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Summary

The FLESCOT code simulates the time-dependent, three-dimensional movements of flow,
turbulence, heat, salinity, sediment (sand, silt, and clay), dissolved contaminant (e.g., radionuclide, toxic
chemicals, heavy metals, etc.), and contaminant adsorbed by sediment (sand, silt, and clay) in reservoirs,
river mouths, estuaries, coastal waters, and seas. It also calculates distributions of bottom sediment and
contaminant adsorbed by bottom sediments of sand, silt, and clay within the water bottom.

The FLESCOT code is modified to enable turbulent kinetic energy and its dissipation modeling for
the surface water, and the use of current computer systems that are different from those on which the code
was originally developed. Thus, the code verification is performed. In this study, we conducted code
testing using cases with known analytical solutions and relatively simple cases with available
experimental data. The testing results indicate that the modified FLESCOT can provide acceptable
simulation results that compare well with the analytical or experimental results with and without
turbulence modeling. FLESCOT was also tested in a simple hypothetical coastal water case, confirming
its feasibility for predicting a flow of coastal water. More complex rigorous test cases, e.g., reservoir and
coastal water testing, require extensive field data collection. The FLESCOT code may be tested for its
validation with Fukushima data being collected by Japan Atomic Energy Agency when required data for
validation become available.

The modified FLESCOT code with the turbulence modeling was applied to the Ogi Dam Reservoir
located approximately 15 km from the Fukushima Dai-ichi Nuclear Power Plant. We focus on a detailed
analysis of the flow in the Ogi Dam Reservoir; the Ogi Dam Reservoir simulation shows that velocities
are very low in most parts of the dam, decreasing drastically with distance from the reservoir inlet with
the Oginosawa River toward the dam. The main flow in the reservoir predicted by the code is toward the
dam, but there is also a smaller flow in the opposite direction toward the inlet. These flow variations
within the reservoir, including the bottom flow, would play a critical role in the transport and
accumulation of the sediment and cesium.

A good program development team, familiar with parallel programming should be able to create a
parallel version of the code. The developers have two general options. First, they can rewrite sections of
the code to avoid race conditions and complex, unconstrained branching. Second, they can carefully
work around the areas that are too encumbered by unconstrained jumping to avoid synchronization issues.
In either case, the development team should use a spatial decomposition as the basis for its efforts and, if
time permits, the team should parallelize the chemical species computations in the SPECTR subroutine.
In either case, parallelizing the code will require some rewriting.
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TODAM
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becquerel(s); Standard International (SI) unit for radioactivity, defined as the
activity of a quantity of radioactive material in which one nucleus decays per
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long-term assessment of Transport of RAdioactive Contaminant in the
Environment of Fukushima

Flow, Energy, Salinity, Sediment Contaminant Transport
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Japan Atomic Energy Agency
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Pacific Northwest National Laboratory
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Transient Energy, Momentum, and Pressure Equation Solution in Three
Dimensions
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i™ sediment concentration per unit
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constant
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molecular diffusion coefficient of the i
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flow drag in R-direction

2QeU sin(¢)

2Q¢U cos(¢)
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dissolved species concentration per unit
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of species per unit volume)

particulate species concentration per
unit weight of sediment in the i
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particulate species concentration
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turbulent kinetic energy buoyant
production
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Ksi
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Kke
Kr
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Qi

body force per unit mass in X-direction
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flow depth

thermal conductivity

turbulent kinetic energy per unit mass
transfer rate of species for adsorption
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distribution (or partition) coefficient
between dissolved species and

particulate species associated with the i
sediment for adsorption
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K+ Kr
turbulent (eddy) thermal conductivity

transfer rate of species for desorption
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distribution (or partition) coefficient
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sediment for desorption

h

transfer rate of species with the i
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static pressure

turbulent kinetic energy shear
production

porosity of bed sediment
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source of particulate species G;j
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Sk
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Se
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€X
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volumetric heat generation rate

R-direction for Cartesian and cylindrical
coordinates
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turbulent Schmidt number

i"™ sediment deposition rate per unit
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temperature
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turbulent kinetic energy dissipation per
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rates of species

dynamic viscosity

isotropic viscosity
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B pr

molecular viscosity
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(b, =C,pk*/e)

vertical viscosity
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constant viscosity

local density obtained from Boussinesq
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component
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1.0 Introduction

The magnitude-9 East Japan Great Earthquake and subsequent tsunami damaged northeastern Japan
on March 11, 2011. The tsunami, in turn caused the reactor core meltdown accident at the Fukushima
Dai-ichi Nuclear Plant. The accident released approximately one-seventh of the radionuclides released to
the environment by the 1986 Chernobyl nuclear accident. The radionuclides released were mostly "*'I,
134Cs, and ¥'Cs, as well as very small amounts of 83r, *°Sr, 2**Pu, and 24Py (Ministry of Education
website).

Cesium deposited on the Fukushima land surface and in surface waters undergo transport and fate
processes that involve the following mechanisms:

o transport of radionuclides by water and to a lesser extent by air movements
e transport, deposition, and re-suspension of particulate radionuclides by soil and sediment movements

e adsorption and desorption causing radionuclide phase changes between dissolved and particulate
forms

e radionuclide decay

o radionuclide influx from and efflux to other environmental media (e.g., from surface soil to
groundwater and surface water).

The Pacific Northwest National Laboratory (PNNL) and the Japan Atomic Energy Agency (JAEA)
have jointly been assessing cesium migration and accumulation on the land surface and in receiving
rivers, reservoirs, and coastal waters in Fukushima. Because environmental remediation takes a great
deal of time and resources to develop and implement the required technologies to clean up the
environment, scientifically defensible environmental assessment methodologies must be implemented for
environmental remediation. One of these environmental assessment methodologies is a time-dependent,
three-dimensional code—Flow, Energy, Salinity, Sediment, Contaminant Transport (FLESCOT). It
simulates the movement of water; turbulence kinetic energy and its dissipation; water temperature;
salinity; sediment (sand, silt, and clay); dissolved contaminants (e.g., radionuclides, toxic chemicals,
heavy metals); and particulate contaminants adsorbed by sediments in rivers, lakes, reservoirs, estuaries,
coastal waters, and seas (Onishi et al. 1985, 1993). The FLESCOT code is an environmental assessment
version of the general hydrothermal, mass transport code—TEMPEST (Trent et al. 1989). The JAEA is
currently parallelizing FLESCOT.

1.1 Purpose and Scope

The purpose of the project reported on herein was to modify and apply the transient, three-
dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam
reservoirs, river mouths, and coastal areas.

The ultimate objective of the FLESCOT simulation is to predict future changes of cesium
accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing
and future environmental remediation activities and policies in a systematic and comprehensive manner.
For example, they will enable decision makers to determine the following:
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o whether the reservoir water would be safe for domestic and agricultural usage
e how to use a reservoir to control cesium migration downstream and to manage irrigation water

o where and how much remediation is needed on the land surface and in the surface water, if any, to
secure future public safety

e whether recontamination will occur; e.g., whether decontaminated agricultural fields will remain
clean in the future

e how much and where the Fukushima coastal water would be contaminated by cesium transported out
into the ocean from Fukushima rivers.

1.2 Report Contents and Organization

The ensuing sections of this report present the computer codes that were provided to the JAEA in
2014 (Section 2), followed by a description of the FLESCOT code (Section 3) and FLESCOT verification
testing (Section 4). Sections 5 through 7, respectively, describe a preliminary evaluation of the feasibility
of applying FLESCOT to coastal water, a preliminary application of FLESCOT to the Ogi Dam Reservoir
in Fukushima, and a FLESCOT parallelization approach. Report conclusions are contained in Section 8.
References for sources cited in the text are listed in Section 9. Appendix A contains a report about
previously conducted verification and validation testing of the TEMPEST code.
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2.0 Delivered Computer Codes

In fiscal year 2014, PNNL provided the working versions of the FLESCOT code, and the expanded

Transient, One-dimensional, Degradation and Migration (TODAM) code to the JAEA, along with the
following associated documents:

Trent DS and LL Eyler. 1997. TEMPEST: A computer Program for Three-Dimensional, Time-
Dependent Computational Fluid Dynamics and Hydrothermal Analysis: Volume 1. Theory and
User's Manual. PNL-4348, Vol. 1, Battelle—Pacific Northwest Laboratories, Richland, Washington.

Trent DS and LL Eyler. 1993. TEMPEST: A Computer Program for Three-Dimensional Time-
Dependent Computational Fluid Dynamics: Volume 1: Theory Manual. PNL-8857, Vol. 1,
Battelle—Pacific Northwest Laboratories, Richland, Washington

Eyler LL, DS Trent, and JA Fort. 1993. TEMPEST: A Computer Program for Three-Dimensional
Time-Dependent Computational Fluid Dynamics: Volume 2: User's Manual. PNL-8857, Vol. 2,
Battelle—Pacific Northwest Laboratories, Richland, Washington.

Meyer PA and JA Fort. 1993. TEMPEST: A Computer5 Program for Three-Dimensional Time-
Dependent Computational Fluid Dynamics: Volume3: Validation and Verification. PNL-8857, Vol.
3, Battelle—Pacific Northwest Laboratories, Richland, Washington.

Fort JA. 1993. TEMPEST: A Computer5 Program for Three-Dimensional Time-Dependent
Computational Fluid Dynamics: Volume 4: Programmer's Manual. PNL-8857, Vol. 4,
Battelle—Pacific Northwest Laboratories, Richland, Washington

Holly FM Jr, JC Yang, P Schwarz, J Schaefer, SH Hsu, and R Einhellig. 1990. Numerical
Simulation of Unsteady Water and Sediment Movement in Multiply Connected Networks of Mobile-
Bed Channels. 1THR Report No. 343, lowa Institute of Hydraulic Research, The University of lowa,
Iowa City, lowa.

FLESCOT is a sediment-contaminant transport version of the general computational fluid dynamic

code, TEMPEST. It simulates time-varying, three-dimensional phenomena of hydrodynamic, energy, and
mass transport in rivers, lakes, reservoirs, estuaries, coastal waters, and seas (Onishi and Trent 1985,
1992; Onishi et al. 1993). Its formulation is presented in Chapter 3.

The expanded TODAM code simulates time-varying, one-dimensional flow, transport of sand, silt

and clay, dissolved contaminants (e.g., radionuclides, hazardous chemicals, pesticides, and heavy metals),
and particulate contaminants adsorbed by sand, silt, and clay in rivers, lakes, reservoirs, and estuaries
(Onishi et al. 2007). It handles the multiple connected networks of a river and its tributaries. TODAM
has been applied to predict '*’Cs transport and accumulation in the Ukedo River and its tributaries,
including the Takase River in Fukushima, Japan (Kurikami et al. 2014).
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3.0 FLESCOT Code Description

FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport; Onishi et al. 1993) is a finite-
volume code developed by PNNL to predict time-varying three-dimensional distributions of the
following:

o flow (velocity and depth) resulting from a river flow, tide, wind, waves, and water density variations
o turbulent kinetic energy and its dissipation

e water temperature

o salinity

¢ sediment concentrations of

— suspended sand
— suspended silt
— suspended clay

e dissolved radionuclide concentration
o particulate radionuclide concentrations adsorbed by

— suspended sand
— suspended silt
— suspended clay

¢ within the water bottom at any given location,

— bed elevation change caused by sediment erosion and deposition
— sediment fractions of

o bottom sand
o bottom silt
o  bottom clay

— radionuclide concentrations adsorbed by

o bottom sand
o bottom silt
o bottom clay.

FLESCOT is applicable to various contaminants, e.g., radionuclides, heavy metals, and toxic organic
chemicals, including '*’Cs moving and depositing in the Hudson River Estuary with '*’Cs
adsorption/desorption changing with salinity (Onishi and Trent 1985; Onishi 1987; Onishi and Trent
1992; Onishi et al. 1993). It has been applied to river mouths/estuaries, coastal water, seas, and deep
oceans.

FLESCOT solves the differential equations based on the following principles:

e conservation of mass (continuity)

e conservation of momentum (Newton’s second law)

e conservation of energy (first law of thermodynamics)
e conservation of turbulent kinetic energy, x

e conservation of turbulent kinetic energy dissipation, €
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e conservation of mass constituents, C;.
These conservation equations are described in the following subsections.

FLESCOT is the surface-water version of the TEMPEST (Transient Energy, Momentum, and
Pressure Equation Solution in Three Dimensions) computer code. The code assessment and validation of
TEMPEST is presented in the appendix, “TEMPEST — Assessment and Verification Results.”

3.1 Coordinate Systems

FLESCOT uses two coordinate systems, Cartesian and cylindrical coordinates, as shown in Figure 3.1
and Figure 3.2, respectively.

/ R

Figure 3.1. Cartesian coordinates.

‘j R

Figure 3.2. Cylindrical coordinates.

3.2 Conservation of Mass (Continuity of Incompressible Fluid)

Equation (3.1) for conservation of mass is used in FLESCOT:
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LR 1 W oV
R? OR RP 60X 0Z

where

= velocity in R direction
velocity in X-direction
velocity in Z-direction

1 for cylindrical coordinates
= 0 for Cartesian coordinates.

o< EC
Il

3.3 Conservation of Momentum in R Direction

FLESCOT uses Equations (3.2) and (3.3) for conservation of momentum in the R direction:

ou 1 0 1 0 0 p | W?
— + ——(RPUU) + ——(WU) + —(VU) -B| = |— -F,
p{@t RﬁaR( ) RBaX( ) GZ( ) B(DO]R U}

__8_P+ G +Li[Rﬁ a_Uj-yLi( a_Uj+i( a_Uj+S
R POR T RPGRL MR R® ox | M ox oz\M'e oz R

Se=- By, (% + %aﬂJ . O U Oy i(ﬂﬁj ¢ e OV F, (U)
R R* 0X JR OR 0X OR\ R 0Z OR
where
po = fluid density
p = local density obtained from the Boussinesq approximation
l’tka = U + “T
u = dynamic viscosity
_ . w, =Cpk’ / €
uT = turbulent (eddy) viscosity calculated as " " " from the Prandtl-
Kolmogorov hypothesis
k = turbulent kinetic energy per unit mass
€ = turbulent kinetic energy dissipation per unit mass
Cu = constant
FR(U) = flow drag in R direction
FU = 2QEU sin(¢)
¢ = planetary latitude
QE = 7.29 x 10-5 [sec-1] (Planetary angular velocity)
GR = body force per unit mass in R direction
P = static pressure.

3.4 Conservation of Momentum in X-Direction

FLESCOT uses Equations (3.4) and (3.5) for conservation of momentum in the X-direction:
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w Li(RBUw) - Li(WW) - i(vw) +B| = p |UW +F,
ot RPOR RP 60X oZ pO R G4
—_La_P_{_ G +Li[R5 aﬂj_p 1 i[ aﬂj+ a( 8Wj+s
RPoXx "X TRPRL "R ) RTax\Meax ) az\Meaz )X
S =Pl (U y )y DO (OU gy ) 1 O [OW gy,
R? U oX R R \ X R* oX \ oX (3.5)
1 op, oV '
t— -F (W
® oz ox W)
where
FX(W) = flow drag in X-direction
FW = 2QEU cos(¢)
GX = body force per unit mass in X-direction.
3.5 Conservation of Momentum in Z-Direction
FLESCOT uses Equations (3.6) and (3.7) for conservation of momentum in the Z-direction:
oV 1 0 1 0 0
— + ——(RPUV) + ———(WV) + —(VV
0[(% RBGR( )+ BaX( ) oz ( )} 56)
oP 1 0 vy, 1 o av) o ov '
=-——+pG, + ———| RPp, — | + —— — |+ +S
oz PR 6R( Pz 8Rj R ax(““s axj az(“‘“ azj z
Z: auks a_U + Lal’lks aw + al’lka a_V _ FZ(V) (37)
R 0z RP oX oz 0Z oz
where
FZ(V) = flow drag in Z-direction
GZ = body force per unit mass in Z-direction.
3.6 Conservation of Turbulent Kinetic Energy (k-€ Model)
Equation (3.8) for conservation of turbulent kinetic energy is used in FLESCOT:
ok 1 0 1 0 0
— + ——(RUk) + ——(Wk) + —(Vk
O[Gt RﬁaR( )+ ﬁa( ) a( )}
(3.8)
1 0 0 ok
=—— R’ —|ln,—|-pet+S
R’ GR( M j R® ax( j z(“ az} PET >k

where
k = turbulent kinetic energy per unit mass
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€ = turbulent kinetic energy dissipation per unit mass

pk = p+uT/ok
ok = constant
Sk = Pk+Gk.

For the shear production,

ou'Y 10w _UY [(evy 10U oW WY
P=w 2| |t | P == | T oot -B—
OR RP 60X R o7 R 60X  OR R

3.9

(8U av]2 (aw 1 av]z (39

+ | =+ = +|—=+ ——
0Z OR 0Z RPoX

For the buoyant production,

G, =t (@GR + La_pGX 4 @sz (3.10)
p,or \OR R" 6X oz

where ot = constant.

3.7 Conservation of Turbulent Kinetic Energy Dissipation (k-¢ Model)

FLESCOT uses Equation (3.11) for conservation of turbulent kinetic energy dissipation:

oe 1 0 1 © 0
— + ——(RUg) + ——(We) + —(Ve
p{&t RﬁaR( ) X( ) ( )}
(3.11)
1 0 Oe 1 o Ok 0 Oe 1
=— —|Rp = |+ ——|p—|+—=—|n—1|+—(S. -pC.e)e
R’ 8R( He 6Rj R ax(”s axj az(“g az] i (5 -pCae)
where
¢ = turbulent kinetic energy dissipation per unit mass
ue u+ uT/oe
Se = Cel Pk + Ce3 Gk
og, Cel, Ce2, and Ce3 = constants.

3.8 Viscosity in Surface Water

Diffusion of momentum, heat, and mass is determined in the FLESCOT code with the use of eddy
diffusion coefficients. Turbulence associated with surface water is generated by various conditions. They
include interaction with shearing currents (velocity gradient), wind and wave actions, shorelines and
bathymetric feature, hydraulic structures within a water body, etc. In general, the turbulence in surface
water (rivers, lakes, reservoirs, estuaries, coastal waters, seas, and oceans) is anisotropic, where horizontal
scales of turbulence are much larger than the vertical scales (Fischer et al. 1979). For example, a
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diffusion coefficient increases with the length and time at 1.34 power of distance and time in seas and
oceans (IAEA 2001).

Figure 3.3 shows scales of mass diffusion coefficients (Bowie et al. 1985). This figure shows that a
horizontal diffusion coefficient in surface water is typically 1x10? ~ 1x10° cm?*/sec, while a vertical
diffusion coefficient is roughly 1x10% ~ 1x10° cm?/sec, and molecular diffusion is in the range of 1x10° ~
1x10* cm?/sec. Thus, the horizontal diffusion is four to six orders of magnitude greater than vertical
diffusion, which in turn is four to six orders of magnitude greater than molecular diffusion.

106

104 _ P Horizontal, Surface Waters

102
o
3 I
0 4
N
£ I
: 100
zZ EDDY DIFFUSION:
w P Vertical, Thermocline and Deeper
% T Regions in Lakes and Oceans
TR
o 1074
o |
% J€— HeatinH,0
%)
T 104
0 MOLECULAR DIFFUSION:
o | |a— Saltsand Gasses in H,0

Proteins in H,O
106 _] /—
lonic Solutes in
- THERMAL DIFFUSION: /_Porus Media
lo-— Saltsin H,0 I (Sediments, Soils)
10-8 _
|
|
10-10,

Figure 3.3. Magnitude of various diffusion coefficients.

Note that viscosity (a momentum diffusion coefficient) and mass diffusion coefficient are related by
Schmidt number, Scr, as
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Se, =-H1_ (3.12)

where, D, = mass diffusion coefficient.
FLESCOT models the eddy diffusion using both isotropic and anisotropic components, as follows:
e [sotropic component, Li
Hy = My + My (3.13)
where pm = molecular viscosity, pr = k-€ model computed viscosity.
e Anisotropic component, Lo

which is the large scale horizontal component.

The turbulent viscosity, pir, is computed using the Prandtl-Kolmogorov hypothesis:
_ 2
u, =C,pk’/e (3.14)

Recommended turbulence model constants (Jones and Launder 1973) are as follows:

ox=1.0 Ca=144 C.=0.09
or=0.9 C2=1.92
Oz — 1.3 Cg} = 1.44.

The FLESCOT code has these values as default, but can accept different values as input, if so desired.

The horizontal and vertical components of the turbulence are then modeled as follows:
Hyg = H; + Ky (3.15)

Hy = H; (3.16)
where pu = horizontal viscosity and py = vertical viscosity.

Each component can be specified through input, and the k- model can be turned on or off by input
selection. The viscosity, L. in Navier Stokes Equations (Equations 3.2 through 3.7), is either py or py,
depending on whether its direction orientation is horizontal or vertical.

As shown in the next chapter, we are testing the k-¢ model in FLESCOT, and it is working under the
conditions tested.
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3.9 Conservation of Thermal Energy

The equation for conservation of thermal energy used in FLESCOT is Equation (3.17):

or . 1 0 1 0
— + ——(RPUT) + ——(WT) + —(VT
O{at RBGR( ) Rﬁax( ) az( )}

(3.17)
:Li(RBKkS 8_Tj + in(Kks a_Tj + i(Kks a_Tj +Q
R 6R OR R* oX oX oZ oZ

where
T = temperature
Kke = K+KT
K = thermal conductivity
KT = turbulent (eddy) thermal conductivity

C = specific heat

Q

volumetric heat generation rate.

