
PNNL-24190

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Environmental, Transient, Three-
Dimensional, Hydrothermal, Mass
Transport Code − FLESCOT

Yasuo Onishi L. Loren Eyler
Jie Bao Masahiko Okumura
Kevin A. Glass

March 2015

PNNL-24190

Environmental, Transient, Three-
Dimensional, Hydrothermal, Mass
Transport Code − FLESCOT

Yasuo Onishi L. Loren Eyler1
Jie Bao Masahiko Okumura2
Kevin A. Glass

March 2015

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

1 Independent Consultant
2 Japan Atomic Energy Agency

 iii

Summary

The FLESCOT code simulates the time-dependent, three-dimensional movements of flow,
turbulence, heat, salinity, sediment (sand, silt, and clay), dissolved contaminant (e.g., radionuclide, toxic
chemicals, heavy metals, etc.), and contaminant adsorbed by sediment (sand, silt, and clay) in reservoirs,
river mouths, estuaries, coastal waters, and seas. It also calculates distributions of bottom sediment and
contaminant adsorbed by bottom sediments of sand, silt, and clay within the water bottom.

 The FLESCOT code is modified to enable turbulent kinetic energy and its dissipation modeling for
the surface water, and the use of current computer systems that are different from those on which the code
was originally developed. Thus, the code verification is performed. In this study, we conducted code
testing using cases with known analytical solutions and relatively simple cases with available
experimental data. The testing results indicate that the modified FLESCOT can provide acceptable
simulation results that compare well with the analytical or experimental results with and without
turbulence modeling. FLESCOT was also tested in a simple hypothetical coastal water case, confirming
its feasibility for predicting a flow of coastal water. More complex rigorous test cases, e.g., reservoir and
coastal water testing, require extensive field data collection. The FLESCOT code may be tested for its
validation with Fukushima data being collected by Japan Atomic Energy Agency when required data for
validation become available.

The modified FLESCOT code with the turbulence modeling was applied to the Ogi Dam Reservoir
located approximately 15 km from the Fukushima Dai-ichi Nuclear Power Plant. We focus on a detailed
analysis of the flow in the Ogi Dam Reservoir; the Ogi Dam Reservoir simulation shows that velocities
are very low in most parts of the dam, decreasing drastically with distance from the reservoir inlet with
the Oginosawa River toward the dam. The main flow in the reservoir predicted by the code is toward the
dam, but there is also a smaller flow in the opposite direction toward the inlet. These flow variations
within the reservoir, including the bottom flow, would play a critical role in the transport and
accumulation of the sediment and cesium.

A good program development team, familiar with parallel programming should be able to create a
parallel version of the code. The developers have two general options. First, they can rewrite sections of
the code to avoid race conditions and complex, unconstrained branching. Second, they can carefully
work around the areas that are too encumbered by unconstrained jumping to avoid synchronization issues.
In either case, the development team should use a spatial decomposition as the basis for its efforts and, if
time permits, the team should parallelize the chemical species computations in the SPECTR subroutine.
In either case, parallelizing the code will require some rewriting.

v

Acronyms and Abbreviations

Bq becquerel(s); Standard International (SI) unit for radioactivity, defined as the
activity of a quantity of radioactive material in which one nucleus decays per
second

F-TRACE long-term assessment of Transport of RAdioactive Contaminant in the
Environment of Fukushima

FLESCOT Flow, Energy, Salinity, Sediment Contaminant Transport
HPC high-performance computing
JAEA Japan Atomic Energy Agency
kg kilogram(s)
km kilometer(s)
m meter(s)
m3/s cubic meter(s) per second
PNNL Pacific Northwest National Laboratory
s or sec second(s)
TEMPEST Transient Energy, Momentum, and Pressure Equation Solution in Three

Dimensions
TODAM Transient, One-dimensional, Degradation and Migration

vii

Nomenclature

c specific heat

Ci ith sediment concentration per unit
volume

Cε1 constant

Cε2 constant

Cε3 constant

Cμ constant

Di particle diameter of the ith sediment

DMi molecular diffusion coefficient of the ith
component

Dω DMi + μT/ScT

FR(U) flow drag in R-direction

FU 2ΩEU sin(ϕ)

FW 2ΩEU cos(ϕ)

FX(W) flow drag in X-direction

FZ(V) flow drag in Z-direction

G dissolved species concentration per unit
volume (radionuclide activity or weight
of species per unit volume)

GBi particulate species concentration per
unit weight of sediment in the ith
sediment size fraction in the bed

Gi particulate species concentration
associated with the ith sediment
(radionuclide activity or weight of
species per unit volume)

Gk turbulent kinetic energy buoyant
production

GR body force per unit mass in R direction

GX body force per unit mass in X-direction

GZ body force per unit mass in Z-direction

H flow depth

K thermal conductivity

k turbulent kinetic energy per unit mass

KBi transfer rate of species for adsorption
with the ith non-moving sediment in the
bed

KDi distribution (or partition) coefficient
between dissolved species and
particulate species associated with the ith
sediment for adsorption

Ki transfer rate of species with the ith
moving sediment for adsorption

Kkε K + KT

KT turbulent (eddy) thermal conductivity

KʹBi transfer rate of species for desorption
with the ith non-moving sediment in the
bed

KʹDi distribution (or partition) coefficient
between dissolved species and
particulate species associated with the ith
sediment for desorption

Kʹi transfer rate of species with the ith
moving sediment for desorption

P static pressure

Pk turbulent kinetic energy shear
production

POR porosity of bed sediment

QCi source of the ith sediment

Qi source of particulate species Gi

viii

Q
•

 volumetric heat generation rate

R R-direction for Cartesian and cylindrical
coordinates

S salinity

ScT turbulent Schmidt number

SDi ith sediment deposition rate per unit
surface area

Sk Pk + Gk

SRi ith sediment erosion rate per unit surface
area

Sε Cε1 Pk + Cε3 Gk

T temperature

U velocity in R-direction

V velocity in Z-direction

VSi settling velocity of the ith sediment

W velocity in X-direction

X X-direction for Cartesian and cylindrical
coordinates

Z Z-direction for Cartesian and cylindrical
coordinates

β 0 for Cartesian coordinates and 1 for
cylindrical coordinates

γi specific weight of the ith sediment

ε turbulent kinetic energy dissipation per
unit mass

εR dispersion coefficient in R-direction

εX dispersion coefficient in X-direction

εZ dispersion coefficient in Z-direction

λ radionuclide decay, or first-order
chemical and biological degradation
rates of species

μ dynamic viscosity

μI isotropic viscosity

μH horizontal viscosity

μk μ + μT/σk

μkε μ + μT

μM molecular viscosity

μT turbulent (eddy) viscosity
(T μ

2μ = C ρ k ε)

μV vertical viscosity

με μ + μT/σε

μ0 constant viscosity

ρ local density obtained from Boussinesq
approximation

ρi partial density of the ith component

ρ0 fluid density

σk constant

σT constant

σε constant

ϕ planetary latitude

ΩE planetary angular velocity
(7.29 × 10-5 [sec-1])

iΩ
•

 mass fraction source of the ith
component

ωi mass fraction of the ith component
(ωi = ρi/ρ)

ix

Contents

Summary ... iii
Acronyms and Abbreviations ... v
Nomenclature .. vii
1.0 Introduction .. 1.1

1.1 Purpose and Scope ... 1.1
1.2 Report Contents and Organization ... 1.2

2.0 Delivered Computer Codes .. 2.1
3.0 FLESCOT Code Description .. 3.1

3.1 Coordinate Systems .. 3.2
3.2 Conservation of Mass (Continuity of Incompressible Fluid) ... 3.2
3.3 Conservation of Momentum in R Direction ... 3.3
3.4 Conservation of Momentum in X-Direction .. 3.3
3.5 Conservation of Momentum in Z-Direction ... 3.4
3.6 Conservation of Turbulent Kinetic Energy (k-ε Model) .. 3.4
3.7 Conservation of Turbulent Kinetic Energy Dissipation (k-ε Model) 3.5
3.8 Viscosity in Surface Water ... 3.5
3.9 Conservation of Thermal Energy ... 3.8
3.10 Transport Equation for the ith Component in a Mixture of n Species (i=1,2,...n) 3.8
3.11 Transport in the Surface-Water Environment .. 3.9

3.11.1 Sediment Transport Equation for ith Sediment in Cartesian Coordinates
(R,X,Z) .. 3.9

3.11.2 Dissolved Species Transport Equation for Dissolved Species G in Cartesian
Coordinates (R,X,Z) .. 3.9

3.11.3 Transport Equation for the ith Particulate Species in Cartesian Coordinates
(R,X,Z) .. 3.10

3.11.4 Transport Equation for Salinity in Cartesian Coordinates (R,X,Z) 3.11
4.0 FLESCOT Verification Testing .. 4.1

4.1 Benchmark 1: Laminar Flows with Heat Transfer (LSHT-3) ... 4.1
4.1.1 Description and Purpose .. 4.1
4.1.2 FLESCOT Solution ... 4.2

4.2 Benchmark 2: Turbulent Flow in a Two-Dimensional Channel (TDC-1) 4.3
4.2.1 Description and Purpose .. 4.3
4.2.2 FLESCOT Solution ... 4.4

4.3 Benchmark 3: Turbulent-Free Jet .. 4.5
4.3.1 Description and Purpose .. 4.5
4.3.2 FLESCOT Solution ... 4.6

5.0 FLESCOT Feasibility Trial for Coastal Water Flow Application .. 5.1

x

5.1 FLESCOT Solution .. 5.1
5.1.1 Case 1: No Temperature and Salinity Difference between Inlet River Flow

and the Coastal Water ... 5.1
5.1.2 Case 2: With Temperature Difference, no Salinity Difference Between Inlet

River Flow and the Coastal Water .. 5.4
5.1.3 Case 3: No Temperature Difference, with Salinity Difference between Inlet

River Flow and the Coastal Water .. 5.7
5.1.4 Case 4: With Temperature and Salinity Differences between Inlet River Flow

and the Coastal Water ... 5.10
6.0 Flow Analysis of the Ogi Dam Reservoir Model ... 6.1

6.1 Aim of This Study .. 6.1
6.2 Modeling of Ogi Dam Reservoir .. 6.1
6.3 Results .. 6.3
6.4 Discussion .. 6.11

7.0 FLESCOT Parallelization Approach .. 7.1
7.1 Analysis of FLESCOT ... 7.1

7.1.1 Performance Analysis ... 7.2
7.1.2 Structural Analysis .. 7.3

7.2 Parallelizing FLESCOT ... 7.7
7.2.1 General Parallelization Issues ... 7.7
7.2.2 Approaches .. 7.8

8.0 Conclusions .. 8.1
9.0 References .. 9.1
Appendix A − TEMPEST − A Computer Program for Three-Dimensional Time-Dependent

Computational Fluid Dynamics .. A.1

xi

Figures

3.1. Cartesian coordinates. ... 3.2
3.2. Cylindrical coordinates. .. 3.2
3.3. Magnitude of various diffusion coefficients. .. 3.6
4.1. Geometry for planar duct flow with variable viscosity. .. 4.1
4.2. Input file for test problem LSHT-3 ... 4.2
4.3. Comparison between analytic solution and FLESCOT and TEMPEST predictions for

planar duct flow with variable viscosity: (a) temperature, (b) velocity 4.3
4.4. Geometry for fully developed turbulent two-dimensional channel flow 4.3
4.5. Input file for test problem TDC-1 ... 4.4
4.6. Comparison between TEMPEST prediction and experimental data for fully developed

turbulent two-dimensional channel flow. .. 4.5
4.7. Simulation domain for turbulent-free jet. .. 4.6
4.8. Input file for the turbulent-free jet... 4.6
4.9. Comparison between FLESCOT simulation and empirical results: (a) lateral velocity

profile; (b) center line velocity. ... 4.7
5.1. Geometry of the test case for coastal water: (left) top view; (right) side view. 5.1
5.2. Input file for test without temperature and salinity differences .. 5.2
5.3. FLESCOT simulation results for the test case without temperature and salinity

differences between inlet river flow and coastal water ... 5.3
5.4. Input file for test with temperature differences and without salinity differences 5.5
5.5. FLESCOT simulation results for the test case with temperature differences and without

salinity differences between inlet river flow and coastal water .. 5.6
5.6. Input file for test without temperature differences and with salinity differences. 5.8
5.7. FLESCOT simulation results for the test case without temperature differences and with

salinity differences between inlet river flow and coastal water .. 5.9
5.8. Input file for test with temperature and with salinity differences ... 5.11
5.9. FLESCOT simulation results for the test case with temperature and salinity differences

between inlet river flow and coastal water. (Figure continued on next two pages.) 5.12
6.1. Overview of the Ogi Dam Reservoir modeling .. 6.2
6.2. Three-dimensional views from A−D shown in Figure 6.1. ... 6.3
6.3. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contour 6.4
6.4. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic

contour (3-hour simulation time) .. 6.5
6.5. Magnitude and direction of simulated flow velocity at (a) surface and (b) the depth of

2 m with logarithmic contour (3-hour simulation time) .. 6.6
6.6. Magnitude and direction of simulated flow velocity at the depth of (a) 4 m and (b) 6 m

with linear contour (three hours simulation time). .. 6.7
6.7. Magnitude and direction of simulated flow velocity at depths of (a) 8 m and (b) 10 m with

linear contours (3-hour simulation time). .. 6.8

xii

6.8. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contours
(47-hour simulation time). .. 6.9

6.9. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic
contour (forty seven hours simulation time). .. 6.10

6.10. Simulation results for Ogi Dam Reservoir at 472 simulation hours. .. 6.11
7.1. Flow of control for Subroutine EXCUTE, CONDIF, and SEMBLE .. 7.3

Tables

7.1. FLESCOT Performance Observations .. 7.1
7.2. FLESCOT Code Structure Observations and Possible Problems ... 7.2

1.1

1.0 Introduction

The magnitude-9 East Japan Great Earthquake and subsequent tsunami damaged northeastern Japan
on March 11, 2011. The tsunami, in turn caused the reactor core meltdown accident at the Fukushima
Dai-ichi Nuclear Plant. The accident released approximately one-seventh of the radionuclides released to
the environment by the 1986 Chernobyl nuclear accident. The radionuclides released were mostly 131I,
134Cs, and 137Cs, as well as very small amounts of 89Sr, 90Sr, 238Pu, and 239-240Pu (Ministry of Education
website).

