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Summary 

With the increasing number of phasor measurement units on the power system, behaviors typically 
not observable on the power system are becoming more apparent.  Oscillatory behavior on the power 
system, notably forced oscillations, are one such behavior.  However, the large amounts of data coming 
from the PMUs makes manually detecting and locating these oscillations difficult.  To automate portions 
of the process, an oscillation detection routine was coded into the Data Integrity and Situational 
Awareness Tool (DISAT) framework. 
 

Integration into the DISAT framework allows forced oscillations to be detected and information about 
the event provided to operational engineers.  The oscillation detection algorithm integrates with the data 
handling and atypical data detecting capabilities of DISAT, building off of a standard library of functions.  
This report details that integration with information on the algorithm, some implementation issues, and 
some sample results from the western United States’ power grid. 
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1.0 Introduction 

 The deployment of phasor measurement units (PMUs) and other measurement devices continues to 
increase the insight into and understanding of the power grid.  These higher sampling rate devices are 
revealing behaviors in the underlying grid, especially related to oscillatory behavior on the system.  
However, the increased fidelity of the measurements also results in significantly more data being 
streamed into power operations centers, often at rates beyond a normal operator’s ability to examine and 
parse.  Methods of detection and effectively filtering the data are needed to get the useful information out 
of this collection and presented to the operators and engineers of the power system. 
 
 One method for managing the information flow is to detect conditions like oscillatory behavior and 
flag that data set for review.  The Data Integrity and Situational Awareness Tool (DISAT) being 
developed at the Pacific Northwest National Laboratory (PNNL) is one tool to detect such conditions.  
Utilizing historical data and statistical analysis techniques, DISAT examines the PMU data and looks for 
abnormal behavior.  That is, DISAT looks for conditions on the system that either do not match historical, 
baseline-analysis expectations.  This anomaly detection is based on the combination of different 
measurements to form an atypicality score.  Events that are uncommon or differ from an expected norm 
receive a higher atypicality score, prompting review and closer examination of that data. 
 
 Oscillatory behavior on the power system represents a condition where atypical or abnormal behavior 
can represent larger grid issues, or equipment failures or misoperations.  Oscillatory conditions have 
become more observable with the deployment of PMUs.  Behaviors like inter-area oscillations have been 
a research topic for many years, providing greater understanding of the larger power system.  The PMUs 
have also increased the observability of other oscillatory behaviors, such as forced oscillations.  Forced 
oscillations, unlike modal oscillations, are not a natural characteristic of the power system.  They are 
often induced by equipment operating between limit cycles, misoperating controls, or equipment 
behaviors in less desired regions of operation.  The ability to detect and diagnose these forced oscillations 
aids power grid operators in providing power more efficiently, as well as potentially preventing any 
costly, longer outages associated with an unexpected, catastrophic equipment failure. 
 
 The project implements a method of oscillation detection into the DISAT framework.  Built upon a 
Fourier-based method, the oscillation detection routine creates atypicality values for the DISAT program.  
Using these atypicality flags, DISAT provides the time and observation channel information to the power 
system operator.  This reduces the amount of data the operating or planning engineer needs to examine to 
track down the problem, and allows them to focus their efforts. 
 

This report describes the underlying oscillation detection algorithm, as well as its integration into the 
DISAT framework.  Implementation lessons and some initial findings from the algorithm are outlined 
near the end of that section.  Analysis examples from PMU data obtained on the western United States’ 
power system are shown, highlighting the oscillation detection results.  The report concludes with some 
overall conclusions and future work for the project. 

 

2.0 Method 

The signal processing literature offers many suggestions for the detection of signals in noise. Several 
of these methods could be used directly or with some adjustment to detect the presence of forced 
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oscillations in power systems, but to the authors’ knowledge the only published works describing the use 
of such algorithms are [Follum, 2013], [Zhou, 2013], and [Zhou, 2015]. For use in this application, the 
self-coherence algorithm developed in [Zhou, 2015] was selected for its robust nature and ease of 
implementation. In this section, an overview of the self-coherence algorithm will first be presented. Next, 
some specifics of the algorithm’s implementation with the DISAT tool will be provided. Finally, lessons 
learned during implementation will be shared. 

