
PNNL-23798

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Drupal Automated Testing:
Using Behat and Gherkin

Thomas Williams – Thom.Williams@pnnl.gov
Carolyn Wolkenhauer – Carolyn.Wolkenhauer@pnnl.gov
Michael Madison – Michael.Madison@pnnl.gov

October 2014

 DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

 PACIFIC NORTHWEST NATIONAL LABORATORY
 operated by
 BATTELLE
 for the
 UNITED STATES DEPARTMENT OF ENERGY
 under Contract DE-AC05-76RL01830

 Printed in the United States of America

 Available to DOE and DOE contractors from the
 Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

 Available to the public from the National Technical Information Service,
 U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

 (9/2003)

 1

Table of Contents
Overview ... 2	
Automated Testing on Drupal sites using Behat and Gherkin .. 3	

1.1	 What are Gherkin and Behat - The Language and the Framework: 3	
1.2	 How does it work ... 3	

Installation ... 5	
1.3	 Copy the files ... 5	
1.4	 Setup behat.yml .. 5	

Usage ... 6	
Troubleshooting .. 7	

 2

Overview

Drupal is an open source, web based content management system. It is managed and maintained by an
international community made up of thousands of users. The Pacific Northwest National Laboratory
(PNNL) has a group of experts that develop web applications using the Drupal 7 framework and actively
participate in the large Drupal community.

This document describes techniques used by PNNL to perform automated testing in Drupal. Most of the
guidance here should be considered to be generic Drupal guidance, and not specific to any individual
website(s). Additional resources that may be consulted include:

Drupal FAQ: https://www.drupal.org/drupal-faq

Drupal Term Glossary: https://www.drupal.org/glossary

List of US Government Sites Using Drupal: https://groups.drupal.org/government-sites#USA

PNNL Drupal Team: http://drupal.pnnl.gov

Disclaimer:
Drupal has many different configuration options, settings, and options for administrative users. This guide
is specifically focused on automated testing within the Drupal framework. It is strongly recommended
that you work closely with a developer from the PNNL team to make any changes to automated tests to
ensure they are a part of the development cycle (development, testing, deployment). It is also highly
likely that changes to tests made directly to the production environment may be lost on future
deployments.

 3

Automated Testing on Drupal sites using Behat and Gherkin

Throughout the development cycle of Drupal sites, more features, content types, and elements are
continuously added to the site. As this happens, it becomes readily apparent that the testing efforts need to
include a quick yet comprehensive way to run a regression pass of all test cases against all features that
come together to make the final production website.

To address this we needed an automated testing tool, with a Drupal compatible framework to store the test
cases in and a simple language that didn’t require extra effort and time delays to learn. Gherkin in
conjunction with Behat presented a useful solution.

1.1 What are Gherkin and Behat - The Language and the Framework:
Gherkin is a business readable (not English only) language designed for behavior testing tools like Behat.
It serves two purposes; it provides documentation for your project and helps create automated testing in a
human readable language.

Behat is a behavior-driven development framework for PHP. Behavior-driven development starts with
human readable sentences that describe your objective, and then implement that objective in software.

More information on Behat and Gherkin can be found here:

• Gherkin	 Documentation	
• Behat	 Documentation	

1.2 How does it work
Behat testing is executed via the command line. This can be done in either a Windows, or a
Mac/Linux/Unix environment. Because these tests use a command line browser behind the scenes,
JavaScript is not available; JavaScript testing, however, is handled with manual test execution.

When running a Behat test, the test can be selected either by its name or by tags that can represent one or
more tests (illustrated below).

Tests run by feature name
behat --profile project --name accesstest
Tests run by tag name
behat --profile project --tags procedure
Tests run by both feature name and tag name
behat --profile project --name accesstest --tags procedure

Test names are designed to correspond with a testing objective or content type. Behat tests written in
Gherkin are named both with a "Feature" and a "Scenario". The Feature is the name of the suite of tests
saved in a single file, and a Scenario is a single test. Following is an example:

Feature: accesstest

Scenario: Get a result
 When some test code
 Then I get a result

Scenario: Get a different result
 When some more test code
 Then I get a different result

 4

In this example, the tests can be run from the command line with the name "accesstest".

Behat tests are saved in files with a “.feature” extension in the "tests/features" directory.

These tests are written in the Gherkin language which describes how a test can be run. For example, a file
named access.feature, would contain tests that check who can and cannot access the site based on their
role or login level.

When Behat is running a test by name it looks for the text naming the Features and Scenarios. To prevent
multiple tests running under the same name, Features for a site, should have unique names. When looking
for names or tags, Behat is case sensitive. As a convention we use all lower case in our names and tags.

Tags can also be used to group one or more tests within a feature.

We have developed a system of tags and feature name that allow any set of tests to be run simply:
Feature names follow the file name in which they are stored. If the file is Access.feature, the test will be
named accesstest. If the file is named Hello_World.feature the test would be named helloworldtest. We
removed any separation between words, made everything lowercase, and appended test to the end of the
name in an effort to make all Feature names unique.

Tags are marked by the @ symbol. @tag_name is a tag called tag_name. We use five primary tags in our
tests.