Cesium deposited on the Fukushima land surface and in surface waters undergo transport and fate
processes that involve the following mechanisms:

• transport of radionuclides by water and to a lesser extent by air movements

• transport, deposition, and re-suspension of particulate radionuclides by soil and sediment movements

• adsorption and desorption causing radionuclide phase changes between dissolved and particulate
forms

• radionuclide decay

• radionuclide influx from and efflux to other environmental media (e.g., from surface soil to
groundwater and surface water).

The Pacific Northwest National Laboratory (PNNL) and the Japan Atomic Energy Agency (JAEA)
have jointly been assessing cesium migration and accumulation on the land surface and in receiving
rivers, reservoirs, and coastal waters in Fukushima. Because environmental remediation takes a great
deal of time and resources to develop and implement the required technologies to clean up the
environment, scientifically defensible environmental assessment methodologies must be implemented for
environmental remediation. One of these environmental assessment methodologies is a time-dependent,
three-dimensional code—Flow, Energy, Salinity, Sediment, Contaminant Transport (FLESCOT). It
simulates the movement of water; turbulence kinetic energy and its dissipation; water temperature;
salinity; sediment (sand, silt, and clay); dissolved contaminants (e.g., radionuclides, toxic chemicals,
heavy metals); and particulate contaminants adsorbed by sediments in rivers, lakes, reservoirs, estuaries,
coastal waters, and seas (Onishi et al. 1985, 1993). The FLESCOT code is an environmental assessment
version of the general hydrothermal, mass transport code—TEMPEST (Trent et al. 1989). The JAEA is
currently parallelizing FLESCOT.

1.1 Purpose and Scope

The purpose of the project reported on herein was to modify and apply the transient, three-
dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam
reservoirs, river mouths, and coastal areas.

The ultimate objective of the FLESCOT simulation is to predict future changes of cesium
accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing
and future environmental remediation activities and policies in a systematic and comprehensive manner.
For example, they will enable decision makers to determine the following:

1.2

• whether the reservoir water would be safe for domestic and agricultural usage

• how to use a reservoir to control cesium migration downstream and to manage irrigation water

• where and how much remediation is needed on the land surface and in the surface water, if any, to
secure future public safety

• whether recontamination will occur; e.g., whether decontaminated agricultural fields will remain
clean in the future

• how much and where the Fukushima coastal water would be contaminated by cesium transported out
into the ocean from Fukushima rivers.

1.2 Report Contents and Organization

The ensuing sections of this report present the computer codes that were provided to the JAEA in
2014 (Section 2), followed by a description of the FLESCOT code (Section 3) and FLESCOT verification
testing (Section 4). Sections 5 through 7, respectively, describe a preliminary evaluation of the feasibility
of applying FLESCOT to coastal water, a preliminary application of FLESCOT to the Ogi Dam Reservoir
in Fukushima, and a FLESCOT parallelization approach. Report conclusions are contained in Section 8.
References for sources cited in the text are listed in Section 9. Appendix A contains a report about
previously conducted verification and validation testing of the TEMPEST code.

2.1

2.0 Delivered Computer Codes

In fiscal year 2014, PNNL provided the working versions of the FLESCOT code, and the expanded
Transient, One-dimensional, Degradation and Migration (TODAM) code to the JAEA, along with the
following associated documents:

• Trent DS and LL Eyler. 1997. TEMPEST: A computer Program for Three-Dimensional, Time-
Dependent Computational Fluid Dynamics and Hydrothermal Analysis: Volume 1. Theory and
User's Manual. PNL-4348, Vol. 1, Battelle−Pacific Northwest Laboratories, Richland, Washington.

• Trent DS and LL Eyler. 1993. TEMPEST: A Computer Program for Three-Dimensional Time-
Dependent Computational Fluid Dynamics: Volume 1: Theory Manual. PNL-8857, Vol. 1,
Battelle−Pacific Northwest Laboratories, Richland, Washington

• Eyler LL, DS Trent, and JA Fort. 1993. TEMPEST: A Computer Program for Three-Dimensional
Time-Dependent Computational Fluid Dynamics: Volume 2: User's Manual. PNL-8857, Vol. 2,
Battelle−Pacific Northwest Laboratories, Richland, Washington.

• Meyer PA and JA Fort. 1993. TEMPEST: A Computer5 Program for Three-Dimensional Time-
Dependent Computational Fluid Dynamics: Volume3: Validation and Verification. PNL-8857, Vol.
3, Battelle−Pacific Northwest Laboratories, Richland, Washington.

• Fort JA. 1993. TEMPEST: A Computer5 Program for Three-Dimensional Time-Dependent
Computational Fluid Dynamics: Volume 4: Programmer's Manual. PNL-8857, Vol. 4,
Battelle−Pacific Northwest Laboratories, Richland, Washington

• Holly FM Jr, JC Yang, P Schwarz, J Schaefer, SH Hsu, and R Einhellig. 1990. Numerical
Simulation of Unsteady Water and Sediment Movement in Multiply Connected Networks of Mobile-
Bed Channels. IIHR Report No. 343, Iowa Institute of Hydraulic Research, The University of Iowa,
Iowa City, Iowa.

FLESCOT is a sediment-contaminant transport version of the general computational fluid dynamic
code, TEMPEST. It simulates time-varying, three-dimensional phenomena of hydrodynamic, energy, and
mass transport in rivers, lakes, reservoirs, estuaries, coastal waters, and seas (Onishi and Trent 1985,
1992; Onishi et al. 1993). Its formulation is presented in Chapter 3.

The expanded TODAM code simulates time-varying, one-dimensional flow, transport of sand, silt
and clay, dissolved contaminants (e.g., radionuclides, hazardous chemicals, pesticides, and heavy metals),
and particulate contaminants adsorbed by sand, silt, and clay in rivers, lakes, reservoirs, and estuaries
(Onishi et al. 2007). It handles the multiple connected networks of a river and its tributaries. TODAM
has been applied to predict 137Cs transport and accumulation in the Ukedo River and its tributaries,
including the Takase River in Fukushima, Japan (Kurikami et al. 2014).

3.1

3.0 FLESCOT Code Description

FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport; Onishi et al. 1993) is a finite-
volume code developed by PNNL to predict time-varying three-dimensional distributions of the
following:

• flow (velocity and depth) resulting from a river flow, tide, wind, waves, and water density variations
• turbulent kinetic energy and its dissipation
• water temperature
• salinity
• sediment concentrations of

– suspended sand
– suspended silt
– suspended clay

• dissolved radionuclide concentration
• particulate radionuclide concentrations adsorbed by

– suspended sand
– suspended silt
– suspended clay

• within the water bottom at any given location,

– bed elevation change caused by sediment erosion and deposition
– sediment fractions of

○ bottom sand
○ bottom silt
○ bottom clay

– radionuclide concentrations adsorbed by

○ bottom sand
○ bottom silt
○ bottom clay.

FLESCOT is applicable to various contaminants, e.g., radionuclides, heavy metals, and toxic organic
chemicals, including 137Cs moving and depositing in the Hudson River Estuary with 137Cs
adsorption/desorption changing with salinity (Onishi and Trent 1985; Onishi 1987; Onishi and Trent
1992; Onishi et al. 1993). It has been applied to river mouths/estuaries, coastal water, seas, and deep
oceans.

FLESCOT solves the differential equations based on the following principles:

• conservation of mass (continuity)
• conservation of momentum (Newton’s second law)
• conservation of energy (first law of thermodynamics)
• conservation of turbulent kinetic energy, κ
• conservation of turbulent kinetic energy dissipation, ε

3.2

• conservation of mass constituents, Ci.

These conservation equations are described in the following subsections.

FLESCOT is the surface-water version of the TEMPEST (Transient Energy, Momentum, and
Pressure Equation Solution in Three Dimensions) computer code. The code assessment and validation of
TEMPEST is presented in the appendix, “TEMPEST – Assessment and Verification Results.”

3.1 Coordinate Systems

FLESCOT uses two coordinate systems, Cartesian and cylindrical coordinates, as shown in Figure 3.1
and Figure 3.2, respectively.

Figure 3.1. Cartesian coordinates.

Figure 3.2. Cylindrical coordinates.

3.2 Conservation of Mass (Continuity of Incompressible Fluid)

Equation (3.1) for conservation of mass is used in FLESCOT:

3.3

β

β β

1 R U 1 W V + + =0
R R R X Z

∂ ∂ ∂
∂ ∂ ∂

 (3.1)

where
 U = velocity in R direction
 W = velocity in X-direction
 V = velocity in Z-direction
 β = 1 for cylindrical coordinates
 β = 0 for Cartesian coordinates.

3.3 Conservation of Momentum in R Direction

FLESCOT uses Equations (3.2) and (3.3) for conservation of momentum in the R direction:

() () ()

2
β

0 Uβ β
0

β
R kε kε kε Rβ 2β

U 1 1 ρ Wρ + R UU + WU + VU - β - F
t R R R X Z ρ R

P 1 U 1 U U- + ρG + R μ + μ + μ + S
R R R R R X X Z Z

  ∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (3.2)

 kε kε kε
R kε R2 2 β

μ μ μU 2 W U W VS = - βμ + + + + - F (U)
R R X R R X R R Z R

∂ ∂ ∂∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (3.3)

where
 ρ0 = fluid density
 ρ = local density obtained from the Boussinesq approximation

 kεμ = μ + μT
 μ = dynamic viscosity

 μT = turbulent (eddy) viscosity calculated as T μ
2μ = C ρ k ε from the Prandtl-

Kolmogorov hypothesis
 k = turbulent kinetic energy per unit mass
 ε = turbulent kinetic energy dissipation per unit mass
 Cμ = constant
 FR(U) = flow drag in R direction
 FU = 2ΩEU sin(ϕ)
 ϕ = planetary latitude
 ΩE = 7.29 × 10-5 [sec-1] (Planetary angular velocity)
 GR = body force per unit mass in R direction
 P = static pressure.

3.4 Conservation of Momentum in X-Direction

FLESCOT uses Equations (3.4) and (3.5) for conservation of momentum in the X-direction:

3.4

() () ()β

0 Wβ β
0

β
X kε kε kε Xβ β 2β

W 1 1 ρ UWρ + R UW + WW + VW + β + F
t R R R X Z ρ R

1 P 1 W 1 W W- + ρG + R μ + μ + μ + S
R X R R R R X X Z Z

  ∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (3.4)

kε kε kε
X 2 β 2β

kε
Xβ

βμ μ μU 1 U 1 WS = 2 - W + - βW + + 2βU
R X R R X R X X

μ1 V + - F (W)
R Z X

∂ ∂∂ ∂ ∂     
     ∂ ∂ ∂ ∂ ∂     
∂ ∂
∂ ∂

 (3.5)

where
 FX(W) = flow drag in X-direction
 FW = 2ΩEU cos(ϕ)
 GX = body force per unit mass in X-direction.

3.5 Conservation of Momentum in Z-Direction

FLESCOT uses Equations (3.6) and (3.7) for conservation of momentum in the Z-direction:

() () ()β

0 β β

β
Z kε kε kε Zβ 2β

V 1 1ρ + R UV + WV + VV
t R R R X Z

P 1 V 1 V V- + ρG + R μ + μ + μ + S
Z R R R R X X Z Z

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (3.6)

 kε kε kε
Z Zβ

μ μ μU 1 W VS = + + - F (V)
R Z R X Z Z Z

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 (3.7)

where
 FZ(V) = flow drag in Z-direction
 GZ = body force per unit mass in Z-direction.

3.6 Conservation of Turbulent Kinetic Energy (k-ε Model)

Equation (3.8) for conservation of turbulent kinetic energy is used in FLESCOT:

() () ()β

0 β β

β
k k k kβ 2β

k 1 1ρ + R Uk + Wk + Vk
t R R R X Z

1 k 1 k kR μ + μ + μ - ρε + S
R R R R X X Z Z

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.8)

where
 k = turbulent kinetic energy per unit mass

3.5

 ε = turbulent kinetic energy dissipation per unit mass
 μk = μ + μT/σk
 σk = constant
 Sk = Pk + Gk.