3.10 Transport Equation for the ith Component in a Mixture of n
Species (i=1,2,...n)

The transport equation for the i component in a mixture of n species in FLESCOT is Equation
(3.18):

bo. 1 0 19
DO % (RMUe,) + —(Wo,) + Z(Vo,
ot R 6R( o) ax Ve (Vo)

1 0 0 1 & 0 0 0 . (3-18)
:__(Rst &j . _2_(])@ &] N _(Dm ﬂ) ‘0
R 6R OR R* oX oX o7 o7

where
oi = mass fraction of the ith component defined as wi = pi/p
pi = partial density of the ith component
Do = DMi+ pT/ScT
DMi = molecular diffusion coefficient of the ith component
ScT = turbulent Schmidt number
Q.

i = mass fraction source of the ith component
| Ap/p| = assumed to be small for the Boussinesq approximation.
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3.11 Transport in the Surface-Water Environment

FLESCOT has the capability of predicting the transport and fate of chemical, biological, radiological,
and suspended solid material species in the surface-water environment. The transport equations can be
applied for up to nine species involving the following three types:

e sediment
o dissolved species
e particulate species attached to or detached from sediments.

Although FLESCOT can use both Cartesian and cylindrical coordinates for transport modeling in the
surface-water environment, the transport equations for the surface-water environment are described with
Cartesian coordinates for the sake of simplicity.

3.11.1 Sediment Transport Equation for ith Sediment in Cartesian Coordinates
(R.X,2)

The equation for transport of the i sediment used in FLESCOT is Equation (3.19):

0 0

oC, 0
— 4+ —(UC.) + —(WC.) + =—|(V-V.)C.
o T aR(Ue) T x (V) az[( )G
o aC d aC o ( aoc S.. S (249)
- SR_i + - gx_i + - 8Z_i + | ZRi _ ZDi +QCi
OR OR 0X o0X oz oz H H
where
Ci = ith sediment concentration per unit volume
eR = dispersion coefficient in R direction
eX = dispersion coefficient in X-direction
eZ = dispersion coefficient in Z-direction
H = flow depth
QCi = source of ith sediment
SDi = ith sediment deposition rate per unit surface area
Sri = ith sediment erosion rate per unit surface area
VSi = settling velocity of the ith sediment.
3.11.2 Dissolved Species Transport Equation for Dissolved Species G in
Cartesian Coordinates (R,X,Z)
FLESCOT uses Equations (3.20) and (3.21) for transport of dissolved species “G””:
oG 0 0 0
— + —(UG) + —(WG) + —(VG)
ot OR 0X oz
(3.20)

0 ( 6G] 0 ( an 0 ( an .
=—|gg— |t —|exy— |+ —=|g,— |+ G
OR\ " OR oxX\ " oxX yAN4
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. 3 3
G=-AG- Y K (CKyG-G;) - D K| (CKyG-G)
i=1 i=1
3
%Zyi (1-POR)DKg (KyG - Gy) (3.22)

i=1

13 '
'ﬁz% (1 - POR)DiKBi (KDiG - GBi)
i=1

where
G = dissolved species concentration per unit volume (radionuclide activity or weight of
species per unit volume)

Gi = particulate species concentration associated with the ith sediment (radionuclide
activity or weight of species per unit volume)
GBi = particulate species concentration per unit weight of sediment in the ith sediment
size fraction in the bed
Ki, K'i = transfer rate of species with the ith moving sediment for adsorption and desorption,

respectively
KBi, K'Bi = transfer rate of species for adsorption and desorption with the ith non-moving
sediment in the bed, respectively

KDi, K'Di = distribution (or partition) coefficient between dissolved species and particulate
species associated with the ith sediment for adsorption and desorption,
respectively.

Di = particle diameter of the ith sediment
A = radionuclide decay or, first-order chemical and biological degradation rates of
species
yi = specific weight of the ith sediment
POR = porosity of bed sediment.

Note that in Equation (3.21) adsorption and desorption do not occur simultaneously.

3.11.3 Transport Equation for the ith Particulate Species in Cartesian
Coordinates (R,X,2)

FLESCOT uses Equations (3.22) and (3.23) for transport of the i particulate species:

oG 0 0 0
2y (UG + —(WG,) + —[(V-V.)G.
ot +6R( ')+ax( ')+az( )G

0 ( GGij 0 ( 8Gij 0 ( 8Gij s
= —_— SR— + — 8X_ + — SZ_ + Gi
R OR oX oX oz oz

Gi= -AG; - %Gi +K,;(CKy,G-G;) +K{(CKLG-G,) + % +Q, (3.23)

(3.22)

where Q; = source of particulate species G;.
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3.11.4 Transport Equation for Salinity in Cartesian Coordinates (R,X,2)

The transport equation for salinity used in FLESCOT is Equation (3.24):

S 0 o o
2+ Z(US) + —(WS) + —(VS
o TR (US) + o (Ws) + 7 (VS)

(2.24)
a( asj 6( 68) a( 68)
= ey |+ —| e |+ —| &, —
oRUTOR) ox\ ™Xox) oaz\ %oz

where S = salinity.
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4.0 FLESCOT Verification Testing

Verification and validation testing is an essential part of any software development program. This is
especially true for computational fluid dynamic codes because of the wide variety of mathematical and
physical models these codes are composed of. Testing of the software is needed both during the code
development period and after completion of code development. The FLESCOT code was modified to
enable the turbulent kinetic energy and its dissipation and use of current computer systems that are
different from those on which the code was originally developed.

Computational fluid dynamic testing generally falls into two categories: simple problems having
analytical solutions and more complex problems for which experimental and field data are available. In
this study, we conducted code testing using cases with known analytical solutions, and relatively simple
cases with available experimental data. More complex test cases, e.g., reservoir and coastal water testing,
require extensive field data collection; the JAEA has been conducting extensive monitoring and field data
collection in rivers, reservoirs, and coastal waters in the Fukushima area. The FLESCOT code may be
tested for its validation with these Fukushima data when required data for validation become available.

The following sections describe the FLESCOT verification testing conducted under this project.

4.1 Benchmark 1: Laminar Flows with Heat Transfer (LSHT-3)

41.1 Description and Purpose

This test problem examines the FLESCOT program’s ability to deal with a flow with temperature-
dependent viscosity. The geometry of the problem is shown in Figure 4.1, and the fluid has a linearly
varying viscosity. The viscosity variation is accomplished by a fictitious fluid having a linear variation in
viscosity with temperature.

l

Figure 4.1. Geometry for planar duct flow with variable viscosity.
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4.1.2 FLESCOT Solution

The input file for this test problem is shown in Figure 4.2. A 20 x 30 uniformly spaced cell structure
corresponding to h =40 m and L = 600 m was used. Temperatures on the upper and lower walls
corresponded to b = 14. The inlet velocity was chosen to be u,,, = 1m/s. Steady-state solutions were
established at a simulation time of approximately 88 s with the flow field being fully developed beyond
x =380 m. Figure 4.3 shows a comparison of the FLESCOT, TEMPEST, and an analytic solution. The
FLESCOT and TEMPEST codes provide exactly the same results, and the agreement between the
simulations and analytic solution is acceptable.

Planar Poiseuille flow test problem - variable viscosity
gaid: LSHT-3

size, 22 32 1

time, 1 200.

prnt, 1 1 50
post,

pres, 500 1-8

rest, 1 1

cont,c 1ln,uncp,mont,scrn,dtim,pace,sisy,vvis,heat
cont, psav,msav, gaed

aout,velr,velz, temp,

dbug, data,size,prop,ntyp,

plot,velr,velz, temp

0 1 2 21 2 31 1 1 1
60 1 1 2 31 1 1 1
60 22 22 2 31 1 1 1
30 1 2 21 1 1 1 1 1
40 1 2 21 32 32 1 1 1
10 28 1 3 28 1 11 28 1 30 28 1 1 5
1. 20. 1. 0. 90. 90. 0. 1
1. 1. 1. 1. 0. 10. 2 1 vl 6

1 2 21 2 21 1 1 7

1 2 21 1 1 1 1 Tr
0. 22 22 2 31 9
5. 2 21 1 31 9
10. 1 1 2 31 9
0. 1.5 1 19
10. .1 1 19
0

Figure 4.2. Input file for test problem LSHT-3
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Figure 4.3. Comparison between analytic solution and FLESCOT and TEMPEST predictions for planar
duct flow with variable viscosity: (a) temperature, (b) velocity.

4.2 Benchmark 2: Turbulent Flow in a Two-Dimensional Channel
(TDC-1)

421 Description and Purpose

This test problem examines a fully developed turbulent flow in a two-dimensional channel.
FLESCOT prediction for mean velocity and turbulent kinetic energy are compared with experimental data
obtained from Laufer (1951). The geometry for the problem is shown in Figure 4.4. A fluid with initial
mean velocity u, flows between two semi-infinite parallel plates located a distance 2d apart (see Figure
4.4). Far from the entrance of the channel, the mean velocity profile becomes fully developed. A
maximum velocity U, occurs at the center of the channel.

This problem is designed to test the FLESCOT code’s ability to accurately compute two-dimensional
turbulent flows in Cartesian geometries.

y‘ : A —— i
s — !
> % —_—
— —_—
> _—> !
— —> |

Figure 4.4. Geometry for fully developed turbulent two-dimensional channel flow.

4.3



4.2.2 FLESCOT Solution

The input file for this test problem is shown in Figure 4.5. The FLESCOT model implemented an
18 x 18 uniform computational grid simulating one-half of the channel. A reflective boundary was used
to take advantage of the centerline symmetry. The fluid properties and geometry were chosen to
approximate the experimental conditions of air at standard conditions with d =2.5 in. and u, =3 m/s.
The Reynolds number chosen from the experiment was Re = 12,300, based on channel half-width d and
the developed centerline velocity U,. Since U, must be computed by FLESCOT, there was no way to
know it a priori. Therefore, the inflow fluid properties were slightly adjusted in an iterative process until
FLESCOT computed a value of U,, which produced the desired Reynolds number.

2D plane channel flow, turbulent -- Re = 12,300
gaid: TDC-1
size, 25 20 1
time, 1-3 25.0
prnt, 10
post,
pres, 100 1-8
rest, 1 1

cont,psav,msav, scrn,pa e, turb,
cont,besqg, mont,dtim, sisy, gaed, uncp,
aout,velr,velz,pres,delp, tkin

dbug, prop,mtyp, ntyp,data,
plot,velr,velz,pres,delp, tkin

20 1 1 1 20 1 1 1
0 1 2 24 2 19 1 1 1

30 1 2 24 1 1 1 1 1
40 1 2 24 20 20 1 1 1
2 19 1 5

1.00 1. 90 1

1 19.0036 20 257.1-4 3 3

1.1.070 10001.9-5 1 0 lcl 6
2.99 1 24 1 20 1 1 7

0

Figure 4.5. Input file for test problem TDC-1.

Figure 4.6 shows a comparison between the experimental data and FLESCOT prediction. Shown are
the mean velocity and the turbulent kinetic energy, both normalized by the centerline velocity. The
agreement between the simulation and the experiment data is acceptable.
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Figure 4.6. Comparison between TEMPEST prediction and experimental data for fully developed

turbulent two-dimensional channel flow.

4.3 Benchmark 3: Turbulent-Free Jet

431 Description and Purpose

0.8

0.9

0.010

4 0.008

4 0.006

4 0.004

k/ucn2

This problem tests the accuracy of FLESCOT for fully developed turbulent-free jet. The diameter of
the jet nozzle is 0.05m, and the jet velocity is 2 m/s, and Figure 4.7 shows the simulation domain. The

experimental data for momentum jet centerline velocity is
V#*=1 forZ* <6.2

V*=6.2/7* forZ* >6.2

where

7* = Z/Dy

R* = r/ Do

V* = Vcl/Vy

Dy = 0.05 m (jet orifice diameter)

Vo = 2 m/s (jet discharge velocity)
r = jetradial coordinate
z = jetaxial coordinate.

The lateral distribution of downstream velocity has a Gaussian profile, given by

4.5
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where the experimentally determined entrainment coefficient, K = 77.

4.3.2

V(r,Z)ZVcl(z)exp(-K(r/z)z)

Jet

Figure 4.7. Simulation domain for turbulent-free jet.

FLESCOT Solution

(4.3)

Figure 4.8 shows the input file of the turbulent-free jet. Figure 4.9 shows the FLESCOT simulation
results compared with the empirical results as shown in Equations (4.1)—(4.3). The agreement between
the FLESCOT and empirical results are acceptable.

Free Jet
gaid: FJ
size, 55
time, 1-2
prnt,
post,
rest,

40

1

1
100.

1

cont,uncp,mont, scrn,dtim,pace, sisy,
cont,psav,msav,gaed, rx o,cyln, turb,
aout,velr,velz,velx,tkin, tdis,eddy
dbug, data,size,prop,ntyp,init,
plot,velr,velz,velx,

0
20
30
40
40

9

31

21
36

e

40
10
25
40

o

10

.005
.024
.035
.212

1.7

11
41
11
26

Figure 4.8. Input file for the turbulent-free jet.
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Figure 4.9. Comparison between FLESCOT simulation and empirical results: (a) lateral velocity profile;

(b) center line velocity.
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5.0 FLESCOT Feasibility Trial for Coastal Water Flow
Application

The tests in this chapter are designed to be used for examining the feasibility of application of
FLESCOT with the turbulence k-& model for coastal water. Figure 5.1 shows the geometry in top and
side views. A 200 m wide river flows into a 2000 m x 2000 m coastal water area. The depth at the
coastal line or river is 1.5 m, and gradually increases to 10 m over 2000 m offshore.

A . | ]
Top view | 1.5 Side view |
2000m i 1oml |
200m§ | |
Uy | |
2000m R v
[ ) |

Figure 5.1. Geometry of the test case for coastal water: (left) top view; (right) side view.

5.1 FLESCOT Solution

To test the impacts of temperature and salinity differences on flows, four cases are tested: 1) no
temperature and salinity differences between inlet river flow and the coastal water; 2) with temperature
differences, no salinity differences between inlet river flow and the coastal water; 3) no temperature
differences, with salinity differences between inlet river flow and the coastal water; 4) with temperature
and salinity differences between inlet river flow and the coastal water.

5.1.1 Case 1: No Temperature and Salinity Difference between Inlet River Flow
and the Coastal Water

The temperature of inlet river flow and coastal water are set to be 10 °C. The salinity calculation is
turned off. Figure 5.2 shows the input file for this test. Figure 5.3 shows the results. See directions of X,
Y, and Z in Figure 5.3. For clarity, the contour plot is cut along the center of the domain and the inlet
river.
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1 3-d marine test (without heat and salinity)
size, 38 23 41

time, 1 145

prnt, 500

pres, 500 1.9 1-8
rest, 1 1

cont,pace,scal,m st,

cont,s ve,r ad,ds v, turb,

cont,mont,dtim, rxio,hyn ,sisy,he t,scim,
aout,sp n,vs n,ma f£,c( ),

aout,s rf,t mp,s rf,w ve,tkmn, kvis,

aout, temp,vell,vel2,vel3,divg,dens,s rf,c( ),
aout,velr,velz,velx,

aout,w ve,s mn,v mn,s lt,m sf,tkin, tdis,eddy,

dbug, size,prop,mtyp,ntyp,data, tabl,tt 1,init, star,

20 1 38 23 23 1
40 1 38 38 2 22 3
50 1 2 37 2 22 41
50 1 2 37 2 22 2
30 1 5 5 20 22 20
20 0 38 38 2 22 2
20 0 38 38 2 22 41
0 1 6 9 16 22 3
0 1 10 13 14 22 3
0 1 14 17 12 22 3
0 1 18 21 10 22 3
0 1 22 25 8 22 3
0 1 26 29 6 22 3
0 1 30 33 4 22 3
0 1 34 37 2 22 3
6 18 22 6 19 22 2 19 21
500
50 50 000 90 180
1 19 0.5 20 20 0.4 21 23 0.3
3510143 20 0 35
1. 0 0 10 5 5
10 0 5 38
10 0 5 5

41
40
41

2
23

2
41
40
40
40
40
40
40
40
40

2

90

51
20

20

20

22
22
22

21

20

20

lcl
23
41
23

DR R R RRRRRRRRRERE P

O W J o »

blank

DZ

h2o
dischge
temp
temp
blank

Figure 5.2. Input file for test without temperature and salinity differences.
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I a ¥ HE W a ¥

r-vel. -0.015 0.215 0.445 0.675 0.905 | z x-vel: -0.118 -0.064 -0.01 0.044 0.098 | z

(a) Velocity in Y-direction (inlet river flow (b) Velocity in Z-direction (perpendicular to inlet
direction) (m/s) river flow direction and parallel to the coastal
surface) (m/s)

) | a : I T 1 :

z-vel: -0.0122 -0.0086 -0.005 -0.0014 | 7 tdis: 0.0002 0.0104 0.0206 0.0308 0.041 | 7

(c) Velocity in X-direction (vertical direction of (d) Turbulent kinetic energy dissipation (m?/s*)
the coastal area) (m/s)

Figure 5.3. FLESCOT simulation results for the test case without temperature and salinity differences
between inlet river flow and coastal water. (Figure continued on next page.)
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tkiin: 0.01 0.25 0.49 0.73 0.97 1.21 1.45 L: turbvis: 05 14 27.5 41 545 68 815

(e) Turbulent kinetic energy (m?/s?) (f) Turbulence viscosity (Pa-s)
Figure 5.3. (contd)

5.1.2 Case 2: With Temperature Difference, no Salinity Difference Between
Inlet River Flow and the Coastal Water

The temperature of inlet river flow is 10 °C, and coastal water is 20°C. The salinity calculation is
turned off. Figure 5.4 shows the input file for this test. Figure 5.5 shows the results. For clarity, the
contour plot is cut along the center of the domain and the inlet river.
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1 3-d marine test (with heat and without salinity)
size, 38 23 41

time, 1 145

prnt, 500

pres, 500 1.9 1-8
rest, 1 1

cont,pace,scal,m st,

cont,s ve,r ad,ds v,turb,

cont,mont,dtim, rxio,hyn ,sisy,heat,scim,

aout,sp n,vs n,ma f£,c( ),

aout,s rf,t mp,s rf,w ve, tkmn, kvis,

aout, temp,vell,vel2,vel3,divg,dens,s rf,c( ),
aout,velr,velz,velx,

aout,w ve,s mn,v mn,s 1lt,m sf,tkin,tdis,eddy,
dbug, size,prop,mtyp,ntyp,data, tabl,tt 1,init, star,

20 1 38 23 23 1 41 1
40 1 38 38 2 22 3 40 1
50 1 2 37 2 22 41 41 1
50 1 2 37 2 22 2 2 1
30 1 5 5 20 22 20 23 1
20 0 38 38 2 22 2 2 1
20 0 38 38 2 22 41 41 1
0 1 6 9 16 22 3 40 1
0 1 10 13 14 22 3 40 1
0 1 14 17 12 22 3 40 1
0 1 18 21 10 22 3 40 1
0 1 22 25 8 22 3 40 1
0 1 26 29 6 22 3 40 1
0 1 30 33 4 22 3 40 1
0 1 34 37 2 22 3 40 1
6 18 22 6 19 22 2 19 21 2 20 21 5
500 6
blank
50 50 000 90 180 90 1
1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
35101+3 20 0 35 51 1 3 lcl 6 h2o
1. 0 0 10 5 5 20 22 20 23 7 dischge
20 0 5 38 1 22 1 41 9 temp
10 0 5 5 20 22 20 23 9 temp
blank

Figure 5.4. Input file for test with temperature differences and without salinity differences.
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| a 1 I 1 ¥

r-vel: -0.045 019 0425 066 0.895 | z x-vel. -0.11 -006 -0.01 0.04 0.09 | z

(a) Velocity in Y-direction (inlet river flow (b) Velocity in Z direction (perpendicular to inlet
direction) (m/s) river flow direction and parallel to the coastal
surface) (m/s)
I L | o Il W n o

z-vel: -0.0124 -0.0083 -0.0042 -0.0001 | z temp: 10 13.1156 16.2312 19.3467 | 7

(c) Velocity in X direction (vertical direction of the (d) Temperature (degree Celsius)
coastal area) (m/s)

Figure 5.5. FLESCOT simulation results for the test case with temperature differences and without
salinity differences between inlet river flow and coastal water. (Figure continued on next

page.)
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dens: 1023 1024.25 102549 1026.74 | z tdis: 0.0002 0.0104 0.0206 0.0308 0.041 | z

(e) Density (kg/m?)

tkiin: 0.01 0.24 0.47 0.7 0.93 1.16 1.39 | 7

(g) Turbulent kinetic energy (m?/s?) (h) Turbulence viscosity (Pa-s)
Figure 5.5. (contd)

5.1.3 Case 3: No Temperature Difference, with Salinity Difference between
Inlet River Flow and the Coastal Water

The temperatures of inlet river flow and coastal water are 10 °C. The salinity of coastal water is
3.205% in mass fraction, and the salinity of the inlet river flow is 0. Figure 5.6 shows the input file for
this test. Figure 5.7 shows the results. For clarity, the contour plot is cut along the center of the domain
and the inlet river.
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1 3-d marine test (without heat and with salinity)
size, 38 23 41

time, 1 145

prnt, 5000

pres, 500 1.9 1-8
rest, 1 1
misc, -1 1

cont,mast, salt,c(l),

cont,pace,scal,m st,

cont,s ve,r ad,ds v, turb,

cont,mont,dtim, rxio,hyn ,sisy,heat,scim,

aout, spmn, vsmn,masf,c (1),

aout,s rf,t mp,s rf,w ve,tkmn,kvis,

aout, temp,vell,vel2,vel3,divg,dens,s rf,c( ),
aout.velr,velz,velx,

aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug, size,prop,mtyp, ntyp,data, tabl,tt 1,init,star,

