phase. 
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The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

Table 2.23.  TL-Zr Linear Mixture Model Coefficients and Selected Fit Statistics 

Model Term Coefficient, °C Statistic Value 

Al2O3 3193.3628 # data points 69 

B2O3 651.39721 Mean 1079 

LN2O3
(a) 2156.4074 RMSE 26.2 

Li2O -1904.417 2R  0.9069 

Na2O -1947.711 2

AdjR  0.8962 

SrO 13011.909 2

PredR  0.8693 

ZrO2 3747.4241 2

ValR  0.8718 

Others 1259.2233   

(a) LN2O3 is the combination of Y2O3 and all the rare-earth oxides (which are all assumed 

to be in the trivalent state). 

 

2.7.2 Future Plans 

Several Hanford tank wastes will be rich in ZrO2, ThO2, and other components that tend to crystalized 

at high concentrations in glass. Additional crystal fraction-temperature-composition data for melts in 

these composition regions will be developed and used to fit models. If evaluations show sufficient 

impacts of these constraints on glass mass, then models for crystal accumulation will be developed as is 

currently underway for melts in the spinel primary phase field as described in Section 2.2. 

2.8 Phosphate Limits 

Section 2.8.1 discusses phosphate limits and a liquidus temperature model for phosphate-containing 

phases. Section 2.8.1 discusses future plans. 

2.8.1 Phosphate Constraints and a Liquidus Temperature Model for 
Phosphate-Containing Phases 

Vienna and Kim (2008) evaluated a broad range of high phosphate glasses (0.01 ≤ 
2 5P Og  ≤ 0.065). 

They found that the following rules effectively excluded glasses that showed deleterious effects of 

phosphorous on glass processing properties (scum formation that can lead to a frozen cold cap) and 

product-quality-related properties (potential amorphous phase separation that can increase PCT release): 

 , 0450
52

.g OP   (2.26) 
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 41056
52

 .gg OPCaO , and (2.27) 

 060
2

.g OLi  , (2.28) 

where gi is the mass fraction of the ith oxide in HLW glass. However, the model-validity constraints for 

some properties were found to be lower than the gP2O5 ≤ 0.045 limit because of a lack of data coverage at 

higher concentrations of P2O5. McCloy and Vienna (2010) further evaluated the impact of P2O5 

concentrations on various key properties of HLW glasses and recommended 

…that additional data with P2O5 concentrations extending to 4.5 wt% and above be 

collected and used to revise glass property models, including TL, T1%, PCT-Li, and NTCLP. 

While these data are being developed, there is a low risk of using the existing models, 

reported by Vienna et al. (2009), for glasses with phosphate concentrations up to 

4.5 wt%. 

Recent efforts by Gan et al. (2015) fabricated and measured the liquidus temperature of 86 glasses 

precipitating one of many phosphate containing phases. They fit a PQMM to the data of the form 

 

1
2

1 1 11
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



   , (2.29) 

where TL is the liquidus temperature (in °C), ti is the coefficient of the ith HLW glass component, gi is the 

mass fraction of the ith HLW glass component, and tij is the coefficient of the crossproduct of the ith and jth 

components (where a squared term results when i = j). Table 2.24 summarizes the coefficients and fit 

statistics for this model. 
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Table 2.24.  Partial Quadratic Mixture Model for TL of Phosphate Containing Phases in HLW Glasses 

(Gan et al. 2015) 

Model Term Coefficient Statistic Value 

Al2O3 1469.935 # data points 86 

CaO 2260.14 # model terms 12 

Li2O -2981.33 RMSE 46.83 

Na2O -538.42 2R  0.742 

P2O5 8588.551 
2

AdjR  0.704 

SiO2 1702.605 
2

PredR  0.619 

SrO -2317.75   

ZrO2 4034.096   

Others 458.373   

P2O5 × SiO2 -17591.4   

Li2O × SrO 123679.1   

Li2O × ZrO2 -83403.6   

The dataset used to fit this model was evaluated using the three constraints developed by Vienna and 

Kim (2008), as listed in Equations (2.26) to (2.28). It was found that the rules did exclude most of the 

glasses with TL > 1000°C and all but one glass with TL > 1050°C (HWI-Al-16). It was also found that the 

TL model would be less restrictive than the rules, particularly the CaO×P2O5 rule. Since that rule is in 

place primarily to avoid a frozen cold-cap (e.g., killer scum) rather than TL, we recommend the following: 

 adopt the Vienna and Kim (2008) phosphate limits for future system planning efforts and  

 conduct a study of additional high-phosphate (e.g., 0.01 ≤ 
2 5P Og  ≤ 0.065) glasses to refine 

the limits and ensure that phase-separated glasses and frozen cold-caps are avoided. 

2.8.2 Future Plans 

Additional data for HLW glasses rich in phosphate are needed. These data should include 

measurement of the current set of controlling properties and also scaled melter tests. The data for property 

measurements are needed simply to expand the region of model validity and for modeling. However, 

phosphate has the potential to significantly impact some properties such as immiscible liquid separation, 

crystallization of phosphate containing phases, cold cap melting, and salt accumulation. These latter two 

properties require significant scaled melter test data to understand and model. 
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2.9 Summary of Property Models and Component Concentration 
Limits for HLW Glasses 

Table 2.25 lists the commonly applied limits for HLW glass and melt properties. Table 2.25 also 

compares the limits and models used in the WTP formulation algorithm (Vienna and Kim 2008), the 

HTWOS model (Vienna et al. 2009), the updated HTWOS model (McCloy and Vienna 2010), and those 

recommended for enhanced HLW glass mass estimation. These constraints have evolved in consecutive 

steps. Constraints that changed from the previous step are highlighted in red in Table 2.25. 

With new models come new model-validity constraints on HLW glass compositions. Table 2.26 

summarizes the single component constraints, primarily due to model-validity ranges. These constraints 

have evolved over time in consecutive steps. Constraints that changed from the previous step are 

highlighted in red in Table 2.25. Between the HTWOS 2010 constraints and the enhanced constraints, 

there have been a number of changes (listed below). 

 Maximum 
32OAlg was increased to 0.30. This value represents the upper limit of data used in the 

nepheline, viscosity, PCT, and spinel models. The upper limits of 
32OAlg  for the SO3 solubility model 

was 0.24 and for the TL-Zr model was 0.172. Hence, those models will need to be extrapolated up to 

32OAlg of 0.30. This extrapolation is not expected to be a problem because the high-alumina wastes 

are typically limited by spinel and nepheline in the glass, not by the other properties. The PCT model 

has a maximum 
32OAlg  of 0.36 while the nepheline model has a maximum of 0.39. It is the viscosity 

and T2% models that drive the new proposed limit. 

 Maximum CaOg  was increased to 0.1. This value represents the validity limit for all HLW property 

models except for SO3 solubility, which has a maximum CaOg  of 0.0856. This slight extrapolation is 

not expected to make a significant impact. 

 Maximum 
32OCrg  was decreased to 0.03. Although the T2% and eskolaite constraints suggest a 

32OCrg of 0.045 is possible, the viscosity, PCT, and nepheline models are all valid only to 0.03. Only 

the SO3 solubility model will need to be extrapolated, which poses some risk because it is valid only 

up to 0.01.  

 Maximum MnOg  was increased to 0.08. This value represents the upper limit of data used in the 

T2%, SO3 solubility, and viscosity models. The nepheline model contained data with MnOg  up to 0.06, 

and the PCT model up to 0.05. That is, these models need to be extrapolated, which may not pose a 

high risk as spinel precipitation is the process of most concern with high MnO concentrations. 

 Maximum ONag
2

 was increased to 0.24. This value represents the range of data used in the PCT 

models and is below the maximum values in the T2%, nepheline, and viscosity models. The SO3 

solubility and TL-Zr models will need to be extrapolated from ONag
2

 values of 0.20 and 0.15, 

respectively. 

 The 
2SiOg  lower bound was decreased to 0.22. The lower limit is above the range of data used in 

the T2%, nepheline, viscosity, and PCT models, which are thought to be most impacted by SiO2. 
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Recent experience has suggested that for 
2SiOg  below 0.22, the composition region over which 

acceptable glasses are formed is relatively small (Chou et al. 2016). An additional constraint on 

combined
2 2 3

0.32SiO B Og g   (see Table 2.25) should also be used to reduce the likelihood of 

unacceptable glasses. The SO3 solubility and TL-Zr models will need to be extrapolated from 
2SiOg

values of 0.27 and 0.397, respectively. 

 Maximum 
2TiOg  was increased to 0.05. This value represents the upper limit of data used in the T2% 

and PCT models, which are most likely to be impacted by TiO2. The nepheline, SO3 solubility, and 

viscosity models will need to be extrapolated from 
2TiOg values of 0.0212, 0.01, and 0.0399, 

respectively. 

The revised set of constraints in Tables 2.25 and 2.26, and the enhanced HLW glass formulation 

models recommended in Section 2, are proposed for assessing their potential impacts on the likely mass 

of HLW glass to be produced at Hanford. 
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Table 2.25.  Comparison of HLW Melt and Glass Constraints Used in HLW Glass Mass Estimation 

 WTP HTWOS 2009 HTWOS 2010 Enhanced-2013 Enhanced-2016 

 Model Value Model Value Model Value Model Value Model Value 

PCT-B WTP <16.7 g/L(b) 2009 rpt <4 g/m2 2009 rpt <4 g/m2 

2013 PQMM <4 g/m2 

New PCT-B <4 g/m2 

PCT-Na WTP <13.35 g/L 2009 rpt <4 g/m2 2009 rpt <4 g/m2 New PCT-Na <4 g/m2 

PCT-Li WTP <9.57 g/L 2009 rpt <4 g/m2 2009 rpt <4 g/m2 New PCT-Li <4 g/m2 

Nepheline NSi >0.62 NSi >0.62 
NSi >0.62 

2013 NN <0.27 prob New LR-SM <0.3 prob 
OB <0.575 

TCLP (a) WTP <0.48 mg/L n/a n/a n/a n/a n/a n/a n/a n/a 

T1% Spinel WTP <950°C 2009 rpt <950°C 2009 rpt <950°C 2013 cT LMM  2 vol%, 950°C New T2% PQMM 950°C 

Nonspinel 

Al+Th+Zr <18% 
TL-Zr, 

2009 rpt 

<1050°C if 

ZrO2>4% 

TL-Zr, 2009 

rpt 

<1050°C if 

ZrO2>4% 

TL-Zr,  

2009 rpt 

<1050°C if 

ZrO2>4% 

TL-Zr,  

2009 rpt 

<1050°C if 

ZrO2>4% 
Th+Zr <13% 

Zr <9.5% 

Low η1150 WTP >2 Pa·s 2009 rpt >4 Pa·s 2009 rpt >4 Pa·s 2009 rpt >4 Pa·s New ln[η1150] PQMM >4 Pa·s 

High η 1150 WTP <8 Pa·s 2009 rpt <6 Pa·s 2009 rpt <6 Pa·s 2009 rpt <6 Pa·s New ln[η1150] PQMM <6 Pa·s 

High η 1100 WTP <15 Pa·s n/a n/a n/a n/a n/a n/a n/a n/a 

Low ε1100 WTP >0.1 S/cm n/a n/a n/a n/a n/a n/a n/a n/a 

High ε1200 WTP <0.7 S/cm n/a n/a n/a n/a n/a n/a n/a n/a 

CaO×P2O5
(c) CaO×P2O5 <6.5 wt%2 CaO×P2O5 <6.5 wt%2 CaO×P2O5 <6.5 wt%2 CaO×P2O5 <6.5 wt%2 CaO×P2O5 <6.5 wt%2 

Salt SO3 <0.44 wt% SO3 <0.5 wt% SO3 <0.6 wt% 2013 SO3 PQMM SO3 limit  New SO3 PQMM SO3 limit 

Noble Metal Pd+Ru+Rh <0.25 wt% Pd+Ru+Rh <0.25 wt% Pd+Ru+Rh <0.25 wt% Pd+Ru+Rh <0.25 wt% Pd+Ru+Rh <0.25 wt% 

Glass Former n/a n/a n/a n/a n/a n/a n/a n/a SiO2+B2O3 >32 wt% 

(a) TCLP = Toxicity Characteristic Leaching Procedure. This constraint is only active for one waste tank with high CdO concentrations and it has been repeatedly shown not to 

significantly influence glass masses. 

