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Abstract

The increasing impacts of randomness and variability on modern power systems are changing and
will dramatically continue to change patterns of system behavior, how systems are planned, how systems
are dispatched, and how energy is exchanged. The existing deterministic approaches primarily used by
utilities are based on deterministically established dispatch and flow patterns, a few “typical” stresses, and
known congested paths. Consequently, these approaches are becoming increasingly inadequate for
dealing with the problem of uncertainty. A new generation of probabilistic methods, reliability and
control performance criteria, tools, and business practices is necessary to address these challenges.

This project is funded by the Office of Electricity Delivery and Energy Reliability (OE) at the U.S.
Department of Energy (DOE). It directly addresses these needs and the DOE OE goal “...to develop the
next-generation of system planning and operations tools and controls to visualize system dynamics,

identify areas of reliability concern, prevent and mitigate cascading events, and support post-event
analyses”.

The key objectives of this project are as follows:

e Develop a concept and methodologies for real-time and offline power system analytics,
representing a power system as a stochastic machine.

e Develop and test new uncertainty quantification methods and tools.
e Support the transition from deterministic to probabilistic methods in planning and operations.
The main results of this first phase project include the following:

1. A zonal geographically distributed model was developed for the Western Electricity Coordinating
Council (WECC) system reflecting various sources of uncertainty in their interaction (load, wind
and solar generation). The model forms a basis for developing and testing probabilistic methods.

2. Our approach based on separation of slow and fast power system motions (represented as net load
variations) and associated uncertainties using probabilistic methods helps to improve
predictability and reduce uncertainty in the system. In this project we attempted to predict the
forecast error based on state-of-the-art prediction methods. The ability to partially predict forecast
errors would help to reduce the forecast error itself as well as ultimately reduce the prediction
interval around the errors. Such a task is very challenging. Our results show that this, in fact, is
feasible. We successful demonstrate that that is possible to reduce the forecast error if the signal
has autocorrelation or cross-correlation with other signals.

3. The statistical separation of fast and slow motions helps to better distribute the balancing job
between slow and fast balancing resources; so that they are more efficiently used and the cost is
reduced (the fast-responsive resources are usually more expensive). In this project, advanced
statistical methods were applied to separate slow, fast and very fast system motions caused by
variation of the net system load.



4.

5.

6.

We developed and demonstrated new methods for quantification and adjustment of transmission
limits using probabilistic methods (in the WECC system). We demonstrated how the transmission
limits in the WECC system can be quantified and adjusted to minimize the risk of violations
caused by uncertainty. This adjustment can also help to increase the utilization of transmission
facilities within capacity and reliability limits.

A new probabilistic methodology and new analytical software called the Transmission
Uncertainty and Prediction Tool (TUT) was developed at Pacific Northwest National Laboratory
using funding from DOE OE, DOE Office of Energy Efficiency and Renewable Energy (EERE),
and the California Energy Commission (CEC). The developed methodology predicts the impact
of the uncertainties on congested paths, worst-case voltage drops, and reactive power margins for
several hours ahead of time and, if needed, proposes control actions to mitigate the problem if
necessary.

We demonstrated how TUT can benefit from parallelization.

The following significant impacts are expected to be achieved by this phase of the project:

¢ Risk-based adaptive constraints for system dispatch, unit commitment and energy imbalance
markets will result in a better utilization of transmission within reliability requirements.

o Predictive/preventive control based on probability and risk will reduce the need for last-
minute operator actions such as load shed or disconnection of wind generation.

e Improved uncertainty quantification and forecasting will reduce the balancing reserve needs
and associated cost.

e The advanced prototype level Transmission Uncertainty and Prediction Tool (TUT) will
predict the impact of uncertainties on the transmission system.



Summary

This project is funded by the Office of Electricity Delivery and Energy Reliability (OE) at the U.S.
Department of Energy (DOE).

Motivation of this project

The increasing impacts of randomness and variability on modern power systems are changing and will
dramatically continue to change patterns of system behavior, how systems are planned, how systems are
dispatched, and how energy is exchanged. The existing deterministic approaches primarily used by
utilities are based on deterministically established dispatch and flow patterns, a few “typical” stresses, and
known congested paths. Consequently, these approaches are becoming increasingly inadequate for
dealing with the problem of uncertainty. A new generation of probabilistic methods, reliability and
control performance criteria, tools, and business practices is necessary to address these challenges.

Benefits of probabilistic methods
1. Adapting system planning and operations methods to increasingly stochastic system behavior.

Improving reliability by addressing uncertainty and variability.

Better and robust decision making for a wider range of possible system conditions.

Optimizing capital investments in system development.

More economical system operation due to (1) uncertainty quantification and proactive

minimization; and (2) optimizing the “mainstream” system performance within the foreseeable

range of uncertainty and variability, e.g., covering 99% of uncertainty.

6. Optimizing reserves to address system uncertainties and variability within the main uncertainty
range.

7. Developing the ability to scientifically plan and prepare the system for extreme events outside of
the mainstream operational range.

SARE S S A

What will happen without the transition from deterministic to probabilistic
methods?
1. Increasing risk of system failures, blackouts and near-misses.
2. More congestion problems in real time; over-conservative operational limits; underutilization of
transmission assets.
3. Excessive or insufficient operating reserves.
4. Less economical system operation while addressing unexpected situations.

What are the barriers to transitioning from deterministic to probabilistic
methods?

There is a widespread understanding of the need for such transition. But there are several significant
challenges:

e Lackof primary statistical information accumulated by the industry.
e Lackof the methods and means for storing, processing, consolidation and validation of this
information.



e Lackof the models reflecting all sources of uncertainty.

e Absence of trustworthy probabilistic reliability criteria and business practices.

o Insufficient familiarity and experience with state-of-the-art probability theory and methods among
engineers.

e Insufficient range and number of production-grade probabilistic tools.

e Investments and effort needed for the transition.

Proposed overall plan

The purpose of this effort is to attract interest from industry organizations and vendors to make a
subsequent implementation project feasible by laying the foundation of methodologies for incorporating
uncertainties into power system planning and operation. Ultimately, this project could lead to an industry-
wide effort (a major nation-wide initiative) to transform grid planning and operation from the existing
deterministic platform to the new probabilistic platform. Over the course of future phases, we envision the
following major steps:

Develop a comprehensive framework and roadmap for probabilistic planning and operations
based on state-of-the art criteria, methodologies, software tools, and technologies.

Cooperate closely with the industry, regulators, universities, government, national laboratories,
software vendors, and other interested organizations to make sure that the best ideas, know-how
and skills are reflected in the framework and the roadmap.

Initiate and lead a nation-wide effort for implementing this framework within the next 5 years as
a standard US practice in planning and operations.

Facilitate continuing education, dissemination, and technology transfer in the area of probabilistic
methods and applications.

Create and lead a Probabilistic Technology Interest Group (PTIG) as a tool to implement the
Roadmap and forum for organization interested in the area. The Group could be based on (Utility
Variable-Generation Integration Group) UVIG (membership fees) or North American
Synchrophasor Initiative (NASPI) models (funded by DOE).

Specific objectives of Phase 1 of the project

Develop a concept and methodologies for real-time and offline power system analytics,
representing a power systemas a stochastic machine.
Develop and test new uncertainty quantification methods and tools with the following
capabilities:
0 Multi-source, multi-variant geographically distributed uncertainty model.
0 Characterize prevailing system motions by a limited number of principal components.
0 Quantify probabilistic limits along principal component analysis (PCA) coordinates.
0 Explore opportunities for statistical separation of fast and slow system motions and their
prediction.
High performance computing (HPC) applications.
Transmission uncertainty and prediction tool.
o0 Contribute to the transition from deterministic to probabilistic methods in planning and
operations.

o O
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Phase | results

1. Azonal geographically distributed model was developed for the Western Electricity Coordinating
Council (WECC) system reflecting various sources of uncertainty in their interaction (load, wind
and solar generation). The model forms a basis for developing and testing probabilistic methods.

2. Our approach based on separation of slow and fast power system motions (represented as net load
variations =load variations — wind variations — solar variations) and associated uncertainties
using probabilistic methods helps to improve predictability and reduce uncertainty in the system.
Slower motions of stochastic processes are more predictable due to more autocorrelation between
the subsequent points. By employing this autocorrelation, it is possible to improve the forecast of
parameters subject to uncertainty. By quantifying uncertainty around the improved forecast, it is
possible to reduce the range of uncertainty.

3. Connection of uncertainty with system motions. A power system maintains balance between its
generation, changing load, variable generation, and interchange. Increasing uncertainty means
more balancing work to be done by conventional generation, energy storage, and controllable
load. Inother words, these resources have to move more with increasing uncertainty and
variability. Because the balancing service is a paid service, more system motion results in
additional costs. The statistical separation of fast and slow motions helps to better distribute the
balancing job between slow and fast balancing resources; so that they are more efficiently used
and the cost is reduced (the fast-responsive resources are usually more expensive).

4. Inthis project, advanced statistical methods were applied to separate slow, fast, and very fast
system motions caused by variation of the net system load. The very fast motion is actually white
noise, which is a completely unpredictable component of a signal. If the forecast error is exactly
white noise, this is a perfect forecast. The advanced statistical methods applied were:

a. Wavelet transforms — autoregressive integrated moving average (ARIMA) method.
Wavelet transforms were used to extract the slower component in the total load forecast
error. The ARIMA model was used to predict this slower component. We demonstrated
an uncertainty reduction of 10-12% by applying this combination of methods.

b. We demonstrated, that the proposed decision tree regression analysis method helps to
reduce the uncertainty (and associated balancing effort) up to 40%, and that the residual
(very fast motion component) becomes close to white noise.

c. Principal component analysis (PCA). By applying this method, we employ cross-
correlation between the total load forecast errors in different zones of the WECC system.
This is a new idea. The PCA helps to reduce the number of dimensions, where the
predictable forecast components of multiple zonal errors can be located. This helps to
improve the accuracy of the forecasts, and make the residual error close to white noise.

5. We developed and demonstrated new methods for quantification and adjustment of transmission
limits using probabilistic methods (in the WECC system). Using the Transmission Uncertainty
Prediction Tool (TUT), we demonstrated how the transmission limits in the WECC system can be
quantified and adjusted to minimize the risk of violations caused by uncertainty. This adjustment

Vil



canalso help to increase the utilization of transmission facilities within capacity and reliability
limits.

6. PNNL Transmission Uncertainty and Prediction Tool (TUT). Interactions among wind, solar gen
load forecast errors can have a random impact on transmission system. This event can lead to
additional congestion and voltage stability problems. To mitigate this problem, Balancing
Authorities (BAs) should be able to re-dispatch their conventional generators ahead of time, if
such impact can be predicted. A new probabilistic methodology and new analytical software
called the Transmission Uncertainty and Prediction Tool (TUT) was developed at Pacific
Northwest National Laboratory using funding from DOE Office of Energy (OE), DOE Office of
Energy Efficiency and Renewable Energy (EERE), and the California Energy Commission
(CEC). The developed methodology predicts the impact of the uncertainties on congested paths,
worst-case voltage drops, and reactive power margins for several hours ahead of time and, if
needed, proposes control actions to mitigate the problem if necessary.

7. We demonstrated how TUT can benefit from parallelization.

Importance and significance of Phase 1 results

The following significant impacts are expected to be achieved by this project:

e Achieve better utilization of the transmission system capacity under reliability requirements
through risk-based adaptive constraints for system dispatch, unit commitment, and energy
imbalance markets.

e Reduce and eliminate the dependence on last-minute operator actions such as load shed or
disconnection of wind generation though predictive/preventive control based on probability
and risk.

e Reduce balancing reserve needs and the associated costs through improved uncertainty
quantification and forecasting methods.

e The developed methodology and TUT tool have several very important advantages and
opportunities for the balancing authorities (BAs) and other transmission system operators
(TSOs):

0 Better quantification of available security margins.

Better reliability level.

Better utilization of transmission assets.

Better situation awareness and predictive system monitoring.

Preventive control.

O 00O

Proposed Fiscal Year 2015 Tasks

e Move the Transmission Uncertainty and Prediction Tool to a near production level of development.
The Tool will be transformed into a “fully” standalone application.

viii



Stochastic optimization and control. The project will reformulate key optimization and control
problems to reflect the random nature of 21%'-century power systems operations.

Tail events quantification and assessment. The tail events are observed whenever the system state
exceeds the limits suitable for the “mainstream” power system operations. The tail events are not very
well studied or addressed in the modern system planning and operation. The proposed task will be
one of the first efforts to quantify these events, predict them, and develop uncertainty-based controls
to avoid them.
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Acronyms and Abbreviations

AC Alternating current

AGC Automatic generation control

AIC Akaike information criteria

ARIMA Autoregressive integrated moving average
BA Balancing authority

BIC Bayesian information criteria

BR Balancing requirement

CAISO California Independent System Operator
CEC California Energy Commission

COl California-Oregon Intertie

CPS Control performance standards

CSP Concentrated solar power

DC Direct current

DOE Department of Energy

EERE DOE Office of Energy Efficiency and Renewable Energy
EMS Energy Management System

GIS Geographical information systems

GUI Graphical user interface

HILF High-impact low-frequency

HPC High performance computing

i.id. Independent identically distributed random variables
IPC Idaho Power Company

I1ISO Independent system operator
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KPSS Kwiatkowski-P hillips—Schmidt-Shin test

MAE Mean absolute error

MC Monte Carlo

MGDM Multivariate geographically distributed model

OE DOE Office of Electricity Delivery and Energy Reliability

NASPI North American Synchrophasor Initiative

NREL National Renewable Energy Laboratory

PACE PacifiCorp East

PCA Principal component analysis

PDF Probability density function

PG&E Pacific Gas and Electric Company

PNNL Pacific Northwest National Laboratory

PTDF Power transfer function distribution factor

PTIG Probabilistic Technology Interest Group

PV Photovoltaic

QQ plot A probability plot, which is a graphical method for comparing two probability
distributions by plotting their quantiles against each other.

RJDBC R package for Java Database Connectivity

RPS Renewable portfolio standard

SCE Southern California Edison

SDGE San Diego Gas and Electric

SQL Structured Query Language

SVvD Singular Value Decomposition

TEPPC Transmission Expansion Planning Policy Committee

TSO Transmission system operators
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TUT

UVIG

VGS

WECC

WT

Transmission Uncertainty and Prediction Tool
Utility Variable-Generation Integration Group
Variable Generation Subcommittee

Western Electricity Coordinating Council

Wavelet transform
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1.0 Introduction

The increasing impacts of randomness and variability on modern power systems are changing and
will dramatically continue to change patterns of system behavior, how systems are planned, how systems
are dispatched, and how energy is exchanged. The existing deterministic approaches primarily used by
utilities are based on deterministically established dispatch and flow patterns, a few “typical” stresses, and
known congested paths. Consequently, these approaches are becoming increasingly inadequate for
dealing with the problem of uncertainty. A new generation of probabilistic methods, reliability and
control performance criteria, tools, and business practices is necessary to address these challenges.

1.1. Motivation of This Project

There is a significant needto develop key elements of a new grid methodology based on
probabilistic system models and performance/reliability criteria. These methodology elements will
address the fundamental new ways of power system modeling, prediction, stressing, analysis, and control.