20 1 38 23 23 1 41 1

40 1 38 38 2 22 3 40 1

50 1 2 37 2 22 41 41 1

50 1 2 37 2 22 2 2 1

30 1 5 5 20 22 20 23 1

20 0 38 38 2 22 2 2 1

20 0 38 38 2 22 41 41 1

0 1 6 9 16 22 3 40 1

0 1 10 13 14 22 3 40 1

0 1 14 17 12 22 3 40 1

0 1 18 21 10 22 3 40 1

0 1 22 25 8 22 3 40 1

0 1 26 29 6 22 3 40 1

0 1 30 33 4 22 3 40 1

0 1 34 37 2 22 3 40 1

6 18 22 6 19 22 2 19 21 2 20 21 5
500 6

blank

50 50 000 90 180 90 1

1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ

35101+3 20 0 35 51 1 3 lcl 6 h2o

1. 0 0 10 5 5 20 22 20 23 7 dischge
10 0 5 38 1 22 1 41 9 temp

10 0 5 5 20 22 20 23 9 temp

32.05 1 5 38 1 22 1 41c 33 salinity
0.0 1 5 5 20 22 20 23c 33 salinity
blank

Figure 5.6. Input file for test without temperature differences and with salinity differences.
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| 1 I T = ¥

r-vel: -0.14 0.06 0.26 046 0.66 0.86 | z x-vel; -041 -022 -003 0.16 035 | z

(a) Velocity in Y-direction (inlet river flow (b) Velocity in Z direction (perpendicular to inlet
direction) (m/s) river flow direction and parallel to the coastal
surface) (m/s)
Il | ¥ I T 1 Y
z-vel: -0.0115 -0.0075 -0.0035 0.0005 %Z cl: 02 48 94 14 186232278 %Z

(c) Velocity in X direction (vertical direction of the (d) Salinity (percentage in mass fraction)
coastal area) (m/s)

Figure 5.7. FLESCOT simulation results for the test case without temperature differences and with
salinity differences between inlet river flow and coastal water. (Figure continued on next

page.)
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dens: 1010 1014.67 1019.35 1024.02 | z tdis: 0.0002 0.0098 0.0194 0.029 0.0386 | z

(e) Density (kg/m?)

tkiin: 0.01 0.22 0.43 0.64 0.85 1.06 1.27 |
-

(g) Turbulent kinetic energy (m?/s?) (h) Turbulence viscosity (Pa-s)
Figure 5.7. (contd)

5.1.4 Case 4: With Temperature and Salinity Differences between Inlet River
Flow and the Coastal Water

The temperature of inlet river flow is 10°C, and coastal water temperature is 20°C. The salinity of
coastal water is 3.205% in mass fraction, and salinity of the inlet river flow is 0. Figure 5.8 shows the
input file for this test. Figure 5.9 shows the results. For clarity, the contour plot is cut along the center of
the domain and the inlet river.
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1 3-d marine test (with heat and salinity)
size, 38 23 41

time, 1 145

prnt, 500

pres, 500 1.9 1-8
rest, 1 1
misc, -1 1

cont,mast,salt,c(l),

cont,pace,scal,m st,

cont,s ve,r ad,ds v, turb,

cont,mont,dtim, rxio,hyn ,sisy,heat,scim,

aout, spmn, vsmn,masf,c (1),

aout,s rf,t mp,s rf,w ve,tkmn, kvis,

aout, temp,vell,vel2,vel3,divg,dens,s rf,c( ),
aout.velr,velz,velx,

aout,w ve,s mn,v mn,s lt,m sf,tkin,tdis,eddy,
dbug, size,prop,mtyp,ntyp,data, tabl,tt 1,init, star,

20 1 38 23 23 1 41 1
40 1 38 38 2 22 3 40 1
50 1 2 37 2 22 41 41 1
50 1 2 37 2 22 2 2 1
30 1 5 5 20 22 20 23 1
20 0 38 38 2 22 2 2 1
20 0 38 38 2 22 41 41 1
0 1 6 9 16 22 3 40 1
0 1 10 13 14 22 3 40 1
0 1 14 17 12 22 3 40 1
0 1 18 21 10 22 3 40 1
0 1 22 25 8 22 3 40 1
0 1 26 29 6 22 3 40 1
0 1 30 33 4 22 3 40 1
0 1 34 37 2 22 3 40 1
6 18 22 6 19 22 2 19 21 2 20 21 5
500 6
blank
50 50 000 90 180 90 1
1 19 0.5 20 20 0.4 21 23 0.3 3 4 DZ
35101+3 20 0 35 51 1 3 lcl 6 h2o
1. 0 0 10 5 5 20 22 20 23 7 dischge
20 0 5 38 1 22 1 41 9 temp
10 0 5 5 20 22 20 23 9 temp
32.05 1 5 38 1 22 1 41c 33 salinity
0.0 1 5 5 20 22 20 23c 33 salinity
blank

Figure 5.8. Input file for test with temperature and with salinity differences.
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1 1 Il W ¥

r-vel: -0.195 0.075 0.345 0.615 0.885 | z x-vel: -0.2 0.0231156 | z

(a) Velocity in Y-direction (inlet river flow (b) Velocity in Z-direction (perpendicular to inlet
direction) (m/s) river flow direction and parallel to the coastal
surface) (m/s)
I T W ¥ Il T . Y
z-vel: -0.0118 -0.0078 -0.0038 0.0002 %Z temp: 10 13.1156 16.2312 19.3467 %Z

(c) Velocity in X direction (vertical direction of the (d) Temperature (degree Celsius)
coastal area) (m/s)

Figure 5.9. FLESCOT simulation results for the test case with temperature and salinity differences
between inlet river flow and coastal water. (Figure continued on next two pages.)
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I a 1 I T 1 ¥

cl: 02 48 94 14 18623.227.8 | z dens: 1010 1014.05 10181 1022.15 | z

(e) Salinity (percentage in mass fraction) (f) Density (kg/m?)
I - o E i 1 o

tdis: 0.0002 0.0094 0.0186 0.0278 0.037 | 7 tkiin: 0.01 0.22 0.43 0.64 0.85 1.06 1.27 | 7

(g) Turbulent kinetic energy dissipation (m?/s®) (h) Turbulent kinetic energy (m?/s?)

Figure 5.9. (contd)
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turbvis: 0.5 12.5 24.5 36.5 48.5 60.5 72.5 k z

(1) Turbulence viscosity (Pa-s)
Figure 5.9. (contd)
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6.0 Flow Analysis of the Ogi Dam Reservoir Model

The Ogi Dam and its reservoir are located near the border between the villages of Kawauchi and
Tomioka (37:20:42 north latitude, 140:54:19 longitude) in Fukushima Prefecture, Japan. They are about
15 km from the Fukushima Dai-ichi Nuclear Power Plant. The available storage capacity of the Ogi Dam
Reservoir is 716,000 m® and the water surface area is 70,000 m”>. Detailed information can be found on
the Japan Dam Foundation website (in Japanese), in a paper by Funaki et al. (2014), and a previous report
by Onishi et al. (2014). This dam is a main focus of the JAEA Transport of Radioactive Contaminant in
the Environment of Fukushima (F-TRACE) research project (lijima et al. 2013; Kitamura et al. 2015).
Under the F-TRACE project, JAEA monitors and samples water and sediment deposits in the reservoir
and in the river into the reservoir to evaluate cesium distributions.

6.1 Aim of This Study

In the previous report (Onishi et al. 2014), the authors studied the applicability of FLESCOT code
(Onishi et al. 1987; Onishi and Trent 1985, 1992; Onishi et al. 1993) to analysis of sediment and cesium
transport in the Ogi Dam Reservoir without turbulence modeling with the use of the k-¢ model (see
Equations (3.8) through (3.11)) to calculate the eddy viscosity. In this study, we used the k-¢ model to
estimate the eddy viscosity, and focused on a detailed analysis of the flow in the Ogi Dam Reservoir,
which plays a fundamental role in the cesium transport and accumulation in the reservoir.

6.2 Modeling of Ogi Dam Reservoir

Figure 6.1 shows a three-dimensional schematic of the Ogi Dam Reservoir. In this modeling, we use
Paraview (Henderson 2015) for visualization of our results. Because the vertical water depth is much
smaller than the horizontal distance, we made the vertical scale 10 times greater to show the water depth
variation as well in the figure. We set X-, Y-, and Z-directions as shown in Figure 6.1. We employed
rectangular mesh for the X-Y plane. In the X-direction, the vertex is made every 8 m. In the Y-direction,
the vertex is made every 8 m between 0 and 116 m, and between 136 and 256 m, and every 4 m from 116
to 136 m. In the Z-direction, the vertex is made every 0.3 m from the bottom to 0.9 m, 0.4 m from 0.9 to
1.3 m, and every 0.5 m from 1.3 to 11.3 m. The number of computational fluid cells is 9,595. Figure 6.2
shows views from viewpoints A, B, C, and D shown in Figure 6.1.

We set boundary conditions as follows: constant water influxes at 1.0 m/s from Oginosawa River
(Figure 6.1a), and 0.1 m/s from the two small streams (Figure 6.1b and 6.1c). These values are not
realistic, rather these extreme conditions were chosen for a test. The position of an outflow from the
reservoir is also shown in Figure 6.1d. The temperature of the water of the three inflow rivers and
reservoir is 25°C, and we focused on this isothermal case.

We consider three simulation times: 3, 47, and 472 (20 days) hours. Results obtained by FLESCOT
are consistent with those obtained using the TEMPEST code (a parent version of the flow part of
FLESCOT) in the 3-hour simulation time case. The input file for this simulation has 49,000 lines, so it is
not included here.
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Figure 6.1. Overview of the Ogi Dam Reservoir modeling. Triangle with “N” represents the direction to
north. (a)—(d) show inlets and an outlet. A—D represent points of sight for Figure 6.2A-6.2D.
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Figure 6.2. Three-dimensional views from A—D shown in Figure 6.1. The yellow arrows point out the
place where the topography changes abruptly (see text).

6.3 Results

First, we show predicted results for the 3-hour simulation time. Figure 6.3 shows velocity magnitude
viewed from top (Figure 6.3a) and bottom (Figure 6. 3b) with linear contour representation. We found
that the speed of the flow from the Oginosawa River (Figure 6.1a) decreases drastically with distance
from the reservoir inlet. The same velocity distribution with logarithmic contour representation is shown
in Figure 6.4. We show the magnitudes and the directions of the velocity of fluid at several depths.
Figures 6.5a, 6.5b, 6.6a, 6.6b, 6.7a and 6.7b show the flow velocity at the surface, at depths of 2, 4, 6, 8,
and 10 m, respectively.
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First, we focus on the surface flow shown in Figure 6.5a. We can find streamlines from the inlets to
the outlet. We also find flow moving in the opposite direction, as indicated by the yellow arrow in Figure
6.5a. And, an extremely low velocity area exists between them. Next, we examine the velocity field at
greater depths. The velocity magnitude and directions at depths of 2 m are shown in Figure 6.5b. The
fundamental structure is the same as one near the water surface: we can see the main stream moving from
the inlets to the outlet, and the substream moving in the opposite direction. At depths of 4 m and 6 m, the
flow has also almost the same stream structures (Figure 6.6a and 6.6b). At depths of 8 m and 10 m, we
can find only a flow moving toward the outlet.

(b) Bottom

FEETTTTTT

Figure 6.3. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contour (three
hours simulation time). The yellow arrow shows the point where the topography is
drastically changed.

Next, we show the 47-hour simulation results. Figures 6.7a, 6.7b, 6.8a, 6.8b, and 6.9 show the
magnitude of the velocity in linear and logarithmic contours. From these figures, we cannot find large
differences between the results of the 3- and 47-hour calculations. Thus, we consider that the velocity
distribution of three simulation hours has reached its steady-state condition.

To further examine the stability of the FLESCOT simulation, we continued to run this case for 472
simulation hours (about 20 simulation days) with 1 million time steps. The model was very stable. The
calculated flow and turbulence (turbulent kinetic energy and its dissipation) at 472 simulation hours are
shown in Figure 6.10. The flow patterns at 20 simulation days are very similar to those obtained during
earlier simulation hours.
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AV

(b) Bottom

AV

Figure 6.4. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic contour
(3-hour simulation time). The yellow arrows show the area where the velocity is very slow.
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(a) Surface

¥

(b) Depth of 2m

———
—
e

Figure 6.5. Magnitude and direction of simulated flow velocity at (a) surface and (b) the depth of 2 m
with logarithmic contour (3-hour simulation time). The yellow arrow shows the area where
the direction of the velocity is opposite to the main flow.
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(a) Depth of 4m

(b) Depth of 6m

———
—
—

Figure 6.6. Magnitude and direction of simulated flow velocity at the depth of (a) 4 m and (b) 6 m with
linear contour (three hours simulation time).
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(a) Depth of 8m

(b) Depth of 10m

Figure 6.7. Magnitude and direction of simulated flow velocity at depths of (a) 8 m and (b) 10 m with
linear contours (3-hour simulation time).
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(b) Bottom

T

Figure 6.8. Magnitude of simulated flow velocity from (a) top and (b) bottom with linear contours (47-
hour simulation time).
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(b) Bottom

Figure 6.9. Magnitude of simulated flow velocity from (a) top and (b) bottom with logarithmic contour
(47 hours simulation time).
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0.965 z, 0.985 2 -
0.885 \é/y . 0.885 Y

0.805

(b) Turbulence viscosity (Pa s); the maximum
turbulence viscosity is around 150 (Pa-s)

9.649E-07 Z 4 v 9 652E-10 Z M
8.845E-07 8.856E-10
8.0426-07 8.060E-10
7.230E-07 7.264E-10
6 436E-07 6.468E-10
5,633E-07 5.672E-10
I 4.876E-10
4.080E-10
3.284E-10
2.488E-10
1.692E-10
8.960E-11

1.000E-11

I 4.829E07
4.026E-07
3.223E-07
2.420E-07
1.616E-07
8.132E-08

1.000E-09

(c) Turbulent kinetic energy (m?/s?); the maximum (d) Turbulent kinetic energy dissipation (m?/s®); the
turbulent kinetic energy is around 0.18 (m?/s?) maximum turbulent kinetic energy dissipation is
around 0.018 (m?/s%)

Figure 6.10. Simulation results for Ogi Dam Reservoir at 472 simulation hours.

6.4 Discussion

We found the velocities to be very low in most parts of the dam reservoir. The reason is the
topography of the reservoir around the main inlet (pointed out by the yellow arrow in Figure 6.3a). There
is a strong curvature from the inlet to a main part of the reservoir. After this curve, the width of the
waterway becomes suddenly wider than that at the inlet. In addition, the water depth suddenly increases
from around this part (pointed out by yellow arrows in Figure 6.2B and 6.2D). One can see that the water
goes through a very shallow part to a deeper part of the inlet.
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These two topographical characteristics cause the drastic deceleration of flow. After this
deceleration, the flow goes to the outlet, but the sharp curve located downstream of the inlet area makes
the flow complex. As seen in Figure 6.5a, there are two flows: one moving toward the reservoir outlet
and the other moving in the opposite direction. This creates a large vortex-like structure whose “core”
has a very low velocity. The yellow arrow in Figure 6.4a points out the “vortex core” in the surface flow,
but almost the same structure is found in the bottom flow (Figure 6.4b). The main reason for this is the
topography at the middle part of the reservoir. There are no large bumps on the bottom. This makes
flows on the surface and the bottom almost the same without variation in water density.

This study reveals the main features of flow in the Ogi Dam Reservoir using FLESCOT. We made a
three-dimensional model of the Ogi Dam Reservoir. We set boundary conditions: constant water fluxes
1.0 m/s from Oginosawa River, and 0.1 m/s from the two other small streams. We found a drastic
slowdown in the flow around the main inlet of the reservoir. This is caused by a dramatic change in the
topography. The flow pattern on the bottom, which plays a critical role in sediment transport, is similar to
that near the water surface. The reason is that this dam reservoir does not have any pronounced bumps on
the bottom.
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7.0 FLESCOT Parallelization Approach

FLESCOT is a serial program written in FORTRAN 77. The original codebase was written in the
early 1980s for computers with limited memory and slow processors when compared to current standards.
These constraints forced some design choices that will make parallelization difficult. For example, the
code maximizes the use of memory by using EQUIVALENCE and COMMON statements, but these
statements obscure the meaning of the code. Because understanding the intention of the code is crucial to
parallelizing it, this condition inhibits the ability to manually or automatically parallelize it. The
extensive use of global variables through the COMMON statements also makes the code difficult to
follow. Finally, the code relies on unconstrained branching for flow control; that is, it uses GOTO
statements to jump out of and into blocks. This too will lead to difficulty for the developer because the
code is difficult to follow and prevents a compiler from effectively optimizing the code. Consequently,
any successful attempt to parallelize it will entail rewriting parts of the code.

7.1 Analysis of FLESCOT

FLESCOT consists of a simulation loop that computes changes in mass transport and hydrodynamics
over a predetermined time step. The loop is a feed-forward process, in which the result of the current step
is used as input to the next step. This process describes the theoretical time evolution of the modeled
system.

We used two techniques to analyze FLESCOT:

o direct examination of the code
o performance analysis using gprof, an open source profiling tool, and manual timing.

The performance observations are summarized in Table 7.1 and the main observations of the code
structure and possible problems associated with it are summarized in Table 7.2.

Table 7.1. FLESCOT Performance Observations

Observation Implication
EXCUTE dominates the The EXCUTE subroutine takes 96% of the execution time. This is not
execution time surprising because it contains the simulation loop and calls the eight functions
that take most of the remaining simulation time.
SPECTR, ADVECT, These subroutines take about 77% of the total execution time. They are
CONDIF, BFORCE, generally complex and will be difficult to individually parallelize.

STRESS, MOMENT,
SEMBLE, and SOLVEL
account for 77% of the
execution
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Table 7.2. FLESCOT Code Structure Observations and Possible Problems

Observation Implication

Global variables Global variables make the code difficult to follow because the code can change
them in unpredictable ways; FLESCOT has over 600 of them. In a parallel
version of the code several processors are able to change the values of each global
variable without coordination leading to “race conditions.” Because this is done
in unpredictable ways, access to each variable must use a “critical region” to
prevent data races. This can be a severe bottleneck for parallel versions of the
code.

Multiple returns Several functions have multiple return locations. This results in an execution
logic that is difficult to follow. When this code is parallelized, each return must
be treated separately to ensure any processor synchronization is handled correctly.
This hinders not only human analysis but also the basic block analysis and the
creation of directed acyclic graphs to model execution and enable optimization by
the compiler.

STOP statements The code has several STOP statements in various functions. Each of these will
have to be removed in the parallel code, and handled differently to avoid hanging
at global synchronization points later in the execution path.

EQIVALENCE EQUIVALENCE statements allow arrays to be used for multiple purposes, which

statements can make the code difficult to follow. When this code is parallelized—especially
in the distributed case—each meaning of the array must be mapped between
processors every time their values are shared. This also hinders compiler
optimization because the compiler is unable to assume the lack of aliasing among
variables that occur in EQUIVALENCE statements.

Data dependencies These are an inevitable part of code but they are problematic for parallel code.
Consider a computation like a[i] = a[i+1] + a[i-1] in a loop. The code is expected
to compute a[1] = a[0]+a[2], a[2] = a[1]+a[3] and so on. But, the minute we set
the new value of a[ 1], its old value is lost, so the computation of a[2] will not use
the expected value of a[1].

711 Performance Analysis

The structure of the code restricted our ability to completely analyze FLESCOT’s performance. Both
gprof and manual techniques can crash the code and do so under arbitrary circumstances. This suggests
that there may be some underlying memory access problems that are exacerbated by altering the
execution behavior of the code. This problem was address by JAEA in the January 2015 meetings. It
means the results from the gprof analysis may not be accurate. To corroborate the gprof output we did
collect, we manually profiled the code and verified the results with FLESCOT experienced users and
developers. Because the primary aim of this analysis is to find which functions dominate the execution
time, this approach is adequate.

As presented in Table 7.1, the main execution loop EXCUTE takes up roughly 96% of the
computation. It also calls the most time-consuming subroutines in the program: SPECTR, ADVECT,
CONDIF, BFORCE, STRESS, MOMENT, SEMBLE, and SOLVEL. Based on an examination of the
call sequence, the complexity of the subroutines, and a desire to minimize the amount of code rewriting
needed to parallelize them individually, we believe that the EXCUTE subroutine should be parallelized
and all coordination between processes should be moved to a single location, preferably EXCUTE.
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7.1.2  Structural Analysis

Table 7.2 describes the main structural problems with the code as a whole. This table also suggests
the kinds of problems that would arise when parallelizing the code “as is.” Structurally, the main adverse
characteristic of the code is unconstrained branching. Of the eight functions identified as focal points for
parallelizing the code, the functions EXCUTE, CONDIF, and SEMBLE had the highest degree of
branching.

Figure 7.1a-c depicts the flow of control for these subroutines. Each diagram contains only the flow
control statements that have significant contributions to the “spaghetti” quality of the code. The figures
show the connections between control statements with directed paths pointing from the jump statement to
the target statement. The number of intersections between these paths and the number of return
statements indicate how much “spaghetti” each subroutine contains.