(b)  PCT responses may be normalized to component concentration in glass and reported in units of gglass/Lsolution or normalized to both component concentration in glass and 

glass surface area and reported in units of gglass/m2
glass surface. If the glass has a density of roughly 2.65 g/cm3 (as these glasses do) and a surface area to solution volume of 

2000 m-1 is used for the test (as it was) then 1 g/L is equivalent to 0.5 g/m2. 

 Note: Red font denotes entries that changed since the previous iteration. 

(c)  The other two phosphate limits, gP2O5 ≤ 0.045 and gLi2O ≤ 0.06, discussed in Section 2.8 were not included – they do not limit waste loading because the model validity 

constraints have lower concentration limits. 
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Table 2.26.  Summary of Single Component Model-Validity Constraints (mass fractions) for HLW 

Glasses 

Comp- 

onent 

WTP(a) HTWOS 2009 HTWOS 2010 Enhanced-2013 Enhanced-2016 

Min Max Min Max Min Max Min Max Min Max 

Al2O3 
0.018 

[0.019] 

0.13 

[0.085] 
0.019 0.20 0.019 0.20 0.019 0.29 0.019 0.30 

B2O3 0.045 0.15 0.04 0.20 0.04 0.20 0.04 0.20 0.04 0.22 

Bi2O3 0 In Others 0 0.032 0 0.07 0 0.07 0 0.07 

CaO 0 0.01 0 0.07 0 0.07 0 0.07 0 0.10 

CdO 0 
0.001 

[0.016] 
0 0.015 0 0.015 0 0.015 0 0.015 

Cr2O3 0 
0.006 

[0.005] 
0 0.012 0 0.012 0 0.04 0 0.03 

F 0 0.0044 0 0.02 0 0.02 0 0.025 0 0.025 

Fe2O3 
0.014 

[0.019] 

0.15 

[0.14] 
0.04 0.174 0.04 0.174 0 0.20 0 0.20 

K2O 0 0.016 0 0.06 0 0.06 0 0.06 0 0.06 

Li2O 
0 

[0.019] 
0.06 0 0.06 0 0.06 0 0.06 0 0.06 

MgO 0 0.012 0 0.06 0 0.06 0 0.06 0 0.06 

MnO 0 
0.08 

[0.07] 
0 0.07 0 0.07 0 0.07 0 0.08 

Na2O 0.039 
0.20 

[0.15] 
0.041 0.214 0.041 0.214 0.041 0.23 0.041 0.24 

NiO 0 0.01 0 0.03 0 0.03 0 0.03 0 0.03 

P2O5 0 0.045 0 0.025 0 0.045 0 0.045 0 0.045 

PbO 0 0.01 0 - 0 - 0 - 0 - 

SiO2 0.35 0.53 0.303 0.53 0.303 0.53 0.303 0.53 0.22 0.53 

SrO 0 0.10 0 0.101 0 0.101 0 0.101 0 0.101 

ThO2 0 0.06 0 0.06 0 0.06 0 0.06 0 0.06 

TiO2 0 0.01 0 0.031 0 0.031 0 0.031 0 0.05 

UO3 0 
0.065 

[0.063] 
0 0.063 0 0.063 0 0.063 0 0.063 

ZnO 0 0.04 0 0.04 0 0.04 0 0.04 0 0.04 

ZrO2 0 
0.096 

[0.091] 
0 0.135 0 0.135 0 0.135 0 0.135 

(a) WTP model-validity constraints are different depending on whether the Toxicity Characteristic Leaching Procedure 

(TCLP) model is used. TCLP model-validity constraints are given in square brackets for those components with 
differences. This model is used for glasses with gCdO > 0.001. 

Note: Red font denotes entries that changed since the previous iteration. 
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2.10 Example Calculations for HLW Glasses 

Two examples are given for use in determining if application and coding of the HLW models are 

correct. To make these examples, two hypothetical wastes, based loosely on real projected Hanford HLW 

feeds, were used in glass optimization calculations. The glass formulations were optimized for maximum 

waste loading while maintaining component concentrations and property values within the limits 

described in Section 2.9. Current glass forming chemicals include mined minerals (kyanite, borax, 

wollastonite, olivine, silica, zincite, and zircon) and processed chemicals (boric acid, hematite, sodium 

carbonate, lithium carbonate, rutile, and sucrose) which are sources of Al2O3, B2O3, CaO, Fe2O3, Li2O, 

MgO, Na2O, SiO2, ZnO, and ZrO2.  For the purposes of example calculations the pure oxides (without 

impurities) of Al2O3, B2O3, CaO, Li2O, MgO, Na2O, SiO2, V2O5, ZnO, and ZrO2 were selected (V2O5 

replacing Fe2O3) and their concentrations adjusted along with waste loading until a maximum waste 

loading was obtained. Only B2O3, Li2O, Na2O, and SiO2 were selected for inclusion. The details are 

summarized in Table 2.27. 

Example 1 is a high-alumina waste. It was optimized until it met five constraints with five additives 

(all the degrees of freedom being used up). The limits obtained were CaO and SiO2 concentrations, upper 

viscosity, nepheline probability, and PCT-Na responses. The additives were B2O3, CaO, Li2O, SiO2, and 

ZrO2. The resulting waste loading of 45.30 wt% was obtained. Note that the predicted TL-Zr value for the 

glass is above the 1050ºC limit, but, that limit is only enforced with 
2ZrOg  > 0.04 in the glass. 

Example 2 is a high-iron waste. It was optimized until it met three constraints with three additives (all 

the degrees of freedom being used up). The limits obtained were lower viscosity, T2%, and nepheline 

probability. The additives were B2O3, Na2O, and SiO2. The resulting waste loading of 54.19 wt% was 

obtained. 
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Table 2.27.  Summary of Example Calculation Results. All compositions are in mass fractions 

Oxide 

Limits Example 1 Example 2 

Lower Upper Waste Add Glass Waste Add Glass 

Al2O3 0.019 0.30 0.60 - 0.2718 0.17 - 0.0921 

B2O3 0.04 0.22 - 0.3482 0.1904 - 0.1888 0.0865 

Bi2O3 0 0.07 0.02 - 0.0091 0.02 - 0.0108 

CaO 0 0.10 0.01 0.1745 0.1000 0.03 - 0.0163 

Cr2O3 0 0.03 0.02 - 0.0091 0.01 - 0.0054 

Fe2O3 0 0.20 0.04 - 0.0181 0.30 - 0.1626 

Li2O 0 0.06 - 0.0427 0.0233 - 0.00 0.00 

MnO 0 0.08 0.02 - 0.0091 0.03 - 0.0163 

Na2O 0.041 0.24 0.19 - 0.0861 0.22 0.1900 0.2062 

NiO 0 0.03 0.005 - 0.0023 0.022 - 0.0108 

P2O5 0 0.045 0.01 - 0.0045 0.015 - 0.0081 

SiO2 0.22 0.53 0.045 0.3649 0.2200 0.08 0.6212 0.3279 

UO3 0 0.063 0.04 - 0.0181 0.065 - 0.00 

ZrO2 0 0.135 - 0.0697 0.0381 0.04 - 0.0217 

Loading (wt%) - - 45.30 54.70 0.4530 54.19 45.81  

Property         

η1150, Pa·s 4 6 - - 6.00 - - 4.00 

TL-Zrs, °C - 1050 - - 1414 - - 777 

CaO×P2O5, wt%2 - 6.5 - - 4.53 - - 1.32 

T2%, Spinel, °C - 950 - - 944 - - 950 

Nepheline Probability - 0.3 - - 0.30 - - 0.30 

SO3 limit, wt% - 
3SOw  - - 1.589 - - 0.714 

PCT-B, g/m2 - 4 - - 2.912 - - 0.984 

PCT-Na, g/m2 - 4 - - 4.000 - - 1.075 

PCT-Li, g/m2 - 4 - - 3.095 - - 0.723 

Note: Values in boldface denote the limiting factors for formulating the HLW glass. 
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3.0 Low-Activity Waste Glass Models and Constraints 

Section 3.0 describes the models to be used in estimating LAW glass properties including: sulfur 

limits (Section 3.1), PCT response (Section 3.2), VHT response (Section 3.3), viscosity (Section 3.4), 

glass formulation approach (Section 3.5), and other property models and component concentration limits 

(Section 3.6), followed by example calculations in Section 3.7. 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

3.1 Sulfur Tolerance 

Salt accumulation in the melter will increase the corrosion rates of melter components in contact with 

the salt, increase volatility, and potentially supersaturate the melt with salt that will separate into a water-

soluble phase when the glass is canister-cooled. Therefore, constraints must be put in place to avoid the 

accumulation of salt in the melter. SO3 tolerance models were developed for HLW glasses in Section 2.3. 

A previous study developed a similar model for LAW glasses (Vienna et al. 2014). The model from this 

previous study is briefly summarized in Section 3.1.1 and is recommended for use in enhanced LAW 

glass formulation. Section 3.1.2 discusses future plans. 

3.1.1 SO3 Solubility Model for LAW Glasses 

Crucible-scale sulfur solubility for 253 LAW glasses was measured by super-saturation and bubbling 

methods. In addition, the maximum sulfur tolerance was measured for 13 base glass compositions in 

scaled melter tests. The crucible-scale bubbling method results were found to correlate directly to the 

melter data while there was a systematic offset in the crucible super-saturation data. Therefore, the super-

saturation data was adjusted by the fixed offset of 0.2115 wt% SO3 and combined with the crucible-scale 

bubbling data to form the modeling dataset. An empirical PQMM was fitted to the data with the form 
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where 
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Limit

SOw  = sulfur tolerance limit (in wt%) 

 si = coefficient of the ith component 

 ni = mass fraction of the ith component normalized after removing SO3, so that 

   n1 + … + nq=Others = 1.0 

 sij = coefficient of the product of the ith and jth components (note that i = j for a squared 

term). 

The coefficients determined for the model are given in Table 3.1 along with the single component 

concentration ranges of the data. 
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Since the development of the LAW SO3 tolerance model by Vienna et al. (2014), a study was 

performed by VSL to better understand the impacts of SO3, Cl, Cr2O3, and P2O5 on salt accumulation 

(Matlack et al. 2014). A total of 29 melter tests were performed using four base glasses (ORPLE12, 

ORPLD6, ORPLA38-1, and ORPLG27) with systematic variations in SO3, Cl, Cr2O3, and P2O5. For each 

test the presence (15 tests) or absence (14 tests) of salt was determined. The melter results were used to 

validate the model in Table 3.1. Figure 3.1 compares the predicted SO3 solubility with 90% PIs to the 

measured SO3 concentrations in the LAW glasses. If a 90% PI overlaps the 45º line, then the predicted 

SO3 solubility and measured SO3 values are not statistically different (with 90% confidence) after 

accounting for data and model uncertainties. Figure 3.1 uses two symbols to show the presence or absence 

of salt in the melter tests. 

Table 3.1.  SO3 Solubility Partial Quadratic Mixture Model Coefficients and Component Validity Ranges 

(mass fractions) for LAW Glasses 

Model Term 

 Concentration Range 

Coefficient Min Max 

Al2O3 -2.0919 0.0553 0.1395 

B2O3 3.044075 0.0398 0.1606 

CaO 4.442289 0 0.1294 

Cl -22.6535 0 0.0117 

Cr2O3 -13.1414 0.0001 0.01 

K2O 0.615785 0.0011 0.0834 

Li2O 2.473926 0 0.0586 

Na2O 2.897209 0.0248 0.2605 

P2O5 4.606083 0 0.0308 

SiO2 0.240729 0.3005 0.5064 

SnO2 -1.77533 0 0.0501 

V2O5 7.534548 0 0.0439 

ZrO2 -1.87192 0.0262 0.0902 

Others -0.28027 0.0253 0.1777 

(Li2O)2 260.203   

# data points 253   

Mean value, SO3 wt% 1.004   

RMSE 0.115   

2R  0.891   

2

AdjR  0.885   

2

PredR  0.874   

2

ValR  0.869   
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When 90% PIs were applied, SO3 solubility was overpredicted for one glass (1.473 vs. 1.5 wt% SO3) 

and underpredicted for one glass (0.900 vs. 0.903 wt% SO3). This gives a 2 out of 29 misclassification 

rate (~7%) which is quite reasonable for a 90% PI (10% anticipated), which further validates the model. 