Figure 1 shows one conceptual view of the transition from deterministic to probabilistic
technologies used in power system operations and planning. The root problem in this development is
building uncertainty and variability models for all contributing factors. In this figure, some additional
sources of uncertainty are shown, such market impacts, loop flows, micro grids and demand-side controls,
and, of course contingencies. In many instances, this effort requires well-organized, coordinated,
systematic, and continuous collection and processing of primary information, such as transmission lines
and generator outage rates. The next step is building uncertainty models for each source, as well as the
overall large-scale uncertainty model (statistical system model), which also becomes a geographically
distributed model when the transmission aspect of uncertainty is analyzed. Such models can reproduce
statistical characteristics of the primary historical information and serve as scenario generators for
numerous Monte Carlo simulations, which are frequently needed for probabilistic analyses. The high-
performance computational framework becomes essentially important due to the enormous computational
challenge of probabilistic methods. Branches of the “tree” represent some other tasks that can be
implemented using the new probabilistic framework. Together, with the addition of many other tasks,
they will produce a new paradigm for power system planning and operation and decision support tools for
grid operators. New approaches will be developed, for instance, statistical linearization or probabilistic
definition of system stresses. It is important to notice that the global uncertainty quantification is closely
linked with better prediction of system parameters and behavior.
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1.2 CurrentWorkin the Area of Probabilistic Methodsin Power

The area of probabilistic methods applied to power systems attracts a very significant interest from
researchers, and there is a very extensive literature devoted to this subject. Some of the most developed
topics are as follows:

General methods and approaches:
e Probabilistic power flow and contingency analysis
e Probabilistic optimization
e Probabilistic stability analyses
e Advanced Monte Carlo methods for multidimensional discrete/continuous models
¢ High Performance Computing (HPC) applications

Planning:
e Probabilistic composite reliability assessment
e Grid expansion studies
e Capacity planning
e Renewables integration
e Capacity credit

Operations:
e Probabilistic forecasting
e Probabilistic operational limits and risk-based security analysis
e Probabilistic state estimation
e Probabilistic assessment of balancing reserves requirement
e Probabilistic unit commitment and dispatch

A partial review of probabilistic methods in power was conducted by WECC Variable Generation
Subcommittee in its report “WECC VGS Planning Reference Book™ [1, 2]. This project was funded by
DOE Office of Electricity Delivery and Energy Reliability and led by PNNL. The next section is an
extraction of findings provided in [1, 2]. Those references also contain a bibliography.

121 WECCPIlanning Reference Book Review Summary

Report [1, 2] outlines the needs, opportunities, existing approaches, and some of the research in the
area of probabilistic planning. The need for probabilistic approaches is dictated by the increasing
variability and uncertainty in the modern power grids. The variability component appears whenever an
assumption is made that the system parameters are constant, whereas they are changing over time, so that
the difference between the assumed values and the actual values becomes evident. Uncertainty reflects
our inability to accurately predict the future. Actual values slightly deviate from forecasted values.
Variable generation is not the only source of variability and uncertainty in planning. Generation
expansion uncertainty, uncertainty of market-driven dispatches, load uncertainty, random generator and
transmission system outages, and other random factors contribute significantly to overall variability and
uncertainty. It is important to build an integrated uncertainty model to correctly reflect all the impacts in
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their interaction. Working collectively, the sources of uncertainty lead to an increasing gap between the
existing deterministic planning methods and the realities of the observed and expected system
probabilistic behavior. To be able to address these challenges, the need in development and accepting
probabilistic planning methods becomes evident.

A frequently used method of solving this problem is Monte Carlo simulation. This technique involves
repeated simulation with random variables considered. Planning models using the Monte Carlo
methodology have become increasingly useful when planning for integrating variable generation.

Well-being analysis combines the deterministic perception with probability concepts. This new
framework reduces the gap between deterministic (e.g., the loss of the largest available unit) and
probabilistic approaches. Well-being analysis has been applied in the last decade to areas such as
generating systems, operating reserve assessment, and composite generation and transmission systems.

The necessities of probabilistic planning approaches require development of probabilistic planning
criteria. It is virtually impossible to compare the statistically distributed results of applying probabilistic
methods with the existing deterministic criteria. For example, a power flow distribution in transmission
lines, obtained by running a probabilistic load flow algorithm, can be reduced to simply check for an
overload condition in N-1 contingencies. Such an approachwould result in an over-conservative
assessment of available transfer capability on the grid, and ultimately to underuse of the available
transmission facilities. To eliminate this possibility, the simple fact of appearance of a system problem in
a limited number of planning scenarios could be replaced by the probability, risk (probability times the
impact of the violation), severity, expected duration, frequency of occurrence, and other similar
probability-based criteria. The WECC report [1, 2] contains a list of some possible probabilistic criteria,
as well as relevant approaches for their utilization.

High-impact low-frequency (HILF) events have the potential to cause catastrophic impacts on the
electric power system, but either rarely occur or never occur. Examples of HILF risks include coordinated
cyber, physical, and blended attacks, the high-altitude detonation of a nuclear weapon, and major natural
disasters like earthquakes, tsunamis, large hurricanes, pandemics, and geomagnetic disturbances caused
by severe weather. Itis not possible to consider all HILF events and weight their probability. A scenario-
based analysis can be recommended for screening such events. A successful risk management plan will
identify the threats and measure the protection decisions against the costs associated with proposed
mitigation.

1.2.2 Gaps Identified in the Existing Research and Applications

The work in this project is focused on the existing gaps in the development of probabilistic methods
and their application in the industry. Our objective is to contribute to addressing some of these gaps and
helping to facilitate much-needed collective effort among academia, research organizations, vendors and
industry organizations.

The following gaps have been identified:

e Lackof primary statistical information accumulated by industry.

e Lackof the methods and means for storing, processing, consolidation and validation of this
information.
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Lack of the models reflecting all sources of uncertainty.

Absence of trustworthy probabilistic reliability criteria and business practices.

Insufficient familiarity and experience with state-of-the-art probability theory and methods among
engineers.

Insufficient range and number of production-grade probabilistic tools.

Investments and effort needed for the transition.

1.3 TheContentof This Phase of Work

A zonal geographically distributed model was developed for the Western Electricity Coordinating
Council (WECC) system reflecting various sources of uncertainty in their interaction (load, wind and
solar generation). The model forms a basis for developing and testing probabilistic methods.

Our approach based on separation of slow and fast power system motions (represented as net load
variations) and associated uncertainties using probabilistic methods helps to improve predictability
and reduce uncertainty in the system. Slower motions of stochastic processes are more predictable
due to more autocorrelation between the subsequent points. By employing this autocorrelation, it is
possible to improve the forecast of parameters subject to uncertainty. By quantifying uncertainty
around the improved forecast, it is possible to reduce the range of uncertainty.

Connection of uncertainty with system motions. A power system maintains balance between its
generation, changing load, variable generation, and interchange. Increasing uncertainty means more
balancing work to be done by conventional generation, energy storage, and controllable load. In other
words, these resources have to move more with increasing uncertainty and variability. Because the
balancing service is a paid service, more system motion results in additional costs. The statistical
separation of fast and slow motions helps to better distribute the balancing job between slow and fast
balancing resources; so that they are more efficiently used and the cost is reduced (the fast-responsive
resources are usually more expensive).

In this project, advanced statistical methods were applied to separate slow, fast and very fast system
motions caused by variation of the net system load. The very fast motion is actually white noise,
which is a completely unpredictable component of a signal. If the forecast error is exactly white
noise, this is a perfect forecast. The advanced statistical methods applied were:

a. Wavelet transforms — ARIMA method. Wavelet transforms were used to extract the slower
component in the total load forecast error. The ARIMA model was used to predict this slower
component. We demonstrated an uncertainty reduction of 10-12% by applying this combination
of methods.

b. We demonstrated, that the proposed decision tree regression analysis method helps to reduce the

uncertainty (and associated balancing effort) up to 40%, and that the residual (very fast motion
component) becomes close to white noise.
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c. Principal component analysis (PCA). By applying this method, we employ cross-correlation
between the total load forecast errors in different zones of the WECC system. Thai is a new idea.
The PCA helps to reduce the number of dimensions, where the predictable forecast components
of multiple zonal errors can be located. This helps to improve the accuracy of the forecasts, and
make the residual error close to white noise.

We developed and demonstrated new methods for quantification and adjustment of transmission
limits using probabilistic methods (in the WECC system). Using the Transmission Uncertainty and
Prediction Tool (TUT), we demonstrated how the transmission limits in the WECC system can be
quantified and adjusted to minimize the risk of violations caused by uncertainty. This adjustment can
also help to increase the utilization of transmission facilities within capacity and reliability limits.

PNNL Transmission Uncertainty and Prediction Tool (TUT). Interactions among wind, solar gen load
forecast errors can have a random impact on transmission system. This event can lead to additional
congestion and voltage stability problems. To mitigate this problem, balancing authorities (BAS)
should be able to re-dispatch their conventional generators ahead of time, if such impact can be
predicted. A new probabilistic methodology and new analytical software called the Transmission
Uncertainty and Prediction Tool (TUT) was developed at Pacific Northwest National Laboratory
using funding from DOE Office of Energy (OE), DOE Office of Energy Efficiency and Renewable
Energy (EERE), and the California Energy Commission (CEC). The developed methodology predicts
the impact of the uncertainties on congested paths, worst-case voltage drops, and reactive power
margins for several hours ahead of time and, if needed, proposes control actions to mitigate the
problem if necessary.

We demonstrated how TUT can benefit from parallelization.

1.4 References

[1] Y.V. Makarov, M. Hunsaker, A. Diaz-Gonzalez, R. T. Guttromson, P. Du, P.V. Etingov, H.

Ghoudjehbaklou, J. Ma, D. Tovar, V.V. Viswanathan, and B. VVyakaranam, 2013. “WECC Variable
Generation Planning Reference Book: A Guidebook for Including Variable Generation in the
Planning Process.” Salt Lake City, Utah. Volume 1: Main Document, Version 1, May 14, 2013.
[Online.] Available:
http://www.wecc.biz/committees/StandingCommittees/JGC/VGS/PWG/ActivityP8/Final%20Version
/WECC Variable Generation Planning Reference Book Main.docx. Accessed 25 September 2014.

[2] Y.V. Makarov, M. Hunsaker, A. Diaz-Gonzalez, R. T. Guttromson, P. Du, P.V. Etingov, H.

Ghoudjehbaklou, J. Ma, D. Tovar, V.V. Viswanathan, and B. Vyakaranam, 2013. “WECC Variable
Generation Planning Reference Book: A Guidebook for Including Variable Generation in the
Planning Process.” Salt Lake City, Utah. Volume 2: Appendices, Version 1, May 14, 2013. [Online.]
Available:
http://www.wecc.biz/committees/StandingCommittees/JGC/VGS/PWG/ActivityP8/Final%20Version
/WECC_Variable_Generation_Planning_Reference_Book_Appendices.docx. Accessed 25 September
2014.
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2.0 Project Objectives

This project develops a new paradigm and new methodologies for real-time and offline power system
analytics, representing a power system as a stochastic machine that behaves randomly and exhibits
different characteristics compared with the largely deterministic systems that we dealt with in the past.

The tasks included in this first phase of the work are as follows:

o Develop multivariate geographically distributed model (MGDM) including all contributing
uncertainty factors in their interaction.

e Characterize prevailing system motions (changing net load requirements) and associated
uncertainty around them by a limited number of principal directions.

e Quantify and observe transmission uncertainty and security limits based on the developed
MGDM.

e Develop methods for statistical separation of fast and slow changing components in the
overall uncertainty model, their detection and prediction.

e Develop a prototype Transmission Uncertainty and Prediction Tool (TUT) and a framework
for its high performance computing (HPC) applications.

The project will also develop and test new uncertainty quantification methods and tools for direct
integration of uncertainty and variability information into grid operations on the transmission and
distribution levels. The tools will be based on state-of-the-art probabilistic power production forecasts
(including confidence intervals, inputs from distributed energy resources, and ramps), collective
consideration of all sources of uncertainty (solar and wind generation, load, uninstructed deviations, and
forced outages), as well as on prediction of MW uncertainty ranges of the total system load, critical
path/line flows and interchange that the system operator will have to address or be aware of.
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3.0 Sources of Uncertainty and the Importance of Their
Concurrent Consideration

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as
well as system loads, are not reflected in existing tools used for generation commitment, dispatch and
market operation. The same is true for other sources of uncertainties, such as uninstructed deviations of
conventional generators from their set points, generator forced outages and failures to start, losses of
major transmission lines, and frequency variations. These uncertainties can cause deviations in the system
balance that require inefficient and costly last-minute solutions in the near real-time conditions. Major
unexpected variations in wind power, unfavorably combined with load forecast errors and forced
generator outages could cause significant power mismatches, which could be essentially unmanageable
without knowing these variations in advance. In extreme cases, dispatch decisions could not be feasible
because of the generators’ start up, ramping, and capacity constraints. With the growing penetration of
intermittent resources, the uncertainties could pose serious risks to control performance and desired
operational characteristics, as well as the reliability of a power grid. Without knowing the risks caused by
uncertainties, i.e. the probability, timing and magnitude of potential system imbalances, system operators
have only very limited ability to evaluate the potential problems and find solutions to mitigate their
adverse impacts. Some important questions need to be addressed in counteracting the impact of
uncertainties. For instance, when should one start more units to balance against possible fastramps in the
future over a given time horizon? Would the available online capacity be sufficient to balance against
variations of uncertain parameters on the intra-hour and minute-to-minute basis? The need to evaluate
uncertainties associated with wind and solar generation and to incorporate the knowledge into the
algorithms and operating practices is well understood already. Some wind forecast service providers offer
uncertainty information for their forecasts. For instance, AWS Truepower [1] and 3TIER [2] companies
developed wind generation forecasting tools with built-in capability to assess wind generation
uncertainty. Similar tools have been developed in Europe. In the context of the European Union project,
ANEMOS, a tool for on-line wind generation uncertainty estimation based on adaptive re-sampling or
quantile regression has been developed [3]. A German company, Energy and Meteo Systems, developed a
tool for forecasting wind generation, assessing the uncertainty ranges associated with wind forecast, and
predicting extreme ramping events [4]. Reference [5] discusses a wind generation interval forecast
approach using the quantile method. Reference [6] used statistical analysis based on standard deviation to
predict wind generation forecast errors. Work is underway to incorporate these uncertainties into power
system operations [7], [8]. Unfortunately, in many cases these efforts are limited to wind generation
uncertainties only; they ignore additional sources mentioned at the beginning of this paragraph.
Moreover, these approaches, while considering the megawatt imbalances, do not address essential
characteristics such as ramp rate (megawatts per minute) and ramp duration uncertainties (minutes),
required by the generators participating in the balancing process.

This section gives an overview of the sources of uncertainties in power systems, their important
characteristics, models, and approaches for integrating information into system operations. The key
discussion points are as follows:

e Variable generation and system load are far from being the only sources of uncertainties. Additional
uncertainty is introduced by uninstructed deviations of conventional generators from their set points,
forced outages of conventional generation, accidental load drops, major intermittent loads,
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unscheduled loss of major transmission lines, frequency variations, and other sources influencing
power balance in a control area. All these sources must be accounted for.

o All sources of uncertainty interact in a complicated statistical way, so that most of the time their
combined impact is reduced when compared to the sum of impacts of individual sources. At the same
time, from time to time, collective impact of uncertainties canadd up in an unfavorable way creating
extreme system imbalances (so-called “tail events”).

e The statistical model of the uncertainties could be more complicated than it appears. It includes
continuous unpredicted parameter variations and discrete sudden events (such as forced generation
outages), non-parametric statistical distributions, non-stationary time dependent processes, tail events,
autocorrelation and cross-correlation moments, and other external factors (such as temperature
forecast errors or wind ramp prediction errors).

e Besides the capacity in megawatts, uncertainty prediction should include additional dimensions such
as ramps (megawatts per minute), ramp duration (minutes), and cycling characteristics of
conventional generators and energy storage facilities. Thus, the uncertainty analysis becomes
multidimensional. These characteristics form a performance envelope necessary to successfully
balance the system in view of uncertainties.

e Three modes of uncertainty integration are proposed: “passive,” “active,” and “proactive.” “Passive”
integration is the first level of integration, which brings awareness of uncertainties into control center
software tools through information visualization and alarming. “Active” integration uses the
uncertainty information to modify existing grid operation functions such as unit commitment.
“Proactive” integration develops new grid operation functions enabled by the uncertainty information.