For the shear production,

2 2 2 2

k T β β

2 2

β

U 1 W U V 1 U W WP = μ 2 + + β + + + - β
R R X R Z R X R R

U V W 1 V+ + + +
Z R Z R X

  ∂ ∂ ∂ ∂ ∂        
         ∂ ∂ ∂ ∂ ∂          

∂ ∂ ∂ ∂    
   ∂ ∂ ∂ ∂    

(3.9)

For the buoyant production,

 T
k R X Zβ

0 T

μ ρ 1 ρ ρG = G + G + G
ρ σ R R X Z

∂ ∂ ∂ 
 ∂ ∂ ∂ 

 (3.10)

where σT = constant.

3.7 Conservation of Turbulent Kinetic Energy Dissipation (k-ε Model)

FLESCOT uses Equation (3.11) for conservation of turbulent kinetic energy dissipation:

() () ()

()

β
0 β β

β
ε ε ε ε ε2β 2β

ε 1 1ρ + R Uε + Wε + Vε
t R R R X Z

1 ε 1 ε ε 1R μ + μ + μ + S - ρC ε ε
R R R R X X Z Z k

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.11)

where
 ε = turbulent kinetic energy dissipation per unit mass
 με = μ + μT/σε
 Sε = Cε1 Pk + Cε3 Gk
σε, Cε1, Cε2, and Cε3 = constants.

3.8 Viscosity in Surface Water

Diffusion of momentum, heat, and mass is determined in the FLESCOT code with the use of eddy
diffusion coefficients. Turbulence associated with surface water is generated by various conditions. They
include interaction with shearing currents (velocity gradient), wind and wave actions, shorelines and
bathymetric feature, hydraulic structures within a water body, etc. In general, the turbulence in surface
water (rivers, lakes, reservoirs, estuaries, coastal waters, seas, and oceans) is anisotropic, where horizontal
scales of turbulence are much larger than the vertical scales (Fischer et al. 1979). For example, a

3.6

diffusion coefficient increases with the length and time at 1.34 power of distance and time in seas and
oceans (IAEA 2001).

Figure 3.3 shows scales of mass diffusion coefficients (Bowie et al. 1985). This figure shows that a
horizontal diffusion coefficient in surface water is typically 1x102 ~ 1x106 cm2/sec, while a vertical
diffusion coefficient is roughly 1x10-2 ~ 1x100 cm2/sec, and molecular diffusion is in the range of 1x10-6 ~
1x10-4 cm2/sec. Thus, the horizontal diffusion is four to six orders of magnitude greater than vertical
diffusion, which in turn is four to six orders of magnitude greater than molecular diffusion.

Figure 3.3. Magnitude of various diffusion coefficients.

Note that viscosity (a momentum diffusion coefficient) and mass diffusion coefficient are related by
Schmidt number, ScT, as

3.7

ωρ

µ
D

Sc T
T = (3.12)

where, Dω = mass diffusion coefficient.

FLESCOT models the eddy diffusion using both isotropic and anisotropic components, as follows:

• Isotropic component, µI

 TMI µµµ += (3.13)

where µM = molecular viscosity, µT = k-ε model computed viscosity.

• Anisotropic component, µ0

 which is the large scale horizontal component.

The turbulent viscosity, μT, is computed using the Prandtl-Kolmogorov hypothesis:

 T μ

2μ = C ρ k ε (3.14)

Recommended turbulence model constants (Jones and Launder 1973) are as follows:

σk = 1.0 Cε1 = 1.44 Cμ = 0.09
σT = 0.9 Cε2 = 1.92
σε = 1.3 Cε3 = 1.44.

The FLESCOT code has these values as default, but can accept different values as input, if so desired.

The horizontal and vertical components of the turbulence are then modeled as follows:

 0µµµ += IH (3.15)

 IV µµ = (3.16)

where µH = horizontal viscosity and µV = vertical viscosity.

Each component can be specified through input, and the k-ε model can be turned on or off by input
selection. The viscosity, µkε in Navier Stokes Equations (Equations 3.2 through 3.7), is either µH or µV,
depending on whether its direction orientation is horizontal or vertical.

As shown in the next chapter, we are testing the k-ε model in FLESCOT, and it is working under the
conditions tested.

3.8

3.9 Conservation of Thermal Energy

The equation for conservation of thermal energy used in FLESCOT is Equation (3.17):

() () ()β

0 β β

β
kε kε kεβ 2β

T 1 1ρ c + R UT + WT + VT
t R R R X Z

1 T 1 T TR K + K + K + Q
R R R R X X Z Z

•

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.17)

where
 T = temperature
 Kkε = K + KT
 K = thermal conductivity
 KT = turbulent (eddy) thermal conductivity
 C = specific heat

 Q
•

 = volumetric heat generation rate.

3.10 Transport Equation for the ith Component in a Mixture of n
Species (i=1,2,...n)

The transport equation for the ith component in a mixture of n species in FLESCOT is Equation
(3.18):

() () ()βi
i i iβ β

•
β i i i

ω ω ω iβ 2β

ω 1 1 + R Uω + Wω + Vω
t R R R X Z

ω ω ω1 1R D + D + D + Ω
R R R R X X Z Z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.18)

where
 ωi = mass fraction of the ith component defined as ωi = ρi/ρ
 ρi = partial density of the ith component
 Dω = DMi + μT/ScT
 DMi = molecular diffusion coefficient of the ith component
 ScT = turbulent Schmidt number

 iΩ
•

 = mass fraction source of the ith component
 | Δρ / ρ | = assumed to be small for the Boussinesq approximation.

3.9

3.11 Transport in the Surface-Water Environment

FLESCOT has the capability of predicting the transport and fate of chemical, biological, radiological,
and suspended solid material species in the surface-water environment. The transport equations can be
applied for up to nine species involving the following three types:

• sediment
• dissolved species
• particulate species attached to or detached from sediments.

Although FLESCOT can use both Cartesian and cylindrical coordinates for transport modeling in the
surface-water environment, the transport equations for the surface-water environment are described with
Cartesian coordinates for the sake of simplicity.

3.11.1 Sediment Transport Equation for ith Sediment in Cartesian Coordinates
(R,X,Z)

The equation for transport of the ith sediment used in FLESCOT is Equation (3.19):

() () ()i
i i Si i

i i i Ri Di
R X Z Ci

C + UC + WC + V - V C
t R X Z

C C C S Sε + ε + ε + - + Q
R R X X Z Z H H

∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂       =        ∂ ∂ ∂ ∂ ∂ ∂       

 (2.19)

where
 Ci = ith sediment concentration per unit volume
 εR = dispersion coefficient in R direction
 εX = dispersion coefficient in X-direction
 εZ = dispersion coefficient in Z-direction
 H = flow depth
 QCi = source of ith sediment
 SDi = ith sediment deposition rate per unit surface area
 Sri = ith sediment erosion rate per unit surface area
 VSi = settling velocity of the ith sediment.

3.11.2 Dissolved Species Transport Equation for Dissolved Species G in
Cartesian Coordinates (R,X,Z)

FLESCOT uses Equations (3.20) and (3.21) for transport of dissolved species “G”:

() () ()

R X Z

G + UG + WG + VG
t R X Z

G G Gε + ε + ε + G
R R X X Z Z

•

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.20)

() ()

() ()

() ()

3 3•

i i Di i i i Di i
i=1 i=1

3

i i Bi Di Bi
i=1
3

i i Bi Di Bi
i=1

G = - λG - K C K G - G - K C K G - G

1 - γ 1 - POR D K K G - G
H
1 - γ 1 - POR D K K G - G
H

′ ′

′

∑ ∑

∑

∑

 (3.21)

where
 G = dissolved species concentration per unit volume (radionuclide activity or weight of

species per unit volume)
 Gi = particulate species concentration associated with the ith sediment (radionuclide

activity or weight of species per unit volume)
 GBi = particulate species concentration per unit weight of sediment in the ith sediment

size fraction in the bed
 Ki, Kʹi = transfer rate of species with the ith moving sediment for adsorption and desorption,

respectively
 KBi, KʹBi = transfer rate of species for adsorption and desorption with the ith non-moving

sediment in the bed, respectively
 KDi, KʹDi = distribution (or partition) coefficient between dissolved species and particulate

species associated with the ith sediment for adsorption and desorption,
respectively.

 Di = particle diameter of the ith sediment
 Λ = radionuclide decay or, first-order chemical and biological degradation rates of

species
 γi = specific weight of the ith sediment
 POR = porosity of bed sediment.

Note that in Equation (3.21) adsorption and desorption do not occur simultaneously.

3.11.3 Transport Equation for the ith Particulate Species in Cartesian
Coordinates (R,X,Z)

FLESCOT uses Equations (3.22) and (3.23) for transport of the ith particulate species:

() () ()i
i i Si i

i i i
R X Z i

G + UG + WG + V - V G
t R X Z

G G Gε + ε + ε + G
R R X X Z Z

•

∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (3.22)

 () ()
•

Di Bi Ri
i i i i i Di i i i Di i i

S G SG = - λG - G + K C K G - G + K C K G - G + + Q
H H

′ ′ (3.23)

where Qi = source of particulate species Gi.

3.10

3.11.4 Transport Equation for Salinity in Cartesian Coordinates (R,X,Z)

The transport equation for salinity used in FLESCOT is Equation (3.24):

() () ()

R X Z

S + US + WS + VS
t R X Z

S S Sε + ε + ε
R R X X Z Z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂ ∂ ∂     

 (2.24)

where S = salinity.

3.11

4.1

4.0 FLESCOT Verification Testing

Verification and validation testing is an essential part of any software development program. This is
especially true for computational fluid dynamic codes because of the wide variety of mathematical and
physical models these codes are composed of. Testing of the software is needed both during the code
development period and after completion of code development. The FLESCOT code was modified to
enable the turbulent kinetic energy and its dissipation and use of current computer systems that are
different from those on which the code was originally developed.

Computational fluid dynamic testing generally falls into two categories: simple problems having
analytical solutions and more complex problems for which experimental and field data are available. In
this study, we conducted code testing using cases with known analytical solutions, and relatively simple
cases with available experimental data. More complex test cases, e.g., reservoir and coastal water testing,
require extensive field data collection; the JAEA has been conducting extensive monitoring and field data
collection in rivers, reservoirs, and coastal waters in the Fukushima area. The FLESCOT code may be
tested for its validation with these Fukushima data when required data for validation become available.

The following sections describe the FLESCOT verification testing conducted under this project.

4.1 Benchmark 1: Laminar Flows with Heat Transfer (LSHT-3)

4.1.1 Description and Purpose

This test problem examines the FLESCOT program’s ability to deal with a flow with temperature-
dependent viscosity. The geometry of the problem is shown in Figure 4.1, and the fluid has a linearly
varying viscosity. The viscosity variation is accomplished by a fictitious fluid having a linear variation in
viscosity with temperature.

Figure 4.1. Geometry for planar duct flow with variable viscosity.

x

y

h

u0

Th

T0

4.2

4.1.2 FLESCOT Solution

The input file for this test problem is shown in Figure 4.2. A 20 x 30 uniformly spaced cell structure
corresponding to h = 40 m and L = 600 m was used. Temperatures on the upper and lower walls
corresponded to b = 14. The inlet velocity was chosen to be . Steady-state solutions were
established at a simulation time of approximately 88 s with the flow field being fully developed beyond
x = 380 m. Figure 4.3 shows a comparison of the FLESCOT, TEMPEST, and an analytic solution. The
FLESCOT and TEMPEST codes provide exactly the same results, and the agreement between the
simulations and analytic solution is acceptable.

 Planar Poiseuille flow test problem - variable viscosity
qaid: LSHT-3
size, 22 32 1
time, 1 200.
prnt, 1 1 50
post,
pres, 500 1-8
rest, 1 1

cont,c ln,uncp,mont,scrn,dtim,pace,sisy,vvis,heat
cont,psav,msav,qaed
aout,velr,velz,temp,
dbug,data,size,prop,ntyp,
plot,velr,velz,temp

 0 1 2 21 2 31 1 1 1
 60 1 1 2 31 1 1 1
 60 22 22 2 31 1 1 1
 30 1 2 21 1 1 1 1 1
 40 1 2 21 32 32 1 1 1
 10 28 1 3 28 1 11 28 1 30 28 1 1 5

 1. 20. 1. 0. 90. 90. 0. 1
 1. 1. 1. 1. 0. 10. 2 1 1vl 6
 1. 2 21 2 21 1 1 7
 1. 2 21 1 1 1 1 7r
 0. 22 22 2 31 9
 5. 2 21 1 31 9
 10. 1 1 2 31 9
 0. 1.5 1 19
 10. .1 1 19

 0

Figure 4.2. Input file for test problem LSHT-3

4.3

(a) (b)

Figure 4.3. Comparison between analytic solution and FLESCOT and TEMPEST predictions for planar
duct flow with variable viscosity: (a) temperature, (b) velocity.