The SO3 solubility model by Vienna et al. (2014), given in Table 3.1, is recommended for use in 

enhanced LAW glass formulation. 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

 

Figure 3.1.  Predicted vs. Measured Plot of SO3 Solubility Values with 90% Prediction Intervals (wt%) 

for Melter Test Data on 29 LAW Glasses Used to Validate the Model by Vienna et al. (2014) 

3.1.2 Sulfur Retention in the Melter 

 Estimates of sulfur retention in the melter for WTP baseline formulations showed increasing loss with 

increasing target 
3SOw  as shown in Figure 3.2.  Extrapolation of that trend to 1.5 wt% SO3 (or higher) 

would suggest significant loss and associated recycle concentrations of SO3 in the melter feed.  This 

prompted an examination of the retention of SO3 for the advanced formulations to see if this reported 

trend continues at higher SO3 concentrations.  Data were gathered from those reported in Vienna et al. 

2014 (12 tests, none with accumulated salt) and Matlack et al. 2014 (29 tests, 15 with salt accumulated). 

The target (feed) concentration of SO3 is compared to the analyzed (glass) concentration in Figure 3.3.  

The effect of 
3SOw  on sulfur retention is not as dramatic as would be predicted by the trend in Jenkins et 

al. (2013) as shown in Figure 3.4.  All retention values for these advanced glasses are above 76% and the 

general trend suggest a retention near 93%, although there is a slight downward trend as shown in Figure 

3.4.  The presence of accumulated salts in the melter tests from Matlack et al. (2014) do not appear to 

significantly alter the fraction of SO3 retained in the glass, although taken to the extreme that trend 

couldn’t continue to higher target 
3SOw . It is recommended that the sulfur retention used in system 

planning models be examined for consistency with these results. 
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Figure 3.2.  SO3 retention (wt%) as a Function of Target 
3SOw  for WTP Baseline Formulations  

(Figure 3.1-3 from Jenkins et al. 2013) 

 

 

Figure 3.3.  Comparison of Target and Final Measured 
3SOw  from Melter Tests Performed with 

Advanced Glass Formulations at VSL, in wt%  
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Figure 3.4.  Calculated SO3 Retention in the Melt as a Function of Target 
3SOw  

 

3.1.3 Future Plans 
 

Additional crucible and melter scale testing of sulfate solubility (and tolerance) is needed to resolve 

issues related to impacts of volatiles (e.g., Cl, F, Cr, NO3) on sulfate salt accumulation and also the 

optimization of Cr2O3 content in the melts. As data are collected, new models will be fitted for use in 

WTP operations.  
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3.2 Product Consistency Test Response 

The WTP contract requires glasses to have 7-d normalized PCT-Na, -B, and -Si responses below 

2 g/m2 (equivalent to 4 g/L) (DOE 2000): 

2.2.2.17.2 Product Consistency Test: The normalized mass loss of sodium, silicon, and 

boron shall be measured using a seven day product consistency test run at 90°C as 

defined in ASTM C1285-98. The test shall be conducted with a glass to water ratio of 

1 gram of glass (-100 to +200 mesh) per 10 milliliters of water. The normalized mass loss 

shall be less than 2.0 grams/m2. Qualification testing shall include glass samples 

subjected to representative waste form cooling curves. The product consistency test shall 

be conducted on waste form samples that are statistically representative of the production 

glass. 

Section 3.2.1 discusses the data compiled to fit a model for PCT responses, as well as the model that 

was developed. Section 3.2.2 discusses future plans. 

3.2.1 Data and Model for PCT Response of LAW Glasses 

A dataset of LAW glasses was compiled to model their PCT responses. These data include crucible-

scale tests with simulants, melter tests with simulants, and crucible-scale tests with actual LAW. Table 

3.2 summarizes the PCT dataset of 804 glasses compiled for modeling and model validation. The 

database excluded 38 glasses out of 842 initially collected: four VSL-WTP glasses with outlying single 

component concentrations, one HLP and 23 ICV glasses with B2O3 concentration below 4 wt%, and 10 

highly crystallized HLP glasses. It should be noted that the current VSL-WTP subset in Table 3.2 

includes newly added glasses that were previously excluded from the WTP Baseline model dataset 

(Piepel et al. 2007) because of lack of measured SO3 concentration. Initial modeling efforts with all 804 

glasses suggested that there are significant biases in PCT responses between glasses designed for WTP 

operation and those formulated for other purposes. Therefore only the first four subsets (VSL-WTP, VSL-

ORP-A, VSL-ORP-M, and PNNL-M1) specifically designed for WTP containing a total of 581 glasses 

were used for model development. The remaining 223 glasses were reserved for model validation. 

As discussed in a previous report (Vienna et al. 2013), the PCT normalized silicon responses fall well 

below those of sodium and boron while generally sodium and boron responses are nearly the same. 

Therefore, there is no need to model NL(Si), and the models for NL(B) and NL(Na) should be developed 

separately and used to control LAW glass composition during operation. Rather than fit NL(B) and 

NL(Na) separately, it was decided to average the natural logarithms (ln) of the two values for each glass 

and use the average {(ln[NL(B)] + ln[NL(Na)])}/2 as a measure of the PCT response of LAW glasses.  

This quantity is denoted ln(NL) subsequently.  Although not intended to replace individual NL(B) and 

NL(Na) models for plant operation, the ln[NL] model will give a reasonable constraint to estimate waste 

loading. 
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Table 3.2.  Summary of PCT Dataset for LAW Glasses 

Dataset(a) 

# of Data 

Points Reference Comments 

VSL-WTP 330 Muller et al. 2001 

Muller and Pegg 2003a 

Muller and Pegg 2003b 

Muller and Pegg 2003c 

Rielley et al. 2004 

Muller et al. 2004 

Muller et al. 2005 

Muller et al. 2006a 

Muller et al. 2006b 

Matlack et al. 2006c 

Piepel et al. 2007 

Data used to develop WTP LAW glass models and 

additional glasses that were excluded in the original 

WTP models (see text)  

VSL-ORP-A 174 Muller et al. 2012 Enhanced glass formulations with high waste 

loading (actively designed) 

VSL-ORP-M 41 Muller et al. 2014 Enhanced glass formulations with high waste 

loading (test matrix) 

PNNL-M 36 Russell et al. 2016(b)  Enhanced glass formulations with high waste 

loading (test matrix) 

HLP 62 Vienna et al. 2001a Study glasses used to set the contract limits for 

LAW glass performance 

ICV 15 Kim et al. 2003 Glasses formulated to demonstrate in-container 

vitrification technology  

POSTECH 146 Farooqi and Hrma 2016(c) Simple 7-component (Al2O3, B2O3, CaO, Li2O, 

Na2O, SiO2, and ZrO2) glasses designed to 

systematically study component effects on PCT of 

LAW glasses 

(a) HLP: Hanford LAW product acceptance, ICV: in-container vitrification, POSTECH: Pohang University of Science and 
Technology 

(b) Russell RL et al. 2016 (Draft). Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase I. 

EWG-RPT-009, Pacific Northwest National Laboratory, Richland, Washington. 

(c) Farooqi, RU and P Hrma. 2016 (draft). Effect of Na2O on aqueous dissolution of nuclear waste glasses. In preparation. 

Glasses with high-alkali content tend to challenge the PCT constraint. Figure 3.5 plots PCT 

normalized responses of 581 glasses for model development as a function of a NAlk, defined as Na2O + 

0.66K2O + 2.07 Li2O (mass fraction). Figure 3.5 shows a general trend of increasing PCT response with 

increasing NAlk. However, there are four glasses (marked by circles in Figure 3.5) that are outliers to the 

general trend. These four glasses were excluded and the resulting 577 glasses were used for model 

development. 
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Figure 3.5.  PCT Normalized Responses versus NAlk (Na2O + 0.66K2O + 2.07 Li2O in mass fraction) of 

LAW Glasses Reserved for Model Development (four glasses marked in circles were 

excluded from modeling) 

Evaluation of LAW glasses for modeling identified 15 components that have reasonable 

concentration distributions for consideration as model components: Al2O3, B2O3, CaO, Fe2O3, K2O, Li2O, 

MgO, Na2O, P2O5, SiO2, SnO2, TiO2, V2O5, ZnO, and ZrO2. The sum of concentrations of all other 

components were combined into an Others component resulting in 16 candidate model components. It 

should be noted that if a reduced number of components is used for modeling, the new Others included 

those components that were removed as separate model terms. Initial modeling efforts used the LMM 
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to model the natural logarithm of NL (g/L) as a function of LAW glass composition, where 

q = number of LAW glass components in the model 

bi = model coefficient for the ith LAW glass component 

gi = mass fraction of the ith LAW glass component, so that g1 + … + gq=Others = 1.0. 

This model was used to identify the LAW glass components that had significant effects on PCT response. 

Out of 16 components (including Others) evaluated as PCT model components, a step-by-step 

removal of components that did not have significant effects on PCT response was performed. This 

identified three components that were removed from modeling without affecting the performance of the 
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model, Fe2O3, V2O5, and ZnO. Removing the three components from modeling of 577 glasses resulted in 

negligible changes of R2 (from 0.752 to 0.751) and RMSE statistics (0.3837 to 0.3830). The concentration 

ranges for the final PCT model components are listed in Table 3.3 and the scatterplot matrix is in Figure 

3.6. 

Table 3.3.  Component Concentration Ranges (in Mass Fraction) for PCT Model Data on LAW Glasses 

Component Min Max 

Al2O3 0.035 0.1476 

B2O3 0.05 0.1515 

CaO 0 0.1281 

K2O 0 0.0591 

Li2O 0 0.0633 

MgO 0 0.0994 

Na2O 0.0245 0.2601 

P2O5 0 0.0475 

SiO2 0.2983 0.5591 

SnO2 0 0.0503 

TiO2 0 0.0399 

ZrO2 0 0.0675 

Others(a) 0 0.1754 

Limits on Selected Components Included in Others 

Fe2O3 0 0.10 

V2O5 0 0.04 

ZnO 0 0.0581 

(a) Sum of all components not specifically listed above. 
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Figure 3.6.  Scatterplot Matrix of PCT Model Data for LAW Glasses 

As with the previous efforts (Piepel et al. 2007, Vienna et al. 2009, Muller et al. 2014) to model PCT 

responses, PQMMs were considered in an attempt to obtain a better fit to the data than provided by the 

LMM. The PQMM is given by 
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where 

  q = number of LAW glass components in the model 

 bi = model coefficient for the ith LAW glass component 

 gi = mass fraction of the ith LAW glass component, so that g1 + … + gq=Others = 1.0 
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 bij = coefficient of the product of the ith and jth components (note that i = j for a squared term). 

In general, adding quadratic terms improves the model-fit statistics, but too many quadratic terms 

increase the probability of overfitting and can result in poor model validation statistics. To maximize the 

model-fit statistics while minimizing the risk of overfitting, the following approach was applied. 

Candidate models were developed for different total number of model terms (13 linear terms plus selected 

quadratic terms). Various methods for selecting model terms were used to determine the quadratic terms 

that resulted in the best model-fit statistics. Validation statistics for all candidate models were calculated 

based on two separate methods: (i) using the subset of glasses reserved for model validation and (ii) using 

a data-splitting approach. Out of 223 glasses reserved for model validation (HLP, ICV, and POSTECH 

subsets), 129 glass compositions were within the component ranges of the glasses for model development 

(Table 3.3) and were used for validation. For the data-splitting approach, all 577 points in the modeling 

dataset were sorted by their ln(NL) values and then the data-splitting approach described in Section 1.4 

was implemented. 

The model-fit and validation statistics as a function of number of model terms are shown in Figure 

3.7. The model-fit and validation statistics continuously improve as the number of model terms increases 

(i.e., R2 increases and RMSE decreases). However, the model validation statistics initially improve, but 

reach a maximum (for R2) or a minimum (RMSE) and further increasing the number of quadratic terms 

does not improve these statistics. The 21-term model (13 linear terms, 8 quadratic terms) has the best 

validation statistics for 129 validation glasses. The 22-term model (13 linear terms, 9 quadratic terms) is 

best based on data-splitting validation statistics. The 22-term model was selected taking into consideration 

that data-splitting validation approach is likely more reliable than the validation with 129 glasses that 

showed biased PCT results. 