3.1 System Power Balance and Procedures to Achieve It

An interconnected power system usually consists of one or multiple Balancing Authorities (BAS).
Each BA must maintain a balance between its generation, load, interchange, and losses. The system’s
conventional generation is committed and dispatched to meet the total balancing requirement, BR [MW].
BAs’ performance is judged based on Control Performance Standards (CPS) requiring a certain degree of
success in keeping the system imbalance within certain (sometimes statistically defined) bounds. The
system balancing requirement (BR), which is the same as net load, is the balancing job required from
conventional generators, power exports, and energy storage facilities, is expressed by the formula:

BR=AL—-AWG—-ASG—FO—-UD+VDE—-10-B-AF—-TE (1)

where A — denotes the difference between the actual and the pre-scheduled values for dispatch intervals; L
—is the system load; WG —is wind generation; SG — is solar generation; FO — reflects imbalances caused
by forced generation outages; UD — is the total uninstructed deviation of conventional generation units
(including failure to start up); VDE —is the variability errors within a dispatch interval (or difference
between the block-energy schedules and the continuous actual variation of BA, e.g., the difference
between the hour ahead schedule and actual generation in Figure 2); 10 - B -AF —is a frequency
dependent term; and TE — is the time error correction term. Depending on the context and information
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available, the meaning and the actual presence of the terms in (1) can change. For instance, in the
scheduling and real-time dispatch procedures, the uninstructed deviation term, frequency dependent term,
and time error term are omitted and the actual values are replaced by their forecasts.

The balance in a BA is achieved through several processes including scheduling (day-ahead and hour-
ahead block hour scheduling), real-time dispatch (load following or real-time scheduling), and regulation.
Figure 2 shows the relationship between these processes.
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Figure 2. Relationship between the scheduling, load following and regulation processes

The scheduling and real-time dispatch processes deal with certain dispatch intervals (e.g., 1 clock
hour, 30-minute or 5-minute intervals), where the power output is assumed to be equal to the average
power requirement within the interval. The overall variability around these values is caused by the
forecasted values for these average requirements as well as shown in Figure 3 [11], [12].
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Figure 3. Overall uncertainty within a dispatch interval
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The transitional ramps shown between the dispatch intervals in Figure 2 and Figure 3 are used in
some systems, e.g., the Western Interconnection in the U.S., to minimize discretization errors as well as
reduce generator ramping requirements. These 20-minute ramps are also applied to balancing areas’
interchange schedules.
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3.2 Sourcesof Uncertaintiesand Their Characteristics

Multiple sources of uncertainty contribute to the overall uncertainty facing the system. There are
uncertainties contributing to the system balancing requirement BR (right hand side of equation (1)), and
uncertainties associated with the market-driven generation dispatch and caused by limited knowledge of
future generation bids. This report concentrates on uncertainties of the first kind.

3.21 Load Forecast Errors

Load forecast errors, AL in equation (1), contribute significantly to the overall uncertainty of the
system’s balancing requirement BR. In operations, load forecasts are usually provided for the next
operating day (hourly block energy schedules), next operating hour (hourly block energy schedules or
schedules for average load for smaller dispatch intervals), and in real-time forecasts (average load for
within-hour dispatch intervals, e.g., 5-10-15 minutes). The day-ahead mean absolute percent error
(MAPE) usually stays within 1-3% of the maximum load — see Figure 4. Itis important to mention that
instantaneous error values can significantly exceed MAPE fromtime to time contributing to so-called tail

events [15].
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Figure 4. Example of load forecast error in a real system [15]

Load forecast errors depend upon multiple factors including temperature and humidity forecast errors.
This sensitivity is changing with the observed air temperature — Figure 5 [16].
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Figure 5. Impact of temperature forecast error on load
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Another important issue with forecast is the forecast bias (systematic overestimation and
underestimation of the system load).

3.2.2 Wind Power Forecast Errors

The issues related to the statistical characteristics of wind forecast error attract significant interest
from researchers and practicing engineers. A good review of the state-of-the-art in this area is given in
[18].

The wind power forecasting errors are sometimes simulated using the truncated normal distribution
whose characteristics are determined by curve fitting. The truncation process is applied to reflect the
natural limits posed by minimum (zero) and maximum (installed capacity minus the capacity of offline
units) wind generation. This model cannot be accepted without caution because of indications that the
wind power forecast error does not actually follow the truncated normal distribution. There are efforts in
place to propose better approximations for the error. For instance, the Beta distribution has been used in
[17]. In [14], a different approach based on experimental probability density functions (PDFs) is proposed
instead. The approach is suitable for handling non-parametric distributions, so that no hypothesis is
needed regarding the wind generation error distribution law.

There is a continuing effort in place to improve the accuracy of wind generation forecasting
algorithms. For example, in Germany the day-ahead wind generation forecast error has been reduced to
4.5% [19]. Nevertheless, significant challenges remain with the very short term forecasts (the naive
persistence forecast model frequently demonstrated better performance than more scientific approaches)
and prediction of wind generation ramps.

Wind generation forecast errors are sensitive to multiple external factors. Accurate modeling of these
errors requires models that reflect these factors. In [20], a Bayesian network model is developed that
reflects the influence of external factors on the wind and load forecast errors.

3.23 Solar Generation Forecast Errors

Characteristics of the solar power forecast errors have not been sufficiently well studied yet.
Nonetheless, practical needs require these models. In [21], a new model has been proposed and has been
used in the California Independent System Operator (1SO) 20% and 33% penetration of renewable
generation studies.

3.231 Variation of Solar Generation

Solar radiation (or solar irradiance) determines the level of solar energy production at any specific
location and is neither completely random nor completely deterministic. Extraterrestrial (above the
clouds) solar radiation can be confidently predicted for any place and time interval. Solar radiation shows
both yearly and daily variation. The area’s atmospheric conditions (clouds, dust storms, etc.) determine
the randomness of solar radiation at the ground level (also called global solar radiation).

The ranges of yearly variation can be described by monthly maximum solar radiation for a sunny
day, and the minimum solar radiation for a total cloudy day. The maximum and minimum solar radiation
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levels can be used for solar power generation forecasting as well as for forecast error simulations. The
effect of clouds and other factors on solar generation varies. Minute-to-minute global solar radiation
measurements R,, show that radiation varies within a one-hour period around an hourly mean value R,. A
statistically varying term (eg) can be used to simulate this process. This statistical term was set to have the
same distribution as short duration variations seen in actual measurements. Therefore, it can be evaluated
by using actual measurements,

Rm = Rh + ER (2)

3.2.3.2 Clearness Index (Cl).

If the sky is clear, solar radiation and solar power production are predictable based on the annual and
daily extraterrestrial pattern. Thus, solar forecast errors are small. Solar radiation and generation forecast
errors are mostly caused by clouds and other factors. These factors include: clouds (depth, water or ice
concentration, and types of water particles or ice crystals), water vapor amount, and aerosol type and
amount (column).

The clearness index is an index indicating what percentage of the sky is clear. High CI could mean
higher global solar radiation (i.e., global solar radiation levels being closer to their extraterrestrial values)
and lower forecast errors. Cl is used for solar power generation forecasting. Clearness index for a given
period is obtained by dividing the observed global radiation R, by extraterrestrial global irradiation R:

k=22 ©)

R

where Ry is horizontal global solar radiation and R is horizontal extraterrestrial solar radiation.

3.2.3.3 Simulating the Solar Generation Forecast Errors

Statistical characteristics of hour-ahead and real-time solar generation forecast errors are complex
and depend on various factors including the extraterrestrial solar radiation annual and daily patterns, hour-
to-hour clearness index, dynamic patterns of the cloud systems, types of solar generators (photovoltaic
(PV), concentrated thermal, etc.), geographical location and spatial distribution of solar power plants, and
other factors.

3.2.34 Upper and Lower Limits for Solar Generation Forecast Errors

Unlike wind generation, solar generation is limited by extraterrestrial solar irradiance levels, which
change over a day. The maximum possible generation can be achieved at Cl = 1 and this maximum value
Pmax (t) also changes over a day following a similar mostly deterministic pattern (note that there is also
an annual component in this process). Variances of the generation under these conditions can be only
caused by diffuse solar irradiance and ambient temperature variations. Assuming that these variances are
also included in Ppax( 1), the maximum solar generation during day time can be described as a function of
time, and is always less than the total capacity, i.e.,

where Pp.(t) is the maximum solar generation capacity.
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Solar power generation forecast f(t) can be modeled by the relation:
Pmin (t) < f(t) = SGa (t) - S(t) < Pmax (t) (5)

where the minimum solar power capacity P, (t) could be assumed to be zero; the maximum capacity of
solar farm generation P,,(t) is a function of time. During the night time,

f©) =S5G,(0) =e(®) =0 (6)
From Equation (5), we have,

SGa(t) — Prax (t) < e(t) < SGu(t) (7

where SG, (t) < Bpax (t) may be negative or zero.

3.2.35 Standard Deviation of Solar Forecast Error Evaluated Using ClI

Different solar generation patterns in day time and night time need to be taken into account when
evaluating solar forecast errors. At night time, solar irradiance and solar generation are zero, thus solar
forecast errors are zero. Sunrise and sunset time are different in different seasons at different regions.
Then daily patterns of the clearness index are different. Previous years’ information regarding this matter
can be categorized and used for solar forecast error evaluation.

Depending on the time period and weather conditions, solar forecast errors can show different
patterns, such as:

a. Forecasterroris zero, ¢ = 0, at night time;
b. Forecasterror is small or close to 0, e—0, on sunny days, that is when Cl—1;

c. Forecasterroris limited or close to zero under heavily clouding conditions, thatis when Cl1—0;
and

d. Forecasterror varies in a wide range for the intermediate values of Cl.
Thus, the standard distribution of solar forecast errors can be described as a function of Cl, e.g., 0 <

Stdmin <std(e) =f(Cl) < stdnax. Figure 6 shows a possible distribution of the standard deviation of solar
forecast errors depending on CI.
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Figure 6. Distribution of the standard deviation of solar forecast errors depending on the clearness index

For a sunny day, the variation of solar forecast errors is shown in Figure 7(a). The forecast error can
be predominantly negative. If the sky is completely covered with clouds, the distribution of solar forecast
error could be similar to Figure 7 (b). The forecast error can be predominantly positive.

3.2.36 Real-time Solar Forecast Model

A persistence model is used for the real-time wind forecast, but for solar generation, there are obvious
incremental patterns during morning hours just after sunrise, and decremental patterns during evening
hours just before sunset. Solar generation could increase or decrease dramatically in a very short time in
the sunrise or sunset hours. This will cause significant ramp rate increase during these hours. The

persistence model cannot address this concern. Therefore, a new model based on Cl is proposed in [21] to
simulate real-time solar forecast.

PDF AR

,." y ¥ "-I

@ |' | (b)

- — -
| E—

]
..,|'I;'_|H £ Fra .

Figure 7. Distribution of solar forecast error in a very cloudy day and a very sunny day

3.24 Forced Generation Outages
Generator outages are addressed by specially procured contingency reserves. The imbalances caused

by forced generator outages are initially mitigated by the system governor response and the automatic
generation control (AGC) system, and then either by (1) committing and dispatching generation resources
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suitable for the intra-hour balancing purposes, or (2) applying load reduction schemes. It could take 5-15
minutes or even more to activate them. As a result, the system imbalances caused by forced generation
outages could last for about 5-15 minutes. A schematic model for the balancing requirement is shown in
Figure 8.

AGC
MW

Balancing

Requirement Contingency

Reserve

Frequency
Response

| | |
5 10 15

Minutes

Figure 8. Balancing requirement caused by forced generation outage.

After a forced outage, the corresponding control area is subjected to a sudden imbalance which
depends on the level of generation on the tripped unit, system inertia, and available frequency (governor)
response. The part of the initial imbalance addressed by governor response does not contribute to the
balancing requirement because of the fast recovery process involved (seconds). The AGC system in the
affected control area starts to move regulating units to cover another part of the system imbalance
(minutes). The job done by regulating units is addressing a part of the overall balancing requirement.
Frequently the available regulating reserve is not sufficient to completely restore the system balance. The
imbalance stays in the system for about 10 minutes until the contingency reserve units are started,
synchronized with the system (non-spinning reserve), and dispatched to the desired level (both non-
spinning and spinning reserves). Then the AGC units are moved back to completely restore the balance.
A model for forced generation outage and contingency reserve activation has been developed by
Washington University under a contract with PNNL [15]. The model is based on the following elements:

a. [Forced outage rates and dispatch level of online units.
b. Probability of having any online unit forced out any minute.

c. Contingency reserve activation model.

3.25 Uninstructed Deviation Errors

The impacts of uncertainties caused by forced generation outages, failures to start up, and
uninstructed deviations of conventional generators on the system balancing requirements are frequently
neglected. Nevertheless, the total uninstructed deviations resulting from their inability to follow the set
points precisely could reach several hundred megawatts and may have a profound impact on the system
balancing requirements.
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3.3 Statistical Characteristics of Forecast Errors and Balancing
Requirement

Statistical characteristics of uncertainties are complicated (e.g., they can form non-parametric
distributions or represent non-stationary processes) and depend upon (1) the forecast horizon; (2) other
forecast errors (cross-correlation); (3) time of the day; (4) external factors such as air temperature (load
and wind forecast errors) and humidity (wind forecast errors); (5) clearness index (solar forecast error);
(6) net load ramps; (7) forced generation outages (uninstructed deviations); and (8) other factors.

331 Discretization Errors

Discretization errors are the difference between the scheduled values within a dispatch interval and
the actual minute-by-minute variations of the balancing requirement (discretization errors) — see Figure 2.
Unlike the forecast errors, the discretization errors are functions of the variability of balancing
requirement and the size of dispatch intervals.

3.3.2 Non-parametric nature

Nonparametric distributions cannot be described using a standard probability distribution, e.g., the
normal distribution, although sometimes they can be approximated using a standard distribution or a
combination of distributions with certain limited accuracy. For instance, in [11], [12], the truncated
normal distribution was used to approximate distributions of wind and load forecast errors. The balancing
requirement distribution could be a more difficult case. Sometimes its shape becomes essentially non-
parametric. Figure 9 contains an example of histograms of a non-parametric distribution of the regulation
requirement in a large BA with wind and solar variable energy resources.

Requlstion Recursments, Myl

Figure 9. Hourly regulation requirement for a real BA

Frequently, the BR distribution exhibits long “heavy” tails indicating certain limited probability of
major imbalances caused by unfortunate combinations of random factors contributing to BR in Equation
(1). Normally, the central part of the BR distribution could be or should be balanced using the existing
balancing reserves, whereas the tail part could create infrequent but significant problems because it
requires balancing reserves that are not normally procured in the system.

3.33 Autocorrelation of Wind and Load Forecast Errors
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The load and wind forecast errors usually exhibit strong autocorrelation between the subsequent
forecasts. Autocorrelation means that, for example, if for certain operating hour, a large positive forecast
error is observed, it is likely that a similar error would be observed for the next hour. The autocorrelation
can be observed not only between the subsequent errors (i-1, i), but also between errors (i-2, i), (i-3, i), ...
Figure 10 and Figure 11 illustrate autocorrelation coefficients of real load and wind generation forecast
errors (as well as those generated from error models) [14].
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Figure 11. Auto-correlation of original and simulated wind forecast errors
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334 Cross-correlation

Wind forecast errors also show correlations between wind farms at different locations. A study was
performed to evaluate the performance of three wind farms that are geographically distant as shown in
Figure 12 [14]. The comparison of the statistics is shown in Table I.
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Figure 12. Geographical locations of the wind farms.