4.2 Benchmark 2: Turbulent Flow in a Two-Dimensional Channel
(TDC-1)

4.2.1 Description and Purpose

This test problem examines a fully developed turbulent flow in a two-dimensional channel.
FLESCOT prediction for mean velocity and turbulent kinetic energy are compared with experimental data
obtained from Laufer (1951). The geometry for the problem is shown in Figure 4.4. A fluid with initial
mean velocity flows between two semi-infinite parallel plates located a distance 2d apart (see Figure
4.4). Far from the entrance of the channel, the mean velocity profile becomes fully developed. A
maximum velocity occurs at the center of the channel.

This problem is designed to test the FLESCOT code’s ability to accurately compute two-dimensional
turbulent flows in Cartesian geometries.

Figure 4.4. Geometry for fully developed turbulent two-dimensional channel flow.

x

y

d

u0

4.4

4.2.2 FLESCOT Solution

The input file for this test problem is shown in Figure 4.5. The FLESCOT model implemented an
18 x 18 uniform computational grid simulating one-half of the channel. A reflective boundary was used
to take advantage of the centerline symmetry. The fluid properties and geometry were chosen to
approximate the experimental conditions of air at standard conditions with d = 2.5 in. and = 3 m/s.
The Reynolds number chosen from the experiment was Re = 12,300, based on channel half-width d and
the developed centerline velocity . Since must be computed by FLESCOT, there was no way to
know it a priori. Therefore, the inflow fluid properties were slightly adjusted in an iterative process until
FLESCOT computed a value of , which produced the desired Reynolds number.

 2D plane channel flow, turbulent -- Re = 12,300
qaid: TDC-1
size, 25 20 1
time, 1-3 25.0
prnt, 10
post,
pres, 100 1-8
rest, 1 1

cont,psav,msav,scrn,pa e,turb,
cont,besq,mont,dtim,sisy,qaed,uncp,
aout,velr,velz,pres,delp,tkin
dbug,prop,mtyp,ntyp,data,
plot,velr,velz,pres,delp,tkin

 20 1 1 1 20 1 1 1
 0 1 2 24 2 19 1 1 1
 30 1 2 24 1 1 1 1 1
 40 1 2 24 20 20 1 1 1
 2 19 1 5

 1.00 1. 90 1
 1 19.0036 20 257.1-4 3 3
 1.1.070 10001.9-5 1 0 1cl 6
 2.99 1 24 1 20 1 1 7
 0

Figure 4.5. Input file for test problem TDC-1.

Figure 4.6 shows a comparison between the experimental data and FLESCOT prediction. Shown are
the mean velocity and the turbulent kinetic energy, both normalized by the centerline velocity. The
agreement between the simulation and the experiment data is acceptable.

4.5

Figure 4.6. Comparison between TEMPEST prediction and experimental data for fully developed

turbulent two-dimensional channel flow.

4.3 Benchmark 3: Turbulent-Free Jet

4.3.1 Description and Purpose

This problem tests the accuracy of FLESCOT for fully developed turbulent-free jet. The diameter of
the jet nozzle is 0.05m, and the jet velocity is 2 m/s, and Figure 4.7 shows the simulation domain. The
experimental data for momentum jet centerline velocity is

 V*=1 for Z* ≤6.2 (4.1)

 V*=6.2/Z* for Z* > 6.2 (4.2)

where
 Z* = Z/D0
 R* = r/D0
 V* = Vcl/V0
 D0 = 0.05 m (jet orifice diameter)
 V0 = 2 m/s (jet discharge velocity)
 r = jet radial coordinate
 z = jet axial coordinate.

The lateral distribution of downstream velocity has a Gaussian profile, given by

4.6

 V(r,z)=Vcl(z)exp(-K(r/z)2) (4.3)

where the experimentally determined entrainment coefficient, K = 77.

Figure 4.7. Simulation domain for turbulent-free jet.

4.3.2 FLESCOT Solution

Figure 4.8 shows the input file of the turbulent-free jet. Figure 4.9 shows the FLESCOT simulation
results compared with the empirical results as shown in Equations (4.1)−(4.3). The agreement between
the FLESCOT and empirical results are acceptable.

 Free Jet
qaid: FJ
size, 55 40 1
time, 1-2 100.
prnt,
post,
rest, 1 1

cont,uncp,mont,scrn,dtim,pace,sisy,
cont,psav,msav,qaed,rx o,cyln,turb,
aout,velr,velz,velx,tkin,tdis,eddy
dbug,data,size,prop,ntyp,init,
plot,velr,velz,velx,

 0 1 2 54 2 39 1 1 1 nodetype
 20 1 1 1 1 40 1 1 1 nodetype
 30 1 2 6 1 1 1 1 1 nodetype
 40 1 2 54 40 40 1 1 1 nodetype
 40 1 55 55 2 39 1 1 1 nodetype
 9 21 1 5 montcell

 10 1-30 90 1
 1 10 .005 11 20 .008 21 30 .012 3 3 DR
 31 40 .024 41 50 .048 51 55 .096 3 3 DR
 1 10 .035 11 15 .053 16 20 .106 3 4 DZ
 21 25 .212 26 30 .424 31 35 .848 3 4 DZ
 36 40 1.7 3 4 DZ
 35101+3 20 0 35 51 1 2 1cl 6 h2o
 0. 2 54 2 40 1 1 7 velocity
 2. 2 6 1 1 1 1 7 velocity
 0 endata

Figure 4.8. Input file for the turbulent-free jet.

z

r

Jet

4.7

(a) (b)

Figure 4.9. Comparison between FLESCOT simulation and empirical results: (a) lateral velocity profile;
(b) center line velocity.

5.1

5.0 FLESCOT Feasibility Trial for Coastal Water Flow
Application

The tests in this chapter are designed to be used for examining the feasibility of application of
FLESCOT with the turbulence k-ε model for coastal water. Figure 5.1 shows the geometry in top and
side views. A 200 m wide river flows into a 2000 m x 2000 m coastal water area. The depth at the
coastal line or river is 1.5 m, and gradually increases to 10 m over 2000 m offshore.

Figure 5.1. Geometry of the test case for coastal water: (left) top view; (right) side view.

5.1 FLESCOT Solution

To test the impacts of temperature and salinity differences on flows, four cases are tested: 1) no
temperature and salinity differences between inlet river flow and the coastal water; 2) with temperature
differences, no salinity differences between inlet river flow and the coastal water; 3) no temperature
differences, with salinity differences between inlet river flow and the coastal water; 4) with temperature
and salinity differences between inlet river flow and the coastal water.

5.1.1 Case 1: No Temperature and Salinity Difference between Inlet River Flow
and the Coastal Water

The temperature of inlet river flow and coastal water are set to be 10 °C. The salinity calculation is
turned off. Figure 5.2 shows the input file for this test. Figure 5.3 shows the results. See directions of X,
Y, and Z in Figure 5.3. For clarity, the contour plot is cut along the center of the domain and the inlet
river.

1.5m Side view

10m 2000m

u0
2000m

200m

Top view

5.2

1 3-d marine test (without heat and salinity)
size, 38 23 41
time, 1 1+5
prnt, 500
pres, 500 1.9 1-8
rest, 1 1

cont,pace,scal,m st,
cont,s ve,r ad,ds v,turb,
cont,mont,dtim,rxio,hyn ,sisy,he t,scim,
aout,sp n,vs n,ma f,c(),
aout,s rf,t mp,s rf,w ve,tkmn,kvis,
aout,temp,vel1,vel2,vel3,divg,dens,s rf,c(),
aout,velr,velz,velx,
aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug,size,prop,mtyp,ntyp,data,tabl,tt l,init,star,

 20 1 38 23 23 1 41 1
 40 1 38 38 2 22 3 40 1
 50 1 2 37 2 22 41 41 1
 50 1 2 37 2 22 2 2 1
 30 1 5 5 20 22 20 23 1
 20 0 38 38 2 22 2 2 1
 20 0 38 38 2 22 41 41 1
 0 1 6 9 16 22 3 40 1
 0 1 10 13 14 22 3 40 1
 0 1 14 17 12 22 3 40 1
 0 1 18 21 10 22 3 40 1
 0 1 22 25 8 22 3 40 1
 0 1 26 29 6 22 3 40 1
 0 1 30 33 4 22 3 40 1
 0 1 34 37 2 22 3 40 1
 6 18 22 6 19 22 2 19 21 2 20 21 5
 500 6
 blank
 50 50 000 90 180 90 1
 1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
 35101+3 20 0 35 51 1 3 1cl 6 h2o
 1. 0 0 10 5 5 20 22 20 23 7 dischge
 10 0 5 38 1 22 1 41 9 temp
 10 0 5 5 20 22 20 23 9 temp
 blank

Figure 5.2. Input file for test without temperature and salinity differences.

5.3

(a) Velocity in Y-direction (inlet river flow

direction) (m/s)
(b) Velocity in Z-direction (perpendicular to inlet

river flow direction and parallel to the coastal
surface) (m/s)

(c) Velocity in X-direction (vertical direction of

the coastal area) (m/s)
(d) Turbulent kinetic energy dissipation (m2/s3)

Figure 5.3. FLESCOT simulation results for the test case without temperature and salinity differences
between inlet river flow and coastal water. (Figure continued on next page.)

5.4

(e) Turbulent kinetic energy (m2/s2) (f) Turbulence viscosity (Pa⋅s)

Figure 5.3. (contd)

5.1.2 Case 2: With Temperature Difference, no Salinity Difference Between
Inlet River Flow and the Coastal Water

The temperature of inlet river flow is 10 °C, and coastal water is 20°C. The salinity calculation is
turned off. Figure 5.4 shows the input file for this test. Figure 5.5 shows the results. For clarity, the
contour plot is cut along the center of the domain and the inlet river.

5.5

1 3-d marine test (with heat and without salinity)
size, 38 23 41
time, 1 1+5
prnt, 500
pres, 500 1.9 1-8
rest, 1 1

cont,pace,scal,m st,
cont,s ve,r ad,ds v,turb,
cont,mont,dtim,rxio,hyn ,sisy,heat,scim,
aout,sp n,vs n,ma f,c(),
aout,s rf,t mp,s rf,w ve,tkmn,kvis,
aout,temp,vel1,vel2,vel3,divg,dens,s rf,c(),
aout,velr,velz,velx,
aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug,size,prop,mtyp,ntyp,data,tabl,tt l,init,star,

 20 1 38 23 23 1 41 1
 40 1 38 38 2 22 3 40 1
 50 1 2 37 2 22 41 41 1
 50 1 2 37 2 22 2 2 1
 30 1 5 5 20 22 20 23 1
 20 0 38 38 2 22 2 2 1
 20 0 38 38 2 22 41 41 1
 0 1 6 9 16 22 3 40 1
 0 1 10 13 14 22 3 40 1
 0 1 14 17 12 22 3 40 1
 0 1 18 21 10 22 3 40 1
 0 1 22 25 8 22 3 40 1
 0 1 26 29 6 22 3 40 1
 0 1 30 33 4 22 3 40 1
 0 1 34 37 2 22 3 40 1
 6 18 22 6 19 22 2 19 21 2 20 21 5
 500 6
 blank
 50 50 000 90 180 90 1
 1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
 35101+3 20 0 35 51 1 3 1cl 6 h2o
 1. 0 0 10 5 5 20 22 20 23 7 dischge
 20 0 5 38 1 22 1 41 9 temp
 10 0 5 5 20 22 20 23 9 temp
 blank

Figure 5.4. Input file for test with temperature differences and without salinity differences.

5.6

(a) Velocity in Y-direction (inlet river flow

direction) (m/s)
(b) Velocity in Z direction (perpendicular to inlet

river flow direction and parallel to the coastal
surface) (m/s)

(c) Velocity in X direction (vertical direction of the

coastal area) (m/s)
(d) Temperature (degree Celsius)

Figure 5.5. FLESCOT simulation results for the test case with temperature differences and without
salinity differences between inlet river flow and coastal water. (Figure continued on next
page.)

5.7

(e) Density (kg/m3) (f) Turbulent kinetic energy dissipation (m2/s3)

(g) Turbulent kinetic energy (m2/s2) (h) Turbulence viscosity (Pa⋅s)

Figure 5.5. (contd)

5.1.3 Case 3: No Temperature Difference, with Salinity Difference between
Inlet River Flow and the Coastal Water

The temperatures of inlet river flow and coastal water are 10 °C. The salinity of coastal water is
3.205% in mass fraction, and the salinity of the inlet river flow is 0. Figure 5.6 shows the input file for
this test. Figure 5.7 shows the results. For clarity, the contour plot is cut along the center of the domain
and the inlet river.