Table 3.4 summarizes the final 22-term PQMM and the model-fit statistics for the PCT ln(NL) 

response of LAW glasses. The 
2R = 0.8411 indicates the model accounts for over 84% of the variation in 

ln(NL) responses. The 2

AdjR  and 2

PredR  values are only slightly smaller than the 
2R  value, which indicates, 

respectively, that (i) the model does not contain many statistically nonsignificant terms, and (ii) there are 

no highly influential data points. The subset data-splitting validation 
2

ValR  value of 0.823 is slightly below 

the model fit R2 so we can anticipate that roughly 82% of the variation in new data in the appropriate 

composition region.  The 2
129ValR  = 0.5494 value indicates that the model did not account for as high a 

fraction of the variation in the ln(NL) responses for the separate validation set of 129 LAW glasses from 

other studies. However, as discussed previously, these glasses were not formulated for WTP, and previous 

work has shown that the PCT responses are biased compared to PCT responses of LAW glasses designed 

for WTP.   

The RMSE = 0.3086 in Table 3.4 is an estimate of the experimental and measurement standard 

deviation [in ln(NL, g/L) units] if the model adequately fits the data. The RMSE corresponds to a 

%RSD = 30.86 value for measured PCT (g/L) responses. This %RSD value is significantly larger than the 

experimental and measurement uncertainties in determining PCT responses of LAW glasses.  Hence, the 

RMSE value indicates the model has some LOF. 
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Figure 3.7.  Model and Validation Statistics for PCT ln(NL) Models on LAW Glasses versus Number of 
Model Terms. Notation in parenthesis: “model” for model-fit, “val-split” for data-splitting 

validation, and “val-129” for 129 validation glasses. Left y-axes are for “model” and “val-

split” statistics and right for “val-129” statistics. 
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Table 3.4.  PCT Response Model Coefficients and Fit Statistics for the 22-Term Partial Quadratic Mixture 

Model for LAW Glasses, ln(NL, g/L) 

Model Term Coefficient Statistic Value 

Al2O3 -4.7932 # of data points 577 

B2O3 -31.2612 Mean of response, ln(g/L) -0.0313 

CaO 3.8636 RMSE 0.3086 

K2O -13.5298 2R  0.8411 

Li2O -16.6826 
2

AdjR  0.8351 

MgO 21.4263 
2

PredR  0.8217 

Na2O -25.2993 2
129ValR  0.5494 

P2O5 -5.1242 
2

ValR  0.8230 

SiO2 0.3093   

SnO2 -4.4031   

TiO2 -1.7604   

ZrO2 3.8966   

Others 6.2375   

B2O3×B2O3 157.3873   

K2O×K2O 201.4790   

Al2O3×Li2O -255.4098   

CaO×Li2O -128.0130   

Li2O×Li2O 474.3082   

B2O3×Na2O 81.1682   

K2O×Na2O 120.3814   

Li2O×Na2O 391.5456   

Na2O×Na2O 97.6643   
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Figure 3.8 shows a plot of the predicted vs. measured ln(PCT NL, g/L) values with 95% PIs for the 

577 LAW glasses used to fit the PQMM in Table 3.4. If a 95% PI overlaps the 45º line, then the predicted 

and measured values are not statistically different (with 95% confidence) after accounting for data and 

model uncertainties.  The 95% PIs for 548 of the 577 glasses (95%) in Figure 3.8 overlap the 45º line.  

Thus, the predicted ln(NL) values are generally within prediction uncertainties of the measured ln(NL) 

values. Ignoring the PIs, Figure 3.8 shows the PQMM has a tendency to underpredict ln(NL, g/L) above 

approximately 2, which corresponds to a NL of 7.39 g/L. This is well above the constraint upper limit of 

4 g/L. Hence, the PQMM in Table 3.4 predicts PCT NL without substantive bias below the limit of 4 g/L. 

Therefore, the 22-term PCT model given in Table 3.4 is recommended for use in enhanced LAW glass 

formulation.  

 The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

 

Figure 3.8.  Predicted vs. Measured Plot of Average (ln[NL]) Values with 95% Prediction Intervals Using 

the Partial Quadratic Mixture Model for LAW Glasses 

3.2.2 Future Plans 

Future plans fall into two general categories: (i) develop additional data and models to predict PCT 

response and (ii) develop alternative approaches to demonstrate the performance of LAW glasses in the 

Integrated Disposal Facility (IDF) environment. Very little data exists for the LAW glasses with PCT 

responses at or above the 4 g/L contract limit. Additional studies are needed to measure PCT data focused 

on the high-alkali region that have PCT responses at or above 4 g/L. These data will be collected and 

modeled to predict the PCT response. These data and models will be developed under the appropriate QA 

so the models can be implemented in plant operations. Additional effort is needed to correlate the 
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response of PCT to performance in the IDF, or to develop a different criterion (or set of criteria) for 

controlling the performance of LAW glasses produced at WTP.  

3.3 Vapor Hydration Test Response 

The WTP contract requires glasses to have VHT responses below 50 g/(m2 d) (DOE 2000): 

2.2.2.17.3 Vapor Hydration Test: The glass corrosion rate shall be measured using at 

least a seven (7)-day vapor hydration test run at 200°C as defined in the DOE-concurred 

upon ILAW Product Compliance Plan. The measured glass alteration rate shall be less 

than 50 grams/(m2 day). Qualification testing shall include glass samples subjected to 

representative waste form cooling curves. The vapor hydration test shall be conducted on 

waste form samples that are representative of the production glass. 

For glasses with typical densities near the reference value of 2.65 g/cm3, the 50 g/(m2 d) translates to 

alteration thickness (D) of 453 µm during the 24-d test period (Piepel et al. 2007). 

Section 3.3.1 discusses the data compiled to fit a model for the VHT response, as well as the model 

that was developed. Section 3.3.2 discusses future plans. 

3.3.1 Data and Model for VHT Response of LAW Glasses 

A dataset of LAW glasses was compiled to model their VHT responses. These data include crucible-

scale tests with simulants, melter tests with simulants, and crucible-scale tests with actual LAW. 

Table 3.5 summarizes the VHT dataset of 468 glasses compiled for modeling. The dataset excluded 57 

glasses out of 525 initially collected: five VSL-WTP glasses with outlying single component 

concentrations and 52 glasses that either had the alteration thickness outside the measurement range (VSL 

datasets) or were tested for 7-d (PNNL-M dataset). Similar to PCT modeling, the VHT responses of HLP 

and ICV glasses were also collected for model validation. However, the initial modeling efforts with 

combined dataset revealed extreme bias between the VHT results of these glasses (HLP and ICV) and 

those of the glasses designed for WTP application (VSL-WTP, VSL-ORP-A, VSL-ORP-M, and PNNL-

M), resulting in negative model R2 values. Therefore it was decided that HLP and ICV glasses cannot be 

used for VHT model validation. It should be noted that the current VSL-WTP subset includes newly 

added glasses, which were previously excluded because of lack of measured SO3 concentration. 

Glasses with high alkali content tend to challenge the VHT constraint. Figure 3.9 shows a general 

trend of increasing VHT alteration depth with increasing NAlk. Because initial modeling efforts with all 

577 glasses resulted in very poor model-fit statistics, various attempts were made to improve the model. It 

was found that using the reduced number of glasses after removing the glasses with NAlk. < 0.18 (the 

number chosen based on several model calculations varying cutoff values) improves the model fit (see the 

vertical line at NAlk = 0.18 in Figure 3.9). In addition, the ten glasses that deviate from the general trend 

were excluded, assuming that these glasses likely had experimental errors that may not be easily 

identified, leaving 330 glasses for modeling (inside the dotted line in Figure 3.9). 
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Table 3.5.  Summary of VHT 24-Day Datasets for LAW Glasses 

Dataset 

# of Data 

Points(a) Reference Comments 

VSL-WTP 234 (9) Muller et al. 2001 

Muller and Pegg 2003a 

Muller and Pegg 2003b 

Muller and Pegg 2003c 

Rielley et al. 2004 

Muller et al. 2004 

Muller et al. 2005 

Muller et al. 2006a 

Muller et al. 2006b 

Matlack et al. 2006c 

Piepel et al. 2007 

Data used to develop WTP LAW glass models and 

additional glasses that were excluded in the original 

WTP models (see text)  

VSL-ORP-A 175 (28) Muller et al. 2012 Enhanced glass formulations with high waste 

loading (actively designed) 

VSL-ORP-M 38 (2) Muller et al. 2014 Enhanced glass formulations with high waste 

loading (test matrix) 

PNNL-M 21 (13) Russell et al. 2016 Enhanced glass formulations with high waste 

loading (test matrix) 

(a) The numbers in parenthesis represents the number of glasses that were tested for VHT but were removed form dataset. 

These glasses had alteration thickness values outside the measurement range (VSL datasets) or were tested for 7-d 

(PNNL-M dataset). 

 

Evaluation of LAW glasses for modeling identified 15 components that have reasonable 

concentration distributions for consideration as model components: Al2O3, B2O3, CaO, Fe2O3, K2O, Li2O, 

MgO, Na2O, P2O5, SiO2, SnO2, TiO2, V2O5, ZnO, and ZrO2. The sum of concentrations of all other 

components were combined into an Others component resulting in 16 candidate model components. It 

should be noted that if a reduced number of components is used for modeling, the new Others included 

those components that were removed as separate model terms. Initial modeling efforts used the LMM 

 
1

ln( , μm)
q

i i

i

D b g


   (3.4) 

to model the natural logarithm of the VHT response (D, µm) as a function of LAW glass composition, 

where 

 q = number of LAW glass components in the model 

 bi = model coefficient for the ith LAW glass component 

 gi = mass fraction of the ith LAW glass component, so that g1 + … + gq=Others = 1.0. 

This model was used to identify the LAW glass components that had significant effects on VHT response. 
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Figure 3.9.  VHT 24-d Test Alteration Depth versus NAlk (Na2O + 0.66K2O + 2.07 Li2O in mass fraction) 

of LAW Glasses. Glasses in dotted green line were used for model development. 

 

Out of 16 components (including Others) evaluated as potential VHT model components, a step-by-

step removal of components that did not have significant effects on VHT response was performed. This 

process identified four components (MgO, P2O5, V2O5 and ZnO) that were removed from the model 

without affecting the performance of the model. Removing these four components from the VHT model 

fit to data for 330 LAW glasses resulted in negligible changes to the R2 (from 0.631 to 0.627) and RMSE 

statistics (0.9875 to 0.9867). Note that the four removed components become part of the Others 

component. The concentration ranges for the final VHT model components are listed in Table 3.6 and the 

scatterplot matrix is in Figure 3.10. 
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Table 3.6.  Component Concentration Ranges (in Mass Fractions) for VHT Model Data on LAW Glasses 

Component Min Max 

Al2O3 0.035 0.1476 

B2O3 0.05 0.1377 

CaO 0 0.1227 

Fe2O3 0 0.0998 

K2O 0 0.0591 

Li2O 0 0.0503 

Na2O 0.0245 0.2601 

SiO2 0.2983 0.5215 

SnO2 0 0.0502 

TiO2 0 0.0342 

ZrO2 0 0.0675 

Others(a) 0.0195 0.1659 

Selected Components Included in Others 

MgO 0 0.099 

P2O5 0 0.034 

V2O5 0 0.04 

ZnO 0 0.058 

(a) Sum of all components not specifically listed above. 
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Figure 3.10.  Scatterplot Matrix of VHT Model Data 

As with the previous efforts (Piepel et al. 2007, Muller et al. 2008, Muller et al. 2014) to model the 

natural logarithm of the VHT response (D, µm), PQMMs were considered in an attempt to obtain a better 

fit to the data than provided by the LMM. The PQMM is given by 

  
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where 

q = number of LAW glass components in the model 

bi = model coefficient for the ith LAW glass component 
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gi = mass fraction of the ith LAW glass component, so that g1 + … + gq=Others = 1.0 

bij = coefficient of the product of the ith and jth components (note that i = j for a squared term) 

A similar approach to developing a PQMM for the PCT response was used for the VHT response (see 

the text in Section 3.2 following Figure 3.6). Briefly, 12 linear terms for the components listed in 

Table 3.6 were included in every model, and then models with increasing numbers of quadratic 

(crossproduct or squared) terms having statistically significant effects were added to the model using 

statistical modeling methods. 

The model-fit and validation statistics as a function of number of model terms are shown in Figure 

3.11. The model-fit and validation statistics continuously improve as the number of model terms increases 

(i.e., R2 increases and RMSE decreases). However, the model validation statistics initially improve, but 

nearly reach a plateau (R2) or minimum (RMSE) and further increasing the number of quadratic terms 

does not improve these statistics. Therefore, the 19-term model that had a minimum validation RMSE 

value was selected. 

