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ABSTRACT 
 
Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale 
metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of 
corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The 
metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic 
pathway information from the literature. The process model was based on bioconversion, lipid extraction, 
and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield 
predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a 
distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 
/gallon of gasoline equivalent) with assumptions of  2011 $US, 10% internal return on investment, and 
2205 ton/day dry feed rate.  Opportunities for reducing the cost to below $5.0/gallon, such as improving 
bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The 
process and economic models developed for this work will be updated in 2014 with new experimental 
data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost 
of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as 
conversion to additional fuel or to a co-product.   
 

Key Variables Base Case  Target Case 
Minimum fuel selling price ($/gallon) 9.5 5.0 
Feedstock price ($/dry US ton) 80 80 
Yield (gal/dry ton) 25 41 
Fixed Capital Investment ($MM) 500 400 

Bioconversion 
Yields (g triglyceride/g sugar) 
Aeration rate (vvm) 
 
Residence time (day) 

0.17 
Lipid production - 0.4 vvm 

Seed inoculum cultivation 1 vvm  
3 

0.275 
Lipid production - 0.2 vvm 

Seed inoculum cultivation 0.5 vvm  
1 

Hydrotreating 
Yield (g HC fuel/g oil) 
WSHV (h-1) 
Catalyst price ($/lb) 

0.815 
1 

15.0 

0.86 
4 

5.0 
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1.0 Introduction 

1.1 Developing a Route to Hydrocarbon Fuel Precursors via Oleaginous Yeast 
 
The recent demonstration of ethanol production via the bioconversion of cellulosic, non-food feedstocks 
at a cost that is competitive with petroleum marks a major milestone in the development of renewable 
transportation fuels with low greenhouse gas emissions (BETO 2012). Cellulosic ethanol has now 
reached the commercialization stage, and may comprise a significant share of the American biofuels 
market in the near future (POET-DSM 2013). The next opportunity is to combine elements of this proven 
technology with recent advances in the metabolic engineering of industrial microorganisms to develop 
hydrocarbon-based biofuels.  As such, the DOE Bioenergies Technologies Office (BETO) has embarked 
on a new program to develop renewable, infrastructure-compatible hydrocarbon fuels via the biochemical 
conversion of lignocellulosic feedstocks (BETO 2013) 
 
This study identifies technical challenges that must be met to enable the biochemical conversion of 
lignocellulosic feedstocks into renewable hydrocarbon fuels at a commercial biorefinery. It integrates 
process modeling at the plant scale with data from laboratory bioreactor experiments and metabolic 
modeling to investigate the technical and economic viability of hydrocarbon fuel production via the 
cultivation of the oleaginous yeast Lipomyces starkeyi. This multi-scale approach has been applied to 
create a preliminary technoeconomic model for a 2205 ton per day (2000 metric tons/day) cellulosic 
hydrocarbon biorefinery based on the NREL 2011 design case for cellulosic bioethanol (Humbird 2011). 
The major components of the biorefinery model are shown in Figure 1. 
   

 

 
 

Figure 1. A Proposed Biorefinery Design for Hydrocarbon Production from Oleaginous Yeast 
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As shown in Figure 1, the development of new biorefineries for hydrocarbon biofuel production can 
leverage cellulosic ethanol technologies that have already reached the commercialization stage, such as 
dilute acid pretreatment and enzymatic hydrolysis for the release of sugars from lignocellulosic biomass. 
An important difference, however, between current cellulosic ethanol biorefineries and next-generation 
biorefineries for the bioconversion of biomass to hydrocarbon fuels is the very different metabolic 
processes employed by their respective microbial biocatalysts.  Cellulosic ethanol biorefineries mainly 
rely on yeast or bacteria that use an anaerobic process – fermentation – for the synthesis of an excreted 
alcohol. However, many of the most promising microorganisms for hydrocarbon fuel precursor 
production, such as oleaginous yeast, use aerobic metabolic pathways for the synthesis of large 
triglyceride deposits that (as shown in Figure 2) accumulate within the microbial cell (Ratledge 2004, 
Tews 2010, Kosa and Ragauskas 2011).  As such, hydrocarbon production from oleaginous yeast cells 
requires downstream operations for the extraction of triglyceride lipids from the yeast cells, and for the 
upgrading of the triglycerides to diesel and jet fuel. Moreover, the production of fuel ethanol via 
microbial fermentation is an established, worldwide industrial practice, whereas the commercial 
production of microbial lipids has been mainly directed at niche markets over the last few decades. Two 
such markets are related to the production of Single Cell Oils (SCO) intended for use as dietary 
supplements, or as a cocoa butter substitute (Ratledge and Cohen 2008, Ratledge 2010).    
 

1.2 Lipomyces starkeyi as a Biocatalyst for Hydrocarbon Precursor Production 
 
The cosmopolitan, oleaginous, soil yeast L. starkeyi (Figure 2) possesses a number of native 
characteristics that make it an ideal candidate for the production of hydrocarbon fuel precursors via the 
bioconversion of biomass feedstocks.  It is generally regarded as safe, grows rapidly, and has been 
reported to accumulate up to 70% of its dry weight in the form of lipids. Moreover, it possesses the native 
ability to consume nearly all of the major sugar constituents of biomass feedstocks, such as glucose, 
xylose, mannose, galactose, and cellobiose (Gong, Wang et al. 2012, Ng, Jung et al. 2012, Oguri, Masaki 
et al. 2012). 