• @1 (numbered tags)
• @setup
• @procedure
• @reset
• @cleanup

	
Numbered tags consecutively number each scenario in the feature. These tags are primarily used during
development to run a single test and make sure that a particular website feature is performing properly.

Setup tags are designed to create content. Each test of a Drupal content type needs to create content used
to test that content type or be used as related content in other tests.

Procedure tags are used to run the body of the tests. This tag runs the majority of the tests in a Feature
and performs all of the functional testing. It also creates any relationships needed between content types.

Reset tags are used to undo any changes the procedure tag created. If a piece of content is published in
the procedure, it will be unpublished in the reset. If it is related to other content in the procedure, reset
will clear out that relationship.

Cleanup tags are used to delete content. Run these when done testing to eliminate the content created for
the various tests. It will return the test environment to original state, so this is also useful if a test needs to
be repeated to confirm results.

 5

Installation

1.3 Copy the files
The version of Behat used at PNNL with any modifications needed to run the tests on your site is
included in the zip file provided by PNNL.

In the zip file you will find the "Behat" and "tests" directories. The “Behat” directory contains the Behat
source code while the “tests” directory contains all of the tests for the site.

Copy both the “Behat” and “tests” directories up to the server as siblings of the root Drupal folder
(master) provided.

1.4 Setup behat.yml
Make a copy of example.behat.yml and name it behat.yml

Bash shell:

Navigate to 'tests' sub-directory of project working copy
cd /path/to/project-repo/tests

Create local behat.yml if it doesn't exist
cp example.behat.yml behat.yml

Windows shell:

Navigate to 'tests' sub-directory of project working copy
cd C:\path\to\project-repo\tests

Create local behat.yml if it doesn't exist
copy example.behat.yml behat.yml

Edit behat.yml

project-name:
 extensions:
 Behat\MinkExtension\Extension:
 base_url: 'http://localhost/project-name'
 context:
 parameters:
 http_auth: false

Change project-name to match the name of your project Change url in base_url to match the URL
used to reach the project site (be sure to include http:// or https://) If using http:// to access the site make
sure http_auth is set to false If using https:// set http_auth to true Save behat.yml

 6

Usage

If new terminal session, "activate" Behat (add Behat sub-directory to session PATH) bash shell:

Bash shell:

Navigate to Behat working copy
cd /path/to/behat-repo

Add Behat sub-directory to session PATH
source activate

Windows shell:

Navigate to Behat working copy
cd C:\path\to\behat-repo

Add Behat sub-directory to session PATH
activate

Note: If you are comfortable doing so, you can add the directory behat-repo/behat to your system PATH;
then, you will no longer need to "activate" Behat each for each new terminal session.

Navigate to project ‘tests’ directory

Bash shell:

Navigate to 'tests' sub-directory of project working copy
cd /path/to/project-repo/tests

Windows shell:

Navigate to 'tests' sub-directory of project working copy
cd C:\path\to\project-repo\tests

Run project tests:

Run setup for all the tests
behat --profile project-name --tags setup

Run procedure for all the tests
behat --profile project-name --tags procedure

Run cleanup for all the tests
behat --profile project-name --tags cleanup

Run only tests matching (feature) name ex. 'accesstest'
behat --profile project-name --tags setup
behat --profile project-name --name accesstest --tags procedure
behat --profile project-name --tags cleanup

 7

Troubleshooting

Problem: Configuration for profile "project-name" cannot be found.

Solution 1: Make sure you are in the "tests" directory. In order for behat to find your profile you need to
be running behat from the same directory as your behat.yml file.

Solution 2: Make sure your behat.yml file is named correctly. If your behat.yml file gets accidentally
renamed as anything else (including behat .yml) it will not read the file correctly.

Solution 3: Make sure your behat.yml settings are set correctly:

• Check your url, make sure it contains the correct prefix (http:// vs. https://).
• Make sure your http_auth setting is set correctly.

Problem: Setup tag fails.

Solution 1: This can happen when content already exists. Drupal will add a numbered suffix on the url
for content if the content has the same title as another piece of content. If the setup tag is run more than
once without deleting the content that is created, the test will fail because it will not find the correct url on
file creation.

To fix this you need to remove all of the autotest content and then re-run the setup tag. To delete the
autotest content, log into the site as an admin user and go to the "Content Management" page. Select all of
the content prefixed with "Autotest" and delete it.

Solution 2: If the server is really busy, connection timeouts can also cause a test to fail. Content is usually
created but should be deleted and recreated with a successful setup run. Run the cleanup tag or remove
the content using the method in Solution 1 and then run the setup tag again to create the content. If you
still have problems with timeouts, try waiting a couple of hours, or try running the tests at a different time
of day.

Problem: Cleanup tag fails.

Solution 1: The cleanup scenarios can fail if content is not unrelated before it is deleted. If this happens,
before continuing testing, navigate to the site and log in as an admin user. Go to the "Content
Management" page, select all of the content prefixed with "Autotest" and delete it.

Solution 2: If the cleanup tag is run multiple times in a row, it will fail because the content it is supposed
to remove has already been deleted. Simply verify that all test related content has been removed and you
will be good to go.