2.1 Self-Coherence Algorithm 

The self-coherence algorithm is based on estimates of the magnitude squared coherence (MSC), also 
known as the spectral coherence. The MSC is a real valued function of frequency that is bounded between 
zero and one. The value of the MSC at a particular frequency reflects how linearly correlated the two 
time-series are at that frequency. For two time-series  and , the MSC at frequency  is defined as 

 

  
 , (1) 

where  and  are the power-spectral densities (PSDs) of the individual time-series, and 

 is the cross-spectral density between the time-series. 

The MSC can be estimated for sampled time-series by replacing , , and  with 

their estimates. In this work, as with [Zhou, 2015], estimates were generated using Welch’s method. 
Welch’s method operates by averaging together simple spectral estimates from overlapping segments of 
time-series measurements. These simple spectral estimates are based on the discrete Fourier transforms 
(DFTs) of the sampled time-series. Let the time-series measurements sampled at an interval of  

seconds, which corresponds to a sampling rate of  samples per second, be given by  
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where used to account for the effects of the data window . Using the DFTs in (3), estimates of the 
cross-spectral density are calculated as 

 

  

1
 , (5) 

where 
 

 

2 ∗ 0
2

∗ 0
. (6) 

The PSD estimates are calculated as special cases of (5) and (6) where both time-series are identical, i.e., 
both time-series are  for  or both time-series are  for . 

As mentioned previously, the MSC indicates how linearly correlated two time-series are as a function 
of frequency. To detect forced oscillations, [Zhou, 2015] suggested examining the MSC between a set of 
PMU measurements and a time-delayed version of those measurements, prompting the term self-
coherence. When a forced oscillation is present in both the original and delayed versions of the signal, the 
self-coherence will be near one at the frequency of the oscillation. When a forced oscillation is not 
present, the PMU measurements are primarily composed of ambient noise and the coherence can be 
expected to be near zero when a sufficient delay is used. 

In [Zhou, 2015], a detection threshold was used to determine whether or not a forced oscillation was 
present. If the self-coherence exceeded the threshold at some frequency, then an oscillation was detected 
at that frequency. The threshold approach is standard for implementing detection algorithms. In this 
application, however, the DISAT tool was used to determine whether self-coherence values indicated 
atypical system behavior, i.e., the presence of a forced oscillation. In the following section, details on this 
implementation strategy will be provided. 

2.2 DISAT Implementation 

Implementation of the self-coherence algorithm was strongly guided by the existing framework of the 
DISAT tool. DISAT was implemented using the R programming language [R Core Team, 2014]. The 
user interface was developed using the Shiny package within R. In this section, details regarding this 
implementation will be given, including a description of the available data, an overview of the DISAT 
tool’s operation, and the approach to detection of forced oscillations as atypical events. 

Data was stored in files containing one minute of measurements collected at 60 samples per second 
from 31 PMUs. The self-coherence algorithm was applied to each minute separately. After loading each 
minute, a filter was applied to remove bad data corrupted by PMU malfunction, communication failure, or 
phasor data concentrator (PDC) error. To avoid interpolating through bad data, only the largest section of 
contiguous data for each channel was analyzed. Positive sequence voltage angle measurements were used 
to derive measurements of the system’s frequency deviation from the nominal 60 Hz synchronous 
frequency. This calculation was performed by applying a first-order derivative filter, multiplying by the 
sampling rate, and dividing by 360 degrees. Finally, a high-pass detrending filter with a cutoff frequency 
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of 0.1 Hz was applied to remove low-frequency trends in the data. Application of these preprocessing 
steps helped the algorithm to detect the oscillations of interest. 