Table 1. Cross-correlation of wind forecast errors.

Cross-
Correlation B D E
B 1 0.6047 0.1194
D 0.6047 1 0.2121
E 0.1194 0.2121 1

3.3.5 Non-stationary Nature

In non-stationary processes, statistical characteristics of the process change over time. Figure 13
shows real-life examples of such processes for wind and load forecast errors [14]. The original
distribution is the actual distribution of the load and wind forecast errors. It demonstrates non-stationary
patterns in terms of its moving average as well as the variance. The “new sequence” results represent an
effort to simulate the same distribution using a stationary model and a specially designed random number
generator. The model was successfully reproducing the mean, standard deviation, and even
autocorrelation of the original series, but fails to reproduce the time-varying components.
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Figure 13. One-year hourly original and simulation results for load and wind forecast errors.
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4.0 Western Interconnection Uncertainty Model Development

Task 1 in our DOE OE “Probabilistic methods for planning and operation” project includes the
development of a state-of-the-art model for geographically distributed uncertainty to incorporate multiple
uncertainties from load, wind, and solar forecast and their interaction. This model development is based
on a PNNL-Northwest Power Pool (NWPP) report [1]. The model will be able to handle multi-variable,
distributed, non-parametric, non-stationary processes with cross-correlation and auto-correlation. This
model will produce multiple combinations of node-specific uncertain and random parameters needed for
multi-variant runs (e.g., Monte Carlo runs) of probabilistic tools for planning and operations (e.g.,
probabilistic power flow, probabilistic contingency analysis, probabilistic stability analysis, stochastic
unit commitment and optimal dispatch, etc.)

4.1 Primary Dataset Description

Load, wind and solar values are from the “WECC TEPPC 2020 PCO0” case [2]. The model is based on
the “WECC 2020 HS1A” power flow base case.

41.1 WECC BA Structure

WECC currently consists of 38 BAs with six of these being generation-only BAs (that do not operate
transmission capacity). The 38 BAs are shown in Figure 14. In the model for the TEPPC 2020 case, the
BAs in WECC are grouped into seven sub-regions. The model used for the TEPPC case has 39 load
areas, as shown in Figure 15.

In this study, 32 BAs are modeled; the six generation-only BAs are not modeled, but instead their
generation resources are modeled as belonging to other BAs. Each BA has its own load profile with the
following exceptions:

o The California Independent System Operator (CAISO) is divided into four load areas (Pacific Gas
and Electric Company [PG&E] Valley, PG&E Bay, Southern California Edison [SCE] and San Diego
Gas and Electric [SDGE]),

¢ |daho Power Company (IPC) is divided into three load areas (Treasure Valley, Magic Valley and Far
East), and

e PacifiCorp East (PACE) is divided into three load areas (PACE ID,PACE WY, and PACE UT).
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Boundarles are approximate
and for ilustrative pur poses only.

AESO - Alberta Electric System Operator
AZPS - Arizona Public Service Company
AVA - Avista Corporation

BANC - Balancing Authority of Northern
California

BPAT - Bonneville Power Administration -
Transmission

CI50 - California Independent System Operator
CFE - Comision Federal de Electnicidad

DEAA - Arfington Valley, LLC

EPE - Bl Paso Hectnic Company

GRMA - Gila River Power, LP

IPCO - Idaho Power Company

D - imperial lrrigation District

LDWP - Los Angeles Department of Water and
Power

Psco-mmc«nmdcm
PNM - Public Service Company of New Mexico
CHPD - PUD No. 1 of Chelan

DOPD - PUD No. 1 of Douglas County

GCPD - PUD No. 2 of Grant County

PSH - Puget Sound Energy

Western Interconnection
Balancing Authorities (38)

SRP - Salt River Project
SCL - Seattie City Light

SPPC - Sierra Pacific Power Company

TPWR - City of Tacoma, Department of Public
Uniities

TEPC - Tucson Blectric Power Company

TIDC - Turdock Irigation District

WACM - Western Area Power Administration,
WALC - Western Area Power Administration,
Lower Colorado Region

WAUW - Western Area Power Administration,
Upper Great Plains West

WWA - NaturEnur Wind Watch, LLC
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Figure 14. Current balancing authorities in WECC."
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Figure 15. TEPPC topology diagram for 2020 base case.

41.2 Load Data

Because no load data with 1-minute resolution are provided for the study year 2020, these data need
to be generated based on selecting reasonable assumptions. The available load data for the study were the

following:

1. Hourly loads for the year 2020 for the 39 load areas from the TEPPC 2020 PCO case.

2. Actual minute-by-minute load data for the year 2009 for the 32 BAs that are not generation-only

BAs.

With this information, the approach used was to impose the minute-to-minute variability of the 2009
to generate the required 1-minute load

load data on to the 2020 hourly load data. The procedures applied
data for the study year 2020 are the following [3]:

1. Compute a time series of hourly average load data for all 32 BAs in 2009, Load_1h_avg 2009, with

1-minute resolution.

2. Apply the nonlinear interpolation method in MATLAB®to Load_1h_avg_ 2009 and obtain a new

interpolated load series, Load_2009_interpolated, shown in Figure 16.

3. Calculate the error between Load actual 2009 and Load_2009_interpolated, indicating the

differences between the actual load and the interpolated load, shown in Figure 17.
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4. Normalize the error based onthe peak load in 2009 for each BA individually and scale the error by
multiplying the peak load in 2020, to obtain Error_2020_load. The error for the day 2/29/2020 is
taken directly from the error data on the previous day, 2/28/2020.

5. Take the provided hourly load data in 2020 and interpolate the 1-hour resolution data to obtain
interpolated load data, Load_2020_interpolated, with 1-minute resolution.

6. Apply the Error_2020_load to Load_2020_interpolated and obtain the desired load curves in 2020,
with 1-minute resolution, shown in Figure 18.

This procedure was applied to each of the 32 BAs, which generated the 1-minute load curves for the
entire year 2020 shown in Figure 16.

It should be noted that for the BAs having more than one load profile, the same minute-to-minute
variability were applied to all load profiles because the 2009 data were available only at the BA level. The
peak load in each BA is plotted in Figure 20. The names of the BAs corresponding to the BA numbers in
the different figures are reported in Table 2.
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Figure 16. Actual load, hourly average and interpolated load for 2009.
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Figure 18. Imposing the load variance in 2009 to the interpolated load in 2020.
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Figure 19. Simulated load data for 2020.
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Peak Load of WECC Balancing Authorities in 2020
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Figure 20. Peak load of different Balancing Authorities in the “WECC TEPPC 2020” case.

Table 2. 32 Balancing Authorities in WECC

BA BA BA BA

No. Name No. Name No. Name No. Name

1 'AESO' 9 'DOPD' 17 'PACE 25 'SPPC'

2 '‘APS' 10 'EPEC 18 ‘PACW! 26 'SRP'

3 '‘AVA' 11 '‘GCPD' 19 'PGN' 27 TEP'

4 '‘BCTC 12 11D’ 20 'PNM' 28 TID'

5 '‘BPA' 13 'IPCO' 21 'PSCO' 29 TPWR'

6 'CFE 14 'LDWP' 22 'PSE 30 ‘WACM'

7 'CHPD' 15 '‘NEVP' 23 'SCL 31 'WALC

8 'CAISO! 16 NWMT' 24 'BANC' 32 'WAUM'

4.1.3

Wind and Solar Data

The projected wind and solar data for 2020 were taken from the 15% renewables penetration case a
percentage of WECC energy demand as defined by the WECC Transmission Expansion Planning Policy
Committee (TEPPC) [4]. Time series data for wind and solar production were generated based on 2006

weather models.

The TEPPC 2020 PCO case assumes that all Renewable Portfolio Standards (RPSs) in

2020 are met with the level of the RPSs in 2020 being derived based on assuming a linear progression for

those RPSs that

have target dates later than 2020. Using this approach yielded a WECC-wide (including

BAs in Mexico and Canada) RPS of approximately a 15.5% renewables penetration. This 15.5%
renewables penetration level was met by wind (8%), solar (3%), geothermal (2.4%), biomass (1.3%) and
small hydropower (0.77%).
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The installed wind capacity for each BA in the original TEPPC PCO case is shown in Figure 21. The
installed solar capacity for each BA, which includes both PV and concentrated solar Power (CSP)
facilities (with 6-hours storage), is shown in Figure 22.
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Figure 21. Installed wind capacities in 2020 for WECC BAs.
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Figure 22. Installed solar capacities in 2020 for WECC BAs.

The wind generation data are based on western wind data sets that were developed by 3Tier [5] and
used by the National Renewable Energy Laboratory (NREL). These wind data have a 10-minute
resolution; 3Tier, Inc., provided a methodology for deriving 1-minute interpolations. Day-ahead forecasts
for hourly wind generation are also available from the same data sets.

PNNL used and improved upon the wind generation data by disaggregating the wind profiles at the

bus level. With this refined data, PNNL was able to generate day-ahead forecast and actual 10-min
average forwind at the bus level and more realistically simulate the diversity of wind generation.
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The solar generation data were obtained from NREL. These data are based on hourly, satellite-
derived data from the State University of New Y ork—Clean Power Research and a statistical model that
synthesized the subhourly variations [6]. Power production data were developed for multiple solar
technologies, including 50-MW fixed photovoltaics, 50-MW one-axis tracking photovoltaics, and 100-
MW concentrating solar power plants with assumed 6-hour thermal energy storage. These data were
developed for 1,488 grid locations that correspond to the Western Renewable Energy Zones.

Day-ahead and hour-ahead forecasts for solar generation were developed by PNNL using a
methodology that quantifies forecast-error based ona Clearness Index [3], [7]. A simplified definition of
a clearness index Cl at any time T in a day is the ratio between actual solar energy production attime T
divided by the maximum possible solar energy production attime T in the same day.

4.2 References

[1] N. A. Samaan, R. Bayless, M. Symonds, T. B. Nguyen, C. Jin, D. Wu, R. Diao, Y. V. Makarov, L. D.
Kannberg, T. Guo, S. Dennison-Leonard , M. Goodenough, R. Schellberg, S. Conger, K. Harris, M.
Rarity, S. Wallace, J. Austin, R. Noteboom, T. Van Blaricom , K. McRunnel, J. Apperson, M.
Empey, P. V. Etingov, D. Warady, R. Brush, J. Newkirk, P. Williams, M. Landauer, H Owen, W.
Morter, K. Haraguchi, J. Portouw, Downey, S. Sorey, S. Williams, T. Gossa, C. Kalich, P. Damiano,
C. Macarthur, T. Martin, J. Hoerner, S. Knudsen, A. Johnson, R. Link, and D. Holcomb, “.Analysis
of Benefits of an Energy Imbalance Market in the NWPP .” PNNL-22877, Pacific Northwest
National Laboratory, Richland, WA, 2013. Available: http://www.nwpp.org/documents/MC-
Public/NWPP_EIM_Final_Report_10_18 2013.pdf

[2] Western Electricity Coordinating Council. 2010. Assumptions Matrix for the 2020 TEPPC Dataset.
[Online.] Accessed August 15, 2013, at
http://www.wecc.biz/library/StudyReport/Documents/Assumptions% 20Matrix% 20for% 20the% 20202
0%20TEPPC%20Dataset. pdf

[3] Samaan N, M Milligan, YV Makarov, M Hunsaker, T Nguyen, C Jin, R Diao and R Hafen. Balancing
Authority Cooperation Concepts to Reduce Variable Generation Integration Costs in the Western
Interconnection: Balancing Authorities Consolidation and Sharing of Balancing Reserves. Final
Project Report, Pacific Northwest National Laboratory, Richland, Washington. To be published in
October 2014.

[4] Nickell BM. 2008. TEPPC Renewable Energy Cases. [Online.] Accessed August 15, 2013, at
http://www.wecc.biz/committees/StandingCommittees/P CC/LRS/Shared% 20D ocuments/Wind%20Pr
ofiles/Renewable%20Energy%20Generation%20Paper.pdf

[5] 3TIER. 2010. Development of Regional Wind Resource and Wind Plant Output Datasets. NREL/SR-
550-47676. Work performed by 3TIER for National Renewable Energy Laboratory, Golden, CO.
[Online.] Accessed August 15, 2013, at http//www.nrel.gov/docs/fy100sti/47676.pdf.

[6] Orwig K, M Hummon, BM Hodge and D Lew. 2011. Solar Data Inputs for Integration and
Transmission Planning Studies. NREL/PO-5500-52985. National Renewable Energy Laboratory,
Golden, CO.

4.8


http://www.wecc.biz/library/StudyReport/Documents/Assumptions%20Matrix%20for%20the%202020%20TEPPC%20Dataset.pdf
http://www.wecc.biz/library/StudyReport/Documents/Assumptions%20Matrix%20for%20the%202020%20TEPPC%20Dataset.pdf
http://www.wecc.biz/committees/StandingCommittees/PCC/LRS/Shared%20Documents/Wind%20Profiles/Renewable%20Energy%20Generation%20Paper.pdf
http://www.wecc.biz/committees/StandingCommittees/PCC/LRS/Shared%20Documents/Wind%20Profiles/Renewable%20Energy%20Generation%20Paper.pdf
http://www.nrel.gov/docs/fy10osti/47676.pdf

[7] Ma J, YV Makarov, C Loutan, and Z Xie. 2011. “Impact of wind and solar generation on the
California 1SO’s intra-hour balancing needs.” IEEE 2011 Power and Energy Society General
Meeting, pp.1-6, 24-29, July 2011. DOI: 10.1109/PES.2011.6039410.

4.9






5.0 Reduction of Uncertainty in Forecast Errors for Load and
Wind Generation Using Integrated ARIMA Forecasting, Signal
Decomposition, and Principal Component Analysis

Our approach based on separation of slow and fast power system motions (represented as net load
variations =load variations - wind variations — solar variations) and associated uncertainties using
probabilistic methods helps to improve predictability and reduce uncertainty in the system. Slower
motions of stochastic processes are more predictable due to more autocorrelation between the subsequent
points. By employing this autocorrelation, it is possible to improve the forecast of parameters subject to
uncertainty. By quantifying uncertainty around the improved forecast, it is possible to reduce the range of
uncertainty.

5.1 Connection of Uncertainty with System Motions

A power system maintains balance between its generation, changing load, variable generation, and
interchange. Increasing uncertainty means more balancing work to be done by conventional generation,
energy storage, and controllable load. In other words, these resources have to move more with increasing
uncertainty and variability. Because the balancing service is a paid service, more system motion results in
additional costs. The statistical separation of fast and slow motions helps to better distribute the balancing
job between slow and fast balancing resources; so that they are more efficiently used and the cost is
reduced (the fast-responsive resources are usually more expensive). In this study, we apply various
approaches to address the challenges in forecast error prediction and uncertainty reduction by: (1) adding
seasonal effects to preserve seasonal patterns; (2) adding Cholesky decomposition to honor cross-
correlation structure in the multivariate series; (3) decomposing signals into trend, seasonal, and noise
components, each of which is more appropriate for time series forecasting (e.g., autoregressive integrated
moving average ARIMA); (4) applying principal component analysis (PCA) to extract the dominant
patterns across zones and zonal similarity for uncertainty reduction.