Table 3.7 summarizes the final 19-term PQMM and the model-fit statistics for the ln(D) VHT 

response for LAW glasses. The R2 = 0.7400 indicates that the model accounts for 74% of the variation in 

ln(D) responses. The 2

AdjR = 0.7249 value is not much less than the 
2R  value, which indicates that there are 

not several unneeded terms in the model. The 2

PredR  and 2

ValR  values (0.7041 and 0.6930) are not 

substantially less than the 
2R  and 2

AdjR  values, which indicates there are not any excessively influential 

data points. The RMSE = 0.8329 is an estimate of the experimental and measurement standard deviation 

[in ln(D, μm) units] if the model adequately fits the data. The RMSE corresponds to a %RSD = 83.29 

value for measured VHT (D, μm) responses. This %RSD value is significantly larger than the 

experimental and measurement uncertainties in determining VHT responses of LAW glasses. Hence, the 

RMSE value indicates the model has some LOF. 
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Figure 3.11.  Model and Validation Statistics for VHT ln(D) Models on LAW Glasses versus Number of 
Model Terms. Notation in parenthesis: “model” for model-fit and “val-split” for data-

splitting validation. 
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Table 3.7.  VHT Model Coefficients and Fit Statistics for the 19-Term Partial Quadratic Mixture Model 

for LAW Glasses, ln(D, µm) 

Model Term Coefficient Statistic Value 

 Al2O3 -3.1247 # of data points 330 

 B2O3 9.0537 Mean of response, ln(D, µm) 4.685 

 CaO -165.0264 RMSE 0.8329 

 Fe2O3 -9.3359 2R  0.7400 

 K2O -68.6719 
2

AdjR  0.7249 

 Li2O 308.9919 
2

PredR  0.7041 

 Na2O 75.8436 
2

ValR  0.6930 

 SiO2 -22.5420   

 SnO2 -28.5312   

 TiO2 -27.0704   

 ZrO2 -48.6944   

 Others 2.5197   

 CaO×CaO 452.8308   

 Li2O×Li2O -3040.2579   

 K2O×Na2O 433.9384   

 Li2O×Na2O -1273.4629   

 CaO×SiO2 267.5427   

 K2O×K2O 724.3290   

 Li2O×SiO2 361.8056   

 

 

Figure 3.12 shows a plot of the predicted vs. measured VHT ln(D, μm) values with 95% PIs for the 

330 LAW glasses used to fit the PQQM in Table 3.7. If a 95% PI overlaps the 45º line, then the predicted 

and measured values are not statistically different (with 95% confidence) after accounting for data and 

model uncertainties. The 95% PIs for 318 of the 330 glasses (96.4%) in Figure 3.12 overlap the 45º line.  

This number is large because of the relatively large model prediction uncertainties. Still, the predicted 

VHT ln(D) values are generally within prediction uncertainties of the measured ln(NL) values. Ignoring 

the PIs, Figure 3.12 shows the PQMM has a tendency to over-predict ln(D, μm) below approximately 3, 

which corresponds to a D of approximately 20.1 μm. This is well below (i.e., inside) the constraint upper 

limit of 453 μm. However, as seen in Figure 3.12, the degree of over-prediction when D < 20.1 is not 

large enough to predict D is above the 453 μm limit when it is not. Hence, the PQMM in Table 3.8 can be 

used to predict the VHT D values of LAW glasses for comparison to the 453 μm limit, with the 

expectation that the PQMM will not mistakenly predict that glasses will fail the limit. Therefore, the 19-

term VHT model given in Table 3.7 is recommended for use in enhanced LAW glass formulation.   
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The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

 

 

 

Figure 3.12.  Predicted vs. Measured Plot of VHT ln(Alteration Depth) Values with 95% Prediction 

Intervals [ln(μm)] Using the Partial Quadratic Mixture Model for LAW Glasses 

3.3.2 Future Plans 

Future plans fall into two general categories: (i) develop additional data and models to predict VHT 

response and (ii) develop alternative approaches to demonstrate the performance of LAW glasses in the 

IDF environment. Very little data exists for the LAW glasses with VHT responses at or above the 50 

g/m2/d contract limit. This is partially due to the fact that a large fraction of the glasses that exceed the 

limit result in unquantifiable VHT responses (e.g., less than values) that are not useful in modeling. 

Additional studies are needed to measure VHT data focused on the high-alkali region that have VHT 

responses at or above 50 g/m2/d, while below the value of complete corrosion during the test duration.  

These data will be collected and modeled to predict the VHT response. These data and models will be 

developed under the appropriate QA for implementation in plant operations. Additional effort is needed to 

correlate the response of VHT to performance in the IDF or to develop a different criterion or set of 

criteria for controlling the performance of LAW glasses produced at WTP. 

3.4 Viscosity 

During operation of the LAW glass facility, it will be necessary to control glass compositions to have 

the viscosity of the glass melt within a desirable range. For LAW glasses melting at 1150ºC, an 

appropriate viscosity ranges from 2 to 8 Pa∙s (as described in Section 2.5). However, optimal performance 

is typically found for viscosities in the range of 4 to 6 Pa∙s. Because this doesn’t strongly influence waste 
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loading, but, can improve melting performance, the tighter limits are recommended. A model for the 

natural logarithm of viscosity at 1150ºC as function of composition can be used for this purpose. 

Section 3.4.1 discusses the data compiled for viscosity modeling, as well as the model for the natural 

logarithm of viscosity at 1150ºC that was developed. Section 3.4.2 discusses future plans. 

3.4.1 Data and Model for Viscosity at 1150ºC of LAW Glasses 

A database of 429 LAW glasses with viscosity measured at several temperatures (1990 data points 

total) was compiled and used to develop viscosity models. These data include simulated LAW glasses 

from both crucible-scale and melter tests. Table 3.8 summarizes the dataset of 429 LAW glasses compiled 

for modeling and model validation. The database excluded 6 glasses out of 435 for which data were 

initially compiled because of extreme concentrations of certain components. 

The viscosity at 1150ºC (η1150) value for each of the 429 LAW glasses was calculated by fitting either 

the VFT equation or the Arrhenius equation to the viscosity at temperature data for each LAW glass. The 

Arrhenius equation was fit only for one LAW glass for which the available data did not adequately 

support fitting a VFT equation. Then, the fitted VFT or Arrhenius equations were used to calculate the 

η1150 for each LAW glass. 

 

Table 3.8.  Summary of Viscosity Datasets for LAW Glasses 

Dataset 

# of Data 

Points Reference Comments 

VSL-WTP 243 Muller et al. 2001 

Muller and Pegg 2003a 

Muller and Pegg 2003b 

Muller and Pegg 2003c 

Rielley et al. 2004 

Muller et al. 2004 

Muller et al. 2005 

Muller et al. 2006a 

Muller et al. 2006b 

Matlack et al. 2006c 

Piepel et al. 2007 

Data used to develop WTP LAW glass models and 

additional glasses that were excluded in the 

original WTP models (see text)  

VSL-ORP-A 122 Muller et al. 2012 Enhanced glass formulations with high waste 

loading (actively designed) 

VSL-ORP-M 34 Muller et al. 2014 Enhanced glass formulations with high waste 

loading (test matrix) 

PNNL-M 36 Russell et al. 2016  Enhanced glass formulations with high waste 

loading (test matrix) 
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A LMM was used to model the natural logarithm of η1150 (Pa∙s) as a function of LAW glass 

composition. The LMM form is given by 

 
1150

1

ln( , Pa s)
q

i i

i

b g


   (3.6) 

where 

 

 q = number of LAW glass components in the model 

 bi = model coefficient for the ith LAW glass component 

 gi = mass fraction of the ith LAW glass component, where g1 + … + gq=Others = 1.0. 

The LAW glass components included in the LMM were those that had sufficient ranges and distributions 

of values to support estimating the corresponding model coefficients. The sum of the mass fractions of all 

remaining LAW glass components is denoted as the Others component. 

Equation (3.6) was fitted to the data consisting of the 429 LAW glass compositions and the 

corresponding calculated values of η1150. The fitted model coefficients and several statistics related to the 

model fit are given in Table 3.9. The 
2R = 0.9303 indicates the model accounts for over 93% of the 

variation in ln(η1150) responses. The 2

AdjR  and 2

PredR  values are only slightly smaller than the 
2R  value, 

which indicates, respectively, that (i) the model does not contain many statistically nonsignificant terms, 

and (ii) there are no highly influential data points. 

The RMSE = 0.1476 is an estimate of the experimental and measurement standard deviation [in 

ln(η1150, Pa∙s) units] if the model adequately fits the data. The RMSE corresponds to a %RSD = 14.76 

value for “measured” η1150 (Pa∙s) values. This %RSD value is marginally larger than the experimental and 

measurement uncertainties in determining η1150 values of LAW glasses. Hence, the RMSE value indicates 

the model may have some LOF. 
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Table 3.9.  Coefficients and Selected Fit Statistics of the Linear Mixture Model for Viscosity at 1150ºC 

Fitted to Data from 429 LAW Glasses. 

Model Term 

Coefficient, 

ln(η1150, Pa·s) Statistic Value 

 Al2O3 11.67007 # of glasses 429 

 B2O3 -7.44665 Average ln(η1150, Pa·s) 1.4584 

 CaO -7.60545 RMSE, ln(Pa·s) 0.1476 

 Fe2O3 -0.11082 2R  0.9303 

 K2O -4.65558 
2

AdjR  0.9277 

 Li2O -32.67344 
2

PredR  0.9241 

 MgO -4.26291   

 Na2O -9.30809   

 P2O5 7.94147   

 SiO2 8.88092   

 SnO2 4.73082   

 TiO2 -4.93294   

 V2O5 -2.64858   

 ZnO -4.51330   

 ZrO2 6.91854   

 Others 2.74032   

Figure 3.13 shows a plot of the predicted vs. measured1 ln(η1150, Pa∙s) values with 90% PIs for the 429 

LAW glasses used to fit the LMM in Table 3.9. If a 90% PI overlaps the 45º line, then the predicted and 

measured values are not statistically different (with 90% confidence) after accounting for data and model 

uncertainties. The 90% PIs for 395 of the 429 glasses (92.1%) in Figure 3.13 overlap the 45º line. Thus, 

the predicted ln(η1150) values are generally within prediction uncertainties of the “measured” ln(η1150) 

values. Ignoring the PIs, Figure 3.13 shows the LMM has a tendency to underpredict (i) below ln(η1150) ~ 

0.5 (i.e., η1150 ~ 1.65 Pa∙s) and (ii) above ln(η1150) ~ 2.2 (i.e., η1150 ~ 9.03 Pa∙s). These ranges of 

underprediction with the LMM are outside the η1150 constraints of 4 to 6 Pa∙s for LAW glasses.  Hence, 

the LMM for viscosity at 1150ºC given in Table 3.9 is recommended for use in enhanced LAW glass 

formulation. 

 

                                                      
1 This type of plot is traditionally referred to as a “predicted versus measured” plot. In this case, the “measured” 

1150  values are actually values calculated from a fitted VFT or Arrhenius equation for each LAW glass, as 

discussed previously. 
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Figure 3.13.  Predicted vs. Measured Plot of ln(η1150) Values with 90% Prediction Intervals for the Linear 

Mixture Model for LAW Glasses. 

 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

3.4.2 Future Plans 

Viscosity models will need to be developed for plant operation. While models predicting the ln(η1150) 

are sufficient for glass mass estimation, models that predict the temperature impact of viscosity will be 

useful for many plant operating applications (including meeting design constraints at 1100 and 1200°C).  

Therefore, as additional LAW glass property testing continues, the measurement of viscosity will 

continue to be performed over a range of temperatures. When plant operating models are needed, these 

viscosity data will be fitted to functions of both composition and temperature.  

 

3.5 Refractory Corrosion 

LAW melts with high-alkali content are known to be corrosive to the melter materials of construction 

such as Inconel 690 and Monofrax K3 refractories (Gan et al. 2001). This concern has become more 

prevalent as waste loading has increased in the enhanced glass formulations, particularly for melts with 

higher alkali contents. Muller et al. (2015b) gathered available data for LAW glass composition effects on 

K3 corrosion and developed a preliminary model for its prediction. Based on melter operating experience, 

and review of melter design and operation, they recommend a corrosion depth limit of 0.040 inches per 
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6-day test at 1208°C. 

Section 3.5.1 discusses a model for refractory corrosion as a function of LAW glass composition. 

Section 3.5.2 discusses future plans. 