 
High levels of lipids accumulate within L. starkeyi when nitrogen is limited 
in the growth medium due to a metabolic reaction cascade that is unique to 
oleaginous yeasts and fungi (Ratledge 2004, Tang, Zhang et al. 2009, Kosa 
and Ragauskas 2011):  
 

1) Low intracellular nitrogen levels reduce the activity of a nitrogen-
dependent enzyme, isocitrate dehydrogenase, which leads to the build-up of 
citrate in the mitochondria of the cell.  

2) The excess citrate is exported from the mitochondria into the 
cytosol, and then converted to oxaloacetate and acetyl-CoA by ATP-citrate 
lyase.  

3) The acetyl-CoA is then converted into malonyl-CoA in the first step 
in the canonical fatty acid synthesis pathway, while the oxaloacetate is 
converted into malate and recycled back into the mitochondria where it is 
metabolized in the TCA cycle.  

Figure 2.  The oleaginous 
yeast Lipomyces starkeyi.  
The large, circular bodies 
within the cell (artificially 
shaded green) are lipid 
droplets filled with 
triglycerides. (400x 
micrograph by Sue 
Karagiosis, PNNL) 
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Typically, it is the presence and activity of the gene for the enzyme ATP-citrate lyase that distinguish 
oleaginous species from non-oleaginous ones (Papanikolaou and Aggelis 2011).   
 
Fatty acids resulting from oleaginous lipid synthesis within the cell are assembled into triglycerides (also 
known as triacylglycerols, or TAGs) and into phospholipids in a similar manner as in non-oleaginous 
yeasts.  That is, the synthesis of the neutral triglycerides occurs within lipid droplets (as seen within the 
cell shown in Figure 2) where they are stored as a reserve energy source for the cell. The more polar 
phospholipids are synthesized mainly in the endoplasmic reticulum, and then transported throughout the 
cell to serve as the major structural component of membrane bilayers.   
 
Oleaginous yeast grown under nitrogen-limiting conditions have been reported to conserve up to 70% of 
their dry mass as neutral lipids.  Although the simple, stoichiometric, theoretical maximum yield for such 
storage oils is 33 grams of oil per 100 grams of glucose, the current highest practical conversion of sugar 
to lipids by wild type oleaginous yeast has been observed to be 20 to 22 grams of oil per 100 grams of 
glucose (Ratledge and Cohen, 2008).  Thus, increasing the lipid yield of oleaginous yeast via metabolic 
engineering has emerged as an important strategy in the development of these organisms as biocatalysts 
for conversion of biomass sugars into hydrocarbon precursors for renewable fuel production. 

1.3 Upgrading of Oleaginous Yeast Lipids to Hydrocarbon Fuels   
 
The triglycerides accumulated by oleaginous yeast have fatty acid chain lengths ranging from 14 to 24 
carbons (Ratledge 2010). They are not fuel-compatible but can be upgraded by hydrotreating to 
hydrocarbons in the naphtha and distillate fuel ranges. The hydrotreating of triglycerides has been 
commercialized under trademarks NExBTLTM (Neste oil) and EniEcofiningTM (UOP) to produce diesel- 
and jet-compatible fuels from vegetable oils (Hydrocarbon-Processing 2006, Serrano-Ruiz, Ramos-
Fernandez et al. 2012). The main reaction pathways are shown below in Figure 3.   
 

 

1.4 Specific Aims of This Study 
 
The development of oleaginous yeast triglyceride synthesis as a bioconversion route to commercially 
viable renewable hydrocarbon fuels presents significant technical challenges. As such, the specific aims 
of the present study are: 
 

 
Figure 3.  Example reaction pathways for hydrotreating triglycerides to hydrocarbon fuels. Adapted 
from (Krar, Kovacs et al. 2010) 

 Hydrodeoxygenation 
Theoretical maximum 
yield of  fuel = 86% 
 
 
 

Hydrodecarboxylation 
Theoretical maximum 
yield of fuel = 81% 
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1) to estimate, via the use of a genome-scale metabolic model, the maximum biochemically feasible 
yield of triglycerides from biomass sugars that may be achieved by metabolic engineering of the 
oleaginous yeast Lipomyces starkeyi for lipid overproduction, 

2) to estimate, via the use of a biorefinery-scale process model, the current minimum fuel selling 
price (MFSP) that would be expected using data from the biochemical and engineering literature, 
from metabolic model yield predictions, and from ongoing experimental work at PNNL, 

3) to identify and prioritize biorefinery process improvements that could lead to an MFSP of $3/ 
gasoline gallon equivalent.  

2.0 Metabolic Modeling to Predict Maximum Yields of Lipids and Cell Mass 

In considering the prospects for genetically engineering the metabolism of L. starkeyi as a biocatalyst 
with optimal productivity, it is useful the estimate the maximum yield of lipids from sugar substrates that 
it could be reasonably expected to produce.  Thus, a preliminary, genome-wide, stoichiometric model of 
L. starkeyi metabolism was assembled and used in the present study to predict the maximum 
biochemically feasible yield of triglyceride lipid that the organism could be expected to produce when 
grown on a variety of sugars. Methods and data sources for the construction of the model and its use for 
the simulation of L. starkeyi metabolism are explained in the Appendix.  