(a) EXCUTE

if() go to 999 —-->--->—-->—-->---D>—m->—m=D>—m D> =D D> — = > — = > — = > =>4

if() return = ------------—— e | --> return
100 continue D e e e e e e G ekl G e e ks v
125 continue <-——<-—=<——=<——=<—=—<—=—<-——<-——<-—-<-—-<--—+ | |

if() go to 140 —-->-=->—==>—=-Df-—=D>——=D>——=D>——=>——-=>4 ~ ~ v
140 continue <-——=<-—-<-——<——-<-——<-=-<-——<-——<--——+ I I

if() go to 810 —-—->-=->—=->——=Df-—=-D>——->-—=->+ ~ ~ ~ v

if() go to 165 --->--->+ | | | | |

go to 350 ——=>-=> | -->+ v ~ ~ ~ v
165 continue <-==<---+ | | | | |

if() go to 170 --->--->+ v v o ~ ~ v

if() go to 170 —--->--->+ | | | | |

if() go to 940 --->--> | -> v -—-->--->+ v ~ | | v

go to 125 ——=>—=> | 2> | m==>==> | ==> | >—=m>m—m>——>A ~ |
170 continue <---<---+ v v v o | | v

if() go to 180 --->--->+ | | | | ~ ol

if() go to 350 --->--> | -->v v v ~ | | v
180 continue <-==-<---+ | | | | ~ A

if() go to 360 —---->--->--> v ->+ v v ~ | | v

if() go to 350 —-—=->-—->--->| | | | | ~ o

if() go to 315 --->+ | v v v v ~ | | v
315 continue <---+ v | | | | | ~ ~

if() go to 350 --->--->| v | v v ~ | | v

do 320 -—=>+ v | v | | | ~ A
320 continue <---+ | v | v v A | | v
350 if() call denary ->--->+ | v | | | ~ ol
360 continue <=-=-<L=-==<L===<L====+ v v ~ | | v

if() go to 100 —->—=->-=->——->-=->--> | —==> | —===> | —==> A ->-—-->4+ |

go to 900 ——=>--->+ v v o | v
810 continue <-—=<-- | <===<-=-—<-—- | <-——%+ I A

if() go to 960 --->--> v -=-->--->---> v --->+ ~ | v

if() go to 125 -->-=-> | —===>===>===> | >== | ==>-= | —-==->+

go to 140 —=>===> | —==>===>—==-> Vv >-= v -->-->+ v
900 continue <---<---+ | |

if() go to 930 --->--->+ v v v

do 928 -—=>+ | | | |
928 continue <---+ v v v v
930 continue <---<---%+ | |

go to 999 —==D>= === D> ==Y =D VD= =D =D =D =D == > == =DV
940 continue <=—=<== | —=<=-=<-==<-—4 |

go to 999 —==D>— === > > => ¥ D> =-D>—=-D>——->—=->——->——-->V
960 continue <--<--<--<--<---<---<--<-+

go to 999 e D i D D D it D D D D Pkl T4

999 continue D e e e e e e e e e e e el bt

Figure 7.1. Flow of control for Subroutine EXCUTE, CONDIF, and SEMBLE (Figure is continued on
next three pages.)
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(b) CONDIF

15 call semble <--<--<--<--<K--<K--<K--<--<--<- <<%
if() go to 400 --->+ |
400 if () go to 600 <<>>+ —---->+ ~
if () go to 880 —-—->-->--> | —=>——->——->——->——->——->-——->4 |
if() go to 900 --->-->--> v —-=->—=->--->—--D>—--D>—-->--=-> | -=> 4~ -->
go to 730 ——=>—>—=> [ —-->——-> v |
600 continue <-==<-==<-=+ | | ~ |
if () go to 880 ——->-—->-—->——->—-> ¥ —==>——->——->——->-->y |
650 if () go to 770 <O | <O + <-—-+ | ~ |
if() go to 760 -—-=->-=->-=->—-=->--> v -->+ | | v | |
if() go to 15 —==>-=->-—->——->—-> | > | => v -> A —=> | -=->* |
if() go to 650 —-==->-=->—=->—=->--> v -> v -> | -->| v | |
if() go to 720 --->-->--->+ | | v o | ~ |
go to 650 ——=>=>==> | == >=> v > v > v - v |
720 continue <---<---<--+ | | v ~ | ~ |
do 725 ——=>==>-==->+ v v | | v | |
if() go to 900 —=->-->--> | ==>=-> | => | => v >~ -=> v -=> | -->|
725 continue <-==-<L=-==<-=+ v v | | | A |
730 continue <-——<-—-<-—-<---<--—+# | v A v |
if() go to 800 --->-->--->+ v | | | ~ |
go to 15 ——=>—>—> | = D> >——> | > v => A —=> v -
760 continue <-==<-=-=<- | <-=-- <--- 4+ | | | ~ |
770 <---<---<- | <=--  <---<---<-+ A v |
if() go to 800 --->-->--> | | | A |
go to 650 ——=>=m>—=> | mmm > m > > > o>t v |
800 continue <-—=<-=-=-<--%+ | ~ |
if() go to 900 ——->—->—->——->— > > > > >y —=> | ==
go to 15 S>> > > > > > > > | == >4
if() go to 880 v |
880 continue + |
if() return ---------—--—--—m - |
return -—-------—---- - |
900 continue |
stop
(c) SEMBLE
do 300 -->-=>==>==>==>-=>mo>om>mm>om>om>em>om>ommm>t
do 250 —->-->—->=->-->—->—->—>om>o>—->-->-—-> |
do 200 -->—->—->-->=->—->—->-->-->—->—->-->+ | v
if() go to 200 --->-->-->-->-->-->-->-->-->| v |
if() go to 150 v | v
if() go to 100 | v |
50 if() go to 60 —-—-->-—-->—-->—-->--->+ v | v
if() go to 60 —-=-->-=-->-—->-—->--->| | v |
if() go to 52 --->+ v v | v
if() go to 53 --> | -->+ | | v |
go to 55 -—> v -> |-->+ v v | v
52 <-=--+ v | | | v |
if() go to 55 -==->--> | ->v v v | v
53 <—==<-===+ | | | v |
go to 60 —==>===>===> vV —===>V v | v
55 <====L===L===4 | | v |
60 continue <——=<-——<-=-<-——-<--—% v | v
if() go to 70 ——=>—=->-—->-—->-——->¢ | v
if() go to 61 --->+ | v | v
61 <---+ v | v |
if() go to 70 —==>===>——=>——=->——-=>| v | v
if() go to 62 --->+ v | v |
if() go to 63 --> | -->+ | v | v
go to 65 <-= v ==>| --->+ v | v |
62 <---+ v | v | v
if() go to 65 —==>==>-—| =>--->+ v | v |
63 <——=<—=<-+ | | v | v
go to 70 ——=>——>——=>——-> v >V | v
65 <—==<-==<-==<--=—¢ | v | v
70 continue <-==<-==-<-==<=-==<-===+ | v |
if() go to 80 —-->—-->-—->-—->———->4 v | v
if() go to 71 --->+ | | v |
71 <---+ v v | v

-—>
-—=>
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72

73

75
80
200
250
300

335
336
338

340
345

350

351

353
355
360

365

366

368
375
390
395
400
405

420

425
450

if() go
if() go
if() go
go to 75

if() go
go to 80

continue
continue
continue
continue
if() go
if() go
do 400

do 395

do 390

if() go
if() go
if() go
if () go
do 340

if() go
if() go

if() go
continue
go to 34
continue
continue
continue
if() go
if() go
do 355

if() go
if() go

if() go
continue
go to 35
continue
continue
continue
if() go
if() go
do 375

if() go
if() go

if() go
continue
go to 37
continue
continue
continue
continue
continue
continue

to
to
to

to

to
to

to
to
to
to

to
to

to

0

to
to

to
to

to

5

5

80

73

75

405
405

390
390
345
345

335
336

338

360
360

350
351

353

390
390

365
366

368

if() go to 420
if() go to 425

go to 45

0

if() go to 450

continue

B e | | v

-==>+ v v | v
-=> | =>4+ | v
<-= v =-=>| --->+ v v | v
<---+ v | | v |
——=>—=>—— | =>--->+ v v | v
<---<--<-+ | | | v |
S>> > > DY v | v
<—-=<-—-<--=<—--=t | I v
D e S ittt v | v
<—==<-==<K===K===K== =K== =K== =¢+ ¥ |
<—==<-==<===<K-==<===K==—L-==<L====+ ¥
e S S e L S e

s
> > > >SS >y
> > > > e e > > > >4

|
B e e LT e = S v
e e i e L | v v
mm > > > m > e > o>y v oo |
—m > > > > > o> | | v v
e e S o R v |
e et e | | | v v
——=>—m=>——=>—->+ v v v oo |
-—=>+ | | | I v v
-=> | >+ v v v v | |
<---+ v v v | | v v
-==>+ | I I v v
<-- | --+ v v | | v v
-=> Vv —=>--->-->| | v v |
<---+ v v | | v v
<---<---<---<---+ | v v |
<—-=<-—=K-==<—==<-=—=% | | v v
e T 4 v oo
mm > > > > > | | | v v
—m=>—me>e—e>-—>+ v v v
——->+ [ I v v
-=> | ->+ v v v v |
<---+ v v v | | v v
-==>+ | | I v v
<-- | --+ v v | | v v
-=> v —=>--->-->| | v v | |
<---+ v v | | v v
<---<-—-<---<---+ | v v | |
<—-=<-—=<-==<—==<-==% | | v v
mm > > > e > e > oDy v oo |
B e et I | v v
—m=>===>-—=>-—=>+ v v v | |
-==>+ | | | [ 4 v
-=> | >+ v v v v | |
<---+ v v v | | v v
-—=>+ | | I v v
<-- | --+ v v | | v v
-=> v —=>--->-->| | v v | |
<---+ v v v | v v
<---<---<---<---+ | | v |
<-—=<-==<-==<—==<-——4<-—+ | v v
<——-<-—=<—m =K =K- ==K m = =<K= =< ——+ |
R S T Sttt 3 v
e S S S S S S
-—>+
<==>+ —=->+
-=> v -=> | -=>+
<> | <=> v -->|
<-- v <-= | =>4+

Figure 7.1. (contd)
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The issue with highly branched code is twofold. First, it makes the code difficult to analyze; second
it makes parallelization difficult. To understand what the code is doing, an analyst would need to follow
the code’s flow but the flow of control in highly branched code is difficult to follow. Each condition
associated with a jump and the variable values before the jump are difficult to predict without explicitly
tracing the code.

An underlying requirement for parallel code is synchronization to ensure that data generated by
another processor are available for an operation with local data. This is a difficult problem with highly
branched code. Whether the synchronization is based on barriers or status polling, two or more processes
must coordinate to access variables. The creation of a synchronization point relies on the ability to
predict whether or not two processors will reach the same point, but highly branched code makes that
impossible. The only way to overcome it is either to not parallelize it or rewrite it.

Another of FLESCOT’s structural problems is the extensive use of global variables. The code
contains 653 global variables in eight header files. To understand how code behaves, it is necessary to
understand how a value may change. When a variable is declared locally, the instructions that can change
it are easily identified because only the instructions in the subroutine can affect it. When a variable is
declared globally, the instructions capable of changing the variable are not necessarily those within the
subroutine. Consequently, it is difficult to predict the value of a variable without following the call path
emanating from the subroutine.

This problem is exacerbated when the global variable is used in a parallel program. Consider a for-
loop that loops on indices 1 to 10. Let two threads to access the loop, one using indices 1—5 and the other
using 6—10. When the loop is executed, the first thread will try to set the global index to 1 and the second
to 6. If the first tread sets the value first, the index will be set to 6 by the second thread so both threads
will have an index value of 6. If the opposite happens, then the value will be set to 1. This is known as a
“race condition” and it is guaranteed to produce bad results.

There are two ways of dealing with this problem. The first is to rewrite the code converting the
global variables to local variables and passing them between subroutines. The second is to force
synchronization on every access. This latter approach is not realistic because increasing synchronization
will decrease the performance of the code to the point of making it slower than the single processor
version. Rewriting the code is the only realistic option.

A separate issue involves the use of the STOP statement, which terminates code execution. Parallel
code requires coordination between all processes in the program including the termination of the
executing code. If one process terminates without ensuring the others terminate, the other threads will
remain active—generally, this is not a problem with threaded applications. When the code is terminated
without coordination, the program may hang. To avoid this, the code must be rewritten to call a global
termination function like MPI_Abort or to handle the error in a manner that allows the computation to
proceed if possible.

Additional problems with the code include the use of EQUIVALENCE statements, data dependencies
within a loop, and stability issues with the code execution. The JAEA discussed the issues in detail
during the January meetings.
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Though FLESCOT generally functions well serially, it has some issues that will make parallelization
difficult. The amount of highly branched code, the use of global variables, STOP statements, and other
design decisions contribute to this difficulty. Regardless of the approach taken by the developers,
sections of the code must be rewritten to ensure improved performance.

7.2 Parallelizing FLESCOT

Once the issues with the code are addressed, there are four general approaches to parallelizing the
code:

e automatic parallelization

shared memory

distributed memory

many serial runs.

Each approach is addressed later in this section, but before discussing them, we will include a brief
discussion of issues related to parallelization.

7.21 General Parallelization Issues

A major concern for high-performance computing (HPC) is code that maintains good performance as
the number of processors involved in the computation increases. This concept takes two forms: strong-
scaling and weak-scaling. Strong-scaled code will increase the speed of a fixed-sized problem as the
number of processors is increased. Weak-scaled code requires the problem to grow as the number of
processors increases. Realistically, the best-case performance of FLESCOT will weakly scale; that is, the
problem size must increase if it is to run effectively in an HPC environment.

Another problem in parallelizing code is deciding what should be parallelized. With limited time and
resources, the development team will need to be selective about which approach to use. To get a rough
estimate of the speedup we can expect, we use Amdahl’s Law. The ideas behind the law are that any
improvement will involve a fraction of the code and that the improvement will give a limited amount of
performance increase. If we let f'be the fraction of the code improved and » be the number of processors.
Amdahl’s Law is given as

1
T = Ty——
wt (11 (7.1)

where T is the execution time of the original code and T’ is the execution time of the improved code.

This is the theoretical upper limit of improvement, and it is optimistic in that it does not take into account
the cost of synchronization overhead.
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7.2.2 Approaches

7.2.21 Automatic Parallelization

As noted earlier, the JAEA has already used automatic parallelization using the Fujitsu FORTRAN
compiler. Their initial parallelization resulted in some performance improvement. However, Dr. Yamada
reported that almost 50% of one function could not be parallelized due to data dependencies within one
for-loop. Using Amdahl’s Law, this means the maximum speedup we can get from the parallelizing
compiler is about two on that function regardless of the number of processors used. These sorts of
dependencies are common in FLESCOT.

To effectively use the automatic parallelizer, portions of the code will have to be rewritten.
Specifically, the data dependencies are probably the biggest problem and should be addressed first. Other
issues in descending order are dramatically reducing number of branches in the code, making a single
return point for each subroutine, and replacing the STOP statements with a more graceful exits.

7.2.2.2 Shared Memory

There are a few approaches to implementing a shared memory version of FLESCOT. First, the
developers can focus on the SPECTR subroutine or they can parallelize the EXCUTE subroutine. The
SPECTR subroutine is the most expensive and it has some built-in parallelism within the species
computations—each sediment and contaminant species can be updated independently, which will give
some improvement with the least amount of effort.

A developer can design a shared memory around the EXCUTE subroutine. Rather than causing the
system to create threads on every call to SPECTR, the developer can design the system to call the thread
fork function when it enters the EXCUTE subroutine and join the threads after the simulation loop
terminates. One thread can execute the code until SPECTR performs the species computations. At this
point, the computations can be divided among the species and run in parallel. There are several
significant caveats to this approach that are discussed at the end of this section.

Yet another approach involves spatially decomposing the problem; again using the EXCUTE
subroutine to control the threads. In this instance, threads should be generated to control a subset of the
spatial region. As in the previous suggestion, the threads will be forked at the start of the simulation loop
and will be joined after the loop has terminated. A single thread will perform all computations except for
blocks involving spatial regions. At these points, each thread will execute the block assigned to it then
pause until all threads reach that point. The caveats in the previous approach as well as this one are
covered in the following paragraphs.

The EXCUTE subroutine contains many branches, which will have a deleterious effect on the spatial
decomposition approach. For example, if any thread is allowed to terminate prematurely while executing
in parallel, it can crash the system and it can produce incorrect results. In this instance, the exit must be
communicated to other threads, which forces them to synchronize within the loop and the synchronization
will slow the execution. Either the developers will spend a considerable amount of carefully placing
synchronization statements or they will have to reduce/remove the branches.
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Both the EXCUTE and SPECTR subroutines make use of global variables. As previously described,
global variables are susceptible to race conditions that will produce incorrect results. The only realistic
option for dealing with them is to remove them. A developer can accomplish this by finding all instances
of global variables within the EXCUTE subroutine and all subroutines that it calls and converting them to
local variables in EXCUTE. These subroutines can pass the variables as needed, perhaps in the form of a
data structure.

7.2.2.3 Distributed Memory

The generally accepted method for parallelizing a nearest-neighbor spatial algorithm (like FLESCOT)
on a distributed system is a ghost cell algorithm (Dullemond 2008). These algorithms decompose the
problem spatially, placing each sub-region on different processors. To ensure nearest-neighbor
interactions, the interfaces between adjacent subspaces are replicated and passed between processors on
each update. This ensures that each subspace has the most up-to-date data before it begins a computation.
The replicated regions are called ghost cells.

As with the shared memory implementation, a developer will need to clean up the many branches.
All inter-processor communications points must be clearly identified to ensure that synchronous
interactions are coordinated. If possible, all interactions between processors should be moved to the end
of the time step so they can be clustered into a few calls. And again, global variables must be converted
to local variables.

7.2.2.4 Recommendations

1. The global variables need to be removed and the branches replaced with a minimum of IF-THEN-
ELSE or simple DO loops. In the near term, only the global variables that are actually assigned
values in EXCUTE or in its call path must be converted to local variables. Also, if branching can be
contained within a block, such that synchronization is not necessary, then that block can be left as is.

2. The use of a parallelizing compiler is the easiest way to improve the execution time of the program.
It will probably not be sufficient for large problems but, regardless of any other methods used, it
should help improve the performances.

3. If the problem size is small enough to run on a single node or a workstation, the shared memory
implementation will be easier to implement and it may provide good speedup.

4. If the problem is too large for a shared memory system, then the ghost cell approach should be used.

5. If'the ghost cell approach is used, the developers might want to also consider using a threaded version
of the SPECTR subroutine.

7.2.2.5 Some Additional Thoughts

The SOLVET, SOLVEL, and SOLVEF subroutines are three versions of a tridiagonal matrix solver.
There are several parallel open source equivalents, PETSc' begin the most prominent among them. It
would require additional coding expertise to use them, but they are proven performers.

! http://www.mcs.anl.gov/petsc/.
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If the code is going to be used for sensitivity analysis or another approach that requires multiple runs
of the same problem with variation of the input parameters, the JAEA might consider parallel jobs for
each variation. This is known as an embarrassingly parallel approach and is more efficient than any other
parallelization method.
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8.0 Conclusions

The FLESCOT code simulates the time-dependent, three-dimensional movements of flow,
turbulence, heat, salinity, sediment (sand, silt, and clay), dissolved contaminant (e.g., radionuclide, toxic
chemicals, heavy metals), and contaminant adsorbed by sediment (sand, silt, and clay) in reservoirs,
estuaries, coastal waters, and the sea. It also calculates distributions of bottom sediment and contaminant
adsorbed by bottom sediments of sand, silt, and clay. Mathematical expressions of the FLESCOT code
are presented here and the code was delivered to JAEA.

The FLESCOT code is modified to enable the turbulent kinetic energy and its dissipation modeling,
and the use of current computer systems that are different from those on which the code was originally
developed. Thus, code verification is performed. In this study, we conducted code testing using cases
with known analytical solutions and relatively simple cases with available experimental data. Three
benchmarks were tested to verify the viscosity effects and turbulence model. They were 1) laminar flow
with heat transfer for testing the FLESCOT code’s ability to deal with a flow having temperature-
dependent viscosity; 2) turbulent flow in a two-dimensional channel; and 3) the turbulent free jet. Based
on the testing results, the turbulent model in FLESCOT is now functional and stable. In addition, the
viscosity of fluid can now correctly affect the flow behavior after fixing problems in FLESCOT, which
were caused by the memory alignment problems on certain computer systems or FORTRAN compliers.
FLESCOT can provide acceptable simulation results that compare well with the analytical or
experimental results. FLESCOT was also tested in a simple practical case to confirm its feasibility for
predicting a flow of coastal water. The test case featured a 200 m wide river flowing into a 2000 m x
2000 m coastal water area with the depth gradually increasing from 1.5 m to 10 m. FLESCOT was
shown to predict the flow, temperature, and salinity distributions for the coastal water test cases. More
complex rigorous test cases, €.g., reservoir and coastal water testing, require extensive field data
collection. The FLESCOT code may be tested for its validation with Fukushima data being collected by
the JAEA when required data for validation become available.

The modified FLESCOT code with the turbulence modeling was applied to the Ogi Dam Reservoir. The
Ogi Dam and its reservoir are located near the border between the villages of Kawauchi and Tomioka,
approximately 15 km from the Fukushima Dai-ichi Nuclear Power Plant. The reservoir has a storage
capacity of 716,000m’® and the water surface area of 70,000 m>. We focused on a detailed analysis of the
flow in the Ogi Dam Reservoir, which plays a fundamental role in cesium transport and accumulation in
the reservoir. We set boundary conditions: constant water influxes 1.0 m/s from the Oginosawa River,
and 0.1 m/s from the two smaller streams. There is a strong curvature from the inlet to the main part of
the dam reservoir where the width and depth of the reservoir become suddenly greater than those at the
origin of the reservoir inlet. The Ogi Dam Reservoir simulation using the modified FLESCOT code with
turbulence modeling shows that velocities are very low in most parts of the reservoir; they decrease
drastically with distance from the reservoir inlet with the Oginosawa River toward the dam. The main
flow in the reservoir predicted by the code is toward the dam, but there is also a smaller flow in the
opposite direction toward the inlet. These flow variations within the reservoir, including the bottom flow,
would play a critical role in sediment and cesium transport.