3.5.1 Model for Refractory Corrosion of LAW Glasses 

A 24-term PQMM was recommended by Muller et al. (2015b) to predict the natural logarithm of neck 

loss on a 6-day K-3 refractory coupon corrosion test at 1208°C as a function of LAW glass composition 

using a dataset of 261 WTP-LAW and ORP-LAW glasses. The model is of the form 
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where 

 k1208 = neck corrosion distance in 6-day test at 1208°C (in inches) 

 ki = coefficient of the ith component in LAW glass 

 gi =  mass fraction of the ith component in LAW glass 

 kij =  coefficient of the product of the mass fractions in LAW glass of the ith and jth 

components (where a squared terms occurs when i = j). 

The coefficients and component concentration ranges are listed in Table 3.10. The 24-term model for K-3 

corrosion given in Table 3.10 is recommended for use in enhanced LAW glass formulation. 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

3.5.2 Future Plans 

Refractory and metal (bubbler, thermowell, level measurement, electrode, etc.) corrosion in LAW 

glass melts may be significant, particularly for high-alkali glasses. The model in Section 3.5.1 represents 

the first attempt at modeling the composition effects on refractory corrosion (see Muller et al. 2015b). The 

data used to fit this model need to be expanded significantly and new models will need to be developed 

and validated for both refractory and metal corrosion. A large set of glasses designed and tested for other 

properties are available and could be tested for electrode and refractory corrosion. 
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Table 3.10.  K-3 Corrosion Model Coefficients and Component Concentration Ranges 

 ln(k1208) Range (mass fraction) 

Model Term Coefficient Min Max 

Al2O3 -23.696 0.049 0.137 

B2O3 -0.965 0.042 0.137 

CaO 6.590 0 0.106 

Cr2O3 -85.437 0.0001 0.006 

Fe2O3 -4.315 0 0.137 

K2O 7.997 0 0.081 

Li2O 44.748 0 0.059 

MgO -37.185 0 0.035 

Na2O 20.337 0.024 0.26 

P2O5 117.297 0 0.034 

SiO2 -10.103 0.313 0.502 

SnO2 -38.779 0 0.037 

TiO2 90.238 0 0.05 

V2O5 -114.733 0 0.05 

ZnO -12.560 0 0.054 

ZrO2 -11.150 0 0.075 

Others -20.952 0.001 0.055 

Li2O×P2O5 -3092.687   

(MgO)2 716.072   

Na2O×P2O5 -579.772   

Na2O×V2O5 335.374   

SiO2×TiO2 -241.722   

SnO2×Others 2880.688   

V2O5×ZnO 1028.765   

# data points 261   

2R  0.905   

2

AdjR  0.896   

2

PredR  0.881   

RMSE 0.255   
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3.6 Loading Rules 

Two options are available to optimize LAW glass and determine the waste loading. The first is to 

perform a multi-attribute optimization maintaining all properties within their acceptable ranges as is 

described in Vienna and Kim (2014) for WTP Baseline HLW formulation. The second is to use loading 

rules aimed at interpolating between successful glasses as described in Kim and Vienna (2012), which 

were developed for WTP Baseline LAW formulations. This latter approach is recommended for purposes 

of estimating the amount of glass to be produced at Hanford over the mission life as described below. 

The loading of LAW in glass can be determined by interpolating between successful high waste-

loaded compositions, as was done by Vienna et al. (2013). Muller et al. (2010) developed a correlation for 

estimating LAW loading, as shown schematically in Figure 3.14. The data used to develop this plot are 

summarized in Table 3.11. This correlation leads to the following rules 

 
2Na Ow + 0.66

2K Ow ≤ 24, wt% (3.8) 

 
2Na Ow + 0.66 

2K Ow ≤ 33.94 – 11.69 
3SOw , wt% (3.9) 

 
3SOw ≤ 1.5, wt% (3.10) 

where wi is the ith oxide weight percent in LAW glass (i.e., gi×100). These rules correspond to the solid 

blue line in Figure 3.14. 

 

Figure 3.14.  Overview of Waste Alkali Concentration (d = + 0.66 ) and SO3 Loadings for 

Advanced LAW Glasses (Vienna et al. 2013) 

 

2Na Ow
2K Ow
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Table 3.11.  Summary of Enhanced LAW Correlation Glasses (wt%) 

Glass ID 
Target 

3SOw  

Measured  

3SOw  

Target 

2Na Ow  

Target 

2K Ow  

d 

(
2Na Ow + 0.66

2K Ow ) 

ORPLG9 0.2 0.21 21.08 5.77 24.89 

ORPLG27 0.5 - 21.08 5.77 24.89 

ORPLA20 0.7 0.63 24.04 0.54 24.40 

ORPLC5 0.7 0.61 23.69 0.54 24.05 

ORPLA38-1 0.8 - 24.24 0.54 24.60 

ORPLB4 0.85 0.81 24.12 0.11 24.20 

LAWA187 0.95 0.77 23.17 0.51 23.51 

LAWA161 1.0 - 20.70 0.44 20.99 

LAWC100 1.1 1.05 20.24 0.15 20.34 

ORPLD1 1.1 0.89 21.21 0.16 21.31 

ORPLD6 1.2 1.25 22.22 0.17 22.34 

LAWB99 1.5 1.14 10.08 0.41 10.35 

ORPLE12 1.5 1.38 16.20 0.56 16.57 

ORPLF7 1.5 1.35 12.24 0.51 12.57 

Note: Glass compositions in this report are generally presented in mass fractions for consistency with the 

property models developed using mass fractions. However, this table presents the glass compositions 

in wt% for consistency with the rules and Figure 3.14 presented in this section. 

Two methods (optimistic and conservative) were used to estimate the halide and chromate impacts in 

Vienna et al. (2013). These two methods added unnecessary confusion to the process of formulating 

glasses and the difference in glass mass estimated to be produced during mission life cycle was less than 

3% between the two methods. A single approach should be developed and used in glass mass estimation 

rather than two. In addition, 29 melter test results have added to the understanding of Cr2O3, Cl, P2O5, F, 

and SO3 impacts on salt formation (Matlack et al. 2014). Therefore, the impacts of halogen and chromium 

concentrations on the LAW glass loading limits were reevaluated. 

The melter test data on enhanced LAW glasses from Vienna et al. (2013) and Matlack et al. (2014) 

were combined into a single set containing 55 distinct tests – 27 without accumulated salt and 28 with 

accumulated salt. A single parameter was calculated of the form 

  
2 3 2 5 2 2

0.66Cl Cl Cr Cr O P P O F F A Na O K OH h g h g h g h g h g g      , (3.11) 

where H is the halide parameter, hi is the ith component coefficient, and gi is the ith component target mass 

fraction in the glass. A line was drawn between SO3 concentration and H in an attempt to separate 

compositions that accumulate a salt from those that don’t (based only on components coming from 

waste). The slope and intercept of the line along with hi coefficients were then optimized to reduce the 

sum of squared differences between the composition and the line for only those glasses misclassified by 

the rule (e.g., glasses with salt above the line and glasses without a salt below the line). To add 

conservatism to the estimates, FNs (those compositions estimated not to accumulate a salt that actually do 
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accumulate a salt) were weighted by 10. The resulting optimized parameters are used to develop an 

additional SO3 loading rule of 

  
3 2 3 2 5

0.01825 0.4936 1.761 2.971 0.1608SO Cl Cr O P Og g g g     . (3.12) 

This method allows estimating the impacts of halide, chromate, and phosphate on the maximum 

sulfate loading in glass as shown in Figure 3.15. The uncertainty in the line is primarily due to the impacts 

of the glass-forming components on salt accumulation that are described in Section 3.1. The majority of 

the glasses tested and used to develop the rule in Equation (3.12) were not optimized for the 

concentrations of SO3, halides, and Cr2O3 they contained. To develop a glass with the appropriate 

composition to tolerate that level of SO3, Cl, Cr2O3, and P2O5 without accumulation of salt requires the 

optimization of the composition using the sulfate solubility model along with other constraints. 

 

Figure 3.15.  Plot of Prediction Parameter vs.  

 

To determine the overall glass composition after the optimal waste loading is obtained, it is preferred 

to perform an optimization with glass property models described in this report. Alternatively, an advanced 

formulation correlation is underdevelopment similar to the WTP Baseline glass formulation correlation 

(see Muller et al. 2015a). If that becomes available, it may be preferable to apply it to design LAW 

glasses. 

The data and models are not fully QA compliant and therefore are not intended to be used in quality-

affecting activities or decisions (e.g., design basis input, plant operations, waste form compliance). 

Instead the models and constraints are intended for use in mission planning activities. 

3SOw
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3.6.1 Future Plans 

 Enhanced waste glass loading rules and associated glass composition correlation rules are being 

developed (see for example Muller et al. 2015a).  This approach to glass formulation will need to be 

completed and compared to the optimization technique that is currently used for HLW glass formulation.  

The most advantageous of the two approaches will be validated and incorporated into the LAW glass 

formulation algorithm for use in mission planning and plant operation. 

3.7 Summary of Property Models and Component Concentration 
Limits for LAW Glasses 

This subsection summarizes the LAW glass property constraints, models, and their associated validity 

ranges. Table 3.12 lists the model validity regions for each of the LAW glass property-composition 

models. However, these models, and the data used to produce them, are not fully QA compliant for plant 

operation and so should be used only as an estimation tool. 

In addition to the model validity constraints, lessons learned from glass formulation work suggest 

more constraints should be added. Specifically, additional constraints are needed to avoid (i) secondary 

phase formation during processing and (ii) poor VHT performance. For example, Figure 3.16 shows a test 

glass that precipitated Cassiterite (SnO2) during fabrication. Figure 3.17 shows a limited component 

scatterplot matrix highlighting the composition regions of concern for VHT failure and crystallization. 

From the plot, it is clear that LAW glasses with low CaO and high NAlk are prone to poor VHT 

performance. Further, the plot shows that LAW glasses with high Al2O3, SnO2, and ZrO2 are prone to 

crystallization. To address these concerns, two constraints have been added. First, a combined zirconia, 

tin, and alumina constraint 

 
2 2 2 3

0.17ZrO SnO Al Og g g    (3.12) 

was added to avoid crystallization. Second, an “alkali minus sum of zirconia, tin, and lime” constraint 

 
2 2 2 2 2

0.66 2.07 0.15Na O K O Li O ZrO SnO CaOg g g g g g       (3.13) 

was added to avoid poor VHT performance. 
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Table 3.12.  Summary of LAW Glass Model Validity Constraints, mass fractions 

 SO3 PCT VHT Viscosity K3 Overall 

Term Min Max Min Max Min Max Min Max Min Max Min Max 

Al2O3 0.0553  0.1395 0.0305 0.1476 0.0350 0.1476 0.0350 0.1476 0.0490 0.1370 0.0553 0.1370 

B2O3 0.0398 0.1606 0.0500 0.1515 0.0600 0.1377 0.0600 0.1380 0.0420 0.1370 0.0600 0.1370 

CaO 0 0.1294 0 0.1281 0 0.1227 0 0.1273 0 0.1060 0 0.1060 

Cl 0 0.0117 - - - - - - - - 0 0.0117 

Cr2O3 0.0001 0.01 - - - - - - 0.0001 0.0060 0 0.0100 

Fe2O3 - - - - 0 0.0998 0 0.0998 0 0.1370 0 0.0997 

K2O 0.0011 0.0834 0 0.0591 0 0.0591 0 0.0589 0 0.0810 0 0.0589 

Li2O 0 0.0586 0 0.0633 0 0.0503 0 0.0633 0 0.0590 0 0.0503 

MgO - - 0 0.0994 - - 0 0.0502 0 0.0350 0 0.0350 

Na2O 0.0248 0.2605 0.0245 0.2601 0.05 0.2601 0.0245 0.2600 0.0240 0.2600 0.0248 0.2600 

P2O5 0 0.0308 0 0.0475 - - 0 0.0403 0 0.0340 0 0.0340 

SiO2 0.3005 0.5064 0.2983 0.5591 0.2983 0.5215 0.3350 0.5226 0.3130 0.5020 0.2983 0.5020 

SnO2 0 0.0501 0 0.0503 0 0.0502 0 0.0503 0 0.0370 0 0.0501 

TiO2 - - 0 0.0399 0 0.0342 0 0.0399 0 0.0500 0 0.0341 

V2O5 0 0.0439 - - - - 0 0.0401 0 0.0500 0 0.0401 

ZnO - - - - - - 0.0100 0.0581 0 0.0540 0 0.0540 

ZrO2 0.0262 0.0902 0 0.0675 0 0.0675 0 0.0675 0 0.0750 0 0.0675 

 

 

  

Figure 3.16.  Example Crystallized LAW Glass Photograph of Pour-patty (left) and Optical Micrograph 

Showing Cassiterite (SnO2) (right) 
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Figure 3.17.  Scatterplot Matrix Showing Composition Region of Difficulties in LAW Glasses. Red dots 

form crystals and green open circles fail VHT. All values are mass fractions. 