5.8

1 3-d marine test (without heat and with salinity)
size, 38 23 41
time, 1 1+5
prnt, 5000
pres, 500 1.9 1-8
rest, 1 1
misc, -1 1

cont,mast,salt,c(1),
cont,pace,scal,m st,
cont,s ve,r ad,ds v,turb,
cont,mont,dtim,rxio,hyn ,sisy,heat,scim,
aout,spmn,vsmn,masf,c(1),
aout,s rf,t mp,s rf,w ve,tkmn,kvis,
aout,temp,vel1,vel2,vel3,divg,dens,s rf,c(),
aout.velr,velz,velx,
aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug,size,prop,mtyp,ntyp,data,tabl,tt l,init,star,

 20 1 38 23 23 1 41 1
 40 1 38 38 2 22 3 40 1
 50 1 2 37 2 22 41 41 1
 50 1 2 37 2 22 2 2 1
 30 1 5 5 20 22 20 23 1
 20 0 38 38 2 22 2 2 1
 20 0 38 38 2 22 41 41 1
 0 1 6 9 16 22 3 40 1
 0 1 10 13 14 22 3 40 1
 0 1 14 17 12 22 3 40 1
 0 1 18 21 10 22 3 40 1
 0 1 22 25 8 22 3 40 1
 0 1 26 29 6 22 3 40 1
 0 1 30 33 4 22 3 40 1
 0 1 34 37 2 22 3 40 1
 6 18 22 6 19 22 2 19 21 2 20 21 5
 500 6
 blank
 50 50 000 90 180 90 1
 1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
 35101+3 20 0 35 51 1 3 1cl 6 h2o
 1. 0 0 10 5 5 20 22 20 23 7 dischge
 10 0 5 38 1 22 1 41 9 temp
 10 0 5 5 20 22 20 23 9 temp
32.05 1 5 38 1 22 1 41c 33 salinity
 0.0 1 5 5 20 22 20 23c 33 salinity
 blank

Figure 5.6. Input file for test without temperature differences and with salinity differences.

5.9

(a) Velocity in Y-direction (inlet river flow

direction) (m/s)
(b) Velocity in Z direction (perpendicular to inlet

river flow direction and parallel to the coastal
surface) (m/s)

(c) Velocity in X direction (vertical direction of the

coastal area) (m/s)
(d) Salinity (percentage in mass fraction)

Figure 5.7. FLESCOT simulation results for the test case without temperature differences and with
salinity differences between inlet river flow and coastal water. (Figure continued on next
page.)

5.10

(e) Density (kg/m3) (f) Turbulent kinetic energy dissipation (m2/s3)

(g) Turbulent kinetic energy (m2/s2) (h) Turbulence viscosity (Pa⋅s)

Figure 5.7. (contd)

5.1.4 Case 4: With Temperature and Salinity Differences between Inlet River
Flow and the Coastal Water

The temperature of inlet river flow is 10°C, and coastal water temperature is 20°C. The salinity of
coastal water is 3.205% in mass fraction, and salinity of the inlet river flow is 0. Figure 5.8 shows the
input file for this test. Figure 5.9 shows the results. For clarity, the contour plot is cut along the center of
the domain and the inlet river.

5.11

1 3-d marine test (with heat and salinity)
size, 38 23 41
time, 1 1+5
prnt, 500
pres, 500 1.9 1-8
rest, 1 1
misc, -1 1

cont,mast,salt,c(1),
cont,pace,scal,m st,
cont,s ve,r ad,ds v,turb,
cont,mont,dtim,rxio,hyn ,sisy,heat,scim,
aout,spmn,vsmn,masf,c(1),
aout,s rf,t mp,s rf,w ve,tkmn,kvis,
aout,temp,vel1,vel2,vel3,divg,dens,s rf,c(),
aout.velr,velz,velx,
aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug,size,prop,mtyp,ntyp,data,tabl,tt l,init,star,

 20 1 38 23 23 1 41 1
 40 1 38 38 2 22 3 40 1
 50 1 2 37 2 22 41 41 1
 50 1 2 37 2 22 2 2 1
 30 1 5 5 20 22 20 23 1
 20 0 38 38 2 22 2 2 1
 20 0 38 38 2 22 41 41 1
 0 1 6 9 16 22 3 40 1
 0 1 10 13 14 22 3 40 1
 0 1 14 17 12 22 3 40 1
 0 1 18 21 10 22 3 40 1
 0 1 22 25 8 22 3 40 1
 0 1 26 29 6 22 3 40 1
 0 1 30 33 4 22 3 40 1
 0 1 34 37 2 22 3 40 1
 6 18 22 6 19 22 2 19 21 2 20 21 5
 500 6
 blank
 50 50 000 90 180 90 1
 1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
 35101+3 20 0 35 51 1 3 1cl 6 h2o
 1. 0 0 10 5 5 20 22 20 23 7 dischge
 20 0 5 38 1 22 1 41 9 temp
 10 0 5 5 20 22 20 23 9 temp
32.05 1 5 38 1 22 1 41c 33 salinity
 0.0 1 5 5 20 22 20 23c 33 salinity
 blank

Figure 5.8. Input file for test with temperature and with salinity differences.

5.12

(a) Velocity in Y-direction (inlet river flow

direction) (m/s)
(b) Velocity in Z-direction (perpendicular to inlet

river flow direction and parallel to the coastal
surface) (m/s)

(c) Velocity in X direction (vertical direction of the

coastal area) (m/s)
(d) Temperature (degree Celsius)

Figure 5.9. FLESCOT simulation results for the test case with temperature and salinity differences
between inlet river flow and coastal water. (Figure continued on next two pages.)

5.13

(e) Salinity (percentage in mass fraction) (f) Density (kg/m3)

(g) Turbulent kinetic energy dissipation (m2/s3)

(h) Turbulent kinetic energy (m2/s2)

Figure 5.9. (contd)

5.14

(i) Turbulence viscosity (Pa⋅s)

Figure 5.9. (contd)

6.1

6.0 Flow Analysis of the Ogi Dam Reservoir Model

The Ogi Dam and its reservoir are located near the border between the villages of Kawauchi and
Tomioka (37:20:42 north latitude, 140:54:19 longitude) in Fukushima Prefecture, Japan. They are about
15 km from the Fukushima Dai-ichi Nuclear Power Plant. The available storage capacity of the Ogi Dam
Reservoir is 716,000 m3 and the water surface area is 70,000 m2. Detailed information can be found on
the Japan Dam Foundation website (in Japanese), in a paper by Funaki et al. (2014), and a previous report
by Onishi et al. (2014). This dam is a main focus of the JAEA Transport of Radioactive Contaminant in
the Environment of Fukushima (F-TRACE) research project (Iijima et al. 2013; Kitamura et al. 2015).
Under the F-TRACE project, JAEA monitors and samples water and sediment deposits in the reservoir
and in the river into the reservoir to evaluate cesium distributions.

6.1 Aim of This Study

In the previous report (Onishi et al. 2014), the authors studied the applicability of FLESCOT code
(Onishi et al. 1987; Onishi and Trent 1985, 1992; Onishi et al. 1993) to analysis of sediment and cesium
transport in the Ogi Dam Reservoir without turbulence modeling with the use of the k-ε model (see
Equations (3.8) through (3.11)) to calculate the eddy viscosity. In this study, we used the k-ε model to
estimate the eddy viscosity, and focused on a detailed analysis of the flow in the Ogi Dam Reservoir,
which plays a fundamental role in the cesium transport and accumulation in the reservoir.

6.2 Modeling of Ogi Dam Reservoir

Figure 6.1 shows a three-dimensional schematic of the Ogi Dam Reservoir. In this modeling, we use
Paraview (Henderson 2015) for visualization of our results. Because the vertical water depth is much
smaller than the horizontal distance, we made the vertical scale 10 times greater to show the water depth
variation as well in the figure. We set X-, Y-, and Z-directions as shown in Figure 6.1. We employed
rectangular mesh for the X-Y plane. In the X-direction, the vertex is made every 8 m. In the Y-direction,
the vertex is made every 8 m between 0 and 116 m, and between 136 and 256 m, and every 4 m from 116
to 136 m. In the Z-direction, the vertex is made every 0.3 m from the bottom to 0.9 m, 0.4 m from 0.9 to
1.3 m, and every 0.5 m from 1.3 to 11.3 m. The number of computational fluid cells is 9,595. Figure 6.2
shows views from viewpoints A, B, C, and D shown in Figure 6.1.

We set boundary conditions as follows: constant water influxes at 1.0 m/s from Oginosawa River
(Figure 6.1a), and 0.1 m/s from the two small streams (Figure 6.1b and 6.1c). These values are not
realistic, rather these extreme conditions were chosen for a test. The position of an outflow from the
reservoir is also shown in Figure 6.1d. The temperature of the water of the three inflow rivers and
reservoir is 25°C, and we focused on this isothermal case.

We consider three simulation times: 3, 47, and 472 (20 days) hours. Results obtained by FLESCOT
are consistent with those obtained using the TEMPEST code (a parent version of the flow part of
FLESCOT) in the 3-hour simulation time case. The input file for this simulation has 49,000 lines, so it is
not included here.

6.2

Figure 6.1. Overview of the Ogi Dam Reservoir modeling. Triangle with “N” represents the direction to

north. (a)−(d) show inlets and an outlet. A−D represent points of sight for Figure 6.2A-6.2D.

6.3

Figure 6.2. Three-dimensional views from A−D shown in Figure 6.1. The yellow arrows point out the

place where the topography changes abruptly (see text).

6.3 Results

First, we show predicted results for the 3-hour simulation time. Figure 6.3 shows velocity magnitude
viewed from top (Figure 6.3a) and bottom (Figure 6. 3b) with linear contour representation. We found
that the speed of the flow from the Oginosawa River (Figure 6.1a) decreases drastically with distance
from the reservoir inlet. The same velocity distribution with logarithmic contour representation is shown
in Figure 6.4. We show the magnitudes and the directions of the velocity of fluid at several depths.
Figures 6.5a, 6.5b, 6.6a, 6.6b, 6.7a and 6.7b show the flow velocity at the surface, at depths of 2, 4, 6, 8,
and 10 m, respectively.

6.4

First, we focus on the surface flow shown in Figure 6.5a. We can find streamlines from the inlets to
the outlet. We also find flow moving in the opposite direction, as indicated by the yellow arrow in Figure
6.5a. And, an extremely low velocity area exists between them. Next, we examine the velocity field at
greater depths. The velocity magnitude and directions at depths of 2 m are shown in Figure 6.5b. The
fundamental structure is the same as one near the water surface: we can see the main stream moving from
the inlets to the outlet, and the substream moving in the opposite direction. At depths of 4 m and 6 m, the
flow has also almost the same stream structures (Figure 6.6a and 6.6b). At depths of 8 m and 10 m, we
can find only a flow moving toward the outlet.

Figure 6.3. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contour (three

hours simulation time). The yellow arrow shows the point where the topography is
drastically changed.

Next, we show the 47-hour simulation results. Figures 6.7a, 6.7b, 6.8a, 6.8b, and 6.9 show the
magnitude of the velocity in linear and logarithmic contours. From these figures, we cannot find large
differences between the results of the 3- and 47-hour calculations. Thus, we consider that the velocity
distribution of three simulation hours has reached its steady-state condition.

To further examine the stability of the FLESCOT simulation, we continued to run this case for 472
simulation hours (about 20 simulation days) with 1 million time steps. The model was very stable. The
calculated flow and turbulence (turbulent kinetic energy and its dissipation) at 472 simulation hours are
shown in Figure 6.10. The flow patterns at 20 simulation days are very similar to those obtained during
earlier simulation hours.

6.5

Figure 6.4. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic contour

(3-hour simulation time). The yellow arrows show the area where the velocity is very slow.

6.6

Figure 6.5. Magnitude and direction of simulated flow velocity at (a) surface and (b) the depth of 2 m

with logarithmic contour (3-hour simulation time). The yellow arrow shows the area where
the direction of the velocity is opposite to the main flow.

6.7

Figure 6.6. Magnitude and direction of simulated flow velocity at the depth of (a) 4 m and (b) 6 m with

linear contour (three hours simulation time).

6.8

Figure 6.7. Magnitude and direction of simulated flow velocity at depths of (a) 8 m and (b) 10 m with

linear contours (3-hour simulation time).

6.9

Figure 6.8. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contours (47-

hour simulation time).

6.10

Figure 6.9. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic contour

(47 hours simulation time).

6.11

(a) Streamlines, magnitude of simulated velocity (m/s) (b) Turbulence viscosity (Pa s); the maximum

turbulence viscosity is around 150 (Pa⋅s)

(c) Turbulent kinetic energy (m2/s2); the maximum

turbulent kinetic energy is around 0.18 (m2/s2)
(d) Turbulent kinetic energy dissipation (m2/s3); the

maximum turbulent kinetic energy dissipation is
around 0.018 (m2/s3)

Figure 6.10. Simulation results for Ogi Dam Reservoir at 472 simulation hours.

6.4 Discussion

We found the velocities to be very low in most parts of the dam reservoir. The reason is the
topography of the reservoir around the main inlet (pointed out by the yellow arrow in Figure 6.3a). There
is a strong curvature from the inlet to a main part of the reservoir. After this curve, the width of the
waterway becomes suddenly wider than that at the inlet. In addition, the water depth suddenly increases
from around this part (pointed out by yellow arrows in Figure 6.2B and 6.2D). One can see that the water
goes through a very shallow part to a deeper part of the inlet.