A good program development team, familiar with parallel programming should be able to create a
parallel version of the code. The developers have two general options. First, they can rewrite sections of
the code to avoid race conditions and complex, unconstrained branching. Second, they can carefully
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work around the areas that are too encumbered by unconstrained jumping to avoid synchronization issues.
In either case, the development team should use a spatial decomposition as the basis for its efforts and, if
time permits, the team should parallelize the chemical species computations in the SPECTR subroutine.
In either case, parallelizing the code will require some rewriting.
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- Non-Newtonian rheology

- multiple flow regions (separated by solid boundary)

- use of specified or precomputed velocity fields

- internal heat generation specified by cell or region (constant or time-dependent)

- specify material properties by user input or-select from built-in values for 18 materials

- temperature-dependent material properties (thermal conductivity, density, specific heat and viscos-
ity)

- inflow/outflow’ boundaries specified or computed

- pressure boundary conditions*

- translating boundaries

- time-dependent flow and thermal boundary conditions

- singlecell width and zero width wall logic for internal boundaries

- user-specified drag coefficient correlations for each direction of each cell

- option of user-specified film coefficients for each direction of each cell or internally computed
from flow conditions

Numerical Solution Algorithm

- finite-volume formulation

- orthogonal curvilinear coordinates*

- semi-implicit solution of the momentum equations

- fully implicit solution of scalar equations (constituent, energy, turbulence and electric potential)

Program Control Options

- fluid flow only

- solids heat transfer only

- electric fields only

- fully coupled fiuid flow, heat transfer, mass transfer, and electric fields

- inviscid hydrodynamics '

- steady-state thermal solution at each hydrodynamic time step

- transient heat transfer for fixed velocity field

- transient mass transport for fixed velocity field

- constant or temperature dependent viscosity/thermal properties

- steady-state thermal solution

- automatic time stepping (Courant, diffusion or internal wave stability control)

- restart simulation from intermediate solutions

1/0 Control
- extensive debug output following input or at intermediate stages of a solution
- cell type/material type maps for checking problem setup

- intermediate output including heat transfer connectors, cell continuity, density, thermal conductiv-
ity, molecular viscosity, eddy viscosity, turbulence quantities, heat flux map, numerical stabxhty
and heat generation map

- output arrays of primary variables in Xi-X,, X;-X3, or X,-X; planes
- ability to specify times for array output and restart/plot file dumps

- 1/O in either the U.S. Customary System of engineering units or the International System (SI) of
units
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-execution time monitoring.

Limitations of the current version are as follows:
* hydrodynamic solution is explicit in time—no direct solution for steady state
. éomputational grids must be orthogonal.

TEMPEST Applications

The versatility of the TEMPEST code accommodates extensive engineering applications and
concept analyses. To date, TEMPEST applications have included the following:

* waste storage tank mixing phenomena
- sludge mobilization
- forced mixing of particulates
- buoyancy-induced turnover/natural convection
* waste processing and storage
- Joule-heated glass melters
- in-situ vitrification/heating
- spent fuel and nuclear waste storage systems
* ventilation systems
- room air and contaminant distribution
- indoor air quality
- exhaust plenum particulate flow
- cooling of electronic components
* energy conversion and storage
- commercial hot water heater
- solar cavity receiver
- solar-heated salt pond
nuclear.reactors
- light- and heavy-water-cooled core and component design
- liquid-metal-cooled core and component design
- hydrogen transport in containment rooms
- safety analysis.

Status of Development

- Improvement and upgrading of TEMPEST is a continuing effort. Capabilities for multidimen-
sional radiation, non-orthogonal grids, aerosol transport, interactive problem setup, and results of
postprocessing are in various stages of completion.
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Summary

TEMPEST, version T2 has been used to predict solutions for simple test problems for which
analytical solutions or experimental data are available. The scope of testing included conduction’
heat transfer in solids, laminar and turbulent fluid fiows under forced and bouyancy-driven condi-
tions, and electric fields. Agreement is demonstrated for the cases considered, but more problems
need to be tested to cover the range of TEMPEST applications.
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1.0 Introduction

Validation and verification testing is an essential part of any software development program.
This is especially true for computational fluid dynamics (CFD) codes because of the wide variety
of mathematical and physical models they are comprised of. Testing is needed during the develop-
ment process to assure that the models ‘are correctly coded into the software; this will be referred
to as verification. When the software is completed, testing is needed to show that the collection of
software models accurately predict the physics of interest; this will be referred to as validation.
Testing is a continuous process that must be followed even when making changes to mature soft-

‘ware.

CFD test problems generally fall into two categories: simple problems having analytical solu-
tions and more complicated problems for which experimental data are available. Analytical solu-
tions exist for a wide variety of useful problems, including conduction heat transfer and laminar
fluid flow in simple geometries. Accepted experimental data sets exist in the literature for turbu-
lent flows and for laminar flows in complex geometries. TEMPEST is routinely tested against
such problems and a comprehensive set of results has been publxshed for an earlier version of the
code (Trent and Eyler 1983).

This report documents the performance of TEMPEST, version T2 on a number of test prob-
lems. Categories include _

« conduction heat transfer in solids

 pressure driven laminar flows

e pressure driven turbulent flows

buoyancy driven laminar and turbulent flows
thermally developing flows
* electric fields.

The test problems demonstrate only part of the wide variety of TEMPEST features. Further test-
ing is planned to include relevant problems for the full scope of current code capabilities and
usage. Also, since the TEMPEST code is in development, new features and improvements will be
added; therefore, revisions of this manual will be published roinincly.

The results for test problems are organized by category in Chapters 2 through 7. TEMPEST
input files are included for each problem so that results can be exactly duplicated. These input
files will also serve as useful examples for new TEMPEST users. All of the test problems in this
manual demonstrate acceptable agreement between TEMPEST predictions and analytic solutions
or experimental data. For analytic solutions, plotted results which are in visual agreement are con-
sidered acceptable. This is reasonable since CFD simulations can generally be improved by
increasing resolution. Agreement with experimental data is considered acceptable when essential
trends are captured. This is reasonable for two reasons. Firstly, error bars are often unavailable in
published experimental data, and secondly, It is difficult or impossible to determine if exact exper-
imental conditions were repeated.

1-1 Rev. 0 - December 1993
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2.0 Conduction Heat Transfer

The TEMPEST computer code includes a user input option for computing conduction heat
transfer in solids. When this option is used, the momentum equations and the continuity equation
are not solved. The energy equation is solved in either a transient or steady-state mode, depending

upon the user input option selected.

Various conduction heat transfer problems have been simulated to determine the correctness of
the conduction heat transfer solution mode of the TEMPEST: code. These include simulations in
one, two, and three dimensions using the transient and steady-state implicit algorithms. Results
are compared with analytical solutions.

2.1 One-Dimensional Planar Heat Conduction with
Constant Heat Generation

Test Problem: HTCS-1
2.1.1 Description and Purpose

This test problem examines TEMPESTs ability to predict the temperature distribution for heat
generation in a planar solid. The geometry for the problem is shown in Figure 2.1. The bound-
aries are thermally insulated on the top and bottom to produce one-dimensional (1-D) results.
Constant temperatures were maintained on the walls.

Figure 2.1. Geometry for Planar Heat Conduction with Heat Gen-
eration Test Problem.

2-1 Rev. 0 - December 1993
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2.1.2 Analytic Solution

For steady state heat conduction in a solid with heat generation and constant thermal conduc-
tivity, the energy equation reduces to the Poisson equation

V2T+% =0

which for a 1-D planar geometry reduces to

2

dx

R,
i

.

+94 =0

(8]

For this problem the boundary conditions are
I _ Oarz =172
dx

T=T,ax=0,L .
()

and the solution is
T=T,+ 2—'?k (Lx- %)

2.1.3 TEMPEST Solution

The input file for this test problem is shown in Figure 2.2. The test problem was modeled in
two din_lan'sions (2-D) with L = 0.6m, H = 0.8m, T, = 100°C, k= 1W/m°C, and

g = 1000W/m>. Two different grid resolutions were used: 8x10 and 20x10. The solution for
both grids are compared with the analytical solution in Figure 2.3.

2.14 Comparison and Discussion

Temperatures agree to within 2°C for the 8x10 grid and to within 0.05°C for the 20x10 grid.

()
2-2 Rev. 0 - December 1993
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record column 1 5 1 1 2 2 3 3 4 4 L] 5 6 6 7 7 B
no. '] 5 "] 5 0 5 o L] o 5 0 5 0 5 0
1 1-D planar heat conduction in a solid with constant heat generation
2 gaid: HETCS~-1 =
3 size, 20 10
4 time, .1 250
5 prat, 25
13 eimp, .6 S.
2
8 cont , heat,mont,dtim, sisy,scrn,pace,
] _aout,temp, -
10 dbug,data,size, ntyp,mtyp
11 i
12 60 1 20 2 S 1 BC
13 70 1 1 2 19 2 9 1 EHeatgen
14 3 5 1 6 5 1 9 5 1 1 5 1 5 Monitr
15
16 .0333 i § 1. 50 180 80 1 CellSpac
17 1. 1000 1 [ lcs 6 Prop
18 100. 1 20 2 9 9 T _Bndry
19 0.0 1000. 1 16 Qtable
20 1+9 1000. 1 16 Qtable
21 0
Figure 2.2. Input File For Test Problem HTCS-1
150 prr—— ———— T ———————— - T
I A Tempest 8x10 | |
£ O Tempest 20x10] |
L | Analytic J
140 - -
i 4
—_ 4
< 130 4
4 F |
g | 1 .
§‘ -
E 120 -
L8] L .
P -
110 - -
Version T29.¢c
100 TR N PR x " e T et e S W oAl T [ ] it e gt H il i
0.0 0.1 0.2 0.3 0.4 05 0.6
X
Figure 2.3. Comparison of Predicted and Analytical Temperature
Profiles for Planar Heat Conduction in a Solid with Heat Genera-
tion.
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2.2 One-Dimensional Cylindrical Heat Conduction with Constant Heat Gen-
eration

Test Problem: HTCS-2
2.2.1 Description and Purpose

This test problem examines TEMPEST’s ability to predict the temperature distribution for heat
- generation in a cylindrical solid. The geometry for the problem is shown in Figure 2.4. The

boundaries are thermally insulated on the top and bottom to produce 1-D results. A constant tem-
perature was maintained at the outer radius.

..--..u»m""“l-—“--uunu....
aner®” b
v
o

Figure 2.4. Geometry for the Planar Heat Conduction with Heat
?cnc;aﬁon Test Problem (shaded regions represent adiabatic sur-
aces

2.2.2 Analytic Solution

For steady-state heat conduction in a solid with heat generation and constant thermal conduc-
tivity, the energy equation reduces to the Poisson equation

< g' =
1% ;‘+ % 0
which for 1-D cylindrical geometry reduces to

ld 4T, . 4 _
rdr(r )+k_0
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For this problem the boundary conditions are

and the solution is

=T+ (R%-
T=T,+ (R %)

2.2.3 TEMPEST Solution

The input file for this test problem is shown in Figure 2.5. The test problem was modeled in
2-Dwith R = 0.6m, T, = 100°C, k = 1W/m°C, and § = 1kW/m>. Two different grid reso-

lutions were used: 8x10 and 20x10. The solution for both grids are compared with the analytical
solution in Figure 2.6.

2.2.4 Comparison and Discussion

Temperatures agree to within 1°C for the 8x10 grid and to within 0.1°C for the 20x10 grid.

3 3 4 4 5 E] 6 6 7 7 8
no. 0 5 0 5 0 5 0 5 0 5 o 5 o 5 0

1 1-D cylindrical heat conduction in a solid with constant heat generation
2 qaid: HICS-2 :

3 size, 20 10

4 time, -1 500

S5 prnt, 25

6 simp, .6 5.

7

L]

9

cont,heat, mont . dtim,sisy, scrn,pace, cyln,

aout, temp,
10 dbug, data, size, ntyp,mtyp
11
12, 60 20 20 2 l 1 Tamp BC
13 70 1 1 2 19 2 9 1l Heatgen
14 3 5 1 6 5 1 i2 5 1 18 5 1 5 Monitr
15
16 .0333 . 1. S0 180 S0 1 Cellspac
17 1. 1000 1 0 lcs 6 Prop
18 100. 2 20 2 G S T Bndry
19 D.0 1000. 1 16 OQtable
20 1+9 . 1000, 1 16 Qtable
21 1]
Figure 2.5. Input File For Test Problem HTCS-2
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Figure 2.6. Comparison of Predicted and Analytical Temperature -
Profiles for 1-D Cylindrical Heat conduction with Constant Heat

Generation.
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2.3 Transient Heat Conduction in Cartesian Geometry
Test Problems: HTCT;I, HTCT-2, HTCT-3

23.1 Deécription and Purpose

In these test problems, transient heat conduction is considered in a Cartesian geometry. Exact
solutions are available for one-, two-, and three-dimensional (3-D) geometries. The principal
physical phenomenon in these problems is transient heat conduction where no fluid flow is
present. The geometries for the problems are shown in Figure 2.7. Each geometry represents a
homogenous material with initial uniform temperature T and constant thermal diffusivity c. For

the 1-D version, a semi-infinite slab has an adiabatic boundary at x = 0. At time ¢ = 0, a con-
stant temperature 7 is applied at x = L. Since T,/T; >1, the slab will cool with time, ulti-
mately reaching a uniform temperature 7; . For the 2-D problem, a square slab has two adiabatic
boundaries at x = 0 and y = 0. The temperature T is applied at the opposite boundaries. In the
3-D version, adiabatic surfaces are located at x = 0, y = 0, and z = 0. The temperature Ty is
applied at the opposite surfaces.

This problem serves to demonstrate the validity of the conduction heat transfer mode of
TEMPEST. The problems test TEMPEST’s ability to achieve time accurate temperature distribu-
tions in rectangular Cartesian geometries.

1-D 2-D 3-D

Figure 2.7. Rectangular Geometries For Transient Heat Conduc-
tion Test Problems HTCT-1, HTCT-2, and HTCT-3 (shaded regions
represent adiabatic surfaces)
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2.3.2 Analytic Solution

The analytical solution for the temperature fields in the three different geometries are given by
‘Carslaw and Jaeger (1959). For the 1-D problem, the solution is given by

T(xt)-T, - o (2n+1=-x/L) (2n+1+x/L)
i = e—_— = -1) 7| erfi erfi
R " T

where F, = aiz/L?. For the 2-D problem, the solution is given by
B,x»n =0,(x08,(1)

where By is identical to © giveri above, only with y replacing x. Similarly, for the 3-D geometry,
the solution is given by

0., xyz1) =06,(x)0 (300,(z)

2.33 TEMPEST Solution

The input files for these test problems are shown in Figure 2.8 to Figure 2.10. The test cases
utilized 10 computational cells with constant spacing in each coordinate direction. Conditions

corresponded to L = 10m, o = 1m?/s, T, = 100°C, and T; = 0°C. Output was obtained in
10-second increments up to seventy.

2.3.4 Comparison and Discussion

Figure 2.11 to Figure 2.13 show comparisons between the TEMPEST data and the analytical
solutions. Normalized temperatures are plotted along the line x = y for the 2-D case and along
the line x = y = z for the 3-D case. The agreement with the analytical solution is acceptable for
all three geometries. '
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record column 1 5 A 1 2 2 3 3 4 4 5 5 [ 6 7 7 8
no. 0 5 0" 5 0 5 0 5 0 5 0 5 ] 5 0
1 Transient heat conduction in '1-D cartesian geometry
2 qaid: BICT-1
3 size, 12 3 1
4 tima, 0.2 70.
5 simp,
& prnt, 10. 10
2
8 cont heat, dtim,pace,sisy,
9 cont, qaed
10 aout, temp
11 dbug,data,size,ntyp, init, mtyp
12 plot, temp
13
14 70 1 2 11 2 2 1 1 1 HtCond
15 . €0 1 12 12 2 2 1 1 1  Wall
16
17 1. : 1. 0. 90. 90. 0. 1 cooxd
18 0. 12 12 2 2 1 1 9si T_INIT
15 100. 2 11 2 2 1 1 Sai T_INIT .
20 1. 1. 1. 0 lcs 6si MtProps
21 0 endata

Figure 2.8. Input File for Test Problem HTCT-1

record column 1 H 1 1 2 2 3 3 L] 4 5 5 6 6 7 7 8

ne. 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

1 Transient heat ceonduction in 2-D cartesian gecmetry

2 gaid: BTCT-2

3 . ®ize, 12 12 1

4 time, 0.2 70.

5 simp,

6 prnt, 10. 10

2

] cont,heat,dtim, pace, sisy,

9 cont, gaed
10 aocut, temp
13 dbug,data,size,ntyp, init, mtyp
12 plet, tamp
13
14 70 1 2 11 2 11 1 1 1l BtCond
15 60 1 1 12 12 12 1 : & 1  Wall
16 60 1 12 12 1 1z 1 1 1 Wall
17
18 > N 1. 1. D. 90. 90. 0. 1 coord
19 0. 1 iz 12 12 1 1 9si T_INIT
20 0. 12 12 1 12 1 1 9si T_INIT

Figure 2.9. Input File for Test Problem HTCT-2
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recozrd
no.

column 1 5 1 1 2 2 3 3 4 4 5 5 [ 6 7 7 q ( \
0 5 0 5 ] 5 0 5 0 5 [ 0

Transient heat conduction in 3-D cartesian geocmstry
gaid: HTCT-3
size, 12 12 12

1
2
3
1 time, 0.2 70.
5 simp,
6 prot, 10. 10
7
B cont, heat,dtim,pace,sisy,
9 cont, gaed
10 acut, tamp
11 dbug,data,size, ntyp, init,mtyp
1§ plot,temp
1
4 0 2 2 1 2 1 2 1 1  EBtcond
1s 60 1 1 12 12 12 1 12 1 wWall
16 60 1 i2 12 1 12 1 -12 1 Wall
17 6 1 1 12 1 12 12 12 1 wall
18
1% 1. 1 1 0. 90 90. 0. 1 coord
20 0. . 1 12 12 12 1 12  9si T_INIT
21 0. 12 12 1 12 1 12 Ssi T_INIT
22 0. 1 12 1 12 12 12  9si T INIT
23 100. 1 11 1 11 1 11- 9si TTINIT
24 R T 0 lcs 681 MEPrey
25 0 endata
Figure 2.10. Input File for Test Problem HTCT-3
1.00 v i i 0
F 3 = Version T2.8.d |
- = S ?
S F.=.1 E
[ -y O TEMPEST ]
ovsl G o = — Analytic Solution _
S_F,=.2 o ;
3 -
(= ~ =
) g o o F=3 » Q ]
x -
0.50 |- = S -
| (2 - F°=,4 -
- " -
| O o-Fe=5 S > '
T =) =5 - = o = S & p
0.25 o ~ i — - = Q > —
[ Foe=7 ” — S = > S > i
} B S ]
B = = 5 1
! \:§5 !
o‘m L " " 1 " . " { " " M ] e
0.00 0.25 0.80 0.76 1.00
x/L
Figure 2.11. Comparison of TEMPEST Data with Analytical Solu-
tion for Transient Heat Conduction in a 1-D Cartesian Geometry
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I : ! ! Version T2.8.

5 O TEMPEST 1
0.75 |- — Analytic Solution | _|
0.50 "
o2s |-

0.00 - :
0.00 0.25 0.50 0.7
xIL

Figure 2.12: Comparison of TEMPEST Data with Analytical Solu-

tion for Transient Heat Conduction in a 2-D Cartesian Geometry

(data is along line x = y)

1.00 ~ - — — : -

I ‘ Version T2.8.d |

i O TEMPEST
0.75 — Analytic Solution

0.50

0.25

Figure 2.13. Comparison of TEMPEST Data with Analytical Solu-
tion for Transient Heat Conduction in a 3-D Cartesian Geometry
(datais alongline x = y = 2)

2-11 Rw.ﬂ-Decu‘nber 1993
A21



2.4 Transient Heat Conduction in a Cylindrical Geometry

Test Problem: HTCT-4
2.4.1 Description and Purpose

In this test problem, transient heat conduction is considered in a 1-D cylindrical geometry. The
principal physical phenomenon in this problem is transient heat conduction where no fluid flow is
present. The geometry for the problem is shown in Figure 2.14. A cylindrical segment of a
homogenous material has initial uniform temperature T and constant thermal diffusivity c. The
ends of the cylinder are adiabatic boundaries. At time ¢ = 0, a constant temperature T, is applied
atr = R. Since Tp/Tg > 1, the cylinder will cool with time, ultimately reaching 2 uniform tem-

perature Tg.

This problem serves to demonstrate the validity of the conduction heat transfer mode of TEM-
PEST. The problem tests the TEMPEST program’s ability to achieve time accurate temperature
distributions in cylindrical geometries.

(N

Figure 2.14. Cylindrical Geometry for Transient Heat Conduction
Test Problem HTCT=4 (shaded regions represent adiabatic surfaces)

()
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2.4.2 Analytic Solution

The analytical solution for the temperature field in the cylinder is given by Carslaw and Jaeger
(1959) as

T(r,t) =T —Foar/ (ra /R)
B (tn) = —(;;l—" e ZZ : ;—MW

where F, = at/R?* and Jp and J; are Bessel functions of the zero and first order, respectively.
The terms o, are obtained from J, (o)) = 0.

243 TEMPEST Solution

The input file for this test problem is shown in Figure 2.15. The test case used 10 computa-
tional cells with constant spacing in the R-direction. Conditions cormresponded to R = 10m,

= 1m?%/s, Ty, = 100°C, and T, = 0°C. Output was obtained in 10-second increments up
to 70.