Rather than directly detecting forced oscillations using self-coherence values, parameters from the 
self-coherences were passed to DISAT for analysis. For each minute and every available PMU channel, 
the peak value of the self-coherence, the frequency associated with that peak, and the median of the self-
coherence values across a frequency range of interest were passed to DISAT. Within DISAT, each minute 
of data was grouped into clusters based on these parameters. As will be discussed later, clustering the data 
provided insight when examining atypicalities. 

Beyond clustering the data, the peak, frequency, and median value parameters were also used to 
calculate an atypicality score for each minute. In most cases, high atypicality scores indicated that a 
forced oscillation may be present in the system during that minute. A threshold was selected to 
distinguish minutes with high atypicality scores from the rest. After determining that a minute had a high 
atypicality score, the variables (PMU channels) contributing most to the high atypicality score were 
identified. These PMU channels were listed in DISAT’s user interface to indicate where the forced 
oscillation was most observable, which, in many cases, is also where the oscillation likely originated. 

To communicate the forced oscillation’s distribution in the system, maps were created for each 
atypical minute. The maps marked the location of all utilized PMUs with a circle. The color of each circle 
corresponded to the frequency of the peak in the self-coherence spectrum. The radius of the circles was 
made proportional to the value of the peak. Thus, a collection of large and similarly colored circles 
indicated PMUs at which a common forced oscillation was observable. Examples of these maps are given 
in the Results section. In the user interface, the maps are plotted alongside graphs of the atypicality score 
over time. These combination figures were created for each of the 30 minutes preceding and following the 
atypical minute. By displaying the maps and atypicality scores sequentially, the oscillation’s progression 
could be observed.  

2.3 Implementation Lessons 

Several lessons were learned during the implementation of the spectral coherence component of 
DISAT; two will be discussed here. An initial implementation allowed for an examined frequency range 
extending to the highest possible value, 30 Hz. It was observed that a disproportionately large number of 
peaks in the self-coherence spectrum fell between 20 Hz and 30 Hz. This phenomenon can be attributed 
to the extremely small spectral content in this frequency band, which leads to numerical errors when 
calculating the self-coherence. In response, the examined frequency range was limited to frequencies 
below 20 Hz. 

Early implementations of DISAT also considered all voltage angle measurements from the PMUs, 
i.e., three individual phases and the positive sequence component calculated from them. After examining 
results, it became clear that inclusion of the individual phases was redundant. For the spectral coherence 
algorithm, DISAT now only operates on positive sequence components. 
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3.0 Results 

The spectral coherence portion of the DISAT tool was applied to 227 days of PMU data provided by 
BPA, resulting in 117 minutes being flagged as atypical. After being flagged, the atypical minutes were 
examined using periodograms to seek corroborating evidence of forced oscillations. Periodograms are 
often used to detect sinusoidal signals in noise [Kay, 1998][Stoica & Moses, 2005]. Clear evidence 
supporting DISAT’s flags was found in 110 of the atypical minutes. In four of the remaining seven cases, 
the self-coherence algorithm provided strong evidence of forced oscillations (peaks were in excess of 
0.82), but the periodograms did not. This disparity may indicate that the forced oscillation’s source was a 
stochastic system disturbance with frequency content spread over a band of several Hertz. Methods based 
on the MSC are better suited than periodograms in this scenario. The peaks in the self-coherence for these 
four cases were primarily located between 16 and 20 Hz, suggesting that the oscillations may have had a 
common cause. 

Two of the remaining minutes were flagged due to large peaks in the self-coherence at the lowest 
examined frequency, 0.1 Hz. In both cases, the high self-coherence was due to significant frequency 
content that exists in power systems below approximately 1.0 Hz. Examining only frequencies above 1.0 
Hz would solve the problem, but at the cost of the ability to detect forced oscillations in the important 
range between 0.1 and 1.0 Hz. As only 2 minutes out of 227 days were incorrectly flagged due to this 
problem, adjustment is probably unnecessary. 