5.2 Generation of ForecastErrors Using Seasonal ARIMAModels

The load and wind error forecast generator generates multiple error forecasts while preserving
statistical properties and characteristics from real data such as mean, variance, autocorrelation, seasonal
behavior, and cross-correlation between different zones or buses. For the load and wind data described in
the previous section, a seasonal autoregressive integrated moving average (ARIMA) model is fitted to
each set of data. For the load data, the time-of-day biases are also extracted and preserved. R Libraries
‘RIDBC’ and “forecast’ are required for the analysis.

5.2.1 Data Preprocessing

Given the actual and forecast values, the forecast error is defined as

err = actual — forecast. (1)
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For the load forecast error data, the mean value for each hour of each day in a particular month (time-
of-day bias) is computed. Therefore, each month has 24 means with each mean corresponding to an hour
of the day. The bias is subtracted from error. Figure 23 shows the time-of-day bias for the load forecast

time-of-day bias

T T T T T T T T T T T T T
January February March April Iay June July August  September  October  Mowember December  January

Time

Figure 23.Time-of-day bias for the load forecast error data.

5.2.2  Fitting Seasonal ARIMA Models

The auto.arima function in the “forecast’ library is used to fit a seasonal ARIMA model to the
unbiased error. A seasonal ARIMA model is defined by parameters, which is denoted by
ARIMA(p,d,q) x (P, D, Q). The general detailed model can be given as

(1-X0,¢B)(1 X5, @;B5)1-B)*(1—-B)’y, =c+(1-XL,6,B")(1 -
2.0 st)st, (2)

where B is the lag operator, i.e., By, = y;_4, y; is the model output at time t, and the noise terms ¢, are
independent, identically distributed (i.i.d.) random variables sampled from a normal distribution with zero
mean.

This function finds the number of parameters and identifies their values using stepwise fitting. The
model is selected based on the Akaike and Bayesian information criteria (AIC and BIC), which are
standard measures for statistical model selection.

Using the fitted model, a forecast error series can be generated. To complete the generation process,
the output of the seasonal ARIMA model is summed with a random sample from the model residuals and
the previously computed biases.
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In order to maintain the correlation structure across multiple zones/buses, the correlation matrix is
computed from the matrix containing each zone/bus’s forecast errors as columns. Using the Cholesky
decomposition, the correlation weights (the upper triangular factor) can be extracted fromthe correlation
matrix. The correlation weights are then multiplied against the generated forecast errors for that set of
zones/buses.

In the case that some of a set of zones/buses are highly correlated, it is not possible to recover the
correlation weights from the correlation matrix because of numerical instability. Instead, a subset of buses
with lower correlation is extracted. The seasonal ARIMA models are only fitted to the members of the
subset and generation of the forecast errors for the remaining buses is done by rescaling the
corresponding subset member.

The Oracle database is accessed from R via SQL queries using the ‘RJDBC’ library. The generated
results are saved in csv files that can be loaded into the Oracle database.

5.3 ImprovedRepresentationand Reconstruction of Load and Wind
ForecastErrors Using Signal Decomposition and Automated
ARIMA

The above ARIMA approach developed has the following features: (1) the AR parameters can
capture autocorrelations (2) built-in Cholesky decomposition can handle cross-correlation (note that the
night and day signals are mixed without decomposition); and (3) the algorithm honors the local mean and
global mean information.

Here we integrated the automated-ARIMA with signal decomposition in order to alleviate the non-
normality and non-stationarity issues such that ARIMA is more applicable. The forecast error data is
decomposed in order to extract its trend (long-term upward or downward movement), seasonal (periodical
patterns), and random (residual) components. Instead of using the Cholesky decomposition method
derived above, we fixed the low frequency (e.g., trend and seasonal) components to preserve the cross
correlation between buses/zones. This is based on the assumption that the low-frequency patterns will
mostly repeat from year to year. The model is improved to better preserve the local continuity of the
forecast errors. An AR model is trained on the random component for each bus/zone to preserve the
continuity pattern. The maximum order for the AR model is restricted to be three to avoid possible over
fitting.

5.3.1 Signal Decompaosition of Time Series

For each bus/zone, the forecast error time series is decomposed to three components—trend, seasonal
and random series. Figure 24 shows the 10 minute forecast error data for bus 10116 during February
2020. Figure 25 - Figure 27 show the 3 component series extracted from the forecast error data.
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Figure 24. Wind forecast error for bus 10116 (10 minute resolution) during February 2020.
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Figure 25. Trend component of wind forecast error for bus 10116 (10 minute resolution) during February

2020.
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Forecast Error Random Component (M)
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Figure 26. Seasonal component of wind forecast error for bus 10116 (10 minute resolution) during
February 2020.
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Figure 27. Random component of wind forecast error for bus 10116 (10 minute resolution) during
February 2020.
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53.2 Forecast Error Reconstruction

To generate a new set of forecast errors,an AR model of order 3 or less is selected for the random
component of each error series based on AIC values. For example, an AR(3) model was fitted to the trend
component series (1-year long) for bus 10116 as follows

v, = 0.9579y,_, — 0.028y,_, — 0.097y,_3 + £, 3)

where y, is the model output at time t, and the noise terms &, are independent, identically distributed
(i.i.d.) random variables sampled from a normal distribution with zero mean. Figure 28 shows the
generated random component from an AR(3) model that was fitted to the actual wind forecast error for
bus 10116 during February 2020.
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Figure 28. Generated random component from the fitted AR(3) model for wind forecast error at bus
10116 (10 minute resolution) during February 2020.

5.4 Evaluating the Residuals/Errors Using Principal Components to
Represent/Reconstruct System Behaviors

It is observed that the load and wind generation and their forecasts are spatially and temporally
correlated across the study zones (in our study, the load generation data was collected from 39 zones, and
the wind generation data was collected from 190 buses). It is interesting and useful to express the system
behavior by extracting the dominant patterns and/or system motion trajectories. In this section we
describe tests and results of using a principal component analysis (PCA) approach on load data to
evaluate the possibility to characterize the system motion similarity and express the overall behavior in a
much lower dimensional subspace than the original system dimension (i.e., 39 in the case study).

PCA uses orthogonal transformation to convert a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables called principal components. The first principal
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component has the largest possible variance and accounts for the most variability in the data, and each
succeeding component in turn has the highest variance possible under the constraint that it is orthogonal
to (i.e., uncorrelated with) the preceding components.

Here we tested PCA on a one-year-long hourly data (8784 data points) for the 39 zones of load data, and
therefore the data matrix is of size 8784 x 39. The systems behave similarly across the zones —Figure 29
and Figure 30 show that the first two principal components dominate the overall variability in the data,
and only the first six components are needed to explain more than 90% of the total variability. This
provides guidance on how to reduce the systemto a lower dimension subspace without introducing too
much error (e.g., by setting a 10% error tolerance).
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Figure 29. Percentage of total variance in original data that is explained by each principal component.
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Figure 30. Accumulated percentage of total variance in the original data that is explained by the principal
components.

Next, similar analyses were performed on incremental data to study the system movement behavior.
Figure 31 and Figure 32 show that the data matrix for the incremental data also has strong correlation and
can be reduced through PCA. Furthermore, Figure 31 shows that the first four components dominate the
overall variability, but it needs the first 13 components in order to have 90% of total variances explained.
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Figure 31. Percentage of total variance in incremental data that is explained by each principal component.
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Figure 32. Accumulated percentage of total variance in the incremental data that is explained by the
principal components.

The same effects can be seen when data for load and wind are combined (and represented as “net load”
data). However, for the areas under study in this case, whenwind and load are added together, there is no
visible change to the plots, because the results are heavily dominated by the load forecast error, because
the wind forecast error is very small by comparison.

5.5 Simulation for Short-Term Forecast Errors

In this section, an algorithm is proposed to simulate short-term load and wind forecast errors to serve
as inputs to the TUT. The proposed algorithm is shown for load data, but also applies to net load data
(represented as net load variations = load variations — wind variations — solar variations). Given a time
instant and 4 hours’ forecast error data prior to the time instant (i.e., 24 data points at 10 minute
resolution), a number of different possible forecast errors for the next 4 hours (24 data points) will be
generated using a sequential Gaussian simulation method. PCA will also be performed on the simulated
data to reduce the simulation error. For the two sets of simulation data (without and with PCA),
stationarity and normality of the residuals will be tested. The cross-correlation between different zones of
the simulation date will be also compared with the historical data.
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55.1 Sequential Gaussian Simulation

The historic data of load (and wind generation, if desired) forecast errors can be used to train ARIMA
parameters as well as cross-correlation parameters among the 39 zones. With these parameters given,
however, the hour- or day-ahead predictions of the forecast errors will be fixed values, which will only
give one realization of predicted forecast errors. In order to represent the uncertainty in the predictions
and also to enable evaluation of system output uncertainty, we adopt the sequential Gaussian simulation
approach. At the first step, instead of a single predicted value, we generate multiple (e.g., 200)
realizations of the predictions of forecast errors from multivariate Gaussian distributions with ARIMA
prediction mean and cross-correlation matrix trained from historical data. The combination of the mean
and variance predicted by the ARIMA model with multivariate Gaussian sampling is a new technique
developed in this project. The generated predictions (Figure 33) are then treated as ‘actual observations’
and used as additional *historical’ data. This is to maintain local continuity as well as autoregressive and
cross-correlation patterns in the original forecast errors data.
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Figure 33. Randomly selected 10 sets of simulated load forecast errors for zone 1. The two curves are
different, but their statistical characteristics are identical (mean, variance, autocorrelation pattern).

5.5.2  Error Reduction Using PCA

As demonstrated in section 1, PCA can identify the similarities between the forecast errors at all 39
zones (or 190 buses for wind) and enable us to represent the overall variability using a subset number of
components (e.g., 13 out of 39 for load forecast errors as in Figure 34, and 18 out of 190 for wind forecast
errors as in Figure 35) to represent more than 90% of total variability. It would be interesting to see if we
can reduce the uncertainty of short-term predicted forecast errors by combining PCA analysis and the
sequential Gaussian simulator used in the previous section.
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Figure 35. Percentage of total variance explained of actual wind forecast errors within 4 hours prior to the
given time instant (12/10/2020 10:00).

Mathematically speaking, at any given time instant, the actual load forecast error data (10 minute
resolution) for all 39 zones within 4 hours prior to the time instant can form a 24x39 dimensional matrix
A. Each column of A is the time series of 4 hours’ forecast errors for one zone. Each row of A corresponds
to one time instant. Apply PCA to A, and then we have

A=UsyT =SV, (4)

where U € R?*%24, and V € R39%39 are orthogonal matrices and £ € R?#%3° is a rectangular diagonal
matrix with nonnegative singular values on the diagonal. Therefore, the columns of V are the normalized
principal components that give a new basis of the full space. The columns of the score matrix S = UX are
the coefficient vectors of the 24 records (39-dimensional points) in the new coordinate system.

The directions of the leading principal components represent the main cross-correlation between
different zones. The forecast error can be reduced by projecting the full space to the subspace spanned by
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the leading principal components. Inour study, we used the leading 14 principal components because
they explained more than 90% of the total variance as shown in Figure 34.

For any set of the simulated load forecast error data for the following 4 hours after the given time
instant, the data, denoted by A € R24%39, has the same format as A. The score matrix of 4 in the
coordinate system given by V satisfies A = SV7, which leads to § = AV. Therefore, the projection of A
onto the 14-dimensional subspace is

As=5C,1:14) - V(:,1: 147, (5)
where X (:,1: 14) represents the first 14 columns of a matrix X.

In Figure 36, the 10 sets of simulated load forecast errors shown in Figure 33 were projected to the
14-dimensional subspace, and the projected time series for zone 1 were plotted. It can be seen that the
samples are less spread out than the original simulated data. This section represents the different
realizations from PCA ARIMA predictions rather than uncertainty reduction itself. Inthis section we
develop a method to reconstruct processes with certain probabilistic characteristics. Section 7 will discuss
the improvements depending on the number of principal components considered.
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Figure 36. Randomly selected 10 sets of simulated load forecast errors for zone 1 using PCA.

5.5.3 Tests on Statistical Properties

To check whether the combined approach yields reasonable results, stationarity and normality tests
are performed on the short-term predictions of forecast errors (Figure 37-Figure 42) [1]. In order to check
the statistical properties of the analyzed signal (the load data) in terms of stationarity and normality, two
well-accepted methods were used: The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test of stationarity
[2] and the Shapiro-Wilk test of normality [3].

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was conducted to check the stationarity of the
generated time series of forecast errors. The null hypothesis that a time series is stationary will be rejected
if the test P-value is smaller than a threshold (e.g., 0.05).
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The Shapiro-Wilk test of normality was performed to test the normality of the generated short-term
predictions of forecast errors. Similar to the KPSS test, the null hypothesis that the test time series is
normal will be rejected if the test P-value is smaller than a threshold (e.g., 0.05).

Figure 37 - Figure 42 show that most of the generated time series for load passed the stationarity and
normality tests.

o
o o
o
o0
2 5 © o ° o
o o O
I} o]

=) o
Ed_ o o o
[}
= o o
o o o < <]
= = _| [s]
a o o o o o

o
o
o
o~
[ o ° o
o o ©
T
T T T T T
0 10 20 a0 40
Z0nes

Figure 37. Normality test on the 1° set of simulation data for all zones.
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Figure 38. Stationarity test on the 1* set of simulation data for all zones.
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Figure 40. Normality test on the 1** set of simulation data for all zones using the PCA approach.
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Figure 41. Normality test on the residuals of the 1** set of simulation data for all zones using the PCA

approach.
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Figure 42. Stationarity test on the 1** set of simulation data for all zones using the PCA approach
Except for a few zones, the generated predictions of the forecast errors are more likely to be stationary
and normally distributed, using sequential Gaussian simulation, with or without PCA implementation.

The cross-correlation between the zones is tested on both the original simulated forecast errors and
the data obtained using PCA. Figure 43 shows the correlation matrices for the first 15 zones of the two
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sets of forecast errors. The names of the zones are listed in Table 3. A green color disk at the (i, j) position
in the correlation matrix means that zone i and zone j are positively correlated. The stronger the
correlation is, the skinnier the disk is, and the darker the color is. It can be seen that with the PCA
approach, the correlation matrix is adjusted, resulting in enhancement/reduction of a certain zone’s
correlation with all the other zones. This adjustment is useful when the number of zones is relatively
large, and models for separate regional clusters are needed. The correlation matrix can give insight on
how to cluster the zones. In addition, the correlation between the zones within a cluster is enhanced, while
the correlation between different clusters is reduced.

Original Simulated Load Forecast Errors Simulated Load Forecast Errors Using PCA
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Figure 43. Correlation matrices for simulated load forecast errors, without and with using PCA

Table 3. Name of zones

1 AESO 11 PACE_ID 21 SPP 31 SCL

2 BCTC 12 PG&E_VLY 22 CFE 32 APS

3 PG&E_BAY 13 PGN 23 CHPD 33 TREAS

4 PNM 14 TPWR 24 DOPD 34 LDWP

5 WALC 15 WAUW 25 FAR EAST 35 PACW

6 MAGIC 16 AVA 26 NWMT 36 SRP

7 PSE 17 EPE 27 1D 37 TEP

8 SCE 18 GCPD 28 NEVP 38 TIDC

9 SMUD 19 PSC 29 PACE_UT 39 WACM
10 BPA 20 SDGE 30 PACE_WY
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The effects and results in this subsection based on load data alone canalso be seenwhen data for load and
wind are combined (and represented as “net load” data). However, for the areas under study in this case,
when wind and load are added together, there is no visible change to the plots, because the results are
heavily dominated by the load forecast error, because the wind forecast error is very small by comparison.
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6.0 Improving System Predictability Using Statistical
Separation of Slow, Fast and Very Fast System Motions

Motions and dynamic behavior of a power system can be effectively characterized by system net load
as well as dynamic events, where net load is the difference between actual system load and renewable
generation. Based on recorded time-domain trajectories, one can identify the actual motions of the power
systemand provide actual stress directions that can be applied to the system models and calculate security
margins. Load and renewable generation forecasts in near termand longer term are usually provided
separately by service vendors, to predict future system motions for better balancing the system.