2.1 Metabolic Model Validation 
 
The baseline performance of the preliminary L. starkeyi metabolic model was evaluated by the simulation 
of growth on glucose minimal media with excess nitrogen and other nutrients. This was followed by 
comparison with experimental data from a study of L. starkeyi growth kinetics performed within a 30 liter 
bioreactor at PNNL during FY13. The experimental data were drawn from a log-phase growth interval 
that spanned from 37 to 47 hours after inoculation of the bioreactor, before the nitrogen in the culture 
medium was depleted and before log-phase lipid synthesis was fully underway in the L. starkeyi cells. 
The model simulation was performed using the Flux Balance Analysis (FBA) method (see Appendix), 
with the glucose uptake exchange flux constrained to 0.19 gram of glucose per gram of dry cell mass per 
hour (g/g DW/hr) to match the measured glucose consumption rate in the bioreactor experiment.   
 

Table 1. Comparison of L. starkeyi bioreactor kinetics with metabolic model simulation 
 

  Bioreactor Experiment Metabolic Model* 
Metabolites mmol/gDW/hr g/gDW/hr mmol/gDW/hr g/g DW/hr 
Glucose -1.053 -0.190 -1.050 -0.189 
O2 -2.862 -0.092 -2.737 -0.088 
CO2 2.521 0.111 2.806 0.123 
Ammonium -0.332 -0.006 -0.544 -0.010 
Cell mass growth  0.113  0.097 

 

              
 

*Glucose uptake flux was constrained to match experiment; all other fluxes were predicted by flux balance analysis. 
mmol/gDW/hr = millimoles of metabolite produced or consumed per gram of dry weight of cell mass per hour.  
g/gDW/hr = grams of metabolite produced or consumed per gram of dry weight of cell mass per hour.  
Negative values indicate consumption; positive values indicate production. 
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As shown above in Table 1, the preliminary metabolic model predicted a log-phase growth rate of 0.097 
grams per gram of dry weight of cell mass per hour (g/gDW/hr), whereas the bioreactor predicted a higher 
growth rate of 0.113 g/gDW/hr. The respiratory quotient (moles CO2/moles O2) predicted by the model, 
however, is 1.025, which is close to what would be expected for a yeast growing on a pure carbohydrate 
energy source under aerobic conditions, and lends credence to the internal consistency of the model 
(Horvath, Franzen et al. 2003). The bioreactor cell mass yield was 0.59 g /g sugar, whereas the model 
predicted a 13.6% lower cell mass yield of 0.51 g/g sugar. This difference in cell mass yield may be due 
in part to accuracy limitations associated with the instruments and methods used to collect the 
experimental data. The average accuracy and the relative standard deviation for 144 standards used in the 
HPLC assay of bioreactor residual sugar were calculated to be 9.8% and 3.8%, respectively.  As such, the 
difference in experimental vs. model-predicted cell mass yields may be reduced in future work by 
improving the accuracy of sugar analysis methods. In addition, the accuracy of cell mass yield predictions 
from the metabolic model may be improved by further curation of its metabolic network, and by further 
experimental analysis of L. starkeyi physiology -- especially stable carbon isotope (fluxomic) studies that 
can reveal the activity and contribution of individual metabolic pathways to cell mass growth and lipid 
synthesis (Celton, Sanchez et al. 2012).  The general agreement of the cell mass yields, however, was a 
positive indication that the preliminary metabolic model for L. starkeyi will prove itself useful for guiding 
metabolic engineering strategies to improve biocatalyst performance, and in setting reasonable upper 
limits for bioconversion yields and efficiencies. 

2.2 Metabolic Model Prediction of Maximum Triglyceride Yield 
 
The stoichiometrically maximum yield of lipids from glucose or xylose has been calculated to be 33%. 
(Ratledge and Cohen 2008, Papanikolaou and Aggelis 2011)   This yield, however, does not account for 
chemical energy and reducing equivalents that are required for the production of lipids for biochemical 
conversion within a living cell. Nor does it account for the carbon substrate resources that must be 
invested into the growth of the cell itself.  The actual, overall lipid yields from wild type oleaginous yeast 
grown on sugar substrates have been reported to be in the range of 16-22% (Ratledge and Cohen 2008, 
Wild, Patil et al. 2010, Hu, Wu et al. 2011, Lin, Shen et al. 2011, Papanikolaou and Aggelis 2011).  A 
highly engineered strain of Yarrowia lipolytica, however, was recently reported to have achieved a 27% 
lipid yield from glucose during the nitrogen limited, lipid production phase of cultivation, although the 
overall lipid yield from the culture (including log phase growth of cell mass) was 19.5%, which is within 
the range of previously reported overall yields (Tai and Stephanopoulos 2013). Given that both Y. 
lipolytica and L. starkeyi are oleaginous yeasts within the Saccharomycotina subphylum, it is reasonable 
to assume that L. starkeyi may be similarly engineered for higher lipid yields as well. 
 
In the present study, the metabolic model for L. starkeyi was used to make predictions of the maximum 
triglyceride yield that may be reasonably expected from a highly engineered, metabolically optimized 
target strain of this organism when grown on glucose. Two scenarios were considered: a 2:1 molar 
glucose-xylose mixture, and a mixture of glucose, xylose, galactose, and mannose in proportions similar 
those of the major consumable sugar constituents in pretreated, hydrolyzed corn stover (Lee 2007).  The 
resulting predictions are shown below in Table 2. Simulation methods and modifications to the L. starkeyi 
metabolic model required to make the maximum yield predictions (such as the creation of a triglyceride 
demand reaction and defining lipid production as the objective function) are explained in the Appendix.   
 
The simulated percentage yield of triglyceride from all three of the tested combinations of media sugar 
constituents were quite similar, ranging from 27.09% to 27.44%. The predicted similarity in lipid yields 
from growth on glucose, glucose and xylose, or the consumable corn stover sugars is consistent with 
experimental reports on the sugar substrate preferences and lipid yields of L. starkeyi yeast strains (Gong, 
Wang et al. 2012, Oguri, Masaki et al. 2012).  Arabinose, which comprises on average 2.7% of corn 
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stover sugars (Lee 2007), has been rarely reported to be consumed by L. starkeyi,  and was not included in 
the analysis.  
 