The final minute flagged as atypical by DISAT showed little evidence of a forced oscillation in either 
the self-coherence or the periodogram. In this case, the atypical nature of the data appeared to be 
unrelated to the presence of a forced oscillation. 

The clusters corresponding to all 117 of the atypical minutes are listed in Table 1. Note that seven 
atypical minutes (marked in red) belonged to clusters characterized by low peak value means. Though it 
is counterintuitive that minutes from such clusters would contain forced oscillations, examination of the 
atypical minutes from the clusters with periodograms verified the flags from DISAT in most cases. Still, 
flagged minutes from clusters characterized by low peak values probably deserve extra scrutiny. 

 
Table 1.  List of atypical minutes by cluster 

 Clustering Parameters 

Atypicalities in 

Cluster 

Peak Value 

(mean) 

Frequency 

(standard deviation) 

Median Spectral Coherence 

(mean) 

65 High Normal Normal 

18 High Normal High 

11 High Low High 

5 High Low Normal 

5 Low Normal Low 
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4 Normal Normal Low 

2 Normal Low High 

2 High Low Low 

2 Normal Low Low 

2 Low Low Low 

1 Normal Normal High 

 

After performing the atypicality analysis, results were displayed in an interactive application 
developed and run within R. After the user selects an atypical minute, a map of the western United States 
is displayed along with a plot of the atypicality score. An example of the display for an atypical minute is 
presented in Figure 1. The locations of the dots on the map correspond to geographic locations of the 
PMUs used for analysis. The peak values of spectral coherences and their corresponding frequencies are 
indicated by the radius and color of the dots, respectively. Thus, the map in Figure 1 indicates that a 
forced oscillation with a frequency of 16.7 Hz (green color) was observable in many parts of the system, 
particularly along the Washington-Oregon border (large dots). The atypicality score plot shows that 
atypical behavior began at approximately 01:15 and persisted intermittently until at least 01:57. 

Maps and plots are generated for the 30 minutes preceding and following the atypical minute so that 
the user can observe how the forced oscillation progressed with time. For example, compare Figures 1 
and 2. Figure 2 was generated using data that preceded the flagged atypicality by 17 minutes. The map 
indicates that peak spectral coherence values for various PMUs tended to be small and widespread in 
frequency. As a result, the atypicality score for the minute, which is indicated by a vertical red dashed 
line, is quite low. Examination of the minutes following the flagged atypicality revealed that the 16.7 Hz 
forced oscillation returned to the system several times and caused the high atypicality scores plotted in 
Figures 1 and 2. 
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Figure 1:  Example display from the DISAT application for an atypical minute. The solid red vertical line 

in the atypicality score plot indicates the atypical minute, as does the time above the map. 
 



 

8 

 
Figure 2:  Example display from the DISAT application. This display is associated with the atypical 
minute from Figure 1, but the map was generated based on data preceding the flagged atypicality by 

several minutes (note the vertical dashed line at 01:10 in the atypicality score plot). 
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4.0 Conclusion 

Integration of the self-coherence algorithm into the DISAT framework allows forced oscillations to 
be successfully detected. By highlighting the minutes and PMU locations where forced oscillations are 
observed, the tool circumvents the need for each minute and channel of data to be examined individually, 
a prohibitively large and arduous task. Informing operational engineers of when and where forced 
oscillations are present will improve their ability to correct the equipment misoperation or failure leading 
to the oscillation. In this way, the incorporation of the self-coherence algorithm into DISAT can have a 
positive impact on the reliable and efficient operation of the power system. 

Currently, PNNL is continuing development of algorithms to be used for the detection of forced 
oscillations. This development includes investigation of algorithms with better detection capabilities and 
expansion of the algorithms into multi-channel methods. Eventually, the multi-channel nature of these 
algorithms may lead to improved methods of locating the sources of forced oscillations. Work will also 
continue to refine visualizations, such as those in Figures 1 and 2. Improving the visualizations based on 
feedback from operational engineers will help detection tools achieve their full potential impact. 
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