In this project, advanced statistical methods were applied to separate slow, fast and very fast system
motions caused by variation of the net system load. The very fast motion is actually white noise, which is
a completely unpredictable component of a signal. If the forecast error is exactly white noise, this is a
perfect forecast.

Actual net load = load forecast + load forecast error — (renewable forecast + renewable forecast
error) = net load forecast + net load forecast error (6)

Accurate forecasts are critical for real-time operations and long term planning for power utilities and
independent system operators. However, very few of them actually analyze the realistic forecast error
signals in a balancing authority to better understand their motions and then find means of reducing
forecast errors.

A new concept is proposed in this paper to decompose the actual system net load into three different
components obtained from balancing authorities: (1) the first component refers to hourly, daily, and even
longer term forecast, reflecting the system slow motion; (2) the second component is the estimate of
forecast error that captures the fast motion of system movement in near term (they remove most of longer
term period patterns and preserve relatively fast signals); and (3) the third component is the residual
representing very fast motion that can be characterized as noises. The main idea is illustrated in Equation
(7), where the second and third components constitute the net load forecast error shown in Equation (6).
Separating these components and estimating the net load forecast error make it possible to reduce forecast
errors and system uncertainties, resulting in many benefits for the power system planners and operators.
To achieve this goal, badging decision trees [3], an ensemble method that builds multiple decision trees
by repeatedly resampling training data with replacement and voting the trees for a consensus prediction,
are used to effectively estimate the net load forecast errors, which leaves the main uncertainties of net
load with the residuals. The wavelet transform method is used for analyzing our forecast errors and
forecasted forecast errors to evaluate the performance of our approach for separating the system fast and
very fast motions.

Actual net load = net load forecast (slow motion) + estimate of net load forecast error (fast
motion) + residuals (very fast motion) (7)

In this section, two methodologies are introduced and described. Case studies and results are shown
and discussed.
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6.1 Methodologydescription

Two methodologies used in this work are introduced in this section. One is the predictive model for
generating load, load forecast errors and net load forecast errors to separate the above mentioned system
motions; another one is the wavelet analysis method to study these motions in the time-frequency domain
and to evaluate the separation results for reducing uncertainties.

6.1.1 A Regression Tree Based Predictive Model

The decision tree technique is an effective supervised data mining tool to solve the classification
problems in high data dimensions [4]. For a created database consisting of different cases that are
represented by a vector of predictors (or variables) along with an objective, a decision tree is designed for
successful classifications of this objective by using only a small number of these predictors.

Llevell mmmd X1<260?
A 4 A 4
Level 2 mmmm) | X2< 5807 X3<140?
‘l’ 4 v A 4
-630 -371 -96 18

Terminal nodes

Figure 44. Example for a regression tree.

Regression tree (Figure 44) based methods are widely utilized for day-ahead load forecasts [5]. In this
paper, we implemented the regression trees method for generating day-ahead load forecasts, and
developed an effective knowledge base for training an auto-regression model for hour-ahead load
forecast. Two knowledge bases were developed to forecast hour-ahead load forecast and hour-ahead net
load forecast, respectively. The selected attributes for each knowledge base are listed as below:

1) For hour-ahead load forecast:

Load data

Temperature data

Day of week

Net load from the same hour the same day in the previous week
Net load from the same hour in the previous day

Net load from the previous two hours

2) For hour-ahead net load forecast:
e Load data
e Wind data
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Temperature data

Wind speed

Day of week

Net load from the same hour the same day in the previous week
Net load from the same hour in the previous day

Net load from the previous two hours

To improve the performance of the predictive models using regression tree methods, all the available
information prior to the operating hour being forecasted are included in the knowledge base for training
the model. Thus, the size of the knowledge bases is increasing with time. This ensures the predictive
models be trained using the most recent as well as historical information.

6.1.2 An Advanced Method for Analyzing Fast and Slow Motions

Wavelet transforms (WT) [1-2] are multi-resolution decompositions, which can be used to analyze
signals and images. Wavelet transforms describe a signal by the power at each scale and position [6]. The
wavelet power spectrum can be calculated at each level/frequency to demonstrate the contribution of the
component to the overall variability of a signal. Therefore, the WT tells which components are important
in the frequency domain. Wavelet transforms help identify these instances and reflect the changing
magnitude of the components [7].

6.2 Case Studies

We performed two types of studies: Case A is to generate load forecast to separate the slow motion
and fast motion; Case B is to predict forecast errors to reduce uncertainties and separate fast and very fast
motions. In the Case B, there are two scenarios. One predicted load forecast errors while the other one
predicted net load forecast errors. The net load forecast errors included both load and wind components.

In these studies, the realistic load and wind data in the year 2010 from two balancing authorities in
the Western Interconnection of the U.S are used. The corresponding weather data, e.g., temperature
profiles at major cities, is collected from National Oceanic and Atmospheric Administration website,
which are used for training the predictive models.

6.2.1 Load Forecast

We collected 2010 hourly historical load and weather data of a WECC balancing authority to perform
two load forecast tests based on the regression trees method: day-ahead load forecast and hour-ahead load
forecast. We trained the model by using historical data of the month before the testing month (Fix model).
The day-ahead forecast for July 2010 is shown in Figure 45.

The upper panel in Figure 45 shows a comparison between actual load and the generated forecast
load. There are large discrepancies during several weekdays after the July 4th holiday. The residuals
(actual - forecast) are the forecast errors as shown in the lower panel in Figure 45.

The predictive model is trained to use the historical data before every hour being forecasted and
include more predictor variables such as data from the previous hour. The hour-ahead forecasts in July
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2010 using regression trees are shown in Figure 45. The comparison between actual load and the
forecasted load is given in the upper panel in Figure 46. There is no obvious difference between the two
signals. The residuals, as shown in the lower panel in Figure 46, are very small.
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Figure 45. Day-ahead load forecast.
(note: data normalized by the peak load in 2010)

The results demonstrate that our approach can reasonably well separate the slow motion (i.e., load
forecast) from the fast motion (i.e., forecast errors), as shown in Figure 45 and Figure 46.
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Figure 46. Hour-ahead load forecast.
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(Note: Data normalized by the peak load in 2010.)

6.2.2 Forecast Errors Prediction

In this project we attempted to predict the forecast error based on state-of-the-art prediction methods.
The ability to partially predict forecast errors would help to reduce the forecast error itself as well as
ultimately reduce the prediction interval around the errors. Such a task is very challenging. Our results
show that this, in fact, is feasible. We successful demonstrate that that is possible to reduce the forecast
error if the signal has autocorrelation or cross-correlation with other signals.

In this study, historical hourly actual and forecast load data, and weather data of the year 2010 is used
in the first scenario. In the second scenario, another set of 2010 hourly historical actual and forecast load
and wind data, and weather data of another WECC balancing authority is collected. Inthis case, historical
net load forecast errors are obtained. The regression trees method is utilized to perform hour-ahead
forecast of the forecast errors.

6.2.2.1 Load Forecast Errors

The actual load forecast errors were based on historical data. We attempted to reduce the uncertainty
of the load forecast errors based on the prediction methods described in section 5.

The predicted load forecast errors for July 2010 are shown in Figure 47. The upper part of Figure 47
presents the actual forecast error versus the predicted forecast error obtained by our method. The
difference between the actual forecast error and the predicted forecast error is shown in the lower part of
Figure 47. By comparing the actual forecast error and the new forecast error obtained by subtracting the
predicted error from the actual error, one can see that the standard deviation of the error is reduced
by~30%. The absolute mean error is reduced by 48%.
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Figure 47. Load forecasted forecast error.
(Note: Data normalized by the maximum actual forecast error.)

6.2.2.2 Net load forecast errors

In the second scenario, the hour-ahead forecast of net load (load minus wind and solar generation)
forecast errors is performed. The forecast results of net load forecast errors for July 2010 are shown in
Figure 48. The upper part of Figure 48 presents the original forecast error and the predicted forecast error
obtained by our method. The difference between the original forecast error and the predicted forecast
error are shown in the lower part of Figure 48. In this case the reduced forecast errors (which are the
residuals) can be obtained by subtracting the predicted forecast errors from the actual forecast errors.
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Figure 48. Net load original forecast error and preducted predicted forecast error.
(Note: Data normalized by the maximum actual forecast error.)

Comparing the actual forecast error and the reduced forecast error, the standard deviation is reduced
to about 58.6%. The absolute meanerror is reduced to 51.4%. The error distribution and absolute error
distribution are shown in Figure 49.
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Figure 49. Error distribution and absolute error distribution (MAE: mean absolute error)
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6.3 Wavelet Analysis

In this section, we analyzed the residuals using the wavelet analysis method.

The net load, net load forecast, and the forecast errors, reflect a mixture of multi-timescale variability,
and the time series usually are of non-normal distribution with non-stationarity. Therefore, traditional
statistical measures (mean, standard deviation) are inadequate to evaluate or validate the more prediction
results. Here we adopt a wavelet decomposition approach to provide a time—frequency representation as a
view of the corresponding time series variability and describe the signal in terms of wavelet functions of
time and frequency.

a) original forecast errors

Error Value
o

100 200 300 400 500 600 700

Time (hours)
b) Wawelet Power Spectrum of original forecase errors  ¢) Global Wawelet Spectrum
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d) average variance of daily component

30
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O 1 1 1 1 1 1
100 200 300 400 500 600 700

Time (hours)

Figure 50. Wavelet analyses of net load forecast errors:

(a) Time series of net load forecast errors; b) Contour map of wavelet power of decomposed
components at different time scales; ¢) The spectrum shows that data consists of a few major components
(weekly + daily); d) The contribution of the short-term component is high during the middle and late
times.
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a) predicted forecast errors

Error Value
o

100 200 300 400 500 600 700
Time (hours)
b) Wawelet Power Spectrum of predicted forecase errors ¢) Global Wawelet Spectrum

Period (hours)

100 200 300 400 500 600 700 O 5 10

Time (hours) Power
d) average variance of daily component

Avg power

100 200 300 400 500 600 700
Time (hours)

Figure 51. Wavelet analyses of predictions of new load forecast errors

(a) Predicted forecast errors; b) Contour map of wavelet power of decomposed components at
different time scales; ¢) The spectrum shows that data consists of a few major components; d) The
contribution of a short-term component is high during the late time period.

The predicted power spectrum of the predictions (Figure 51c) matches the spectrum of the original
forecast errors (Figure 50c) very well, with a strong weekly component and a clear daily component.

Analysis of the residuals shows that the predictions have well captured the main signal in the forecast
error series. The spectrum of the residuals is rather evenly distributed. There is still some but weak daily
component remained in the residuals, while the weekly component is negligible (well captured).
Regarding the mismatched daily component, the biggest mismatches occur around t = 270 hours (Figure
52d), which corresponds to the time of strong positive anomalies in the forecast errors.
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a) residuals
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Figure 52. Wavelet analyses of residuals with net load forecast error prediction

(a) Residuals; b) Contour map of wavelet power of decomposed components at different time scales;
c) The spectrum shows that data consists of weak daily component and negligible weekly component; d)
The contribution of a short-term component is high during the middle time period.
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Figure 53. QQ plot and PDF of the residuals.
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However, the residuals neither pass the Shapiro-Wilk normality test, nor the Kwiatkowski-P hillips—
Schmidt-Shin (KPSS) test for level stationarity.

Shapiro-Wilk normality test: p-value = 3.623e-08
KPSS Level = 0.6204, p-value = 0.02078
Augmented Dickey-Fuller Test: p-value = 0.01

As can be seen in the Figure 53b, the distribution of the residuals has long tails at both ends, and this
is the main reason of non-stationarity and non-normality.

a) residuals
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Figure 54. Wavelet analyses of residuals with load forecast error predictions

(a) Residuals; b) Contour map of wavelet power of decomposed components at different time scales;
¢) The spectrum shows that data consists of weak daily and weekly components; d) The contribution of a
short-term component is high during the early and late times.

Figure 54 shows the wavelet analysis of the residuals on the data set using the same approach. Similar
to Figure 52, one can see that there are not any dominant signals at any particular scales, which means
that the major variability in the forecast errors has been captured.
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6.4 Conclusion

In this study, we introduced a novel statistical separation method to improve system predictability and
reduce uncertainties by separating slow, fast, and very fast motions in power system total load or net load.
The method based on regression trees was developed to forecast load, and load/net load forecast errors
using real power system data. From the wavelet analysis, both daily and weekly components are separated
from the very fast motions of the signals, except for the mismatch in the daily component around the 270"
hours corresponding to strong positive anomalies in the forecast errors.

The fast motion can be extracted from slow motions by obtaining the real forecast errors in the
system; while the very fast motion can be separated from fast motion by subtracting the predicted forecast
errors from the actual forecast errors. Our results indicate that the system predictability is significantly
improved, e.g.,~40% reduction.
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7.0 Principal Stress Direction Extraction and Motion
Trajectory Approximation

The goal of this task is to identify the motions of the WECC system based on observations rather than
engineering intuition. These motions give us the actual stress directions to be applied to the system
models and to get the system security margin. To minimize the number of stress directions, we applied
the principal component analysis (PCA). In this analysis, we considered 39 areas within the WECC
system. PCA has been used to analyze total hour-to-hour load variations (including wind and solar
generation) in different zones. Forecast data including loads, wind power and solar power have been
analyzed through PCA. Approximation errors have been analyzed to quantify uncertainties.

PCA has been widely used to identify principal components in analysis of power system dynamic.
For example, a PCA-based model reduction method was developed for power systems in [1]; based on
PCA, reference [2] developed a wind speed prediction method; reference [3] used PCA to enhance wind
power production costing simulation efficiency; and reference [4] used PCA to analyze the impact of
wind power generation on European cross-border power flows.

In this study, we used PCA to extract principal power system stress directions, with wind power and
solar power being considered. These principal stress directions are essential to characterizing system
motion and quantification of uncertainties.

7.1 Principal Stress Direction Extraction

Suppose P; is the net real power" of zone i at time instant j; then AP; =P, ., — B; representthe

ij i ij
load increment of zone i in the time period of [j, j+1]. Suppose we have n zones (in this case n = 39).

Define vector
v, =[AR;, AR,

1j

AR, ] 0)

i

We have different v, for different days (over one month) as shown in blue solid curves in Figure 55.

Here j =8, n=39, namely Vv; represent 39 loads increment between8and 9 a.m.. Let v}’ represent V; in
the d-th day.

As can be seen from Figure 55, although v, has different shapes in different days, the shapes are

similar. 1t can be seen from, the first three principal components account for most of the shapes. The three
principal components (Vp1 Vp2,Vps) are shown in the following:

1 . .
Forecast of load minus forecast of wind and solar energy
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January in the parameter space of 39 zones.

7.2 Approximating System Motion Trajectories In Parameter Space

Using the singular value decomposition (SVD) to implement the idea of PCA, we have:

Here U isa 31x31 matrix; W is a 39x39 matrix; M is a 31x39 matrix and defined in the

following:

D isa 31x39 matrix and is shown in the following:

M =UDW'

V3O

31

7.2

Plot of vg (representing increments in the interval between 8 and 9 a.m.) for different days in
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D, 0 0 0 0 00
0 0 0 0 00

D=|0 0 D, 0 0 00 0
0 0 0 - 0 00
0 0 0 0 D, 00

The first three rows of matrix W are the first three principal components. Singular values for
different components are shown in Figure 56, and the first three principal components are shown in
Figure 57.