6.12

These two topographical characteristics cause the drastic deceleration of flow. After this
deceleration, the flow goes to the outlet, but the sharp curve located downstream of the inlet area makes
the flow complex. As seen in Figure 6.5a, there are two flows: one moving toward the reservoir outlet
and the other moving in the opposite direction. This creates a large vortex-like structure whose “core”
has a very low velocity. The yellow arrow in Figure 6.4a points out the “vortex core” in the surface flow,
but almost the same structure is found in the bottom flow (Figure 6.4b). The main reason for this is the
topography at the middle part of the reservoir. There are no large bumps on the bottom. This makes
flows on the surface and the bottom almost the same without variation in water density.

This study reveals the main features of flow in the Ogi Dam Reservoir using FLESCOT. We made a
three-dimensional model of the Ogi Dam Reservoir. We set boundary conditions: constant water fluxes
1.0 m/s from Oginosawa River, and 0.1 m/s from the two other small streams. We found a drastic
slowdown in the flow around the main inlet of the reservoir. This is caused by a dramatic change in the
topography. The flow pattern on the bottom, which plays a critical role in sediment transport, is similar to
that near the water surface. The reason is that this dam reservoir does not have any pronounced bumps on
the bottom.

7.1

7.0 FLESCOT Parallelization Approach

FLESCOT is a serial program written in FORTRAN 77. The original codebase was written in the
early 1980s for computers with limited memory and slow processors when compared to current standards.
These constraints forced some design choices that will make parallelization difficult. For example, the
code maximizes the use of memory by using EQUIVALENCE and COMMON statements, but these
statements obscure the meaning of the code. Because understanding the intention of the code is crucial to
parallelizing it, this condition inhibits the ability to manually or automatically parallelize it. The
extensive use of global variables through the COMMON statements also makes the code difficult to
follow. Finally, the code relies on unconstrained branching for flow control; that is, it uses GOTO
statements to jump out of and into blocks. This too will lead to difficulty for the developer because the
code is difficult to follow and prevents a compiler from effectively optimizing the code. Consequently,
any successful attempt to parallelize it will entail rewriting parts of the code.

7.1 Analysis of FLESCOT

FLESCOT consists of a simulation loop that computes changes in mass transport and hydrodynamics
over a predetermined time step. The loop is a feed-forward process, in which the result of the current step
is used as input to the next step. This process describes the theoretical time evolution of the modeled
system.

We used two techniques to analyze FLESCOT:

• direct examination of the code
• performance analysis using gprof, an open source profiling tool, and manual timing.

The performance observations are summarized in Table 7.1 and the main observations of the code
structure and possible problems associated with it are summarized in Table 7.2.

Table 7.1. FLESCOT Performance Observations

Observation Implication
EXCUTE dominates the
execution time

The EXCUTE subroutine takes 96% of the execution time. This is not
surprising because it contains the simulation loop and calls the eight functions
that take most of the remaining simulation time.

SPECTR, ADVECT,
CONDIF, BFORCE,
STRESS, MOMENT,
SEMBLE, and SOLVEL
account for 77% of the
execution

These subroutines take about 77% of the total execution time. They are
generally complex and will be difficult to individually parallelize.

7.2

Table 7.2. FLESCOT Code Structure Observations and Possible Problems

Observation Implication
Global variables Global variables make the code difficult to follow because the code can change

them in unpredictable ways; FLESCOT has over 600 of them. In a parallel
version of the code several processors are able to change the values of each global
variable without coordination leading to “race conditions.” Because this is done
in unpredictable ways, access to each variable must use a “critical region” to
prevent data races. This can be a severe bottleneck for parallel versions of the
code.

Multiple returns Several functions have multiple return locations. This results in an execution
logic that is difficult to follow. When this code is parallelized, each return must
be treated separately to ensure any processor synchronization is handled correctly.
This hinders not only human analysis but also the basic block analysis and the
creation of directed acyclic graphs to model execution and enable optimization by
the compiler.

STOP statements The code has several STOP statements in various functions. Each of these will
have to be removed in the parallel code, and handled differently to avoid hanging
at global synchronization points later in the execution path.

EQIVALENCE
statements

EQUIVALENCE statements allow arrays to be used for multiple purposes, which
can make the code difficult to follow. When this code is parallelized—especially
in the distributed case—each meaning of the array must be mapped between
processors every time their values are shared. This also hinders compiler
optimization because the compiler is unable to assume the lack of aliasing among
variables that occur in EQUIVALENCE statements.

Data dependencies These are an inevitable part of code but they are problematic for parallel code.
Consider a computation like a[i] = a[i+1] + a[i-1] in a loop. The code is expected
to compute a[1] = a[0]+a[2], a[2] = a[1]+a[3] and so on. But, the minute we set
the new value of a[1], its old value is lost, so the computation of a[2] will not use
the expected value of a[1].

7.1.1 Performance Analysis

The structure of the code restricted our ability to completely analyze FLESCOT’s performance. Both
gprof and manual techniques can crash the code and do so under arbitrary circumstances. This suggests
that there may be some underlying memory access problems that are exacerbated by altering the
execution behavior of the code. This problem was address by JAEA in the January 2015 meetings. It
means the results from the gprof analysis may not be accurate. To corroborate the gprof output we did
collect, we manually profiled the code and verified the results with FLESCOT experienced users and
developers. Because the primary aim of this analysis is to find which functions dominate the execution
time, this approach is adequate.

As presented in Table 7.1, the main execution loop EXCUTE takes up roughly 96% of the
computation. It also calls the most time-consuming subroutines in the program: SPECTR, ADVECT,
CONDIF, BFORCE, STRESS, MOMENT, SEMBLE, and SOLVEL. Based on an examination of the
call sequence, the complexity of the subroutines, and a desire to minimize the amount of code rewriting
needed to parallelize them individually, we believe that the EXCUTE subroutine should be parallelized
and all coordination between processes should be moved to a single location, preferably EXCUTE.

7.3

7.1.2 Structural Analysis

Table 7.2 describes the main structural problems with the code as a whole. This table also suggests
the kinds of problems that would arise when parallelizing the code “as is.” Structurally, the main adverse
characteristic of the code is unconstrained branching. Of the eight functions identified as focal points for
parallelizing the code, the functions EXCUTE, CONDIF, and SEMBLE had the highest degree of
branching.

Figure 7.1a-c depicts the flow of control for these subroutines. Each diagram contains only the flow
control statements that have significant contributions to the “spaghetti” quality of the code. The figures
show the connections between control statements with directed paths pointing from the jump statement to
the target statement. The number of intersections between these paths and the number of return
statements indicate how much “spaghetti” each subroutine contains.

(a) EXCUTE
 if() go to 999 --->--->--->--->--->--->--->--->--->--->+--->--->--->--->+
 if() return -- | --> return
 100 continue <---<---<---<---<---<---<---<---<---<---<---<---<---+ v
 125 continue <---<---<---<---<---<---<---<---<---<---<---+ | |
 if() go to 140 --->--->--->--->+--->--->--->--->--->+ ^ ^ v
 140 continue <---<---<---<---<---<---<---<---<----+ | | |
 if() go to 810 --->--->--->--->+--->--->--->+ ^ ^ ^ v
 if() go to 165 --->--->+ | | | | |
 go to 350 --->--> | -->+ v ^ ^ ^ v
 165 continue <---<---+ | | | | | |
 if() go to 170 --->--->+ v v ^ ^ ^ v
 if() go to 170 --->--->+ | | | | | |
 if() go to 940 --->--> | -> v --->--->+ v ^ | | v
 go to 125 --->--> | -> | --->--> | --> | >--->--->--->^ ^ |
 170 continue <---<---+ v v v ^ | | v
 if() go to 180 --->--->+ | | | | ^ ^ |
 if() go to 350 --->--> | -->v v v ^ | | v
 180 continue <---<---+ | | | | ^ ^ |
 if() go to 360 ---->--->--> v ->+ v v ^ | | v
 if() go to 350 ---->--->--->| | | | | ^ ^ |
 if() go to 315 --->+ | v v v v ^ | | v
 315 continue <---+ v | | | | | ^ ^ |
 if() go to 350 --->--->| v | v v ^ | | v
 do 320 --->+ v | v | | | ^ ^ |
 320 continue <---+ | v | v v ^ | | v
 350 if() call denary ->--->+ | v | | | ^ ^ |
 360 continue <---<---<---<----+ v v ^ | | v
 if() go to 100 -->--->--->--->--->--> | --> | ----> | ---> ^ ->--->+ |
 go to 900 --->--->+ v v ^ | v
 810 continue <---<-- | <---<---<--- | <---+ | ^ |
 if() go to 960 --->--> v --->--->---> v --->+ ^ | v
 if() go to 125 -->---> | --->--->---> | >-- | -->-- | ---->+ |
 go to 140 -->---> | --->--->---> v >-- v -->-->+ v
 900 continue <---<---+ | | |
 if() go to 930 --->--->+ v v v
 do 928 --->+ | | | |
 928 continue <---+ v v v v
 930 continue <---<---+ | | |
 go to 999 --->--->--->--->--->---v---> v ->--->--->--->--->--->--->v
 940 continue <---<-- | --<---<---<--+ | |
 go to 999 --->--->--->--->--->--->---> v ->--->--->--->--->--->--->v
 960 continue <---<---<---<---<---<---<--<-+ |
 go to 999 ---->--->--->--->--->--->--->--->--->--->--->--->--->--->v

 999 continue <---<---<---<---<---<---<---<---<---<---<---<---<---<----+

Figure 7.1. Flow of control for Subroutine EXCUTE, CONDIF, and SEMBLE (Figure is continued on
next three pages.)

7.4

(b) CONDIF
 15 call semble <---<---<---<---<---<---<---<---<---<---<---<--+
 if() go to 400 --->+ |
 400 if() go to 600 <<>>+ ---->+ ^
 if() go to 880 --->-->--> | -->--->--->--->--->--->---->+ |
 if() go to 900 --->-->--> v -->--->--->--->--->--->---> | --> ^ -->
 go to 730 --->-->--> |--->--->+ v | |
 600 continue <---<---<--+ | | ^ |
 if() go to 880 --->--->--->--->--> v --->--->--->--->-->v | |
 650 if() go to 770 <><><><><><><><><>< | <><><>< + <--+ | ^ |
 if() go to 760 --->--->--->--->--> v -->+ | | v | |
 if() go to 15 --->--->--->--->--> | -> | -> v -> ^ --> | --->^ |
 if() go to 650 --->--->--->--->--> v -> v -> | -->| v | |
 if() go to 720 --->-->--->+ | | v ^ | ^ |
 go to 650 --->-->--> | -->--> v -> v -> v -->| v | |
 720 continue <---<---<--+ | | v ^ | ^ |
 do 725 --->-->--->+ v v | | v | |
 if() go to 900 --->-->--> | -->--> | -> | -> v -> ^ --> v --> | -->|
 725 continue <---<---<--+ v v | | | ^ |
 730 continue <---<---<---<---<---+ | v ^ v | |
 if() go to 800 --->-->--->+ v | | | ^ |
 go to 15 --->-->--> | -->--->---> | -> v -> ^ --> v --->| |
 760 continue <---<---<- | <--- <--- + | | | ^ |
 770 <---<---<- | <--- <---<---<-+ ^ v | |
 if() go to 800 --->-->--> | | | ^ |
 go to 650 --->-->--> | ---->--->--->--->--->-+ v | |
 800 continue <---<---<--+ | ^ |
 if() go to 900 --->-->-->--->--->--->--->--->-------->- v --> | -->|
 go to 15 --->-->-->--->--->------>--->----->--->- | --->+ |
 if() go to 880 ___v |
 880 continue ___+ |
 if() return -- | --->
 return --- | --->
 900 continue __|

 stop
(c)SEMBLE
 do 300 -->-->-->-->-->-->-->-->-->-->-->-->-->---->+
 do 250 -->-->-->-->-->-->-->-->-->-->-->-->--->+ |
 do 200 -->-->-->-->-->-->-->-->-->-->-->-->+ | v
 if() go to 200 --->-->-->-->-->-->-->-->-->| v |
 if() go to 150 v | v
 if() go to 100 | v |
 50 if() go to 60 --->--->--->--->--->+ v | v
 if() go to 60 --->--->--->--->--->| | v |
 if() go to 52 --->+ v v | v
 if() go to 53 --> | -->+ | | v |
 go to 55 --> v -> |-->+ v v | v
 52 <---+ v | | | v |
 if() go to 55 ---->--> | ->v v v | v
 53 <---<----+ | | | v |
 go to 60 --->--->---> v ---->v v | v
 55 <----<---<---+ | | v |
 60 continue <---<---<---<---<---+ v | v
 if() go to 70 --->--->--->--->---->+ | v |
 if() go to 61 --->+ | v | v
 61 <---+ v | v |
 if() go to 70 --->--->--->--->---->| v | v
 if() go to 62 --->+ v | v |
 if() go to 63 --> | -->+ | v | v
 go to 65 <-- v -->| --->+ v | v |
 62 <---+ v | v | v
 if() go to 65 --->-->--| ->--->+ v | v |
 63 <---<--<-+ | | v | v
 go to 70 --->--->--->---> v ->v | v |
 65 <---<---<---<----+ | v | v
 70 continue <---<---<---<---<----+ | v |
 if() go to 80 --->--->--->--->---->+ v | v
 if() go to 71 --->+ | | v |
 71 <---+ v v | v