Table 2. Steady state mass fluxes for simulated growth of L. starkeyi on various sugar substrates as predicted by 
flux balance analysis with the objective function set to maximize triglyceride yield. 

 
Simulated Growth Medium Glucose Only 2:1 Glucose, Xylose Corn Stover Sugars 

Exchange Reactions mmol/gDW/hr g/gDW/hr mmol/gDW/hr g/gDW/hr mmol/gDW/hr g/gDW/hr 

Glucose Uptake -1.00000 -0.18016 -0.66500 -0.11981 -0.57740 -0.10402 

Xylose Uptake 
 

  -0.335 0.05029 -0.38670 -0.05806 

Galactose Uptake 
 

      -0.02530 -0.00456 

Mannose Uptake 
 

      -0.01060 -0.00191 

Oxygen Uptake -1.57861 -0.05051 -1.53629 -0.04916 -1.52976 -0.04895 

CO2 excretion 2.85384 0.12560 2.72711 0.12002 2.70755 0.11916 

H2O excretion 3.08370 0.05555 2.94176 0.05300 2.91985 0.05260 

Triglyceride Demand Reaction1 0.00061 0.04944 0.00057 0.04617 0.00056 0.04566 
Percentage yield of triglycerides 
from sugars    27.45%   27.14%   27.09% 

1 The mmol/gDW/hr values of the Triglyceride Demand Reaction are scaled 100-fold lower than the other mass fluxes in the table because MW 
of the generic triglyceride metabolite in the metabolic model is scaled 100-fold higher, with a chemical formula of C5160,H9566,O600.  
  
 

3.0 Biorefinery Process and Economic Models 

Biorefinery process and economic models built in CHEMCAD v6.3 (Chemstations, Houston, TX) were 
used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon 
precursors to diesel and jet fuel. The process model was based on bioconversion yields and extraction and 
upgrading data found in literature, on new experimental data, and on predictions of the maximum 
biochemically feasible yield from the preliminary L. starkeyi metabolic model.  The throughput of the 
plant is scaled to 2205 dry tons per day (2000 metric tonnes per day) of biomass. The process flow, 
equipment design, and economic assumptions for sugar production are predominately based on the NREL 
2011 Bioethanol Design Case (Humbird 2011). The primary fuel produced by the plant is a distillate 
range hydrocarbon.     

3.1 Biorefinery Process Design and Configuration 
 
A process block flow diagram for cultivating oleaginous yeast and hydrocarbon fuel production is shown 
above in Figure 1. Corn stover milled to a mean size of 0.16 to 0.23 inches and containing 20 wt% 
moisture is assumed for the feedstock. Dilute acid pretreatment and enzyme hydrolysis are employed to 
release simple sugars from corn stover. Equipment design, process conditions and product yields 
associated with feed handling, dilute acid pretreatment and conditioning, enzyme production and enzyme 
hydrolysis are based on the BETO/NREL cellulosic ethanol design case (Humbird 2011). The model 
section for triglyceride lipid extraction is based on oleaginous yeast processing for Single Cell Oil 
production from whey (Davies 1992).  Equipment design and economics for hydrotreating are based on 
the BETO/PNNL fast pyrolysis design report (Jones 2009). 
 
Lipid and cell mass yields, sugar utilization, and process conditions assumed for the production of 
renewable hydrocarbon fuels are listed in Table 3. The process conditions are based on publicly available 
literature.  The base case bioconversion yields of lipids from glucose and xylose are from recent research 
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literature and from experimental studies of Lipomyces starkeyi at PNNL during FY13. However, the 
bioconversion yields from minor sugars present in the biomass are not known, and are assumed to be less 
than the theoretical maximum yield. It is assumed in the base case that the bioconversion organism 
accumulates the lipid oils and does not secrete them; processes for cell disruption, oil extraction, and 
solvent evaporation were therefore added to the process model. Also, in keeping with the BETO/NREL 
cellulosic ethanol design case (Humbird 2011), it was assumed that the biomass lignin will remain within 
the hydrolysate stream that enters the bioreactors, and will exit mixed with the harvested cell mass that is 
sent to the lipid separation operation (Figure 1). It is not yet known, however, how the presence of lignin 
in the bioreactor growth medium will affect the lipid yield from oleaginous yeast cultivation, nor if the 
lignin will significantly reduce oil recovery from the downstream solvent extraction process (Davis 2013). 
These questions may be addressed by data from experimental bioprocess development work at PNNL in 
FY14 that may be used in future updates of the process model presented here. 
 