2.44 Comparison and Discussion

Figure 2.16 shows a comparison between the TEMPEST data and the analytical solution. The
agreement with the analytical solution is acceptable.

record column 1 5 1 1 2 2 3 3 4 4 5 ] € [ 7 7 8|
no. 0 5 0 5 0 5 0 5 0 5 0 5 0 S
1 Transient heat conduction in cylindrical geometry
2 qaid: BTCT-2
3 eize, 12 12 1
4 tima,.0001 70.
5 simp,
6 prnt, 10. 1 1 1 1
=
] cont, cyln, heat,dtim, pace, sisy,
9 cont, gasd, scrn
10 aout, temp
11 dbug, data,size,ntyp, init,mtyp
12 Plot, temp
i3
14 70 1 2 11 2 11 i 1 ¢ | HtCond
Ié 60 1 12 12 2 11 1 1 1 Wall
1
17 > 1% 1. 1, 0. 90. 90. 0. 1 coord
18 0. 12 12 2 11 1 1 9si T_INIT
19 100. 2 11l 2 11 1 1 9si T_INIT
20 1. 1. 1. 0 lcs 6mi MtProps,
21 0 endata

- Figure 2.15. Input File for Test Problem HTCT-4
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Figure 2.16. Comparison of TEMPEST Data with Analytical Solu-
tion for Transient Heat Conduction in a 1-D Cylindrical Geometry
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3.0 Isothermél Laminar Flows

This section presents results of isothermal laminar flow simulations performed with the
TEMPEST computer code. Results are compared to analytical solutions and experimental data.
Laminar flow of a fluid is basic to the study of fluid mechanics and is one of the few areas of fluid
mechanics where simplified assumptions can be made that allow analytical solutions to be
derived. While true laminar flow does not occur regularly in nature, it can be produced and stud-
ied in the laboratory. For this reason, numerous data are available to which computer code predic-
tions can be compared.

The Reynolds equations for turbulent flow can be written in the same form as the Navier-
Stokes equations for laminar flow when a gradient-type turbulent viscosity assumption is made.
Solving these equations for constant turbulent viscosity supports turbulence simulations by veri-
fying that the numerics and solution procedure are correct before incorporation of a time- and
space-dependent turbulence model.

Laminar isothermal flow simulations were performed in 1-, 2-, and 3-D geometries. Included
in the simulations were plane channels, pipes, and ducts. Comparisons of TEMPEST predictions
with entry length and fully developed velocity profiles were made to ensure the correctness of the
finite-difference logic, boundary condition logic, and solution algorithm. '

3.1 Poisenille Flow
. Test problems: LSDC-1, LSDC-2
3.1.1 Description and Purpose

The Poiseuille flow problem is an “exact” solution to the Navier-Stokes equations and there-
fore serves as an ideal test case for TEMPEST. The principal physical phenomenon in this flow is
convective viscous diffusion that is fully developed. Analytic solutions for both planar and cylin-
drical geometries can be found in any undergraduate fluid mechanics textbook. The geometries
for planar and cylindrical Poiseuille flow are shown in Figure 3.1. For the planar case, a viscous
fluid with an initial uniform velocity u, flows between two semi-infinite parallel plates located at

¥y = Ib. The cylindrical version of the problem is similar except that the fluid fiows in a circular
tube of radius » = b. While the velocity profiles change rapidly in the entrance regions, eventu-
ally, fully developed profiles will be reached downstream.

This problem serves to demonstrate two importﬁnt capabilities of TEMPEST: 1) proper con-
vergence to a steady-state viscous solution, and 2) ability to handle cylindrical geometries.
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L,

W

Figure 3.1. Geometries for Poiseuille Flow Test" Problem

3.1.2 Analytic Solution (Planar)

The solution to the pfanar Poiseuille flow problem is given by Panton (1984) and is summa-
rized here. If there is a constant pressure gradient in the channel, then the equations of motion

reduce to the equation

The boundary conditions are

a’zu
—2 = const
dy
(M
]
ul, oo =Up
ll|y_ﬂ,=0

The solution is found to be a parabolic profile given by

3.13 Analytic Solution (Cylindrical)

-30-¢)]

The solution for the cylindrical Poiseuille flow problem is given by Kays and Crawford (1980).
The equations of motion in cylindrical coordinates for constant pressure gradient reduce to the

equation

14 (rdu

T ar T
()
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with boundary conditions

ulx=0= 7
l‘-im-=b =0

and solution

u . r 2}
- 2[1 -5
3.1.4 TEMPEST Solution

The input files for these test problems are shown in Figure 3.2 and Figure 3.3. A 22 x 22 uni-
formly spaced cell structure corresponding to b = 1m and L = 100m physical geometry was used
for both planar and cylindrical geometries. The inlet velocity was chosen as uy = 1m/s. With
kinematic viscosity v = 0.01, both fiows had Reynolds numbers Re, = 100. Steady-state solu-

tions were established at a simulation time of approximately 30s for planar flow and 20s for the

cylindrical case. The flow field for planar flow was fully developed (velocity constant to 5 signifi-

cant figures) beyond x = 60m, while the cylindrical flow was fully developed beyond
= 45m.

3.1.5 Comparison and Discussion

Figure 3.4 shows a comparison of the TEMPEST data with the analytic solutions. The agree-
ment is acceptable for both cylindrical and planar geometries.
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record column 1 5 1l 1 2 2 3 3 ] [] 5 5 [ 6 7 7 ]
no. 0 5 ] 5 0 5 0 5 0 5 1] 5 o 5 [
1 Plane Poissuille flow tast problem
2 gaid: Lspc-1 ,
3 ' mize, 22 22 1
4 tima, l00.
5 prnt, 1 1 1 10
6 post,
7 rest, 1 1
8
9 cont,uncp,mont, scrn, dtim, pace, sisy,
10 cont, psav,msav,gaed
11 aout,vell,vel2,
12 rdata,size,prop, ntyp.
13 plet,vell,vel2
14
1s 0 1 2 21 2 21 1 1 1 nodatype
16 20 1 1 1 1 22 1 1 1 nodetype
17 30 1 2 21 1 1 1 1 1 nodetype
18 40 1 2 21 2 1 1 1 nedetype
19 9 21 1 5 montcell
20
21 .05 5. T 0. $0. 90. 0. 1 cooxrd
22 1. 1. 1. .o 0 lel 6 matl
23 5 2 21 1 21 1 1 7 wvelocity
24 0 endata
Figure 3.2. Input File for Test Problem LSDC-1
RECORD COLUMN 1 5 1 Xz 2 2 3 3 4 4 5 5 6 6 7 7 8
no., 0 5 0 5 0 5 0 5 0 5 0 5 0 5 ]
1 Cylindrical Poissuille flow test prcblem
2 gaid: LsDC-2
3 siza, 22 22 1
4 time, 100.
5 prnt, 1 1 1 10
6 post,
7 rest, 1 1
-]
9 cont, cyln,uncp,mont,scrn, dtim, pace, sisy,
10 cont,psav,msav, qasd
11 aout,vell,vel2,
12 data,size, prop,ntyp,
13 plet,vell,vel2 i« s
14 .
15 [ 1 2 21 2 21 1 1 1 nedetype
16 20 1 1 1 1 22 1 1 1 nodstyps
17 30 1 2 21 1 1 1 1 1 nodetype
18 40 1 2 21 22 22 1 1 1 nedet
18 9 21 1 5 montcell
20
21 .05 5. 1. 0. $0. 90. 0. 1 coerd
22 1. 1. 1. .02 0 lel € matl
23 1. 2 21 1 21 1 1 7 wvelocity
24 0 endata

Figure 3.3. Input File for Test Problem LSDC-2
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Figure 3.4. Comparison between Analytic Solutions and TEMPEST
Predictions for Planar and Cylindrical Poiseuille Flow
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3.2 Annular Flow
Test Problem LSDC-4

3.2.1 Description and Purpose

A solution to the Navier-Stokes equations exists for flow through an annulus. The problem is
similar to cylindrical Poiseuille flow, except that the cylinder is replaced with an annulus. Like
Poiseuille fiow, the principal physical phenomenon in this flow is convective viscous diffusion
that is fully developed. The geometry for the annular flow problem is shown Figure 3.5. Fluid
with initial uniform velocity u#, flows in an annulus with outer radius 7 = ¢ and inner radius

r = b. The no-slip boundary condition-is applied at both surfaces so the velocuy eventually
reaches a fully developed profile.

This problem serves to demonstrate two important capabilities of TEMPEST: 1) proper con-
vergence to a steady state viscous solution, and 2) abxhty to handlc more complex cylindrical
geometries.

()

Figure 3.5: Geometry for Annular Flow Test Problem.

3.2.2 Analytic Solution

The solution to the annular flow problem is given by White (1974) and is summarized here. If
there is a constant pressure gradient in the channel, then the equations of motion reduce to the

equation

14 du ”
rarV ar Gomes
The boundary conditions are
()
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u’r=a = u|r=b =0

The solution is given by
u _ 1 2 .7 2 32 ln(a/r):l
%——4con3t|ia r'+ (a b)__ln(b/r)
where

2
__0| 4_,4 (ﬁ'z—bz)]
const = —Elia -b ~ (a/b)

and Q is the volume flow rate into the annulus given by
Q = n(a*-b* u,

3.23 TEMPEST Solution

The input file for this test problem is shown in Figure 3.6. A 42 x 22 uniformly spaced cell
~ structure corresponding to a physical geometry with @ = 2m, b = 1m, and L = 100m was used.
The inlet velocity was chosen as u, = 1m/s. With kinematic viscosity v = 0.01, the flow had

Reynolds numbers Re;, = 100. Steady state solutions were established at a simulation time of
approximately 13s and the flow field was fully developed beyond x = 25m.

3.24 Comparison and Discussion

Figure 3.7 shows a comparison of the TEMPEST data with the analytic solution. The agree-
ment is acceptable.
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record ecolumn 1 5 1 1 2 2 3 3 4 4 5 5 € [3 7 7 [

ne. 0 5 0 5 0 5 o 5 0 5 0 5 0 5 0
1 Annular flow test problem

2 gaid: LSDG-4

3 size, 42 22 1

4 time, 100.

5 prInt, 1 1 1 1

6 post,

7 reat, 1 1

B

9 ecent, cyln,uncp,ment, scxrn, dtim, pace,aisy,

10 cont,psav,msav,s ve,p ed,r ad,qaed

11 aout,vell,vel2,

12 dbug, data,size,prop, ntyp,

13 plot,vell,vel2

b}

15 0 1 22 4 2 21 1 1 1 nedetype
16 30 1 2 41 1 1 1 1 1 nedetype
17 40 1 2 41 22 22 1 1 1 nodetype
18 50 1 1 21 1 22 1 - I 1 nodetype
1s 26 21 1 5 montcell
20

21 .05 5. 3 0. S0. 90. 0. 1 ecoord
22 1. 1. 1. .01 0 icl 6 matl

23 1. 22 41 1 21 1 1 7 wvelocity]
24 0 endata

Figure 3.6. Input File for Test Problem LSDC-4

1.50 P — ()

O Tgrnpast data
—— Analytic Solution

1.25

1.00

wu
% 075

| PR VO YT TR VEOR T, (SO WP [ T T

0.25

A0 LAt S RO B R NS S B N S ey S e a2
PO T [ ST T

0.00 . " L " 1 " . ] " M 1 &
1.00 : 125 1.50 1.75 2.00
rib
Figure 3.7: Comparison between Analytic Solution and TEMPEST
Results for Annular Flow Test Problem ( \
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3.3 Square Duct Flow
Test Problem: LSDC-6
3.3.1 Description and Purpose

For this test problem, laminar flow is considered in a square duct or channel. An exact solution
to the Navier-Stoke equations can be obtained for the fully developed velocity profile far from the
entrance region. In the entrance region, experimental data are available for comparison of TEM-
PEST computations. The principal physical phenomenon in this flow is convective viscous diffu-
sion. The geometry for the problem is shown in Figure 3.8. A viscous fiuid with initial uniform
- velocity 1, flows into a square duct of width D = 2a. The origin of the coordinate system is

located in the center of the duct as shown.

This problem serves to demonstrate two important capabilities of TEMPEST: 1) ability to
accurately compute developing intemal boundary layers, and 2) proper convergence to a steady-
state viscous solution in a 3-D geometry.

S —

/

A
v

2a

Figure 3.8. Geometry for Square Duct Flow Test Problem (shaded
area represents 1/4 segment of symmetry used for TEMPEST simu-
lation) _

3.3.2 Analytic Solution (fully developed velocity)

The solution to the square duct flow problem for fully developed flow is given by White (1974)
and is summarized here. If there is a constant pressure gradient in the channel, then the equations
of motion reduce to the equation

39 Rev. 0 - December 1993
A33 ’



2
ox* dy
The boundary conditions are
Rix=ta=0
u|y=ia=(.]

The solution is found in the form of infinite series given by

(-1) ""”’2[ _ cosh (nnx/2a)

164
u(xy) = const — Y 3 cosh (nm/2)

] c08 (7 /22)
ﬂa

n=1,335,... n

where

_6of,_ 192 < 1. /2}
const |: Z nst (nn/2)

4
a I5u=1,3.5,...

and O = 4a’uy is the total volume flow rate of fiuid into the duct.
3.33 TEMPEST Solution

The input file for this test problem is shown in Figure 3.9. The test case used a 1/4 segment of
symmetry model with physical dimensions 2 = 0.5m and L = 15m. Constant cell spacing with
30 x 10 x 10 and 30 x 20 x 20 grids were used. The Reynolds number based on wetted perimeter
(equivalent diameter) was Rep, = 100. Steady-state solutions were reached after about 8s.

3.3.4 Comparison and Discussion

Figure 3.10 shows the computed centerline velocity along with the experimental data from
Kreid and Goldstein (1967). Because TEMPEST computes velocity at the cell face center, it is
impossible to obtain velocity at the channel center using segment symmetry modeling; therefore,
the velocities shown are slightly lower than the extrapolated centerline value. Agreement with the
experimental data is quite good. TEMPEST underpredicts the velocity in the near entrance region
by approximately 2% to 3%. The reason for this is uncertain, but may be caused by nonuniform
inflow conditions that affect the experimental results. Additional computations were made,
increasing the number of flow wise cells from 30 to 60, with no noticeable change in the results.

Figure 3.11 compares the fully developed velocity profiles (taken at z = L) with the analytic
-results. Profiles are shown at different locations in the x-y plane. Agreement between the com-
puted velocities and the analytic results is excellent.
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record column 1 5 1 1 2 2 3 3 4 4 5 5 & 6 7 7 ]
no. 0 5 0 5 ] 5 ] 5 0 5 0 5 0 5 0
1 Square duct flow tast problam
2 qaid: LSDC-6
3 size, 32 12 12
4 time, 9.
5 pmt, 2 2 1 1
6 post,
b ) rest, 1 1
s .
9 cont, uncp,mont, scrn, dtim, pace,sisy,
10 cont, psav,msav, gaed
11 aout,vell,vel2,
12 dbug, data,size,prop,ntyp,
13 plot,vell,vel2
14
15 o 1 2 31 2 11 2 11 1 nedetype
16 20 1 1 32 1 12 1 1 1 neodetype
17 20 i b 32 1 1 1 12 1 nodetype
18 30 1 1 1 2 1 2 1 1 nodetype
19 40 1 32 32 a 11 2 11 1 nodetype
20 31 2 2 5 monteell
21
22 .50 .05 .05 o. S0. 00. 9S0. 1 ecooxd
23 1 1. 1. .010 o lel 6 matl
24 1 0. 3 32 1 11 3 11 7 wvelocity
25 0 endata
o Data from Kreid & Goldstein (1967)
ulu, 3 s TEMPEST 30x10x10 celis 1
1.60 . TEMPES:T 30x20x20 cells -
1.40 | ct
1.20 4
I 1
1.00 - ’ . , ) o , Varsion T2.8.0 1
0.000 0.025 0.050 0.075 0.100 0.125 0.150
x/DRe '
Figure 3.10. Centerline Velocity in Entrance Region of Square Duct
with Uniform Inlet Velocity and Constant Cell Spacing
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Figure 3.11. Fully Developed Velocity Profiles in Square Duct ( N
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3.4 Rayleigh Flow

Test Problem: LT-1
3.4.1 Description and Purpose

Rayleigh flow is an example of a nonsteady flow that is an “exact” solution to the Navier-
Stokes equations. The principal physical phenomenon in this flow is temporal viscous diffusion,
unlike many shear flows where viscous convection is present. The geometry for the Rayleigh flow
problem is shown in Figure 3.12. A stationary viscous fluid is located above an infinite plate
located at y = 0. Attime 7 = 0 the plate is impulsively moved at a speed uj, to the right, thereby
inducing a velocity to the fluid elements near the wall. The developing velocity profile thickens as
viscous diffusion occurs-- never reaching a steady distribution.

This problem serves to demonstrate four important capabilities of TEMPEST: 1) time-accurate
computation of viscous diffusic_m, 2) ability to model moving boundaries, 3) ability to handle
reflective boundary conditions, and 4) ability to handle initially singular shear rates.

-«

moving wall

—_—
U
Figure 3.12. Geometry for Rayleigh Flow Test Problem
3.4.2 Analytic Solution

The solution to the problem is given by Schlichting (1979) and is summarized here. The equa-
tions of motion reduce to the diffusion equation

with bdundaxy conditions

t<0; wu=0 foraly
t>0;- uly_ o=u,

uly =0
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The solution is found to be a complimentary error function given by

2 = erfcn
ug .

where 1| = y/2./v1.
3.4.3 TEMPEST Solution

The input file for this test problem is shown in Figure 3.13. A 3 x 22 uniformly spaced cell
structure corresponding to a 2m physical domain was used. Type 25 cells were used to ensure
reflective boundaries. The moving wall was modeled by implementing the moving boundary
option. The wall velocity was chosen to be 1m/s and the kinematic viscosity was chosen to be
v = 1m?/s. Automatic time stepping (pace) was implemented with a very short initial time step
to ensure initial temporal resolution near the wall boundary.

3.44 Comparison and Discussion

- TEMPEST was run for time ¢ = 0.25s and results are shown in Figure 3.14. The Agreement
with the analytic solution is acceptable. TEMPEST was also run for other times with equally good
agreement.

record column 1 5 1 1 2 2 3 3 ] 4 5 5 6 6 7 7 8

no. 0 5 0 5 0 5 0 5 0 5 ] 5 0 5 0
1 Rayleigh flow tast problem

2 qaid: LT-1

3 size, 3 22 1

4 time,l.e-6 .25

5 prnt, : | 1 10

€ post,

o rest, 1 1

]

9 eent , uncp,ment, scrn, dtim,pace, sisy,

10 cont,psav,msav, gasd

11 aocut,vell,vel2,pres,

12 dbug,data, 8ize,prep, ntyp,

-13 plot,vell,vel2,pres,

14 -

15 0 1 2 2 2 21 1 1 1 nodetype
16 0 14 1 2 2 2 2 1 1 1 nodetype
17 50 1 2 2 1 1 1 1 1 nodetype
18 25 1 1 1 1 22 1 1 2 1 nodetype
19 25 1 3 3 1 22 1 1 2 1 nodetype
20 20 1 2 2 22 22 1 1 1 nodet
gl 2 10 1 : 1 5 montoell
2

23 3 .1 .1 90. 90, 0. 1 coord
24 1. 1. i. 1.0 0 lcl 6 matl
25 0. 1. 1 16 movesurf
26 1000. 1. 1 16 movsurf
27 O endata

Figure 3.13. Input File for Test Problem LT-1
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Figure 3.14. Comparison between Analytic Solution and TEMPEST
Computations for Rayleigh Flow Formation
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3.5 Couette Flow Formation

Test Problem: LSMB-1

3.5.1 Description and Purpose

Couette flow formation is an “exact” solution to the Navier-Stokes equations and therefore
serves as an ideal test case. The principal physical phenomenon in this flow is temporal viscous
_ diffusion, unlike many shear flows where viscous convection is present. The geometry for the

Couette flow problem is shown in Figure 3.15. A stationary viscous fiuid is located between two
parallel, infinite plates located at y = O and y = A. Attime 7 = 0, the lower plate is impulsively
moved at a speed i, to the right, thereby inducing a velocity to the fluid elements near the wall.
The developing velocity profile changes with time (Couette flow formation) and ultimately
reaches a steady, linear distribution (Couette flow).

This problem serves to demonstrate four important capabilities of TEMPEST: 1) time-accurate
computation of viscous diffusion, 2) proper convergence to a steady-state viscous solution,
3) ability to handle reflective boundary conditions, and 4) ability to handle initially singular she
rates. ;

T stationary wall
Y
h

Figure 3.15. Geometry for Couette Flow Test Problem
3.5.2 Analytic Solution '

The solution to the problem is given by Schlichting (1979) and is summarized here. The equa-
tions of motion reduce to the diffusion equation

ou _ d%u
t ayz

with boundary conditions
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t<0; u=0 forally
t>0; wu=uy fory=0
t>0; u=0fory=h

The solution is found in the form of a series of complimentary error functions and is given by

;u_ = erfct —erfc (2N, — M) +erfc (2n, +n) —erfc (4n, - n) +erfc AN+ )= ..
0

where | = y/2 /vt and M, = h/2,/vz.
3.53 TEMPEST Solution

The input file for this test problem is shown in Figure 3.16. A 5 x 22 uniformly spaced cell
structure corresponding to a Sm by 1m physical domain was used. Type 25 cells were used on the
east and west boundaries to ensure an infinite condition in the x-coordinate direction. The moving
wall was modeled by using very thin (.0001m) type 30 cells on the south boundary. The wall
velocity was chosen to be 1m/s. Automatic time stepping was used with a very short initial time
step to ensure initial temporal resolution near the south boundary.

record column 1 5 1 1 2 2 3 3 4 4 5 5 6 6 4 7 B
no. o 5 0 5 0 5 0 5 0 5 ] H] 0 5 0
1 Couatte flow test problem
2 gaid: LSMB-1
3 size, 5 22 1
4 time,1.0-6 6.25
5 prnt, 1 . | 10
6 poet,
7 rest, 1 1
8
1 cont, ¢ ln.uncp,mnt,nm,dun,pnm,nsy,
10 cont, paav, msav, gasd
11 aout,vell,vel2,pras,
12 dbug, data, size,prop,ntyp,
13 plot,vell,vel2,pres,
14
15 o 1 2 4 2 21 1 1 1 nodetype
16 30 1 1 5 1 1 1 1 1 nodetype
17 25 1 3 1 1 22 1 1 4 1 nodetype
18 25 1 5 5 1 22 1 1 2 1 nodetype
19 50 1 2 5 22 22 1 1 1 nedetype
20 5 10 1 1 5 montcell
21
22 1 5 1, 1 3 wvarcooxd
23 1 1.0001 2 22 .05 1 4 wvarcocord
24 1 1. 1. 1.0 0 lel € matl
25 1 0. 1 5 1 1 1 1 7 welocity
26 0 endata
Figure 3.16. Input File for Test Problem LSMB-1
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- 3.54 Comparison and Discussion

TEMPEST was run for times corresponding to 4 vt/h = 0.25,1.0, and 10. Results are
shown in Figure 3.17. The general trend of viscous diffusion is observed for all test cases. For

44@/}1 small, the diffusion occurs slightly slower than the analytic solution predicts; however,
as 4,/vt/h increases, the two solutions are in agreement.