3.8 Calculation Examples 

Examples are given to use in determining if the application and coding of the LAW models are 

correct. To create these examples, hypothetical wastes, based loosely on real projected Hanford LAW 

feeds, were used in glass optimization calculations. A set of waste compositions was selected to 

demonstrate the calculations and to provide an output file that can be used by others to make sure that 

they are using the models correctly. The waste estimates are from the LAW and secondary LAW 

vitrification feed, as estimated in Case 1 of System Plan revision 6 (Certa et al. 2011). The waste feeds 

were converted to mass fractions of reference oxides and halogens, and sorted by the ratios of Na2O:SO3, 

Na2O:K2O, and Na2O:Cl. The waste with the minimum for each of the ratios was selected for the example 

calculations. Also, several other waste compositions that systematically varied the Na2O:SO3 ratio were 

selected. The selected waste compositions and associated component ratios are listed in Table 3.13. 
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Table 3.13.  Selected Waste Compositions, mass fractions 

Example # 1 2 3 4 5 6 7 8 

Batch Date(a) 6/14/41 4/10/26 6/8/18 7/9/27 4/8/33 6/18/38 8/24/35 7/1/33 

Batch #(a) SLCP-937 LCP-391 LCP-1 SLCP-249 SLCP-539 LCP-1027 LCP-880 SLCP-551 

Na2O 0.5186 0.7672 0.7395 0.6952 0.7473 0.8086 0.7668 0.7882 

SO3 0.3511 0.0056 0.0135 0.0243 0.0743 0.0404 0.0511 0.0262 

K2O 0.0025 0.0655 0.1551 0.0223 0.0037 0.0028 0.0027 0.0030 

Cl 0.0248 0.0148 0.0062 0.0532 0.0136 0.0059 0.0055 0.0050 

F 0.0766 0.0060 0.0073 0.1263 0.0435 0.0087 0.0160 0.0112 

P2O5 0.0066 0.0044 0.0060 0.0082 0.0201 0.0335 0.0589 0.0450 

Cr2O3 0.0067 0.0012 0.0011 0.0061 0.0103 0.0044 0.0053 0.0071 

Al2O3 0.0115 0.1317 0.0689 0.0595 0.0777 0.0868 0.0825 0.1034 

SiO2 0.0005 0.0016 0.0012 0.0018 0.0064 0.0072 0.0085 0.0079 

SUM 0.9989 0.9981 0.9986 0.9968 0.9970 0.9983 0.9973 0.9969 

Na2O/SO3 1 136 55 29 10 20 15 30 

Na2O/K2O 204 12 5 31 202 293 281 265 

Na2O/Cl 21 52 120 13 55 137 140 158 

(a) Batch date and # reflect the model projected date of delivery and numerical batch from the pretreatment facility concentrate 

storage vessel to the LAW vitrification facility concentrate receipt vessel. 

As discussed in Section 1.2, two basic approaches are used to estimate loading of LAW in glass: (i) 

use of current loading rules described in Section 3.6 and (ii) numerical optimization of glass composition 

constrained by glass property models and constraints listed in this report (as is done for HLW in 

Section 2.10). Both approaches were applied to give examples of the calculations. The first approach was 

applied to each of the eight example waste compositions and the results are listed in Table 3.14. The 

optimization approach was also used to maximize waste loadings within property and component 

concentration constraints. Current glass forming chemicals include mined minerals (kyanite, wollastonite, 

olivine, silica, zincite, and zircon) and processed chemicals (boric acid, hematite, sodium carbonate, 

lithium carbonate, rutile, and sucrose) which are sources of Al2O3, B2O3, CaO, Fe2O3, Li2O, MgO, Na2O, 

SiO2, ZnO, and ZrO2.  For the purposes of example calculations the pure oxides (without impurities) of 

Al2O3, B2O3, CaO, Cr2O3, Li2O, MgO, SiO2, SnO2, V2O5, ZnO, and ZrO2 were selected (adding Cr2O3, 

SnO2, and V2O5; and removing Fe2O3 and Na2O) and their concentrations adjusted along with waste 

loading until a maximum waste loading was obtained. The associated WL, additives, and constraints are 

listed in Table 3.14. Generally, the optimization routine will continue to change the additives and loading 

until all the degrees of freedom are used up (e.g., as many constraints are met as number of additives 

used) unless the loading is limited by a single waste component concentration limit. An exception to this 

is Example #7 for which six constraints were met with seven additives. It is not clear why the 

optimization for Example #7 achieved only 6 limits for 7 additives. Many unsuccessful attempts were 

made to remedy that problem. As anticipated, the optimization approach generally resulted in higher 

waste loadings (~15 relative% higher as a numeric average of the results) compared to the loading-rules 

approach. 
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Table 3.14.  Waste Loading (wt%) and Liming Factor Results from Example Calculations 

Example # 1 2 3 4 5 6 7 8 

Waste Batch SLCP-937 LCP-391 LCP-1 SLCP-249 SLCP-539 LCP-1027 LCP-880 SLCP-551 

Loading rules 

Waste Loading 4.27% 29.61% 28.51% 23.16% 18.30% 26.46% 24.86% 30.37% 

Limiting Factor(a) S NaK NaS H H NaS NaS NaK 

Optimization 

Waste Loading 5.68% 33.62% 31.72% 21.99% 22.89% 32.15% 30.54% 32.99% 

Properties         

PCT, g/L 0.275 1.856 2.165 0.643 3.395 2.455 1.112 1.870 

VHT D, µm 453.0 453.0 453.0 4.4 82.9 453.0 453.0 453.0 

K3 corrosion, in 0.000 0.040 0.040 0.040 0.009 0.040 0.040 0.024 

ZrO2+SnO2+Al2O3 0.097 0.170 0.170 0.170 0.123 0.120 0.091 0.127 

Alk-(ZrO2+SnO2 

   +CaO) 
-0.014 0.149 0.117 0.077 0.150 0.150 0.114 0.148 

SO3 limit, wt% 0.020 0.002 0.004 0.005 0.017 0.013 0.016 0.009 

Viscosity, Pa·s 4.000 6.000 4.000 6.000 4.000 5.068 4.000 6.000 

Additives         

Al2O3 5.79% 1.66% 4.90% 7.03% 4.87% 4.04% 4.33% 4.04% 

B2O3 14.52% 9.04% 8.79% 7.69% 7.78% 8.84% 11.13% 8.95% 

CaO 11.24% 1.30% 5.19% 5.15% 6.46% 6.75% 12.24% 6.92% 

Cr2O3 0.00% 1.45% 1.41% 0.94% 0.00% 0.08% 0.00% 1.14% 

Fe2O3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Li2O 5.33% 0.00% 0.00% 3.93% 6.00% 0.00% 0.00% 0.00% 

MgO 0.00% 1.02% 0.11% 0.11% 0.00% 1.98% 0.15% 0.15% 

SiO2 51.92% 61.53% 54.76% 52.96% 60.94% 62.43% 61.23% 62.93% 

SnO2 0.00% 7.11% 6.91% 4.44% 0.00% 0.00% 0.00% 0.00% 

TiO2 2.55% 5.14% 4.04% 4.18% 0.00% 0.39% 0.00% 0.00% 

V2O5 4.25% 1.60% 4.01% 4.93% 5.20% 5.91% 5.77% 5.98% 

ZrO2 4.39% 10.17% 9.89% 8.65% 8.75% 9.58% 5.15% 9.88% 

Limits(b) 8L/8A Cr2O3 Cr2O3 Cl 7L/7A Na2O 6L/7A Na2O 

(a) The limits for loading rules are: H = halide rule, NaK = Na2O+K2O, NaS = Na2O and SO3 equation, S = SO3 

(b) Limits for the optimization approach are denoted by #L/#A, which represent the number of limits reached and additives 

used in formulation. Cr2O3, Cl, and Na2O represent single component concentration limits achieved. 
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4.0 Summary 

Efforts are being made to increase the loading of Hanford tank wastes in glass while maintaining 

adequate processability, regulatory compliance, and product quality. These efforts have significantly 

expanded the composition regions and waste loadings of glasses beyond the point used in current project 

planning models. The effort documented in this report is aimed at evaluating the current glass 

formulation, property, and processing data, and to use the data to develop a non-conservative set of 

constraints and property models that can be used to estimate the amount of glass that would be produced 

at Hanford if the current enhanced waste glass formulation efforts were to be successfully completed 

according to current plans. This report presents a significant update of the Vienna et al. (2013) models 

report, incorporating new data and models, and addressing lessons learned from application of those 

models and constraints. However, the data used as well as the resulting models have not been reviewed, 

verified and validated; therefore, the information provided in this report cannot be used for quality-

affecting activities or decisions. 

An accurate method of estimating glass mass to be produced from Hanford tank waste is important 

for making informed decisions regarding the appropriate process options to pursue, as well as estimating 

the likely cost and schedule for tank waste cleanup mission completion. To help gain an accurate estimate 

of glass mass, glass property, processing, and composition, data have been gathered from literature 

including the results of the ongoing enhanced glass formulation program being led by ORP with support 

from PNNL and the VSL at the Catholic University of America along with other laboratories and 

universities. These data have been evaluated and used in the development of preliminary glass 

composition-property models as well as property and composition constraints. By combining these 

models and constraint sets, the reader can estimate the minimum amount of glass to be generated from 

Hanford tank waste with a given composition. Example calculations are supplied to ensure that the 

calculations are performed as intended. The models and constraints are only meant to give an indication 

of rough glass masses for information only and are not intended to be used in quality-affecting activities 

or decisions. A current research program is in place to develop the data, models, and uncertainty 

descriptions for that purpose. 

Throughout this document, model coefficients and other values are reported with a higher number of 

figures than are significant. Ideally, the appropriate number of figures to report should be evaluated in 

detail. However, no such evaluation was performed. We therefore suggest using all reported figures in the 

model coefficients for consistency with example calculations supplied in this report. 

4.1 HLW Glass Property Models 

Models were developed to constrain the composition and loading of HLW glasses. These include 

models to control to following: 

 The probability of nepheline formation during canister cooling of high-alumina glasses (Section 2.1). 

Avoiding nepheline allows for accurate prediction of PCT response while more detailed models for 

the PCT responses of slow cooled glasses is developed. 
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 The temperature at which 2 vol% of spinel is in equilibrium with the melt (T2%) (Section 2.2). 

Excessive crystallization in the melter may shorten melter lifetime. This T2% model is a reasonable, 

yet somewhat arbitrary and conservative, method to minimize this risk while crystal accumulation 

models are developed. 

 The sulfur tolerance of the melter feed using an SO3 solubility model (Section 2.3). Separated salts 

may significantly increase corrosion of melter construction materials and this model and associated 

constraint are aimed at minimizing this risk. 

 The viscosity of the melt at the 1150°C operating temperature (Section 2.5). Melt viscosity must be 

maintained in a range of 2 to 8 Pa·s for optimal operating. A slightly more restrictive range of 4 to 

6 Pa·s is recommended for peak performance. 

 The PCT of product glass using normalized B and Na release models (Section 2.6). The PCT 

responses are currently required to demonstrate compliance with disposal and contract requirements. 

 The liquidus temperature (TL) of zirconia-containing phases (Section 2.7). This model helps to reduce 

the risk of crystal accumulation in the melter for glasses with higher ZrO2 concentrations. 

 Also reported are component concentration limits for model validity, chromium tolerance, and 

phosphate tolerance. The recommended models are given, along with property and component 

concentration constraints. However, these models, and the data used to produce them, are not fully 

QA compliant for plant operation and so should be used only as an estimation tool. 

4.2 LAW Glass Property Models 

Models were developed to constrain the composition and loading of LAW glasses. These include 

models to control 

 The sulfur tolerance of the melter feed using an SO3 solubility model (Section 3.1). Separated salts 

may significantly increase corrosion of melter construction materials and this model and associated 

constraint are aimed at minimizing this risk. 

 The PCT of product glass using normalized glass release model (Section 3.2). The PCT responses are 

currently required to demonstrate compliance with contract requirements. 