Table 3. Base Case Process Assumptions 
 

Seed Inoculum Bioreactor Train 
Sugar conversion and cell mass yield Values Sources/Assumptions 

Glucose utilization 95% NREL 2011 ethanol design case 
Xylose utilization 90% NREL 2011 Ethanol design case 
Sugar slipstream to seed cultivation area 10% NREL 2011 Ethanol design case 
Cell mass yield per unit of sugar substrate 59% PNNL FY13 Experimental data 

Lipid Production Bioreactors 
Sugar conversion and lipid yield Values Sources/Assumptions 

Glucose utilization 97% Hu et al.,2011 
Xylose utilization 96% Gong et al., 2012 
Hexose oligomer utilization 49% Assume 50% of hexose monomer 

conversion 
Pentose oligomer utilization 48% Assume 50% of pentose monomer 

conversion 
Lipid yield per unit of sugar substrate 17% Hu et al.,2011 

Biorefinery Processes 
Process conditions Values Sources/Assumptions 

Bioreactor Temperature (seed inoculum 
and lipid production) 

30 oC Hu et al., 2011 

Retention time (lipid production) 3 days Hu et al., 2011 
Aeration rate    
   - Lipid Production 0.4 vvm Hu et al., 2011 
   - Seed Inoculum 1 vvm Wild, et. al, 2010 
Triglyceride Lipid Recovery 100% Assumed   

 
The yields for downstream triglyceride hydrogenation (Table 4) are from the literature (Krar, Kovacs et 
al. 2010, Kubicka, Bejblova et al. 2010).  Hydroprocessing of vegetable oils to produce green diesel is 
typically performed with conventional hydrotreating catalysts. Catalyst deactivation and catalyst 
regeneration parameters in the present study are based on values found in the literature (Stumborg, Wong 
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et al. 1996). Pre-sulphided catalysts, such as CoMo/Al2O3, facilitate milder process conditions and a 
higher production rate of target compounds in the gas and oil range, although capital and operating costs 
may be required for the sulphidation process.  
 

Table 4. Triglyceride Hydrogenation Base Case Assumptions 
 

3.2 Biorefinery Process Economic Assumptions 
 
The cost analysis was performed within Excel spreadsheets using a discounted cash flow analysis.  The 
financial assumptions are similar to those used in the BETO/NREL cellulosic ethanol design case 
(Humbird 2011) and are shown in Table 5. All cost data from the bioethanol design case are updated to 
2011 $US. 

Table 5. Economic Assumptions 
 

Parameter Value 
Cost year $US 2011 
Feedstock Price (in $US 2011) $80/dry U.S. ton 
Stream factor 96% 
Plant Life 30 years 
Construction time 3.0 years 
Startup time 0.5 years 
Depreciation type 
  General Plant 
  Steam Plant 

MACRS 
7 years 

20 years 
Equity 40% 
Loan term 10 years 
Loan interest 8% 
Internal rate of return (after tax) 10% 
Income tax rate 35% Federal Tax only 
Lang factor 3.1 
Working capital 5% of Fixed capital investment 
Property tax and Insurance 0.7% of Fixed capital investment 
Maintenance 3% of Inside Battery Limit 
General and Administrative  90% of Labor and Supervision 

Conversion and product yields Sources 
Triglyceride conversion 99-100% Krar et al., 2010 
Gaseous product yield <10% Krar et al., 2010 
Water yield <9% Krar et al., 2010 
Organic product yield 84% Krar et al., 2010 
Organic residue 
(heavy fraction) 

9-10% Krar et al., 2010 

Process conditions  Sources 
Temperature 320 oC Kubicka et al., 2010 
WSHV 1 h-1 Kubicka et al., 2010 
Hydrogen pressure 6 MPa Kubicka et al., 2010 
Hydrogen to oil ratio 50 mole:mole Kubicka et al., 2010 
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3.3 Biorefinery Modeling Results and Discussion 
 
Production yields and process economics for the base case are shown below in Table 6. Under the base 
case assumptions, the resulting Minimum Fuel Selling Price (MFSP) is nearly $9.5/gallon.  The MFSP in 
Table 6 is reported in $/gallon of distillate range product and it is approximately $0.5 higher than in 
$/gallons of gasoline equivalent (gge). The Base Case MFSP is significantly greater than the BETO target 
of $3/gge for hydrocarbon fuels from sugars.  
 

Table 6. Base Case Results 
 

Parameter Value 
Annual fuel production 20 million gallon/year 
Yield  25 gallon/dry short ton  
Total Project Investment (TPI) $500 million 
TPI per annual gallon 27 $/annual gallon 
Total Operating Cost 120 $MM/year 
Installed Capital by Area $MM 

Pretreatment and Conditioning 37 
Enzyme hydrolysis, Lipid fermentation and Lipid separation 43 
Cellulase enzyme production 21 
Hydrotreating and Product separation 43 
Waste water treatment 54 
Product and chemical storage 5 
Combustor, Boiler and Turbogenerator 95 
Utilities 7 
Total Installed Capital (rounded) 310 

Product Costs $/gallon 
    Feedstock 3.2 
    Chemicals, Nutrients, Glucose, Microorganism, Catalysts 2.4 
    Waste Disposal 0.1 
    Utilities (water and electricity including electricity credit) -0.5 
    By-product credits (heavies) -0.1 
    Fixed Costs 0.7 
    Capital Depreciation 0.9 
    Average Income Tax 0.5 
    Average Return on Investment 2.3 
Minimum Fuel Selling Price (MFSP) 
Minimum Fuel Selling Price (MFSP in gge) 

9.5 
9.0 

 
Sensitivity analyses for financial and technical assumptions are shown below in Figures 4 and 5 
respectively. Each sensitivity scenario is shown as a deviation bar from $9.5/gallon, which is the MFSP or 
plant gate fuel price of the base case.  Figure 4 shows the sensitivities to changes in feedstock cost and to 
three separate financial assumptions: internal rate of return (IRR), fixed capital investment (FCI) and 
project contingency. Increasing the capital cost by 40% adds $2/gallon to the based price. A 10% decrease 
reduces the capital by less than $1/gallon.  The base feedstock cost is $80/ton.  The sensitivity range of 
$70/ton to $100/ton causes the MSFP to vary by less than $1/gallon.  IRR has the most significant effect; 
the MSFP increases from $9.5/gallon to $15/gallon when the IRR is increased from 10% to 30%.  
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Figure 4. Fuel price sensitivities to feedstock costs and financial assumptions 