7.5

 if() go to 80 --->--->--->--->---->| | v |
 if() go to 72 --->+ v v | v
 if() go to 73 --> | -->+ | | v |
 go to 75 <-- v -->| --->+ v v | v
 72 <---+ v | | v |
 if() go to 75 --->-->--| ->--->+ v v | v
 73 <---<--<-+ | | | v |
 go to 80 --->--->--->--->---->v v | v
 75 <---<---<---<----+ | | v |
 80 continue <---<---<---<---<----+ v | v
 200 continue <---<---<---<---<---<---<----+ v |
 250 continue <---<---<---<---<---<---<---<----+ v
 300 continue <---<---<---<---<---<---<---<---<----+
 if() go to 405 --->--->--->--->--->--->--->-->+
 if() go to 405 --->--->--->--->--->--->--->-->v
 do 400 --->--->--->--->--->--->--->-->-->+ |
 do 395 --->--->--->--->--->--->-->-->+ | v
 do 390 --->--->--->--->--->--->+ | v v
 if() go to 390 --->--->--->--->--->--->v v | |
 if() go to 390 --->--->--->--->--->--->| | v v
 if() go to 345 --->--->--->--->--->+ v v | |
 if() go to 345 --->--->--->--->--->| | | v v
 do 340 --->--->--->--->+ v v v | |
 if() go to 335 --->+ | | | | v v
 if() go to 336 --> | ->+ v v v v | |
 335 <---+ v v v | | v v
 if() go to 338 --->+ | | | v v | |
 336 continue <-- | --+ v v | | v v
 go to 340 --> v -->--->-->| | v v | |
 338 continue <---+ v v | | v v
 340 continue <---<---<---<---+ | v v | |
 345 continue <---<---<---<---<---+ | | v v
 if() go to 360 --->--->--->--->--->+ v v | |
 if() go to 360 --->--->--->--->--->| | | v v
 do 355 --->--->--->--->+ v v v | |
 if() go to 350 --->+ | | | | v v
 if() go to 351 --> | ->+ v v v v | |
 350 <---+ v v v | | v v
 if() go to 353 --->+ | | | v v | |
 351 continue <-- | --+ v v | | v v
 go to 355 --> v -->--->-->| | v v | |
 353 continue <---+ v v | | v v
 355 continue <---<---<---<---+ | v v | |
 360 continue <---<---<---<---<---+ | | v v
 if() go to 390 --->--->--->--->--->--->v v | |
 if() go to 390 --->--->--->--->--->| | | v v
 do 375 --->--->--->--->+ v v v | |
 if() go to 365 --->+ | | | | v v
 if() go to 366 --> | ->+ v v v v | |
 365 <---+ v v v | | v v
 if() go to 368 --->+ | | | v v | |
 366 continue <-- | --+ v v | | v v
 go to 375 --> v -->--->-->| | v v | |
 368 continue <---+ v v v | v v
 375 continue <---<---<---<---+ | | v | |
 390 continue <---<---<---<---<---+<--+ | v v
 395 continue <---<---<---<---<---<---<--<--+ | |
 400 continue <---<---<---<---<---<---<----<----+ v
 405 continue <---<---<---<---<---<---<---<---<---<--+
 if() go to 420 --->+
 420 if() go to 425 <-->+ --->+
 go to 450 --> v --> | -->+
 425 if() go to 450 <-> | <-> v -->|
 450 continue <-- v <-- | -->+

Figure 7.1. (contd)

7.6

The issue with highly branched code is twofold. First, it makes the code difficult to analyze; second
it makes parallelization difficult. To understand what the code is doing, an analyst would need to follow
the code’s flow but the flow of control in highly branched code is difficult to follow. Each condition
associated with a jump and the variable values before the jump are difficult to predict without explicitly
tracing the code.

An underlying requirement for parallel code is synchronization to ensure that data generated by
another processor are available for an operation with local data. This is a difficult problem with highly
branched code. Whether the synchronization is based on barriers or status polling, two or more processes
must coordinate to access variables. The creation of a synchronization point relies on the ability to
predict whether or not two processors will reach the same point, but highly branched code makes that
impossible. The only way to overcome it is either to not parallelize it or rewrite it.

Another of FLESCOT’s structural problems is the extensive use of global variables. The code
contains 653 global variables in eight header files. To understand how code behaves, it is necessary to
understand how a value may change. When a variable is declared locally, the instructions that can change
it are easily identified because only the instructions in the subroutine can affect it. When a variable is
declared globally, the instructions capable of changing the variable are not necessarily those within the
subroutine. Consequently, it is difficult to predict the value of a variable without following the call path
emanating from the subroutine.

This problem is exacerbated when the global variable is used in a parallel program. Consider a for-
loop that loops on indices 1 to 10. Let two threads to access the loop, one using indices 1−5 and the other
using 6−10. When the loop is executed, the first thread will try to set the global index to 1 and the second
to 6. If the first tread sets the value first, the index will be set to 6 by the second thread so both threads
will have an index value of 6. If the opposite happens, then the value will be set to 1. This is known as a
“race condition” and it is guaranteed to produce bad results.

There are two ways of dealing with this problem. The first is to rewrite the code converting the
global variables to local variables and passing them between subroutines. The second is to force
synchronization on every access. This latter approach is not realistic because increasing synchronization
will decrease the performance of the code to the point of making it slower than the single processor
version. Rewriting the code is the only realistic option.

A separate issue involves the use of the STOP statement, which terminates code execution. Parallel
code requires coordination between all processes in the program including the termination of the
executing code. If one process terminates without ensuring the others terminate, the other threads will
remain active—generally, this is not a problem with threaded applications. When the code is terminated
without coordination, the program may hang. To avoid this, the code must be rewritten to call a global
termination function like MPI_Abort or to handle the error in a manner that allows the computation to
proceed if possible.

Additional problems with the code include the use of EQUIVALENCE statements, data dependencies
within a loop, and stability issues with the code execution. The JAEA discussed the issues in detail
during the January meetings.

7.7

Though FLESCOT generally functions well serially, it has some issues that will make parallelization
difficult. The amount of highly branched code, the use of global variables, STOP statements, and other
design decisions contribute to this difficulty. Regardless of the approach taken by the developers,
sections of the code must be rewritten to ensure improved performance.

7.2 Parallelizing FLESCOT

Once the issues with the code are addressed, there are four general approaches to parallelizing the
code:

• automatic parallelization
• shared memory
• distributed memory
• many serial runs.

Each approach is addressed later in this section, but before discussing them, we will include a brief
discussion of issues related to parallelization.

7.2.1 General Parallelization Issues

A major concern for high-performance computing (HPC) is code that maintains good performance as
the number of processors involved in the computation increases. This concept takes two forms: strong-
scaling and weak-scaling. Strong-scaled code will increase the speed of a fixed-sized problem as the
number of processors is increased. Weak-scaled code requires the problem to grow as the number of
processors increases. Realistically, the best-case performance of FLESCOT will weakly scale; that is, the
problem size must increase if it is to run effectively in an HPC environment.

Another problem in parallelizing code is deciding what should be parallelized. With limited time and
resources, the development team will need to be selective about which approach to use. To get a rough
estimate of the speedup we can expect, we use Amdahl’s Law. The ideas behind the law are that any
improvement will involve a fraction of the code and that the improvement will give a limited amount of
performance increase. If we let f be the fraction of the code improved and n be the number of processors.
Amdahl’s Law is given as

 (7.1)

where T is the execution time of the original code and T’ is the execution time of the improved code.
This is the theoretical upper limit of improvement, and it is optimistic in that it does not take into account
the cost of synchronization overhead.

7.8

7.2.2 Approaches

7.2.2.1 Automatic Parallelization

As noted earlier, the JAEA has already used automatic parallelization using the Fujitsu FORTRAN
compiler. Their initial parallelization resulted in some performance improvement. However, Dr. Yamada
reported that almost 50% of one function could not be parallelized due to data dependencies within one
for-loop. Using Amdahl’s Law, this means the maximum speedup we can get from the parallelizing
compiler is about two on that function regardless of the number of processors used. These sorts of
dependencies are common in FLESCOT.

To effectively use the automatic parallelizer, portions of the code will have to be rewritten.
Specifically, the data dependencies are probably the biggest problem and should be addressed first. Other
issues in descending order are dramatically reducing number of branches in the code, making a single
return point for each subroutine, and replacing the STOP statements with a more graceful exits.

7.2.2.2 Shared Memory

There are a few approaches to implementing a shared memory version of FLESCOT. First, the
developers can focus on the SPECTR subroutine or they can parallelize the EXCUTE subroutine. The
SPECTR subroutine is the most expensive and it has some built-in parallelism within the species
computations—each sediment and contaminant species can be updated independently, which will give
some improvement with the least amount of effort.

A developer can design a shared memory around the EXCUTE subroutine. Rather than causing the
system to create threads on every call to SPECTR, the developer can design the system to call the thread
fork function when it enters the EXCUTE subroutine and join the threads after the simulation loop
terminates. One thread can execute the code until SPECTR performs the species computations. At this
point, the computations can be divided among the species and run in parallel. There are several
significant caveats to this approach that are discussed at the end of this section.

Yet another approach involves spatially decomposing the problem; again using the EXCUTE
subroutine to control the threads. In this instance, threads should be generated to control a subset of the
spatial region. As in the previous suggestion, the threads will be forked at the start of the simulation loop
and will be joined after the loop has terminated. A single thread will perform all computations except for
blocks involving spatial regions. At these points, each thread will execute the block assigned to it then
pause until all threads reach that point. The caveats in the previous approach as well as this one are
covered in the following paragraphs.

The EXCUTE subroutine contains many branches, which will have a deleterious effect on the spatial
decomposition approach. For example, if any thread is allowed to terminate prematurely while executing
in parallel, it can crash the system and it can produce incorrect results. In this instance, the exit must be
communicated to other threads, which forces them to synchronize within the loop and the synchronization
will slow the execution. Either the developers will spend a considerable amount of carefully placing
synchronization statements or they will have to reduce/remove the branches.

7.9

Both the EXCUTE and SPECTR subroutines make use of global variables. As previously described,
global variables are susceptible to race conditions that will produce incorrect results. The only realistic
option for dealing with them is to remove them. A developer can accomplish this by finding all instances
of global variables within the EXCUTE subroutine and all subroutines that it calls and converting them to
local variables in EXCUTE. These subroutines can pass the variables as needed, perhaps in the form of a
data structure.

7.2.2.3 Distributed Memory

The generally accepted method for parallelizing a nearest-neighbor spatial algorithm (like FLESCOT)
on a distributed system is a ghost cell algorithm (Dullemond 2008). These algorithms decompose the
problem spatially, placing each sub-region on different processors. To ensure nearest-neighbor
interactions, the interfaces between adjacent subspaces are replicated and passed between processors on
each update. This ensures that each subspace has the most up-to-date data before it begins a computation.
The replicated regions are called ghost cells.

As with the shared memory implementation, a developer will need to clean up the many branches.
All inter-processor communications points must be clearly identified to ensure that synchronous
interactions are coordinated. If possible, all interactions between processors should be moved to the end
of the time step so they can be clustered into a few calls. And again, global variables must be converted
to local variables.

7.2.2.4 Recommendations

1. The global variables need to be removed and the branches replaced with a minimum of IF-THEN-
ELSE or simple DO loops. In the near term, only the global variables that are actually assigned
values in EXCUTE or in its call path must be converted to local variables. Also, if branching can be
contained within a block, such that synchronization is not necessary, then that block can be left as is.

2. The use of a parallelizing compiler is the easiest way to improve the execution time of the program.
It will probably not be sufficient for large problems but, regardless of any other methods used, it
should help improve the performances.

3. If the problem size is small enough to run on a single node or a workstation, the shared memory
implementation will be easier to implement and it may provide good speedup.

4. If the problem is too large for a shared memory system, then the ghost cell approach should be used.

5. If the ghost cell approach is used, the developers might want to also consider using a threaded version
of the SPECTR subroutine.

7.2.2.5 Some Additional Thoughts

The SOLVET, SOLVEL, and SOLVEF subroutines are three versions of a tridiagonal matrix solver.
There are several parallel open source equivalents, PETSc1 begin the most prominent among them. It
would require additional coding expertise to use them, but they are proven performers.

1 http://www.mcs.anl.gov/petsc/.

http://www.mcs.anl.gov/petsc/

7.10

If the code is going to be used for sensitivity analysis or another approach that requires multiple runs
of the same problem with variation of the input parameters, the JAEA might consider parallel jobs for
each variation. This is known as an embarrassingly parallel approach and is more efficient than any other
parallelization method.

8.1

8.0 Conclusions

The FLESCOT code simulates the time-dependent, three-dimensional movements of flow,
turbulence, heat, salinity, sediment (sand, silt, and clay), dissolved contaminant (e.g., radionuclide, toxic
chemicals, heavy metals), and contaminant adsorbed by sediment (sand, silt, and clay) in reservoirs,
estuaries, coastal waters, and the sea. It also calculates distributions of bottom sediment and contaminant
adsorbed by bottom sediments of sand, silt, and clay. Mathematical expressions of the FLESCOT code
are presented here and the code was delivered to JAEA.