1.00 g
0.75
ulu,

0.50 -

D.25 -

O TEMPEST 4(v1)"®m=0.25
O TEMPEST 4(w)**me1.0
A -TEMPEST 4(v1)®m =10,
— Analytic Soldtion

(N

Figure 3.17: Comparison between Analytic Solution and TEMPEST
Computations for Couette Flow Formation
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4.0 Laminar Flows with Heat Transfer

This section presents results of nonisothermal laminar flow simulations performed with the
TEMPEST computer code. Results are compared to analytical solutions and experimental data.

4.1 Planar Duct Flow with Variable Viscosity
Test problem: LSHT-3
4.1.1 Description and Purpose
This problem examines the TEMPEST program’s ability to deal with temperature-dependent
viscosity. The geometry of the problem is similar to the planar duct flow test problem (LSDC-1),

only now the fluid has a linearly varying viscosity (see Figure 4.1). The viscosity variation is
accomplished by a fictitious fluid having a linear variation in viscosity with temperature.

U

S

::y h T

= 1. | /[
< L -

Figure 4.1. Geometry for Planar Duct Flow with Variable Viscosity
4.1.2 Analytic Solution

If the duct walls are held at different constant temperatures and the thermal conductivity is con-
stant, then a linear temperature profile will result in the fully developed flow. This temperature
variation will be

T(y/h) = Ty(1+by/h)

where b = T,/T,—1 and T, and T, are the temperatures at y = 0 and y = h, respectively.
Since the viscosity is linear in temperature, it can be expressed as

RO/A) = po(1+by/k)

With this viscosity variation, the solution to the Navier-Stokes equations for fully developed plane
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duct flow is

h In(1+b) 2 b In(1+b)

u=um[2_w][_l_}_ 1 ]-1

'4.13 TEMPEST Solution

The input file for this test problem is shown in Figure 4.2. A 20 x 30 uniformly spaced cell
structure corresponding to # = 40m and L = 600m was used. Temperatures on the upper and lower
wall corresponded to b = 14. The inlet velocity was chosen as 4, = 1m/s. Steady state solutions
were established at a simulation time of approximately 88s with the fiow field being fully devel-
oped beyond x = 380m.

4.14 Comparison and Discussion

Figure 4.3 shows a comparison of the TEMPEST data with the analytic solution. The agree-
ment berween the two is acceptable.

record eolumn 1 5 1 1 2 2 3 3 4 4 5 ] 6 6 7 7 8
no. .0 5 ] 5 0 5 0 5 0 5 ] 5 o 5 0
1 Planar Poiseuille flow test problem - variable viscosity
2 gaid: LSHT-3
3 *
4 size, 22 32 1
5 time, 200,
6 prat, 1 1 10
7 post,
8 rest, 1 1
S
10 eont,c 1n,uncp,mont, scrn,dtim, pace, sisy, vvis heat
33 cont,psav,msav, gasd
12 aocut,vell,vel2, temp,
13 dbug,data, size,prop,ntyp,
:I.; plot,vell,vel2, temp :
1
16 0 1 2 21 2 31 1 1 1 nodestype
17 60 1 1 2 2 1 1 1 nodetype
1e 60 22 22 2 3 1 1 1 nodetype
19 30 1 2 21 1 1 1 1 1 nodetype
20 40 1 2 21 32 232 1 1 1 nodetype
2; 10 28 1 3 28 1 11 28 1 30 28 1 1 5 montcell
2
23 1 20. 1. ] 90. S0. 0. 1 cooxd
24 1 I l. 1 0. 10. 2 1 vl 6 matl
25 1. 2 21 2 21 1 1 7 wvelocity
26 1. 2 21 1 1 1 1 7r velocity
27 note: Linear variation of viscosity with temperature given by two-peint property
28 note: table. Because of constant thermal conductivity, different temperature
28 note: at each wall gives linear variation in temperature, hence viscosity.
30 0. 22 22 2 31 9 temp
31 5. 2 21 1 2 9 temp
32 10. 1 1 2 3 S temp
a3 0. 1.5 1 19 tbprep
34 10. .1 1 19 thprep
as ) 0 endata
Figure 4.2 Input File for Test Problem LSHT-3
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Figure 4.3. Comparison between Analytic Solution and TEMPEST
Predictions for Planar Duct Flow with Variable Viscosity

4-3 Rev. 0 - December 1993
A.45



4.2 Thermal Entry Length in Circular Tube (Graetz Problem)

Test Problem: LSHT-4
4.2.1 Description and Purpose

This test problem examines forced convection heat transfer in a circular tube. The so-called
“Greatz problem” is an approximate solution to the Navier Stokes equations. The geometry for
the problem is shown in Figure 4.4. A constant temperature pipe flow with fully developed veloc-
ity profile (Poiseuille flow) suddenly encounters a cool wall located at x = 0. Since all transport
coefficients are assumed to be independent of temperature, the fluid cools as it travels down-
stream, while the velocity profile remains unchanged. The solution assumes that no conduction
occurs in the axial direction. This assumption is only valid when the product of Reynolds number
and Prandtl number are very large.

This test problem serves to demonstrate three important aspects of the capabilities of
TEMPEST: 1) accurate modeling of forced convection, 2) accuracy in solving the energy equa-
tion for a given velocity field, and 3) ability to input a nonuniform velocity field as an inflow
boundary condition. .

S ARAASTLAANA L AR ALLA AL AL AL AN,

AN AR AR A AR AR L A AR R RN

Figure 4.4. Geometry for Graetz Problem (heavy shaded region rep- .
resents adiabatic wall and lightly shaded region represents constant
temperature surface)

4.2.2 Analytic Solution

The solution to the problem is given by Sellers, Tribus, and Klein (1956). The goveming eéqua-
tion is given by

oTf kg ,oT
“oPCrz = rarar)
where £ is the thermal conductivity, p is‘»t:l’meclensity,am'lCP is the specific heat. The velocity is
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the Poiseuille solution given by
uy(r) = 2u, [1- (r/ry)?
The boundary conditions are

T(x,r) =T, x<0
T(x,ry) =T, x>0

Substituting the expression for the velocity into the governing energy equation and neglecting
terms of order (RePr)~! results in the non-dimensional form

0% . 100 +2. 00
5+ ———w (] =" )
ortc rtort ox*
where
s
Ot rH) =2
TW_TO
rt =r/r,
i o Jt:/r0
* = RePr

The solution is found in terms of an infinite series given by

e(x+' r+) - E CHR” (rd-)e(""h:.x*)
. n=0

The constamis C,, and the eigenvalues A, are given by

(-1)"2x 6*°I (2/3) 17272
n = TT

A =4n+8/3
Approximate solutions for the eigenfunctions R,, are obtained for three different radial regions of

the flow. For small r* (near the center of the pipe)
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R () = J, (?Lur+)

For small z* = 1-r* (near the wall)

+ A8
R,(r*) = }2_;_ (-1)“}1,3(——3 z"mJ

Finally, for medium »*

7 cos[ (A, /2)r*f1=r*?+ (A /2)sin™'r* - /4]

R, (r") = z (1-r*2) 173

n?&.ﬂr

4.23 TEMPEST Solution _

The input file for this test problem is shown in Figure 4.5. TEMPEST was run for conditions
corresponding to a Reynolds number (based on mean inflow velocity [1m/s] and pipe diameter) of
Re = 200. The inflow temperature was T, = 100°C and the wall temperature was T, = 0°C.
The Prandtl number was Pr = 1. Two approaches were used for obtaining the fully developed
velocity profile: the first used, a uniform velocity inflow was specified for a 22 x 82 cell structure
corresponding to a 1m x 200m physical geometry (the velocity profile was fiilly developed by the
 time it reached the cold wall located at x = 100m); the second approach used a velocity vector
input option, and the known Poiseuille solution was specified at each radial location (this method
also used a 22 x 82 cell structure). Both approaches produced the same results.

4.24 Comparison and Discussion

Figure 4.6 shows a comparison between the analytic solution and the TEMPEST data. Curves
are shown for three different radial positions. Analytic solutions were difficult to obtain for small

x" since the series did not converge well there. Although the overall trends are consistent for the
two solutions, TEMPEST produced lower temperatures in the initial region for locations away
from the wall, probably because the analytic solution neglects axial conduction while TEMPEST

does not. As the axial gradients in temperature decrease for larger x*, the two solutions have bet-

ter agreement. Near the wall (+* = 0.875), TEMPEST produced larger temperatures than the
analytic solution. The reason for this is uncertain. While the solution of Sellers, Tribus, and Klein
is widely regarded as accurate, it was determined that the three solutions for the eigenfunctions

R, (r") are not continuous in the region 0 < r* < 1. It is speculated that their solutions are more
accurate for large A,
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record column 1 5 1 1 2 2 3 3 4 4 5 5 € 6 7 7 B
no. 0 5 0 5 ] 5 0 5 1] 5 0 5 0 5 0
1 Thermal Entry Length - Great:z Procblem: Valocity input as vector
2 gaid: = LSET-4¢
3 size, 22 82 1
4 time, 50.
5 prnt, 1 1 1 10
[ post,
7 rest, 1 1
B :
S cont, cyln,uncp,mont, scrn,dtim, pace, sisy, tess
10 cont, psav,msav, gqaed, heat
11 acut,vell, temp
12 dbug,data,size,prop, ntyp,
13 plot,vel2, tanp
14
15 [} 1 2 21 2 Bl 1 1 1 nodetype
16 20 1 1 1 1 82 1 1 1 nodetype
17 30 1 2 21 1 1 1 1 1 nedetype
18 40 1 2 21 82 8 1 1 1 nodetype
19 60 1 22 22 2 82 1 1 1 nodetype
20 2 80 1 5 montcall
21
22 0. 890. 0. 1 ecoord
23 1 22 .05 1 3 wvarcoord
24 1 1 1.0 1 5 wvarcoord
25 1 221.258 1 4 wvarcooxrd
26 .010 1. 1. .01 0 lel 6 matl
27 0. 22 22 2 82 1 b & 9§ T init
28 100. 2 21 1 82 1 1 9 T init
29 1.9951.989]1.9691.9391.8991.8491.7881.7191.639].549 2 1 11 12 wvel
30 1.4491.3391.2151.0890.9490.7950,6390.4690.2890.099 12 1 11 12 wel
31 0 endata
Figure 4.5. Input File for Test Problem LSHT-4
1.0 pSor e — r— : — -
.o"’OO
0.8 — A >
o8fF & ©
. ® O TEMPEST
07 F S O — Analytic solution
E (\) O
0.6 |- e
[ N,
L O
05 | S O =.025
E Q) s
[ N, e
04 |- N N
® r'=525 O
Figure 4.6. Comparison between TEMPEST Data and Analytic
Solution for the Graetz Problem
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4.3 Mixed Convection in Circular Tube (Morton’s Problem)

Test Problem: LSHT-6
4.3.1 Description and Purpose

This test problem examines combined forced and free convection in a circular tube. The so-
called “Morton’s problem” is an approximate solution to the Navier-Stokes equations. The geom-
etry for the problem is shown in Figure 4.7. A fluid with constant transport coefficients flows
through a pipe of radius R. Heat is added to the pipe in such a way as to canse a linearly increasing
wall temperature. An axial acceleration “g” introduces buoyancy effects through changes in the
fluid density. Because of these effects, the velocity profile differs generally from simple Poiseuille
flow. The analytical solution takes advantage of the Boussinesq approximation-- namely, that
changes in density come into play only through the body force term in the momentum equation. In
addition, it is assumed that the coefficient of thermal expansion for the fluid is constant.

This problem serves to test two important aspects of the capabilities of TEMPEST: 1) accurate
modeling of fully developed mixed convection, and 2) validity of the Boussinesq solution mode.

I* e
T ~— :
R ;‘h\w\\

u(r) | Ty =To+t(x/R)

‘\ “S
Qix

S xt_,.r

I :

Figure 4.7. Geometry for Morton’s Problem

432 Analytic Solution

Morton (1960) showed for the case of a linearly increasing wall temperature
T, = Ty+1(x/R), and constant coefficient of thermal expansion B, kinematic viscosity v, and

thermal conductivity x, the governing equations reduce to two ordinary differential equations for
the fully developed velocity and temperarure given by
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>, 1.d g +
[F'FF;;:]U*- (r+) = —7+Ra@(r)
, :
[ d +—1h-d—](-)(r*) = —u* (r*)

ar* r*art

Here r* = r/R, u* = uR/x, ® = (T,-T) /%, and Ra is the Rayleigh number given by
Ra = BgtR?/xv. The tem Y is related to the mean velocity and is given by

Y= (R*/%v) [1/p,(dp/dx+¢g)]

All of the constants B, p,, X, and v are evaluated at temperature T,.

The boundary conditions are given by

ut =0 and @=0,I on r*=1

+
Bt ant Db on w0
dart dar*

Solution of the governing equations with application of the boundary conditions results in

Y Bei (Ra'/*) Ber (Ra'/*r*) —Ber (Ra'/*) Bei (Ra'/*r*)

H+ (r+) = 775 s o
Ra Ber? (Ra*’*) + Bei? (Ra*’%)

0¢*) = L [I_Bcr (Ra'’*)Ber (Ra*r*) + Bei (Ra'/*) Bei (Ra1/4r+)}
Ra Ber? (Ra'’%) + BeiZ (Ra™%)

where the functions Ber and Bei are given by

e o
Ber (x) = ngom COos (2”“/4)
- oo (x/Z) 2n ‘ 5
Bei(x) = ) N CES (2nn/4)
n=0
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The term ¥ is related to the mean velocity in the following way Morton showed that the volume
flow rate through the pipe is

R

Ber (Ra*/*) Ber’(Ra'’*) +Bei (Ra'’*) Bei’ (Ra'’*
IudA = Z“Iu (r)rdr = 2nRxyRa™>"* ec(Ra ) ( ) al ) Bei” ( )
0 .

Ber? (Ra'’*) +Bei? (Ra'/*)

where the primes indicate differentiation. Since the mean velocity is defined as u, = % j udA,
the solution for the velocity and temperature can be written

& _ 1 14Bel (RaY*) Ber (Ra'/*r*) - Ber (Ra"/*) Bei (Ra'/*r")
U 2 Ber(Ra"*)Ber’ (Ra'*) +Bei (Ra'/*)Bei’ (Ra'"")

© _1p -4 Ber? (Ra'’*) +Bei? (Ra'"*) | ]
RePr 4 Ber (Ra'’*) Ber’ (Ra'’*) +Bei (Ra'/*) Bei’ (Ra'"*)

<l Ber (Ra'/%) Ber (Ra'/*r*) + Bei (Ra*’*) Bei (Ra'/*r")
Ber? (Ra'’*) +Bei? (Ra'’*)

Here the Reynolds number Re is based on the mean velocity and tube diameter.
4.33 TEMPEST Solution

“The input file for this test problem is shown in Figure 4.8. TEMPEST was run for conditions
corresponding to Rayleigh numbers of 10, 50, 100, and 400. Values of RePr = 4.367 were used for
all cases except for Ra = 400, where a value RePr = 8.733 was used. The 20 x 30 cell structure
corresponded to a tube radius of 1m and a length of 150m. The fluid was a perfect gas with mean
inflow velocity of .01m/s. TEMPEST automatically evaluates the coefficient of thermal expansion

B locally, which differs from the assumption made in the analytical solution. Since B is equal to

the inverse temperature for a perfect gas, this difference was minimized by keeping the axial wall
temperature gradient © quite small in order to approximate a constant f3. A temperature increase
of 0.1°C per cell corresponding to a value of T = 0.02°C was used. This caused B to vary by no
more than 1% over the computational domain. The Rayleigh number was varied by changing the
gravitational constant appropriately. For Rayleigh numbers less than 400, the ress option
(Group 2, cont input record) was found to greatly increase the convergence rate. For larger Ray-
leigh numbers, this option produced poor resulits.

43.4 Comparison and Discussion

Figure 4.9 and Figure 4.10 show comparisons between the analytic solution and the TEMPEST

data. Curves are shown for four different Rayleigh numbers. Agreement for all cases is excellent.
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record column 1 5 1 1 2 2 3 3 4 4 5 5 6 [ 7 7 8
no. 0 5 0 5 0 5 0 5 0 5 0 s 0 5 0
1 Thermal Entry Length Greatz Problem: Constant velocity input
2 gaid: LSHT-6
3 size, 22 32 1
4 tima, 900.
s prnt, 1 1 1 10
6 st,
7 ;:’:It, 1 1
8
9 cont,cyln,u cp,mont,scrn,dtim, pace,sisy
10 cont,psav,msav, qaed, heat
11 acut,vel2, tamp,dens, pres
12 dbug,data, size,prop, ntyp,
13 plet,velZ, temp,dens, pres
14
15 0 1 2 221 2 3 1 1 1 nodetype
16 20 1 1 1 1 32 1 1 1 nodetype
17 30 1 2 2 =3 1 1 1 1 nodet:
18 40 b 1 2 21 32 32 3 1 1 nodetype
19 60 22 22 2 31 1 1 1 nodetype
20 2 15 1 5 montcall
21
22 .05 5.0 1. 0. 1000. S0. 180, 90. 1 coord
23 1.563 1.25 546. . .10 0.0 3.0 101 12 leg 6 matl
24 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 22 1 1z 14 vartemp
25 i.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 22 11 1z 14 wvartemp
26 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 22 21 1z 14 wvartemp
27 3.099999% 22 31 1z 14 vartemp
28 3.0 : 2 21 32 32 1 1 9 7T_init
29 0. 2 21 - 1 1 1 9 T init
30 0. 1. 1 16 T outfl
31 l.e5 1. 1 16 T outfa
32 .01 1 22 1 32 1 1 7 wvalocity
33 0 endata
Figure 4.8. Input File for Test Problem LSHT-6
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Figure 4.9. Comparison between Computed Velocity and Analytic
Solution for Morton’s Problem
0.200 . — - ,
[ =10
O Tempest
S — Analytic solution
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Figure 4.10. Comgarison between Computed Normalized Tempera-
ture and Analytic Solution for Morton’s Problem
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5.0 Turbulent Flow

This section presents results of isothermal turbulent flow simulations performed with the
TEMPEST computer code. Results are compared with experimental data.

‘5.1 Grid Generated Turbulence Decay
Test Problem: T-1

5.1.1 Description and Purpose

This test problem examines turbulence production and decay for uniform flow downstream of a
mesh grid. TEMPEST predictions are compared to experimental data from Warhaft and Lumley
(1978). The geometry for the problem is shown in Figure 5.1. A fluid with velocity U flows uni-
formly through a square mesh grid. The grid is made of square rods of width 4 with centers spaced
a distance M apart. Upon encountering the mesh grid, turbulence will be produced becanse of
fluid shear. Farther from the grid, the turbulence will decay.

This problem is designed to test the TEMPEST program’s ability to accurately compute pro-
duction and decay of homogeneous turbulence. '

Figure 5.1. Geometry for the Grid Generated Turbulence Decay
Problem (shown on the right is a section of the square rod mesh)

5.1.2 TEMPEST Solution

The input file for this test problem is shown in Figure 52. A 5 x 5 x 20 computational cell
structure was used to model one square of the turbulence-generating grid. Because of the symme-
try, the axial centers of each square rod were treated as a reflective boundary. The model neglected
rod overlap, since this would have little effect far from the grid. Conditions were chosen to match
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the experimental values given by Warhaft and Lumley. These were U = 6.5m/s, M = 0.0254m,
and d = 0.00467m in air at 27°C. Variable cell spacing was used in the stream-wise direction
in order to resolve both the flow near the grid, and compute turbulence decay far downstream.

5.13 Comparison and Discussion

Figure 5.3 shows a comparisons between the experimental data and the TEMPEST predictions.
Both the turbulent kinetic energy k = (;'-i +v24 w_'z) /2 normalized by the inflow velocity and
the turbulent dissipation € are shown. The curve fit for kinetic energy data was determined by

Warhaft and Lumley from measurements of 12/U. Since TEMPEST assumes all three compo-

nents of the turbulent kinetic energy are the same, it was necessary to multiply the experimental
data by a factor of 1.5 for means of comparison.