 
 
Figure 5 shows biorefinery process parameters that could affect the fuel selling price. Product yield is one 
of the main drivers. The sugars in the biomass feedstock are converted to both lipid products and cell 
mass in the bioconversion stage. As a result, triglyceride oil yields will be less than the 0.33g oil/g 
glucose theoretical maximum, and are currently estimated to be at 0.22g oil/g glucose from clean 
commodity sugars (Ratledge and Cohen, 2008) and 0.17g oil/g glucose from corn stover (Hu et al., 2011).  
An increase of the bioconversion yield from the base case level of 0.17g oil/g glucose to 0.275g oil/g 
glucose -- the maximum biochemically feasible yield predicted by the metabolic model -- will reduce the 
selling price from $9.5/gallon to $7.1/gallon. 
 
The selling price can be further reduced to $6.8/gallon if the theoretical yield of 0.86 g hydrocarbon/g 
triglyceride is achieved in the hydrotreater. As shown above in Figure 3 this yield is obtained only when 
selective hydrodeoxygenation is carried out to direct oxygen toward water while avoiding carbon loss to 
light gases such as CO and CO2 by decarboxylation (Krar et al., 2010).  
 
Price sensitivity to the oil recovery process was also considered. Typically, there are three major steps for 
lipid oil recovery from yeast cells: cell wall disruption, solvent extraction of lipids from the cell mass, and 
then solvent evaporation. Capital and operating costs could be reduced by simplifying this process via 
biotechnical innovations. For example, a yeast strain might be engineering to produce its own enzymes 
which digest cell walls and auto-release the oil product, or it may be engineered to secrete lipids during 
the bioconversion stage.   
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Other process parameters affecting costs are seed production sugar requirements, bioconversion time, 
aeration rate, hydrotreating catalyst cost and volume, extracted lipid recovery rates, and hydrocarbon 
product density.  Our sensitivity analysis suggests that these additional improvements could further 
reduce the MFSP to $5/gallon distillate ($4.8/gge). It is recognized that lowering the cost from $5/gallon 
to the BETO target of $3/gge will necessitate using the lignin for additional fuel or products rather than 
for heat and power generation. Lignin utilization will be considered in future work. 
 

 
 

Figure 5. Fuel price sensitivities to biorefinery technical assumptions 
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4.0 Conclusions and Future Work 

Table 7 summarizes and compares process parameters and economics for the base case with an MFSP of 
$9.5/gallon vs. an interim target case with an MSFP of $5.1/gallon. To achieve $5.1/gallon, it will be 
necessary to improve the bioconversion and hydrotreating yields, and to optimize other process conditions 
to minimize costs. Achieving the BETO target of $3/gge will require finding a higher valued use for 
lignin besides power generation, such as conversion to additional liquid fuel, or conversion to a co-
product (Davis 2013).  Options for lignin conversion will be considered in the future. 
 

Table 7. Summary Comparison of Base and Target Case Parameters 
 

Key Variables Base case  Target case 
Minimum fuel selling price ($/gal) 9.5 5.1 
Feedstock price ($/dry US ton) 80 80 
Yield (gal/dry ton) 25 41 
Fixed Capital Investment ($MM) 500 400 

Bioconversion 
Yields (g triglyceride/g sugar) 
Aeration rate (vvm) 
 
Residence time (day) 

0.17 
Lipid production - 0.4 vvm 

Seed inoculum cultivation 1 vvm  
3 

0.275 
Lipid production - 0.2 vvm 

Seed inoculum cultivation 0.5 vvm  
1 

Hydrotreating 
Yield (g HC fuel/g oil) 
WSHV (h-1) 
Catalyst price ($/lb) 

0.815 
1 

15 

0.86 
4 
5 

 
 
Specific recommendations for improving bioconversion and downstream processing performance are 
listed here: 
 

• Improve bioconversion lipid yield via metabolic engineering of the oleaginous yeast 
• Ensure complete utilization of all biomass feedstock sugars, including arabinose 
• Increase tolerance to inhibitors (such as substrates intermediates and products) 
• Reduce aeration requirements and nutrients 
• Reduce bioconversion time 
• Engineer yeast to automatically release triglyceride lipid products 
• Engineer yeast to selectively produce lipids in the middle distillate range e.g. C14 
• Identify a selective hydrogenation catalyst to shift the reaction toward hydrodeoxygenation and 

away from decarboxylation 

The preliminary process, economic, and metabolic models developed for this study will be updated as 
data come available from further experimental and metabolic modeling work at PNNL in FY14, and as 
additional details are published for the forthcoming NREL cellulosic sugars to hydrocarbons biorefinery 
design case. 
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5.0 Appendix 