Let D, =0 (i>3), we have:
T=U*D

Here Tis a 31x39 matrix equal to U multiplied by D; and T (:,r) =0 for r=1,..,3. Finally, we have

Vo2 0)

Here we use the following notation: T(:,r) —is the r-th column of T.

According to equation (3), we have

ViR T(,D) <V, +T (D) x vy, +T(1,1) xV,, (0)

Using the first three principal components, the approximation is shown in Figure 58. The dotted lines
represent approximated values.
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Figure 58. Approximation using first three principal components

Using the first two principal components, the approximation is shown in Figure 59. Figure 60 and
Figure 61 show the approximation using only the first principal component. Remember v? and v,

defined in Equation (1). So in the space of P_, we have 31 vectors (v;‘, j=8,d=12,-.-,31) forthe
time interval between 8 and 9 a.m.. These 31 vectors can be represented by the three vectors: vp; Vo2 Vps.
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Figure 59. Approximation using the first two principal components.
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Figure 60. Principal directions for 24 intervals of January.
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Figure 61. Principal directions for 24 intervals of July.

7.3 Conclusions

The following conclusions can be drawn from this study:
e In WECC, the system motion behaviors on different days have a high degree of similarity.

e Usually, the motion characteristics in the WECC system zones can be well captured by the
first two or three principal components.

e PCA s apromising tool to analyze system motion characteristics.
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8.0 Probabilistic Quantification and Observation of WECC
System Transmission Limits

8.1 Introduction

The electrical power system is a complex network both from an operational as well as an analysis
point of view. Large networks spanning several terawatts of generation and loads are interconnected,
spanning several countries to operate a stable and sustainable power system. Many political and
administrative entities that own parts of such integrated power systems often have bilateral power transfer
limits across their boundaries (tie lines) for several reasons including stability, statutory export-import
limitations of power, or tie-line capacity limits. Traditionally, Energy Management Systems (EMS)
solutions were developed to remotely monitor and provide appropriate supervisory controls to operate the
power system economically and stably. This includes economic dispatch, unit commitment, state
estimation, etc. Most of the analyses (like security analysis and unit commitment) are performed offline
or on a time-ahead basis (e.qg., hour-ahead or day-ahead etc.) based on forecasted load so that responses to
future events could be planned ahead of time. With increasing penetration of intermittent generation into
bulk power system, generation uncertainty also plays a key role in time-ahead planning for efficient
operation of the power system. Under these circumstances, stochastic tools are very helpful in both
planning and operation of power systems.

Interacting wind, solar, and load forecast errors can create significant unpredictable impacts on the
transmission system, congestion, voltage and reactive power stability margins. For instance, the worst
case can be a combination of the significant positive errors in one area of the power system
interconnection with the significant negative errors in another area. This could lead to a significant
deviation of power flow from the scheduled values, and thus create congestion and voltage stability
problems. These impacts will be increasing with increasing penetration levels of variable renewable
generation in the Western Interconnection and California power systems. To maintain a secure system
reliability level, the probability and the magnitude of the impacts should be evaluated and communicated
to system operators. Based on this information, the system power flow limits, dispatches, voltage levels,
and available reactive power margins could be adjusted to minimize the risk of system problems and
failures to an acceptable level whenever it is required.

Generation re-dispatch can be an effective way to change the power flows along multiple transmission
lines of the power system. Time-ahead analysis with generation and load forecasts takes into
consideration a snapshot of the system and try to plan generation based on that. The probability
distribution of the forecasting errors can provide worst-case scenarios that can cause congestion along
important transmission lines. TUT provides a holistic view of the system superimposed by the density
functions that arise from various uncertainties. This task develops a methodology based on generation
dispatch to simultaneously reduce worst-case tie-line congestion caused by generation and load
uncertainties.

8.2 Methodology Description

Forecasts are based on a forecasted snapshot of the system. But we know that there is a white noise
probability density associated with each forecasted quantity. System-wide aggregation of these error
distributions will produce a resultant distribution of power flows in the tie-lines between different areas.
Although a single snapshot of the forecast shows no violation of the tie line power flow limits, there is a
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finite probability that the limits are violated as shown in Figure 62 for the California-Oregon Intertie
(COl) interface of WECC.

COI (66) PDF

Interface Limit (A)

2.28%

Scheduled Interface Flow

) % 0.0005
82.5% = i

Ol & ]

Prabability Density

2000 3000 4000 5000

CClI MW
MW _Flow = Interface Flow (Base Case)
= Limit Interface Flow (Base Case + Contingencies)

Figure 62. Power flow probability density function for the COI interface of WECC.

In Figure 62, there is a 2.28% probability that the power flow exceeds the interface limit (4800 MW). The
distribution function is spread around the base power flow (3960 MW). If the base power flow is reduced
by 400 MW, the entire probability distribution shifts to the left leaving the probability that the power flow
exceeds interface limit to less than some tolerance (say 0.1%). Generation re-dispatch can be used to
move the base power flow as shown in Figure 63.
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Figure 63. Probability density function for the COI interface with generation re-dispatch.

Similar distributions can be generated for every transfer in the system. A holistic mathematical
formulation is necessary to calculate simultaneous generation re-dispatches in different areas that would
reduce the probability of exceeding the interface limit to less than the tolerance limit.
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821 Mathematical formulation

Power transfer distribution factor (PTDF) represents the sensitivity of power flow in a particular
interface with respect to generation changes in respective areas. Mathematically, this can be described as,

AF; = PTDF;; x AP; (1)
where,
AF; - represents the change in power flow in i"" interface
PTDF;; — represents the PTDF in i"" interface for change in generation in j™ area
AP; - represents the change in generation in j™ area.

For a system with ‘n’ number of areas, each area generation can be re-dispatched. The resultant
change in the flows of each interface is an aggregation due to changes in multiple area generations. This
could be mathematically formulated as,

AF; = ¥, PTDF;; X AP; )

For each of the interface, acceptable limits for base power flow can be calculated when superimposed
with the probability distribution of forecast errors will be within the interface transfer limits. This will

provide AF,™" and AF;™** for each of the interface. We can use these limits as constraints of power flow
changes.
AF;"°% < AF; < AF;M9n ?)

These constraints are binding and equation (2) can be used to determine appropriate generation
adjustment APj in eacharea j. But this can produce an under-determinant set of equations that can result
in infinite solutions. To resolve this issue, an objective function is developed based on the understanding
that minimal generation adjustment is expected. Hence, the objective function is developed as

Minimize, ¥ AP;” (4)
This problem could be solved using quadratic optimization. Other forms of objective functions can be
developed such as,

Minimize, Y. C;AP;* ()
where C; — represents the cost of generation adjustment in each area. An additional constraint, which can

be added to the problem is ¥ AP; = 0. Assuming that the analyzed case is a balanced case with

acceptable frequency, this last equation is an equivalent of the power balance equation.
Results reported in this section have a preliminary nature. More work is needed in Phase 2 of this project.

8.3 Demonstration

The proposed formulation has been applied to WECC system particularly for the 2020 planning case.
WECC has 21 areas. The limits of transfers for each of the interfaces are shown in Table 4.
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Path number

85

76

21

59

33

17

19

55

45

50

66
100

77

59

62

58

18

16

14
42

29

28

60

61

75

73

43

Table 4. Interface base power flows and limits of flow changes

Interface_Name

ALBERTA-BRITISH
COLUMBIA

ALLST ON-KEELER

ALTURASPROJECT
ARIZONA - CALIFORNIA

BILLINGS- YELLOWTAIL

BONANZA WEST

BORAHW

BRIDGER W

BROWNLEE EAST

CA INDEPENDENT - MEXICO
(CFE)

CHOLLA -PINNACLE PEAK

COl
COI+PDCI
CRYSTAL - ALLEN

EAGLE MTN 230/161 KV -
BLYTHE 16

ELDORADO - MCCULLOUGH
500 KV

ELDORADO - MEAD 230 KV
LINES

IDAHO - MONT ANA
IDAHO - SIERRA

IDAHO-NW

11D - SCE

INTERMOUNTAIN - GONDER
230KV

INTERMOUNTAIN - MONA 345
KV

INYO-CONTROL 115 KVTIE

LUGO - VICTORVILLE 500 KV
LINE

MONT ANA - NORTHWEST
MP-SL
N JOHNDAY

NORT H OF SAN ONOFRE

Interface_MW_Flow

8.4

84.2

1374.3

145.956

-124.5

-68.125

387.739

304.202

762.067

25.349

-413.79

374.177

3493.69
2279.518

237.827

40.591

660.417

-59.563

-214.798

-272.629

-219.932
150.955

13.853

-263.343

-48.877

1343.852

665.069

-374.247

3278.946

1745.55

AF_low

-1258

-2580
-370

-5568
-180
-985

-2407

-2908

-1864

56

-1540

-5975
-4940

-1138

=257

-3168

-1058
-37
20

-580
-724

-178

-820

-1980
-1650
280
-11100

-4130

AF_high

903
-180
100
5814
280
275

1827

1396

1814

764

786

200
380

670

166

1843

1182
477
700

2240
392

150
1550
95

780
1100
1500
4400

580



NORTHERN NEW MEXICO

48 T 931.659 -2320 440
. PACIFICORPIPGEEL1S KV 0.541 s 6
15 Path 15 390.302 4660 2980
26 PATH26 2526.669 -3600 -1000
20 PATHC -43.254 -880 980
” PAVANT, INTRMTN- GONDER 25 181 205 260
24 PG&E - PP 111812 -98 140
6 SILVER PEAK - CONTROL55 1256 10 "
KV
44 SOUT H OF SAN ONOFRE 404.449 -2540 1840
47 (Sﬁhle)HERN NEW MEXICO 59.403 -1048 956
4 SYLMAR - SCE -296.806 -800 1280
30 TOT 1A 167.752 610 310
31 TOT 2A 293.908 -790 290
34 TOT 28 121.354 -810 500
78 TOT 281 83.76 560 380
79 TOT 282 37.594 -288 177
36 TOT 3 564.598 -2035 855
37 TOT4A 308.169 -950 390
38 TOT 4B 189.537 760 400
39 TOTS 633.353 2155 755
40 TOT7 61.568 -850 670
9 WEST OF BROADVIEW 1772.536 4073 533
4 WEST OF CASCADES- NORTH 858.656 -10950 9270
5 WEST OF CASCADES- SOUTH 749.937 -7600 6100
10 WEST OF COLSTRIP 1977.045 4518 498
11 WEST OF CROSSOVER 1949.331 4428 488
6 WEST OF HATWAI 421.995 -3060 2080
46 WOR 609.764 -10648 9358

The optimization as defined in equations (2), (3) and (4) is applied. The resultant solution for area
generation changes is shown in Table 5.
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Table 5. Calculated generation changes to eliminate probabilistic interface congestions

Area Base Gen (MW) Change (MW) Computed NewGen (MW) Considered NewGen (MW)
NEW MEXICO 3300 589 3889 3889
EL PASO 1553 202 1755 1755
ARIZONA 29665 936.44 30601.44 30601.44
NEVADA 6900 796.63 7696.63 7696.63
MEXICO-CFE 3409 498 3907 3907
IMPERIALCA 1635 325 1960 1960
SANDIEGO 4381 198 4579 4579
SOCALIF 20842 -318.75 20523.25 20523.25
LADWP 5570 -821.19 4748.81 4748.81
PGANDE 30545 1168.99 31713.99 _
NORTHWEST 34100 -111.33 33988.67 33988.67
B_C_HYDRO 10948 -708.62 10239.38 10239.38
FORTISBC 901 -404.9 496.1 496.1
ALBERTA 13995 -851.7 13143.3 13143.3
IDAHO 4611 -965.59 3645.41 3645.41
MONTANA 3054 409.45 3463.45 3463.45
WAPAU_M_ 49 12 61 61
SIERRA 2676 -760.83 1915.17 1915.17
PACE 8517 -181.05 8335.95 8335.95
PSCOLORADO 7990 -15.35 7974.65 7974.65
WAPAR_M_ 6686 3.8 6689.8 6689.8

By application of the calculated generation re-dispatches, the improvement in interface congestion is
shown in Figure 65 — Figure 69.
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Figure 64: Improvement in congestion in the ALLSTON-KEELER interface.
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Figure 65: Improvement in congestion in the CA INDEPENDENT - MEXICO (CFE) interface.
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IDAHO - SIERRA (16) PDF
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Figure 66: Improvement in congestion in the IDAHO - SIERRA interface.
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Figure 67: Improvement in congestion in the INYO - CONTROL 115 KV TIE interface.
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Figure 68: Improvement in congestion in the MP-SL interface.
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Figure 69: Improvement in congestion in the PATH 26 interface.

8.4 Conclusion

In this study, we proposed a novel methodology based on generation re-dispatch to eliminate the
probability of transmission congestion due to uncertainties in generation and load forecasts. The
transmission tool developed is very handy to simultaneously view the impact of uncertainties on all the
transmission paths with aggregation of the probability distributions.

The results obtained are very encouraging in achieving the objectives of reducing transmission re-
dispatches. The proposed methodology will be tested further with cost data for area generation.
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9.0 Transmission Uncertainty and Prediction Tool (TUT)

Interactions among wind generation, solar generation, and load forecast errors can have a random impact
on transmission system. This event can lead to additional congestion and voltage stability problems. To
mitigate this problem, balancing authorities (BAs) should be able to re-dispatch their conventional
generators ahead of time, if such impact can be predicted.

A worst-case example of interactions among wind and solar generation forecast errors and load
forecast errors can having a random impact could be a combination of significant positive errors in one
area (AP,) of the system with significant negative errors in another areas (AP, and AP5), as illustrated in
Figure 70. This event can lead to deviations of power flows from their scheduled values and thus cause
additional congestion and voltage stability problems. If the transmission impacts of uncertain parameters
remain unpredicted (and the BAs therefore do not have the information to re-dispatch generation ahead of
time), they can cause (1) unexpected reliability problems; (2) real-time energy price spikes because of the
use of costly fast-responsive balancing resources; and (3) in some circumstances, curtailment of excessive
wind and solar generation.

BA 1 BA 2

BA 3

Figure 70. An illustration of transmission congestion caused by load, wind and solar forecast errors.

To maintain an adequate system reliability level, the probability and the magnitude of these potential
transmission impacts should be predicted and communicated to the system operators or directly to the
market/EMS systems. Based on this information, the system power flow limits, dispatches, voltage levels,
and available reactive power margins could be adjusted to minimize the risk of system problems, failures,
and real-time market spikes.

A new probabilistic methodology and new analytical software called the Transmission
Uncertainty and Prediction Tool (TUT) have been developed at Pacific Northwest National Laboratory in
order to help BAs facilitate higher penetration of renewable resources without compromising system
reliability. This work was supported by the U.S. Department of Energy (DOE) Office of Electricity
Delivery & Energy Reliability (OE) and Office of Energy Efficiency & Renewable Energy (EERE) and
by the California Energy Commission (CEC). The developed methodology predicts the impact of variable
resources on congested paths, worst-case voltage drops, and reactive power margins at low voltage points
for several hours ahead of time and, if needed, proposes control actions to mitigate the problem if
necessary.
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The TUT analyzes the impact of wind generation and other sources of uncertainty on the base case
and under user-specified contingencies, so that the most limiting contingency is determined and
addressed. A conceptual design of the developed transmission uncertainty analysis methodology is shown
in Figure 71. The developed methodology is based on the Monte Carlo simulations and advanced
statistical analysis of different sources of uncertainty that can impact on the transmission network .The
developed methodology also includes a linearized power flow model to calculate incremental active
power flows in the transmission network caused by forecasting errors.
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Solar Forecasts interval power flow curves
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Figure 71. A concept of probabilistic transmission uncertainty analysis.