The FLESCOT code is modified to enable the turbulent kinetic energy and its dissipation modeling,
and the use of current computer systems that are different from those on which the code was originally
developed. Thus, code verification is performed. In this study, we conducted code testing using cases
with known analytical solutions and relatively simple cases with available experimental data. Three
benchmarks were tested to verify the viscosity effects and turbulence model. They were 1) laminar flow
with heat transfer for testing the FLESCOT code’s ability to deal with a flow having temperature-
dependent viscosity; 2) turbulent flow in a two-dimensional channel; and 3) the turbulent free jet. Based
on the testing results, the turbulent model in FLESCOT is now functional and stable. In addition, the
viscosity of fluid can now correctly affect the flow behavior after fixing problems in FLESCOT, which
were caused by the memory alignment problems on certain computer systems or FORTRAN compliers.
FLESCOT can provide acceptable simulation results that compare well with the analytical or
experimental results. FLESCOT was also tested in a simple practical case to confirm its feasibility for
predicting a flow of coastal water. The test case featured a 200 m wide river flowing into a 2000 m x
2000 m coastal water area with the depth gradually increasing from 1.5 m to 10 m. FLESCOT was
shown to predict the flow, temperature, and salinity distributions for the coastal water test cases. More
complex rigorous test cases, e.g., reservoir and coastal water testing, require extensive field data
collection. The FLESCOT code may be tested for its validation with Fukushima data being collected by
the JAEA when required data for validation become available.

The modified FLESCOT code with the turbulence modeling was applied to the Ogi Dam Reservoir. The
Ogi Dam and its reservoir are located near the border between the villages of Kawauchi and Tomioka,
approximately 15 km from the Fukushima Dai-ichi Nuclear Power Plant. The reservoir has a storage
capacity of 716,000m3 and the water surface area of 70,000 m2. We focused on a detailed analysis of the
flow in the Ogi Dam Reservoir, which plays a fundamental role in cesium transport and accumulation in
the reservoir. We set boundary conditions: constant water influxes 1.0 m/s from the Oginosawa River,
and 0.1 m/s from the two smaller streams. There is a strong curvature from the inlet to the main part of
the dam reservoir where the width and depth of the reservoir become suddenly greater than those at the
origin of the reservoir inlet. The Ogi Dam Reservoir simulation using the modified FLESCOT code with
turbulence modeling shows that velocities are very low in most parts of the reservoir; they decrease
drastically with distance from the reservoir inlet with the Oginosawa River toward the dam. The main
flow in the reservoir predicted by the code is toward the dam, but there is also a smaller flow in the
opposite direction toward the inlet. These flow variations within the reservoir, including the bottom flow,
would play a critical role in sediment and cesium transport.

A good program development team, familiar with parallel programming should be able to create a
parallel version of the code. The developers have two general options. First, they can rewrite sections of
the code to avoid race conditions and complex, unconstrained branching. Second, they can carefully

8.2

work around the areas that are too encumbered by unconstrained jumping to avoid synchronization issues.
In either case, the development team should use a spatial decomposition as the basis for its efforts and, if
time permits, the team should parallelize the chemical species computations in the SPECTR subroutine.
In either case, parallelizing the code will require some rewriting.

9.1

9.0 References

Bowie GL, WB Mills, DB Porcella, CL Campbell, JR Pagenkopf, GL Rupp, KM Johnson, PH Chan, SA
Gherini, and CE Chamberlin. 1985. “Rates, Constants, and Kinetic Formulations in Surface Water
Quality Modeling.” EPA/600/3-85/040, U.S. Environmental Protection Agency, Environmental
Laboratory, Athens, Georgia.

Dullemond CP. 2008. Lecture on: Numerical Fluid Dynamics: University of Heidelberg Summer
Semester, http://www.mpia.de/homes/dullemon/lectures/fluiddynamics08/chap_4_advection_II.pdf.

Fischer HB, RCY Koh, J. Imberger, and NH Brooks. 1979. Mixing in Inland and Coastal Waters.
Academic Press, New York.

Funaki H, H Hagiwara, and T Tsuruta. 2014. “The Behavior of Radiocesium Deposited in an Upland
Reservoir after the Fukushima Nuclear Power Plant Accident.” In Scientific Basis for Nuclear Waste
Management XXXVII, L. Duro, J. Giménez, I. Casas, and J. de Pablo (eds.), Materials Research Society,
Warrendale, Pennsylvania.

Henderson A. 2015. ParaView Guide, A Parallel Visualization Application. Kitware Inc., Clifton Park,
New York.

IAEA (International Atomic Energy Agency). 2001. Generic Models for Use in Assessing the Impact of
Discharges of Radioactive Substances to the Environment. Safety Report Series, No. 19, Vienna, Austria.

Iijima K, T Niizato, A Kitamura, H Sato and M Yui. 2013. Long-term Assessment of Transport of
Radioactive Contaminant in the Environment of Fukushima (F-TRACE). Japan Atomic Energy Agency,
Fukushima, Japan. Accessed March 9, 2015 at

http://fukushima.jaea.go.jp/initiatives/cat01/pdf00/20__Iijima.pdf.

Japan Dam Foundation, Dam Binran (in Japanese). Accessed March 6, 2015 at http://damnet.or.jp/cgi-
bin/binranA/All.cgi?db4=0466.

Jones WP, and BE Launder. 1973. “The Calculation of Low-Reynolds Number Phenomena with a Two-
Equation Model of turbulence.” International Journal of Heat Mass Transfer,16;1119−1130.

Kitamura A, H Kurikami, M Yamaguchi, Y Oda, T Saito, T Kato, T Niizato, K Iijima, H Sato, M Yui, M
Machida, S Yamada, M Itakura, M Okumura, and Y Onishi. 2015. “Mathematical Modeling of
Radioactive Contaminants in the Fukushima Environment.” Nuclear Science and Engineering
179(1):104−119.

Kurikami H, A Kitamura, ST Yokuda, and Y Onishi. 2014. "Sediment and 137Cs behaviors in the Ogaki
Dam during a Heavy Rainfall Event." Journal of Environmental Radioactivity 137:10−17.

Laufer, J. 1951. “Investigation of turbulence in Fully Developed Pipe Flow.” NACA Technical Note
2954, National Advisory Committee for Aeronautics, Washington, D.C.

http://www.mpia.de/homes/dullemon/lectures/fluiddynamics08/chap_4_advection_II.pdf

9.2

Ministry of Education, Culture, Sport, Science and Technology of Japan at
http://radioactivity.mext.go.jp/ja/.

Onishi Y. 1987. "A Three-Dimensional Flow, Energy, Salinity, Sediment and Contaminant Transport
(FLESCOT) Model for Ocean Disposal of Low-Level Radioactive Waste." In Proceedings of the
Workshop on Ocean Modeling Efforts at EPA, pp. 37−49, February 10, 1987, Washington, D. C.

Onishi Y, HC Graber, and DS Trent. 1993. "Preliminary Modeling of Wave-Enhanced Sediment and
Contaminant Transport in New Bedford harbor." In Book Series 42 of Estuaries and Coastal Cohesive
Sediment Transport, pp. 541−557, AJ Mehta (ed.), American Geophysical Union, Washington, D.C.

Onishi Y, H Kurikami, and ST Yokuda. 2014. “Preliminary Three-Dimensional Simulation of Sediment
and Cesium Transport in the Ogi Dam Reservoir using FLESCOT –Task6, Subtask 2.” PNNL-23257,
Pacific Northwest National Laboratory, Richland, Washington. Accessed March 9, 2015 at
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23257.pdf.

Onishi Y and DS Trent. 1985. "Three-Dimensional Simulation of Flow, Salinity, Sediment, and
Radionuclides Movements in the Hudson River Estuary." In Proceedings of the 1985 Specialty
Conference of the Hydraulic Division, pp. 1095−1100, American Society of Civil Engineers, August 12-
17, 1985, Lake Buena Vista, Florida.

Onishi Y and DS Trent. 1992. "Turbulence Modeling for Deep Ocean Radionuclide." International
Journal for Numerical Methods in Fluids 15(9):1059−1071.

Onishi Y, DS Trent, and AS Koontz. 1987. “Three-Dimensional Hydrodynamic and Transport Modeling
of Sequim Bay, Washington.” In Abstract Proceedings of the Workshop on Modeling Physical
Oceanography of Puget Sound, pp. 32–33, November 4–5, 1987, Seattle, Washington.

Onishi Y, OV Voitsehkovich, and MJ Zheleznyak (eds.). 2007. Chernobyl – What Have We learned?
The Successes and Failures to Mitigate Water Contamination Over 20 Years. Springer Publishers,
Dordrecht, The Netherlands.

Trent DS, L Eyler, and MJ Budden. 1989. TEMPEST − A Three-Dimensional Time-Dependent
Computer Program for Hydrothermal Analysis. PNL-4348, Vol. 1. Pacific Northwest
Laboratory, Richland, Washington.

http://radioactivity.mext.go.jp/ja/

Appendix A

TEMPEST − A Computer Program for Three-Dimensional
Time-Dependent Computational Fluid Dynamics

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

A.13

A.14

A.15

A.16

A.17

A.18

A.19

A.20

A.21

A.22

A.23

A.24

A.25

A.26

A.27

A.28

A.29

A.30

A.31

A.32

A.33

A.34

A.35

A.36

A.37

A.38

A.39

A.40

A.41

A.42

A.43

A.44

A.45

A.46

A.47

A.48

A.49

A.50

A.51

A.52

A.53

A.54

A.55

A.56

A.57

A.58

A.59

A.60

A.61

A.62

A.63

A.64

A.65

A.66

A.67

A.68

A.69

A.70

A.71

A.72

A.73

A.74

A.75

A.76

	Summary
	Acronyms and Abbreviations
	Nomenclature
	1.0 Introduction
	1.1 Purpose and Scope
	1.2 Report Contents and Organization

	2.0 Delivered Computer Codes
	3.0 FLESCOT Code Description
	3.1 Coordinate Systems
	3.2 Conservation of Mass (Continuity of Incompressible Fluid)
	3.3 Conservation of Momentum in R Direction
	3.4 Conservation of Momentum in X-Direction
	3.5 Conservation of Momentum in Z-Direction
	3.6 Conservation of Turbulent Kinetic Energy (k-ε Model)
	3.7 Conservation of Turbulent Kinetic Energy Dissipation (k-ε Model)
	3.8 Viscosity in Surface Water
	3.9 Conservation of Thermal Energy
	3.10 Transport Equation for the ith Component in a Mixture of n Species (i=1,2,...n)
	3.11 Transport in the Surface-Water Environment
	3.11.1 Sediment Transport Equation for ith Sediment in Cartesian Coordinates (R,X,Z)
	3.11.2 Dissolved Species Transport Equation for Dissolved Species G in Cartesian Coordinates (R,X,Z)
	3.11.3 Transport Equation for the ith Particulate Species in Cartesian Coordinates (R,X,Z)
	3.11.4 Transport Equation for Salinity in Cartesian Coordinates (R,X,Z)

	4.0 FLESCOT Verification Testing
	4.1 Benchmark 1: Laminar Flows with Heat Transfer (LSHT-3)
	4.1.1 Description and Purpose
	4.1.2 FLESCOT Solution

	4.2 Benchmark 2: Turbulent Flow in a Two-Dimensional Channel (TDC-1)
	4.2.1 Description and Purpose
	4.2.2 FLESCOT Solution

	4.3 Benchmark 3: Turbulent-Free Jet
	4.3.1 Description and Purpose
	4.3.2 FLESCOT Solution

	5.0 FLESCOT Feasibility Trial for Coastal Water Flow Application
	5.1 FLESCOT Solution
	5.1.1 Case 1: No Temperature and Salinity Difference between Inlet River Flow and the Coastal Water
	5.1.2 Case 2: With Temperature Difference, no Salinity Difference Between Inlet River Flow and the Coastal Water
	5.1.3 Case 3: No Temperature Difference, with Salinity Difference between Inlet River Flow and the Coastal Water
	5.1.4 Case 4: With Temperature and Salinity Differences between Inlet River Flow and the Coastal Water

	6.0 Flow Analysis of the Ogi Dam Reservoir Model
	6.1 Aim of This Study
	6.2 Modeling of Ogi Dam Reservoir
	6.3 Results
	6.4 Discussion

	7.0 FLESCOT Parallelization Approach
	7.1 Analysis of FLESCOT
	7.1.1 Performance Analysis
	7.1.2 Structural Analysis

	7.2 Parallelizing FLESCOT
	7.2.1 General Parallelization Issues
	7.2.2 Approaches
	7.2.2.1 Automatic Parallelization
	7.2.2.2 Shared Memory
	7.2.2.3 Distributed Memory
	7.2.2.4 Recommendations
	7.2.2.5 Some Additional Thoughts

	8.0 Conclusions
	9.0 References
	Dullemond CP. 2008. Lecture on: Numerical Fluid Dynamics: University of Heidelberg Summer Semester, http://www.mpia.de/homes/dullemon/lectures/fluiddynamics08/chap_4_advection_II.pdf.

	Appendix A TEMPEST − A Computer Program for Three-Dimensional Time-Dependent Computational Fluid Dynamics