In the region near the mesh grid, TEMPEST predicts turbulent kinetic energy production. Far-
ther from the grid, the energy dissipates at nearly the same decay slope as the experimental data
show. Only one measurement of dissipation was available and it is close to the TEMPEST predic-
tion.

record coluwmn 1 5 1 1 2 2 3 3 4 4 S 5 6 6 7 7 8
no. 0 5 0 5 0 5 0 $ 0 5 0 5 0 5 (]
1 Grid Generation and Decay
2 gaid: 7T-1
3 size, 7 7 22
4 time, 3.0
5 prnt, 1
13 post,
7 rest, 1 1
8
-] cont, uncp, scrn,dtim, pace, sisy,i vs,jiioc
10 cont,psav,msav, gaed, cart, turb
11 " aout,vell,vel2,vell, tkin, tdis
12 ;data,size,prop,ntyp,
13 plot,vell,vel2, tkin, tdis, vell .
i; moni,tkin,tdis,vell, vel2
16 30 1 2 6 2 6 1 1 1 nodatype
17 0 1 2 6 2 € 2 21 1 nodetype
18 20 1 1 7 1 1 1 22 1 nodetype
19 20 1 1 7 7 7 1 22 1 nodetype
20 20 1 1 1 1 7 1 22 1 nodetype
21 20 1 7 7 1 7 1 22 1 nodetype
22 40 1 2 6 2 6 22 22 1 nodetype
23 50 1 7 X 2 3 3 1 nodat
24 + 50 1 7 6 2 3 3 1 nedatype
25 50 1 2 1 7 3 3 1 nodetype
26 50 € 7 1 ? 3 3 1l nodatype
27 5 5 21 : 5 montcell
28
29 : $0. ©00. 90. lemesord
30 .2335.2335.6910.6910.6910.2335,2335% 1 7 3cmvarcoord
31 .2335.2335.6910.6910.6910.2335.2335 1 7 dcmvarcoord
32 .4€70.4670.4670.4670.4670.67501.0131.5192.2783.417 1 10 Semvarcooxd
33 5.1267.68911.5317.3025.9538.9258.3987.59131.3197.1 11 20 Samvarcooxrd
3 2.9562.956 21 22 5 wvarcooxd
35 27. 26. 28. 2 0 11 leg € matl
36 0. 0. 6.5 27. 2 6 2 [ 1 22 7 welecity
37 i 0 endata
Figure 5.2. Input File for Test Problem T-1
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Normalized Kinetlc Energy /%, Dissipation & (m%s?)

102 L B TEMPEST Data
Q© Kinetic Energy

10' B a 5 Dissipation -
2 Warhaft & Lumiey Data
E D ]

10°L —— Curve fit of (32)uU
3 o * Dissipation

10" -

10°F
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10° r

10%
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Figure 5.3. Comparison between TEMPEST Prediction and Experi-
mental Data for Grid Generated Turbulence Decay
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5.2 Turbulent Flow in a Two-Dimensional Channel

Test Problem: TDC-1
5.2.1 Description and Purpose

This test problem examines fully developed turbulent flow in a 2-D channel. TEMPEST pre-
dictions for mean velocity and turbulent kinetic energy are compared with experimental data
obtained from Laufer (1951). The geomerry for the problem is shown in Figure 5.4. A fluid with
initial mean velocity u, flows between two semi-infinite parallel plates located a distance 24

apart. Far from the entrance of the channel, the mean velocity profile will become fully devel-
oped. A maximum velocity U, will occur at the center of the channel.

This problem is designed to test the TEMPEST program'’s ability to accurately compute 2-D
turbulent flows in Cartesian geometries.

Ug Uc

c » I <l
o) —_—)
— —_—
—_ —_—
— 4 y ——u(y
= | [ =
el ——

—— e e ——

Figure 5.4. Geometry for Fully Developed Turbulent 2-D Channel
Flow

5.2.2 TEMPEST Solution

The input file for this problem is shown in Figure 5.5. The TEMPEST model implemented an
18 x 18 uniform computational grid simulating one-half of the channel. A reflective boundary was
used in order to take advantage of the centerline symmetry. The fluid properties and geometry
where chosen to approximate the experimental conditions of air at standard conditions with
d = 25in. and ¥, = 3m/s. The Reynolds number chosen from the experiment was Re = 12,300,
based on channel half-width d and the developed centerline velocity U,. Since U, must be com-
puted by TEMPEST, there was no way to know it a priori. Therefore, the infiow fluid properties
were slightly adjusted in an iterative process until TEMPEST computed a value of U ., which pro-
duced the desired Reynolds number.
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5.2.3 Comparison and Discussion

Figure 5.6 shows a comparisons between the experimental data and the TEMPEST prediction.
Shown are the mean velocity and the turbulent kinetic energy, both normalized by the centerline
velocity. The computed velocities are found to be in acceptable agreement with the data. The
kinetic energy is close to the data near the centerline but overpredicted near to the channel wall.
The reason for this overprediction may be because of the k-£ turbulence model in TEMPEST.

The model is based on the assumption of homogeneous isotropic turbulence, whereas Laufer
(1951) found anisotropic behavior near the wall. :

record coluwmn 1 5 1 1 2 2 3 3 4 4 5 5 [ 6 7 7 8
no. 0 5 0 5 0 s 0 5 0 5 0 5 (] 5 0
2D plane channsl flow, turbulent == Re = 12,300
2 Re based on channel half-width and predicted vmax=1.l*vave
3 gaid: TDC-1
4 size, 20 20
5 time, 1-2 1 25.0
6 pInt, 10
7 pres, 100 1-8
8 rest, 1 1
$ post,
10
11 cont,psav,msav, scIn, pace,turb,
12 cont,besq, mont,dtim, sisy,qasd, uncp
13 aocut,velZ,vell,pres,delp, tkin
14 dbug, prop, mtyp, ntyp, data,
is plot,vel2, vell,pres,delp, tkin
6
17 © 20 1 1 1 20 1
18 0 1 2 19 2 19 1
19 30 1 2 1% 1 1 1 inlet
20 40 1 2 19 20 20 1 exit
21 2 18 5 monitor
22
23 .0036 1.00 1. 90 b §
24 1.1.070 10001.9-5 1 0 lel 6 prl -
25 2.99 1 20 1 20 7 initial
26 0 endata

Figure 5.5. Input File for Test Problem TDC-1
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S— — — 0.0100
1.00 ;
!
_ 0.0075
0.75 i O TEMPEST Prediction | 1
| B Laufer Data (1951)
: 2
u/U, ] WU
- 0.0050
0.50 ;
0.25 - | apnes
] Varsion 2.0
0.00 i " 1 " = 1 " " ! " 0.0000
0.00 0.25 0.50 0.75 1.00
yld
Figure 5.6. Comparison between TEMPEST Prediction and Experi-
mental Data for Fully Developed Turbulent 2-D Channel Flow
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5.3 Turbulent Flow in a Circular Tube
Test Problem: TDC-2

5.3.1 Description and Purpose

This test problem examines fully developed turbulent fiow in a circular tube. TEMPEST pre-
dictions for mean velocity and turbulent kinetic energy are compared with experimental data
obtained from Laufer (1953). The geometry for the problem is shown in Figure 5.7. A fluid flows
within a circular tube of radius a. Far from the entrance of the tube, the mean velocity profile will

become fully developed, with a maximum velocity U at the center of the tube.

This problem is designed to test the TEMPEST program’s ability to accurately compute 2-D
turbulent flows in cylindrical geometries.

Figure 5.7. Gcomeny for Fully Developed Turbulent Flow in a Cir-
cular Tube

5.3.2 TEMPEST Solution

The input file for this test problem is shown in Figure 5.8. The TEMPEST model implemented
a uniform computational grid simulating one-half of the tube with 18 radial cells. A reflective
boundary was used in order to take advantage of the centerline symmetry. The fluid properties and
geometry were chosen to approximate the experiment with air at standard conditions for Reynolds
numbers of Re = 50,000 and 500,000 based on tube radius @ = 9.72 in. and developed centerline
velocity U, = 10 fis and 100 ft/s. Since U, must be computed by TEMPEST, there was no way

to know it @ priori. Therefore, the inflow fluid velocity uy was slightly adjusted in an iterative
process until TEMPEST computed a value of U, which produced the desired Reynolds number.
It was found that U_/ugy = 1.19 and 1.14 for Re = 50,000 and 500,000, rcsj)cctivcly.
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53.3 Comparison and Discussion

Figure 5.9 show comparisons between the experimental data and the TEMPEST prediction for
both Reynolds numbers. Shown are the mean velocity normalized by U, and the turbulent kinetic

energy normalized by uf. Here uf =-v(du/dr)] _  isthe friction velocity chosen for consis-
tency with Laufer’s work. This quantity was computed from TEMPEST data by relating it to the
wall shear stress and axial pressure gradient through a force balance on the tube. The results were
u, = 0.116m/s for Re = 50,000 and u, = 0.9m/s for Re = 500,000. The computed mean

velocities are found to be in fairly good agreement with the data. The kinetic energy is close to the
data for intermediate r, but overpredicted near the wall and the centerline. The reason for this
overprediction may be because of the k- ¢ turbulence model in TEMPEST. The model is based on
the assumption of homogeneous isotropic turbulence, whereas Laufer found anisotropic behavior
at all radial locations. : : '

record column 1 5 ) 1 2 2 3 3 4 4 5 5 6 6 7 7 B
no. /] 5 0 5 1] 5 ] 5 0 5 0 5 0 5 0
1 2D eylindrical pipe flew, turbulent -- Re = 50,000
note: increase inflow velocity to 25.93m/s, NZ to 40,
note: and D2w=5.0 for Re=500,000 case.
2 gqaid: 7IDC-2
3 size, 20 20
] time, 1-2 1 1s. .95
5 prnt, 10
6 pres, 100 1-8
T rest, 1 :
8 post,
S
10 cont,psav,msav, 8cIn, pace, turb, cyln,
11 cont, g,ment,dtim, sisy, qaed
12 aout,vel2,vell,pres,dalp, tkin
13 dbug, prop, mtyp, ntyp, data,
i; plot,vel2,vell,pres,delp, tkin
16 20 1 y & 1 20 1
17 1] 1l 2 19 2 19 1
18 30 b § 2 19 1 1 1l inlet
19 40 1 2 19 20 20 1 exit
20 2 20 5 moniter
21 :
22 .0069% 1.00 10. 90 1
23 1. 1.23 10001.8-5 1 o lel 6 prl -
24 2.49 1 20 1 20 7 inditial
Figure 5.8. Input File for Test Problem TDC-2a
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1.00 | w
C 4.0
Re=5x10* 1
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(W D Lauter Data (1954) !
i — 430
wU : - |
| {1 &}
0.50 ]
420
. 0.25 ke : "‘.”’
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Figure 5.9. Comparison between TEMPEST Prediction and Experi-
mental Data for Fully Developed Turbulent Flow in a Circular Tube
for a) Re = 50,000, and b) Re = 500,000 (data for kinetic energy are

constructed from velocity data)
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6.0 Bouyancy Driven Flows

. This section presents results of bouyancy driven (natural circulation) flow simulations with the
.TEMPEST computer code. Results are compared with experimental data.

6.1 Buoyancy-Driven Cartesian Cavity Convection
Test Problem: BD-1
6.1.1 Description and Purpose

Buoyant convection in a cavity involves coupling between hydrodynamics and thermal energy
_transport. The experimental results of Eckert and Carlson (1961) were chosen to test the TEM-
PEST program’s ability to predict buoyancy-driven convection. The geometry for the problem is
shown in Figure 6.1. The cavity is 1.4 in. wide and 14 in. tall corresponding to a 10:1 aspect ratio.
One wall is maintained at a constant temperature of Ty = 155°F while the opposing wall is

maintained at 7. = 70°F . Both the upper and lower walls are adiabatic. The fluid in the cavity is

air.

> .- Adiabatic:: . 2
_F o
5 M
T, = 155°F/ _[14.0in =l Tc = 70°F
I g
2 o
2 8
Z 1 4
I < 14in —»
fo o AGIADALIC e ﬂ
f—> x

Figure 6.1. Geomerry for Natural Convection in a 2-D Cartesian
Cavity (Eckert and Carlson problem)

6.1.2 TEMPEST Solution

The input file for this test case is shown in Figure 6.2. The simulation was run with constant
cell spacing (20 cells in the horizontal direction and 42 cells in the vertical direction). Both con-
stant and variable fluid properties were used. The TESS option, which finds a steady-state solu-
tion at each hydrodynamic time step, was implemented. A steady state solution was found in
about 5 s.
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zecord eodum 1 $§ 1 1 2 2 3 3 4 .4 5 5 € 6 71 1 @8 ()
no. 0 5 0 5 0 5 0 L] 0 5 ] 5 0 5 o]
1 Natural circ test(2-d) Eckert and Carlson (air)
2
3 gaid: BED-1
4 size, 22 44 -
5 timae, .1 50. :
6 prat, 20. 11 1 10
7 pres, 50 1 1.1 1-%
8 post,
9 rast, 1 1
10
11 aocut,vel2,vell, temp,pres,divg,
12 cont,mont, heat ,pace, form,dtim
13 cont,psav,msav, save, qasd, scrn, tess
14 plot,vall,vel2, temp,
12 dbug,prop, size,data, ntyp, mtyp,
b :
17 60 0 1 22 2 43 p !
1s 1] 1 2 21 2 43 1
19 12 24 b | 11 11 1 2 5 1 11 5 1 5
20
21 583-5.0278 .04 90 180 - S0 les
22 .02821.0411005.213-7 101+2 =20 150 101 11 lege 6ai air
23 155 1 b § 2 43 i 1 Ses
24 70 22 22 2 43 Ses
25 100 2 21 2 43 Seas
26 Oend
Figure 6.2. Input File for Test Problem BD-1
6.1.3 Comparison and Discussion (\

Figure 6.3 shows a comparison between the TEMPEST predictions and the experimental data.
The results shown are for the constant fiuid properties case. The agreement with the experimental
data is acceptable. Equally accurate predictions were found for variable fluid properties.

()
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Figure 6.3. Comparison between TEMPEST and Experimental
Results for Natural Convection in a 2-D Cartesian Cavity (Eckert
and Carlson problem)
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7.0 Electric Fields

This section presents results of electric field simulations with the TEMPEST computer code.
Results are compared with analytic solutions.

7.1 Joule Heating Between Paraliel Rectangular Electrodes

Test Problem: EF-1
7.11 Description and Purpose

This test problem examines the TEMPEST program’s ability to predict the electric field and
accompanying Joule heating in a conductor between two flat plate electrodes. The geometry for
the problem is shown in Figure 7.1. The conductor and electrode pair assembly is electrically
insulated on all sides and thermally insulated on the top and bottom to produce 1-D results. Con-
stant wall temperatures are used for the outside of the electrodes. Electrical resistance is negligi-
ble in the electrodes so the only significant potential loss and Joule heating occurs in the
conductor. Material properties and driving current are

» electrode current product, 100A2

* conductor resistivity, 10Qm

* thermal conductivity, 1 W/m°C.

This problem serves to demonstrate two important capabilities of TEMPEST: 1) ability to com-

pute 1-D electrical fields in Cartesian geometry, and 2) ability to predict temperature profiles for
heat conduction with Joule heat generation in the same geometry.

conductor T = 100°C

fe——— 0.6m
— x

Figure 7.1. Geometry for Paralle] Electrode Test Problem
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7.1.2 Analytic Solution

The solution for potential field is simple since current flow is uniform through the conductor.
However, comparison with TEMPEST results is complicated by its use of reference currents and

potentials.® For this reason, numerical values will be shown in detail. The resistance is

(10Q2m) 0.6m

0.8ml1m = 754

- P2
R = =
and the reference current is the product of the reférence source strength and the electrode volume

I' = I°V = 1m™>(0.08) m> = 0.08

electrode
The reference potential drop is simply
¢’ = 'R = (0.08)7.5VQ = 0.6V

The actual potential drop ¢, is calculated using this same resistance and the actual current source
strength, /

¢ = IR = (10A)7.5Q = 75V
Likewise the total Joule heat is
Qjoute = 'R = (10A)27.5Q = 750W

which is equivalent to a volumetric heating rate of 1562.5 W/m?.

The temperature profile is computed in two parts. Simple conduction gives thc linear tempera-
ture profile and inside temperature for the electrodes

gL
Tf = To+—2—k‘

where § is the heat flux, L, is the electrode thickness and k is the thermal conductivity. For a con-
stant outside temperature, 7, = 100°C, this gives an inner surface temperature of 146.9°C. The
temperature profile within the conductor is given by

(a) TEMPEST computes potentials based on a unit current source strength. The units on the reference poten-
tial is then volts per amp.
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7x
T=T+52 (L.-%)

where ¢ is the volumetric heat generation rate, L_ is the conductor thickness, and x is distance
measured from the inner surface of the electrode.

7.13 TEMPEST Solution

The input file for this test problem is shown in Figure 7.2. The test problem was modeled in
2-D with two different grids: 10 x 10 and 26 x 10. The solution for the high density grid is com-
pared with the analytical solution in Figure 7.3.

7.1.4 Comparison and Discussion

The Joule heat magnitude and potential profile agree exactly but the temperature profile agree--
ment depends on the grid. Temperatures agree to within 2°C for the 10 x 10 grid and to within
0.05°C for the 26 x 10 grid.

record column 1 5 p b 1 2 2 3 3 4 4 5 5 6 [ 7 T 8

no. 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

1 Joule Heating between Parallel Rectangular Electrodes

2

3 qaid: EF-1

L] size, 26 10

5 time, o 1o

6 prnt, 1

7 simp, .6 5.

8 elec, 200 1-7 1

9

10 cent,hnt,mfx,mnt,dtim,shy,lcm,usn.

11 acut, temp, emfx,amps, joul, efmn, afht, resi, econ,
12 dbug, data, size,ntyp, mtyp

13

14 60 : 26 2 9 1 Temp BC
15 70 < 2 25 2 9 1l Electr
16 70 1 5 22 2 9 1l Cndetr -
17 3 5 b § ] 5 1 9 5 1 12 5 1 5 Monitr
18 1 1 +1 2 4 2 -] B Currsre
;9 1 1 =1 23 25 2 9 8 CurrsSnk

0
21 » 0333 o . S0 180 S0 1 CellsSpac
22 1. 1000 1 Oa les € Cndetr
23 .100 1l pl € CndePrep
24 l. 1000 1 De 2cs €& Electr
25 1+6 2 pl 6 ElecProp
26 100. 1 26 2 9 9 T Bndry
27 0.0 1.0 4 16 Cur Dans
28 +9 1.0 : b 16 Cur Dens
29 1 1+2 1 X 40 Cur Prod
30 0

Figure 7.2. Input File for Test Problem EF-1
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Figure 7.3. Reference Electrical Potential and Temperature Profiles
for Paralle] Electrode Test Problem
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7.2 Joule Heating Between Coaxial Electrodes

Test Problem: EF-2
7.2.1 Description and Purpose . )

This test problem examines the TEMPEST program’s ability to predict the electric field and
accompanying Joule heating in the conductor between a cylindrical electrode and a coaxial outer
electrode. The problem geometry is shown in Figure 7.4. The electrode pair is electrically insu-
lated and a constant wall temperature is imposed on the outer electrode. Electrical resistance is
negligible in the electrodes, so the only significant potential loss and Joule heating occurs in the

conductor. Material properties and driving current are
« electrode current product, 0.001A2
* conductor resistivity, 10Q2m
+ thermal conductivity, 1 W/m°C.
This problem serves to demonstrate two important capabilities of TEMPEST: 1) ability to com-

pute 1-D electrical fields in cylindrical geometry, and 2) ability to predict Joule heat generation in
the same geometry.

electrically insulating

r;=0.1m
electrodes
r, = 0.7m
R = 0.8m
T = 100°C
Figure 7.4. Geometry for Coaxial Electrode Test Problem
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7.22 Analytic Solution

For this problem, the electric potential field equation reduces to Laplaces equation

1 dé

26w 4 0¥y =
V_¢ - rdr(rdr) 0

subject to boundary conditions

d
c£=—.f,-@r=r,-

¢=0@r=ro

where 6 is the electrical conductivity and J; is the charge flux at the surface of the central elec-
trode. The solution is

rdi r
§= i)
An expression can also be derived for total Joule heat generation, P,,,, as follows.. Volumetric

Joule heat generation is

al%

where charge flux is a function of radius

Total heat generation is obtained by integrating ¢ over the volume

P, = J gL2xrdr

T

which, using the previous definitions, gives

7-6 Rev. 0 - December 1993

A.72

()

()




e

}2
tor = mh‘l (ro/r:')l

7.23 TEMPEST Solution

The input file for this test problem is shown in Figure 7.5. The test problem was modeled as a

1° segment in 2-D with a 26 x 10 grid. The reference potential profile is compared with the analyt-
ical solution in Figure 7.6. The temperature profile predeicted by TEMPEST is included in this
figure even though the analytical solution is not available.

7.2.4 Comparison and Discussion

The reference potential predicted by TEMPEST agrees with the analytic solution to within

0.1%. The computed Joule heat magnitude for the 1° segment was 1.40 watts, which agreed with
the analytical solution to within 0.5%.

record column 1 5 1 1 2 2 3 3 4 4 5 5 [ 6 7 7 B
ne 0 5 0 5 0 ] 0 5 0 5 o 5 0 5 0
1
2 Joule Heating betwean Coaxial Electrodes
3 qaid: EF-2 .
4 size, 26 10
5 time, 1 10
6 pznt, 1
7 simp, .6 5.
B elec, 200 1=7 1
9
10 cont,hont,.mtr,nnnt,dhin,sisy,tc:n,cyln,t.--,
11 aout, temp, emfr, amps, joul,efmn, efht, resi, econ,
12 dhug,data, size, ntyp, mtyp
13
14 60 26 26 2 9 1 Temp BC
15 70 2 2 25 2 9 1 Electr
16 70 1 5 22 2 9 1 Cndetr
17 3 5 1 6 5 1 9 5 1 12 5 1 5 Monitr
18 1 1 +1 2 4 2 9 8 Currsrc
19 1 1 -1 23 25 2 ] B Currsnk
20
21 .0333 I | 1. S0 180 90 1 Cellspac
22 1. 1000 1 Oe lcs 6 Cndetr
23 .100 1 pl 6 CndeProp
24 1.-1000 1 Oa 2cs 6 Electr
25 1+6 2 pl 6 ElecProp
26 100. 2 26 2 § T Bndry
27 0.0 1.0 : 1 16 Cur Dens
28 1+% 1.0 1 16 cCur Dens
§9 1 1-3 1 1 40 Cur Pred
] 4]

Figure 7.5. Input File for Test Problem EF-2
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Figure 7.6. Reference Electric Potential and Temperature Profiles for
Coaxial Electrode Test Problem
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