The impact of random variations of wind and solar generation and system load from their forecasted
values on power transfers is revealed by simulating forecasting errors (of different kinds) distributed over
a large geographical area. The statistical model based on the ARIMA method was developed for this
purpose. Errors caused by variability (deviations from flat energy schedules) are also simulated. Based on
this model and an incremental linearized model reflecting the impacts of system imbalances on power
transfers, we determine the probability distributions of the flows by repeating simulations of random
forecast errors and the corresponding increments of monitored flows. These distributions are used to find
the probabilistic load margin. Also, these distributions and P-V and Q-V curves computed by a voltage
stability application are used to determine probability distributions of the voltage magnitudes and reactive
power margins.

The TUT is a standalone Windows application. It has been implemented using parallel computing
techniques that allow us to significantly speed up the computational process. It has an advanced graphical
user interface (GUI), which includes multiple customizable dashboards and transmission network
visualizations based on geographical information systems (GIS) technology (Google Maps or Bing
Maps). Real-time dispatchers can monitor any transmission interface to check the probability distribution
of power flows at a specific look-ahead operating interval. The users will also be advised if the interface
transfer limit potentially can be violated, and what the probability and size of this violation are.
Congested transmission interfaces with potential voltage problems canbe highlighted on the map.
Depending on the severity level of potential transfer and voltage limit violations, different colors can be
used. Figure 72 shows a real-case example, when the probabilistic analysis was applied to the WECC
system model that includes 19729 buses and 3778 generators. One can see that based on the analysis the
tool predicts potential violation of California Oregon Intertie (COI) transmission limit with 1.08%
probability during next operating hour. Thus, real-time dispatchers will have time to re-dispatch units in
California and Pacific Northwest systems to prevent this potential violation.
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Figure 72. Probabilistic analysis of transmission flows in WECC system

The developed methodology and software tool have several very important advantages and
opportunities for the BAs and other TSOs:

1. Better quantification of available security margins. Because the analyzed transmission impacts
are caused by random variations of forecast errors in different parts of the system, they are not predictable
in a deterministic sense. Based on a statistical analysis of multiple forecast errors, the tool provides a
unique opportunity to adjust security margins depending on the risk (expected size and probability) of
potential transmission violations.

2. Better reliability level. By adjusting the system security margins on critical paths in the system,
the tool helps to prevent potential violations caused by random variations of system load and variable
generation around their forecasted values.

3. Better utilization of transmission assets. In cases when the deterministic security margin is
excessive, the tool will provide recommendations to reduce this margin based on the actual variability of
the flows in the analyzed critical paths.

4. Better situational awareness and predictive system monitoring. The TUT algorithm is run for
multiple look-ahead dispatch intervals and possible contingencies. Based on this information, system
dispatchers will be informed about (1) potential violations and associated risks on all critical paths in the
system; (2) the most critical contingencies; and (3) the expected time to violations.

5. Preventive control. Asa result of its look-ahead feature, the TUT algorithm leaves some time for
mitigation measures, helping to reduce the expected size and probability of violations to anacceptable
level.
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10.0 Parallel Implementation of Transmission Uncertainty and
Prediction Tool

The Transmission Uncertainty and Prediction Tool (TUT) was developed to quantify the uncertainty
of interface flows when power injection in each area appears stochastic properties. Prediction of
transmission uncertainty in practical large-scale systems with large numbers of contingencies is
prohibitively computationally intensive. The primary objectives of this task include: (1) analysis of
computational cost of algorithms in TUT; and (2) design and implementation of parallel TUT to speed up
the computation. The calculation in power transfer function distribution factor (PTDF) and Monte Carlo
(MC) could be very time consuming, depending on the system size and number of MC. For example, for
WECC system with 19279 buses and 3778 generators, when there are 100 MCs, the total simulation time
is around 45 seconds, where PTDF calculation accounts for more than 80% of total time. When the MC
number is increased to 2400, the total simulation time is 175 seconds, where PTDF calculation only
accounts for about 23% of total time. We have explored parallel implementation of PTDF and MC
simulation, and found that TUT with parallel PTDF calculation exhibits much improved performance
compared to its sequential version, about 2 to 3 times speedup with 4 threads on a desktop.

10.1 Computational Cost Analysis of Algorithmsin TUT

Computation in TUT consists of two modules: i) PTDF, and ii) probability density function (PDF) of
interface flows.

In the first module, distribution factor on each interface flow as a function of each area generation is
calculated for the base case and each contingency. PTDF is calculated for each area and interface flow.
Let NC denote the number of contingencies (including the base case), NI denote the number of interface,
and NA denote the number of areas. After PTDF calculation, we obtain a PTDF matrix (NI by NA) for
each contingency, resulting NC such kind of matrix in total.

In the second module, PDF of interface flow is calculated through Monte-Carlo runs, which are used
to capture the uncertainties of area power injection. The calculation can be divided into two parts. The
first part takes the area power injection vector in each Monte-Carlo run together with PTDFs as inputs.
PDF is calculated for each interface in each contingency. The second part combines PDFs under all
contingencies to calculate the final PDF for each interface flow.

10.1.1 PTDF Calculation

PTDF is the incremental distribution factors associated with change in area power injection. These
values provide a linearized approximation of flow changes of transmission lines and interfaces in
response to change in area power injection. PTDFs may be calculated using either the full power flow
Jacobian or only a portion of it. In current version of TUT, PTDF is obtained by calling PowerWorld®,
which automatically generates PTDFs based on linearized AC approximation, lossless DC approximation,
or lossless DC with phase shifters approximation. This process is illustrated in Figure 73.
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Figure 73. Flow chart of PTDF calculation calling PowerWorld®

In PowerWorld®, PTDFs are calculated using factored power flow Jacobian,

Ax = J(x ) 'AP (1)

where X" is the based operating point from power flow solution, AP is the change in power injections
associated with power transfer, and AX is the change of system voltages and angles with are used to
calculate flows. The PTDF calculation for each area in PowerWorld assumes the generators in this
region/area participate according to their participation factors. The power flow solution to find x” and
computation in (1) dominate the overall PTDF calculation. The computational complexity is O(n?), which
n is size of Jacobian matrix. This computation will be performed N¢ times for all the contingencies.

10.1.2 Interface Flow PDF Calculation

The PDF calculation can be divided into two parts. In the first part, PDF of each interface flow is
calculated for each contingency, as illustrated in Figure 74. The overall PDF of each interface flow is then
calculated by combining the corresponding PDFs over all contingencies, as illustrated in Figure 75. Both
parts essentially perform matrix vector multiplication and addition. The computation complexities are
Na*N; *Nmc*Ne and N *NMC*Ng, respectively. It is obvious that the first part of PDF calculation is
more time consuming than the second part when is N big. As for comparison between computational
time between PTDF and PDF, it depends on the how big n is compared with Na, N, , and Nyc. Both PTDF
and PDF calculation can dominate the total simulation time.
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10.2 Parallel Implementation

The parallel implementation of matrix vector operation in the first part of PDF calculation is straight
forward. It can be realized using parallel mechanism provided by visual basic.net. PTDF computation is
performed by calling PowerWorld®. Its parallelization requires SimAuto® function provided by

PowerWorld®.



PowerWorld® provides distributed computing add-on which takes advantage of modern multi-
processor computers to reduce computation time. This is exactly the functionality required to compute
PTDF on a multi-processor shared memory machine. The distributed computing add-on relies on
SimAuto® on different processors and a master process to communicate with these processes using
Microsoft® Distributed COM, as shown in Figure 76. However, an extra license is needed for this add-on.

In order to avoid additional cost on distributed computing add-on, a similar framework is proposed to
perform parallel computing, as shown in Figure 77. One limitation of this method is that multiple
instances of PowerWorld® are created, and each instance needs to maintain its own input and output,
which increase the memory usage.

! Communication over |

3 DCOM ! SimAuto | Process 1
Master Simulator } /
Process ] ]

= SimAuto | Process 2

SimAuto | Process n

Figure 76. Parallel computation of PTDF through SimAuto®, with distributed computing add-on

—> SimAuto Process 1

—>{ SimAuto Process 2

Master

> —>| SimAuto | Processn

Figure 77. Parallel computation of PTDF through SimAuto®, without distributed computing add-on

The tool also enables users to select number of thread for parallel computation. This parameter can be
setin “Program Settings”, as shown in Figure 78. The maximum number of threads which can be used is
limited by the available threads in a computer, which is reflected in the list box.
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Figure 78. Control items to parallel PTDF computation

10.3 Test Results

Western interconnection system with 19279 buses, 3778 generators, 21 areas, 67 interfaces and 40
contingencies is used for case study. The number of MC is setto 2400. A series of tests is performed
using the parallel TUT on a laptop with i7-3740QM CPU and 16GB memory. Using 2 processes can
provide approximately 1.4 fold speed up and using 4 processes can provide approximately 2 fold speed up
for PTDF and more than 3 times for MC. The computation time and speedup for serial and parallel (with
4 threads) implementation are shown in Table 6. The PTDF computational time as a function of thread
number is shown in Figure 79.

Table 6. Computation time of PTDF and Monte Carlo

PTDF Monte Carlo
Serial implementation (seconds) 38.39 130.15
Parallel implementation using 4 18.42 42.56
threads (seconds)
Speedup 2.08 3.06
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104 Future Work

In current parallel version of TUT, the calculation of PTDF is realized through PowerWorld® One
disadvantage is multiple instances of PowerWorld® are used. In addition, the speed is also limited by the
computing power of desktop where PowerWorld® is running. In order to further improve the speed by

using high performance computing, a script in FORTRAN or C++ is desired to perform PTDF
calculation.
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11.0 Conclusions and Future Work

11.1 Conclusions

1. A zonal geographically distributed model was developed for the Western Electricity Coordinating
Council (WECC) system reflecting various sources of uncertainty in their interaction (load, wind
and solar generation). The model forms a basis for developing and testing probabilistic methods.

2. Ourapproach based on separation of slow and fast power system motions (represented as net load
variations =load variations — wind variations — solar variations) and associated uncertainties
using probabilistic methods helps to improve predictability and reduce uncertainty in the system.
Slower motions of stochastic processes are more predictable due to more autocorrelation between
the subsequent points. By employing this autocorrelation, it is possible to improve the forecast of
parameters subject to uncertainty. By quantifying uncertainty around the improved forecast, it is
possible to reduce the range of uncertainty.

3. Connection of uncertainty with system motions. A power system maintains balance between its
generation, changing load, variable generation, and interchange. Increasing uncertainty means
more balancing work to be done by conventional generation, energy storage, and controllable
load. In other words, these resources have to move more with increasing uncertainty and
variability. Because the balancing service is a paid service, more system motion results in
additional costs. The statistical separation of fast and slow motions helps to better distribute the
balancing job between slow and fast balancing resources; so that they are more efficiently used
and the cost is reduced (the fast-responsive resources are usually more expensive).

4. Inthis project, advanced statistical methods were applied to separate slow, fast and very fast
system motions caused by variation of the net system load. The very fast motion is actually white
noise, which is a completely unpredictable component of a signal. If the forecast error is exactly
white noise, this is a perfect forecast. The advanced statistical methods applied were:

d. Wavelet transforms — ARIMA method. Wavelet transforms were used to extract the
slower component in the total load forecast error. The ARIMA model was used to predict
this slower component. We demonstrated an uncertainty reduction of 10-12% by
applying this combination of methods.

e. We demonstrated, that the proposed decision tree regression analysis method helps to
reduce the uncertainty (and associated balancing effort) up to 40%, and that the residual
(very fast motion component) becomes close to white noise.

f. Principal component analysis (PCA). By applying this method, we employ cross-
correlation between the total load forecast errors in different zones of the WECC system.
Thai is a new idea. The PCA helps to reduce the number of dimensions, where the
predictable forecast components of multiple zonal errors can be located. This helps to
improve the accuracy of the forecasts, and make the residual error close to white noise.



5. We developed and demonstrated new methods for quantification and adjustment of transmission
limits using probabilistic methods (in the WECC system). Using the Transmission Uncertainty
and Prediction Tool (TUT), we demonstrated how the transmission limits in the WECC system
can be quantified and adjusted to minimize the risk of violations caused by uncertainty. This
adjustment can also help to increase the utilization of transmission facilities within capacity and
reliability limits.

6. PNNL Transmission Uncertainty and Prediction Tool (TUT). Interactions among wind, solar gen
load forecast errors can have a random impact on transmission system. This event can lead to
additional congestion and voltage stability problems. To mitigate this problem, Balancing
Authorities (BAs) should be able to re-dispatch their conventional generators ahead of time, if
such impact can be predicted. A new probabilistic methodology and new analytical software
called the Transmission Uncertainty and Prediction Tool (TUT) was developed at Pacific
Northwest National Laboratory using DOE OE, DOE EERE, and CEC funding. The developed
methodology predicts the impact of the uncertainties on congested paths, worst-case voltage
drops, and reactive power margins for several hours ahead of time and, if needed, proposes
control actions to mitigate the problem if necessary.

7. We demonstrated how TUT can benefit from parallelization.

11.2 Recommendations for Future Work

Based on the first successful phase of the project, the following recommendations can be made for the

near-termand long-term future work.

11.2.1 Proposed Fiscal Year 2015 Work

Move the TUT to a near production level of development. The Tool will be transformed into a “fully”
standalone application. Currently we need to use Powerworld to calculate several characteristics
needed for simulations. Several capabilities will be added to eliminate this dependency and generate a
standalone tool:

a. Power Transfer Distribution Factors (PTDF) calculation capabilities.

b. PV curves computation. There is a potential synergy with the non-iterative voltage stability
project.

c. Usage of parallel computational technique to speed up the process.

d. Contingency analysis.

e. Methodology to calculate probabilities of contingencies.

Stochastic optimization and control. With the increasing uncertainty, the role and implementation of
optimization and control algorithms is changing. Instead of finding a single global minimum, the
optimization algorithm should search for a solution that is covering the uncertainty range. Instead of
moving a single operating point to the desired region, one should move all points contained in the
uncertainty region. The project will reformulate key optimization and control problems to reflect the
random nature of the new power systems.




e Tail events quantification and assessment. The tail vents are observed whenever the system state
exceeds the limits suitable for the “mainstream” power system operations. The tail events are not
very well studied or addressed in the modern system planning and operation. The proposed task will
be one of the first efforts to quantify these events, predict them, and develop uncertainty-based
controls to avoid them.

11.2.2 Long-term Recommendations — Big Picture

The purpose of this long-term effort will be to attract interest from industry organizations and vendors
to make a subsequent implementation project feasible. Ultimately, this project could lead to an industry-
wide effort (a major nation-wide initiative) to transform grid planning and operation from the existing
deterministic platform to the new probabilistic platform. As a big picture, we envisage the following
follow up steps:

e Develop a comprehensive framework and roadmap for probabilistic planning and operations

based on state-of-the art criteria, methodologies, software tools, and technologies

e Cooperate closely with the industry, regulators, Universities, government, national labs, software

vendors, and other interested organizations to make sure that the best ideas, know-how and skills
are reflected in the framework and the roadmap

¢ Initiate and lead a nation-wide effort for implementing this framework within the next 5 years as

a standard practice in planning and operations

¢ Facilitate continuing education, dissemination, and technology transfer in the area of probabilistic

methods and applications

e Create and lead a Probabilistic Technology Interest Group (PTIG) as a tool to implement the

Roadmap and forum for organization interested in the area. The Group could be based on UWIG
(membership fees) or NASPI models (funded by DOE).
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