 The VHT response of product glass using an alteration depth model (Section 3.3). The PCT responses 

are currently required to demonstrate compliance with contract requirements. 

 The viscosity of the melt at the 1150°C operating temperature (Section 3.4). Melt viscosity must be 

maintained in a range of 2 to 8 Pa·s for optimal operating. A slightly more restrictive range of 4 to 

6 Pa·s is recommended for peak performance. 

 The K3 refractory corrosion (Section 3.6). This model helps to reduce the risk of excessive melter 

corrosion and shortened service life. 

 Also reported are loading estimation rules and component concentration limits for model validity. 

The recommended models are given, along with property and component concentration constraints. 

However, these models, and the data used to produce them, are not fully QA compliant for plant 

operation and so should be used only as an estimation tool. 
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Appendix A 

 

Statistical Methods for Evaluating and Validating Models Fit 

to Experimental Data  

There are many statistical methods (both numerical and graphical) for assessing models. Evaluation 

methods assess a model with the data used to develop the model. Such data are referred to as model 

development data. The goals of model evaluation are to assess: (i) how well a model fits the data used to 

develop it, (ii) whether there are any outlying or influential data points that significantly affect the fitted 

model, and (iii) whether the assumption of ordinary least squares regression are satisfied. Problems 

detected by model evaluation such as violation of assumptions, detection of outlying data points, or 

detection of model inadequacy require implementing various remedies in the model development process 

until the problem(s) are corrected. 

When the model being evaluated acceptably fits the data used to develop the model, model validation 

methods should be applied using data not used to develop the model. Such data are referred to as model 

validation data. If model validation data are not available, cross-validation methods can be applied using 

the model development data. Cross-validation methods leave out one or more data points at a time, so that 

some of the data are used for model development and some for model validation. Such methods are also 

referred to as data-splitting validation methods, where part of the data is used for model development and 

evaluation, while the other part is used for validation. 

Section A.1 discusses statistical methods for evaluating models fit to experimental data. Section A.2 

discusses statistical methods for validating models using experimental data not used to fit the model. 

Draper and Smith (1998) and Montgomery et al. (2013) are textbook references that discuss statistical 

methods for evaluating and validating models. 

A.1 Statistical Methods for Model Evaluation 

Model evaluation techniques used in this report include, Studentized residuals, three R2 statistics, the 

root mean squared error (RMSE), and predicted versus measured (PvM) plots with X% prediction 

intervals. Each of these is explained briefly below. The following notation is used in the subsequent 

descriptions and definitions: 

 n  = number of data points used to fit a model 

 p = number of parameters (coefficients) in a model estimated by fitting the model to data 

  yi = measured property value (mathematically transformed, if appropriate for the model 

used) for the ith data point 

 iŷ  = predicted property value (mathematically transformed, if appropriate for the model  

used) for the ith data point made using the model fitted to all n data points 

 )(iŷ  = predicted property value (mathematically transformed, if appropriate for the model used) 

for the ith data point made using a model fitted to all n data points except the ith 
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 y  = average (mean) of the n measured property values (mathematically transformed, if 

appropriate for the model form used). 

The model evaluation methods are now briefly described for situations where ordinary least squares 

regression is appropriate for fitting a model to data. The descriptions and formulas of the various model 

evaluation quantities are different if weighted least squares regression, generalized least squares 

regression, or nonlinear least squares regression are appropriate. Because none of these latter methods 

were used in this report, the model evaluation methods and formulas are not discussed only for ordinary 

least squares regression.  

RMSE 

The RMSE is calculated by the formula 
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If the fitted model is adequate and does not have a statistically significant lack-of-fit (LOF), this statistic 

provides an estimate of the experimental and measurement uncertainty standard deviation associated with 

melting glasses and measuring the associated property. The statistic RMSE is included as standard output 

in most regression software, and has units the same as the property values yi (including any mathematical 

transformation of the property in the model). 

Studentized Residual 

A Studentized residual (si) for a given data point is the difference in measured and predicted property 

values (i.e., a residual iii ŷyr  ) divided by its standard deviation. The formula for a Studentized 

residual is given by 
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where ri and RMSE are as previously defined, ai is the composition (column) vector for the ith modeling 

data point expanded in the form of the model, A is an n × p matrix of the compositions (and temperatures 

in the case of viscosity or electrical conductivity) in the modeling dataset expanded in the form of the 

model, the superscript T denotes the transpose of a vector or matrix, and the superscript “-1” indicates a 

matrix inverse. 

Patterns in plots of the si versus iŷ  may indicate (i) a violation of the ordinary least squares regression 

assumptions and suggest a property transformation to remedy the situation, or (ii) indicate model 

inadequacy. Studentized residuals are typically viewed in plots on the y-axis with various quantities on 

the x-axis. The majority of the Studentized residuals should fall within the range of ± 2.0 and almost all 

should fall within ± 3.0. Comparing Studentized residuals to such a range provides an easy criterion for 

judging whether a data point is outlying. Points with very large (in absolute value) Studentized residuals 
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should not automatically be eliminated from the modeling data set. Rather, a subject matter expert should 

assess whether the property value may be wrong, or whether the composition has an extreme value of one 

or more components that make it very influential. These are appropriate reasons for removing one or 

more outlying data points from a modeling dataset. 

R2 Statistics 

Three R2 statistics are discussed, which all generally quantify the proportion of variation in the 

property values yi accounted for by the fitted model.  Three different R2 statistics are useful in evaluating 

models fitted to glass property-composition data. These are denoted as 2R , 2
AdjR , and 2

edPrR , which are 

discussed subsequently. In general, all three quantify the proportion of variation in the property values yi 

accounted for by the fitted model, with some differences in the specifics. 

The (ordinary) R2 statistic is given by 
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where the notation was defined previously. R2 is interpreted as the fraction of variability in the property 

data (transformed if appropriate) accounted for by the fitted model. 

The adjusted R2 statistic is given by 
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where the notation was defined previously. 2
AdjR  is interpreted as the adjusted fraction of variability in the 

property data (transformed if appropriate) accounted for by the fitted model. The adjustment is for the 

number of parameters (p) and number of data points (n) used in fitting the model. Increasing the number 

of parameters (coefficients) in a model will always increase R2, but 2
AdjR  may decrease if the addition 

model terms and coefficients do not significantly improve the fit. 

The predicted R2 statistic is given by 
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where the notation was defined previously. 2
edPrR  is interpreted as the leave-one-out cross-validation 

fraction of variability in the property data (transformed if appropriate) accounted for by the fitted model. 
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This statistic is calculated by a method equivalent to leaving each data point out of the model fit, and then 

evaluating how well the model predicts the property for that data point. 2
edPrR  estimates the fraction of 

variability that would be explained in predicting new observations drawn from the same composition 

space. However, computational simplifications (using a vector-matrix formula) do not require refitting a 

model with each data point removed. 

Generally, the three R2 statistics take values between 0 and 1. However, 2
AdjR  and 2

edPrR  can take 

negative values for a poor fitting model, a model that contains many more terms than needed to fit the 

data, or a model fitted to data with one or more very influential data points. Among the three R2 statistics, 

typically 2
edPrR  ≤ 2

AdjR  ≤ R2 ≤ 1. More than a small difference between R2 and 2
AdjR  indicates that the 

model may contain more terms than needed to achieve essentially the same goodness of fit. A substantial 

difference between R2 and 2
edPrR  is indicative of one or more data points being very influential in 

determining the fit of the model. Some reduction from R2 to 2
edPrR  is expected because R2 corresponds to 

using all data to fit the model, whereas 2
edPrR  corresponds to leaving each data point out of the fit when 

evaluating the performance of the model for that point. In general, a model will tend to predict better for 

data used to fit it than for data not used to fit it. 

Predicted versus Measured Plot and Prediction Intervals 

A predicted versus measured plot shows how well model-predicted values iŷ  compare to the 

measured values yi for the glasses in the model-development dataset. Predicted property values iŷ  are 

plotted on the y-axis and measured property values yi are plotted on the x-axis. A 45º line (i.e., with slope 

one) is included in the plot for reference purposes, and represents the ideal of predicted values equaling 

measured values. Plotted points falling above this line correspond to glasses for which the model 

overpredicts the property, while plotted points falling below this line represent glasses for which the 

model underpredicts the property. A preponderance of plotted points in a portion of the plot on the x-axis 

(measured values) falling above or below the line indicates that the model tends to yield biased 

predictions for that range of measured property values. Plotted points far from the line are outlying or 

potentially influential data points. 

In this report, either 90% or 95% prediction intervals (PI) have been added to many of the predicted 

vs. measured plots. The use of 90% or 95% depends on whether the property is for process control (90%) 

or product acceptability (95%). The formula for a X% two-sided PI for an individual response value for a 

given composition x is given by 
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where all notation has been defined previously. An X% prediction interval (X% PI) provides X% 

confidence that the interval includes a future single observation of the property (or its transformation) for 

a glass of the specific composition. When an X% PI overlaps the 45º line in the plot, it indicates that the 

predicted property value is not statistically different than the measured value with X% confidence. 
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The model evaluation techniques discussed above are included in the output of many software 

packages that use ordinary least squares regression to fit models to data. In some cases, different notation 

and terminology may be used, but the concepts and formulas are the same (with the exception that there 

are variations of Studentized residuals). See Draper and Smith (1998) or Montgomery et al. (2001) for 

further discussion of the concepts. 

A.2 Statistical Methods for Model Validation 

Model validation methods assess how well a fitted model predicts property values for glasses not used 

in fitting the model. The glasses used for validation ideally should be in the same composition region as 

the data used to fit the property-composition models, because (in general) fitted empirical and semi-

empirical models should not be used to extrapolate much beyond the region covered by the modeling 

data. Also, ideally the validation data should be evenly distributed over the model composition region of 

model validity to properly assess predictive ability over the region. However, this is difficult to achieve in 

practice because validation data are typically not designed, but often consists of whatever extra data are 

available. 

Validation generally consists of using a fitted model to predict property values for a set of validation 

data, and then comparing the predicted property values to the measured values from the validation 

dataset. Several methods for comparing predicted and measured values of properties are described 

following. 

 

Validation R2 

Statistical summary comparisons of predicted and measured property values are useful to see if 

differences are larger than their expected uncertainties. One such comparison is the validation R2 statistic, 

which is given by 
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where the notation was defined previously. 2
ValR  is interpreted as the fraction of variability in the property 

values (transformed if appropriate) in the validation dataset accounted for by the fitted model. Note that 

2
ValR  is defined in Equation (A.7) exactly the same as the ordinary R2 defined in Equation (A.3), except 

that model validation data are used to assess model predictive performance instead of the model 

development data. Hence, the yi, iŷ , and y  values in Equation (A.7) correspond to the model validation 

data. 

Generally 2
ValR  ≤ 2

edPrR  ≤ 
2
AdjR  ≤ R2 ≤ 1 for model validation. However, 2

ValR  can take negative 

values (when a model predicts a validation dataset very poorly) and can take values larger than 2
edPrR , 

2
AdjR , or R2 (when a model predicts a particular validation dataset better than it predicts the model 

development dataset). 
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When there is no appropriate separate validation dataset, the modeling dataset may be split into 

modeling and validation subsets. In this report, the data are split into five subsets, each containing roughly 

20% of the modeling dataset. Then, each such subset was used as the validation dataset, and the 

remaining four subsets were combined and used as the modeling subset. See Section 1.4 for the specifics. 

 

Validation RMSE 

Another useful summary statistic for model validation is validation RMSE (RMSEVal). This statistic is 

calculated the same as given in Equation (A.1), except using the model validation dataset instead of the 

model development dataset. The statistic may also be calculated for a validation subset when the 

modeling dataset is split into subsets, as described previously. 

 

Predicted Versus Measured Plots and Prediction Intervals 

Predicted and measured values for a model validation dataset can be compared by plotting the predicted 

versus the measured property values for each data point. Such plots are the same as described in Section 

A.1, except model validation data are used instead of model development data. Also, X% PIs may be 

added to such plots, as described in Section A.1. One would expect that at least X% of the validation data 

points would have X% PIs that overlap the 45º line in the predicted vs. measured plot if the model 

predicts as well for the validation dataset as it did the model development dataset. If the percentage of 

X% PIs overlapping the 45º line is substantially less than X%, it may be an indication that (i) the model 

overfits the model development dataset, or (ii) the model validation dataset may focus more on subregions 

of the composition region where the model does not predict as well. 

 





 

 

 