5.1 Constraint-based Reconstruction and Analysis of Metabolic Networks 
 
The advent of inexpensive, high-throughput genome sequencing over the last two decades has enabled 
systems biologists to reconstruct the metabolic networks of many of the microbes used in industrial 
bioprocesses. Among the first genomes to be sequenced was for the yeast Saccharomyces cerevisiae 
(Cherry, Ball et al. 1997), which is used widely in the production of beer, wine, food, pharmaceuticals, 
chemicals, and fuels, and as a model organism for biomedical research.  The genome sequence and the 
vast experimental literature on this organism have been organized into the highly structured 
Saccharomyces Genome Database, which is manually curated by a full-time staff of biologists at Stanford 
University (Engel and Cherry 2013). These resources facilitated the initial publication of a genome-scale 
metabolic network for S. cerevisiae in 2003 (Forster, Famili et al. 2003).  “Genome-scale” in this sense 
means that entire genome is screened in an effort to identify all of the genes for enzymes within the 
organism; the enzymes are then placed into the pathways that comprise its currently understood 
intracellular metabolic network. The resulting genome-scale metabolic network is typically quite complex 
(even for unicellular organisms such as yeast) and may be comprised of hundreds of genes and thousands 
of metabolic and transport reactions that traverse multiple intracellular compartments. As such, the high 
quality reconstruction of an organism’s metabolic network may take many months or even years (Thiele 
and Palsson 2010). Moreover, the curation of metabolic networks is a continual, iterative process, since 
the functions of many of the genes and details of cell biology – even for model organisms such as E. coli - 
are still being discovered. Nonetheless, metabolic network reconstruction has in recent years facilitated 
the assembly of whole-cell mathematical models of intracellular metabolism that have begun to transform 
the practice of metabolic engineering for industrial bioprocesses (Osterlund, Nookaew et al. 2012, Huang, 
Li et al. 2013).  
 
One of the more widely applied methods of mathematical analysis enabled by genome-scale metabolic 
models is Flux Balance Analysis (FBA), which may be used to predict the optimal distribution of mass 
fluxes within a metabolic network that maximizes an objective function.  The objective function most 
commonly chosen is the growth of cell mass, although the target production of specific metabolites may 
be simulated as well.  In FBA, the global stoichiometry of all of the metabolic and transport reactions in 
the cell is organized into a system of linear equations. A particular reaction (or any combination of 
reactions) is then selected as the objective function. Specific nutrient uptake or metabolite excretion 
fluxes into and out of the cell (exchange fluxes) are then constrained to match specific experimental 
conditions.  During FBA simulations, the exchange fluxes, as well as the “growth reaction” that describes 
the net accumulation of the molecules that comprise the total mass of the growing cell, are required to 
sum to zero under steady state conditions in a manner analogous to the calculations of mass balance that 
are employed in the simulation of chemical processes at the plant scale using programs such as Aspen or 
ChemCAD.  The constraints on the metabolic model required by FBA reduce the number of feasible mass 
flux distributions within the cell so that an optimal distribution that maximizes the objective function may 
be reasonably predicted.   
 
FBA is one of many metabolism simulation methods within the area of Constraint-Based Reconstruction 
and Analysis (COBRA) which have been adapted to evaluate potential metabolic engineering strategies. 
An example of one such strategy is the intentional deletion of certain genes from an organism’s genome 
to maximize the yield of a valuable metabolite.  Experiments to test this strategy may be computationally 
simulated by the serial deletion from the model of the individual metabolic reactions that are associated 
with each gene in the genome (Burgard, Pharkya et al. 2003).  Similar strategies have been recently used 
in S. cerevisiae to increase the production of ethanol, purines, proline/pyrimidines, vanillin, and 
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sesquiterpene, or to decrease the production of unwanted side products such as glycerol (Bro, Regenberg 
et al. 2006, Osterlund, Nookaew et al. 2012). 

5.2 Computational reconstruction of the Lipomyces starkeyi metabolic network 
 
The cosmopolitan, oleaginous, soil yeast L. starkeyi possesses a number of native characteristics that 
make it an ideal candidate for the production of hydrocarbon fuel precursors via the bioconversion of 
biomass feedstocks.  It is generally regarded as safe (GRAS), grows rapidly, and has been reported to 
accumulate up to 70% of its dry weight in the form of lipids. Moreover, it possesses the native ability to 
consume glucose, xylose, mannose, and cellobiose (Gong, Wang et al. 2012, Ng, Jung et al. 2012, Oguri, 
Masaki et al. 2012). In the present study, a preliminary metabolic network for L. starkeyi strain NRRL Y-
11557 was reconstructed based on the draft assembly of the genome sequence for this organism that was 
released in 2011 by the DOE Joint Genome Institute (Grigoriev 2011). The network was then translated 
into a stoichiometric mathematical model of L. starkeyi metabolism comprised of 1578 metabolic and 
transport reactions and 905 enzyme-related genes following methods provided by Thiele and Palsson 
(Thiele and Palsson 2010)  
  
An important first step in creating the metabolic model was to identify a suitable template for 
reconstructing the metabolic network for L. starkeyi, since few detailed studies of the genetic basis of the 
metabolism of this organism have been published. The highly curated and experimentally validated 
lineage of metabolic models for S. cerevisiae published over the past 15 years has provided templates for 
the reconstruction of metabolic network models for many species of yeast with industrial applications. 
SBML data files for several of these models (Table A1) were loaded into the COBRA Toolbox metabolic 
modeling software and an attempt was made to simulate aerobic growth on glucose minimal media suite 
to assess each model’s potential to serve as a template for building a model of L. starkeyi metabolism. 
The COBRA Toolbox (Becker, Feist et al. 2007, Schellenberger, Que et al. 2011) is a free and open 
source collection of MATLAB functions for metabolic modeling that is actively supported by an 
international community of users and developers. (http://opencobra.sourceforge.net)   
 

Table A1. Genome-scale metabolic models evaluated as a potential template for L. starkeyi metabolic network reconstruction. 

Yeast Species Model Name Reference 
Saccharomyces cerevisiae iMM904  (Mo, Palsson et al. 2009) 

Saccharomyces cerevisiae Yeast 6.0-7.0  (Heavner, Smallbone et al. 2013) 

Yarrowia lipolytica iNL895  (Loira, Dulermo et al. 2012) 

Yarrowia lipolytica iYL619  (Pan and Hua 2012) 

Pichia pastoris iPP668  (Chung, Selvarasu et al. 2010) 

Scheffersomyces stipitis iBB804  (Balagurunathan, Jonnalagadda et al. 2012) 

 
From the six models shown in Table A1, we selected the recent genome-scale model of S. cerevisiae 
metabolism – iMM904 – to serve as a template for our reconstruction of L. starkeyi metabolism. It was 
chosen due to its compatibility with the COBRA Toolbox software, the agreement of the results we 
observed with previously published data, and its demonstrated utility in other independent studies of yeast 
metabolism and metabolic engineering. (Horvath, Franzen et al. 2003, Ng, Jung et al. 2012, Reznik, 
Mehta et al. 2013, Rossell, Huynen et al. 2013) 
 
The next step in the reconstruction of the L. starkeyi metabolic network was to identify enzyme protein 
genes in the L. starkeyi genome that could be mapped onto orthologous genes within the iMM904 
metabolic network for S. cerevisiae. “Orthologous” in this case refers to corresponding genes in different 

http://opencobra.sourceforge.net/
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species that are likely to share a common evolutionary history and to retain an identical metabolic 
function due to their significant amino acid sequence similarity. In the present study, amino acid 
sequences from all of the filtered gene models for proteins in the L. starkeyi NRRL Y-11557 and S. 
cerevisiae S288C genomes, as well as those from the recent draft genomes for Y. lipolytica CLIB122, P. 
pastoris GS115, and S. stipitis CBS 6054, were computationally clustered into orthologous groups 
according to their sequence similarity. The latter three yeast genomes were included in the clustering 
process to provide additional references in those cases where orthologous proteins for L. starkeyi could 
not be found in the S. cerevisiae genome. The clustering process was performed using the OrthoMCL 
collection of Perl software scripts (Li, Stoeckert et al. 2003), the Basic Local Alignment Search Tool 
(BLAST) (Camacho, Coulouris et al. 2009), and the MCL implementation of the Markov Clustering 
algorithm (van Dongen 2000) with parameters set as recommended by the OrthoMCL documentation. 
The MCL program, however, was run with a higher Markov Clustering inflation parameter (5.0) to 
increase the granularity of the clusters and the specificity of orthologous protein pairing across the five 
yeast genomes.  As listed in Table A2, the species showing the highest average protein orthology score 
with L. starkeyi was Y. lipolytica, whereas the species showing the lowest score with L. starkeyi was S. 
cerevisiae. Nonetheless, the iMM904 S. cerevisiae model was retained as the metabolic network template 
due to the higher confidence in its underlying genome annotations as described above. The higher degree 
of orthology between L. starkeyi and Y. lipolytica proteins is instructive, however, in that it suggests that 
Y. lipolytica models are likely to be the best reference to consult when the identification of L. starkeyi 
enzymes and their placement into a metabolic network is not obviously indicated by orthology with 
enzymes in the iMM904 S. cerevisiae metabolic model. 
 
The output of the OrthoMCL pipeline was loaded into a 
MySQL relational database from which a list of the 
pairwise orthologous proteins shared by L. starkeyi and 
S. cerevisiae was extracted.  A custom Perl script was 
then used to automatically map enzyme protein genes 
from L. starkeyi onto their corresponding orthologous 
genes the iMM904 S. cerevisiae metabolic model. 
Importantly, at least one L. starkeyi enzyme could be 
mapped to more than 90% of the 1044 enzyme-
catalyzed reactions in the iMM904 model. Manual 
BLAST searches were also performed to ensure that at 
least one L. starkeyi enzyme could be mapped to each of 
the reactions in the following subsystems of the 
iMM904 network: glycolysis, pentose phosphate 
pathways TCA cycle, oxidative phosphorylation, fatty 
acid biosynthesis, and glycerolipid metabolism (TAG 
synthesis).  In addition, a pathway/genome database 
(PGDB) for L. starkeyi was created used the Pathway 
Tools software suite for metabolic network curation 
(Karp, Paley et al. 2010).  Pathway Tools creates metabolic pathways from PGDBs by semantically 
parsing the written functional annotations associated with each gene in a genome, and then comparing the 
function assignment of the gene to the MetaCyc database of metabolic pathways and enzymes (Caspi, 
Foerster et al. 2008).  As such, the L. starkeyi PGDB provided a valuable cross reference to confirm 
sequence-based assignments made by OrthoMCL of L. starkeyi enzyme genes to orthologous enzymes in 
the iMM904 metabolic network reconstruction template.      

 
Table A2. Pairwise comparison of average 

ortholog scores between yeasts species. 

Proteome A Proteome B 

Average 
Ortholog 

Score 
 L.  starkeyi     Y.  lipolytica   109.71 

 S.  cerevisiae     S.  stipitis   108.08 

 P.  pastoris     S.  stipitis   108.01 

 P.  pastoris     S.  cerevisiae   105.10 

 S.  stipitis     Y.  lipolytica   101.39 

 L.  starkeyi     S.  stipitis   99.73 

 P.  pastoris     Y.  lipolytica   99.35 

 S.  cerevisiae     Y.  lipolytica   99.00 

 L.  starkeyi     P.  pastoris 97.63 

 L.  starkeyi     S.  cerevisiae   96.70 
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5.3 Refinements to the L. starkeyi metabolic model based on experimental and 
literature evidence 

 
Further modifications to the L. starkeyi metabolic model were made to incorporate knowledge from the 
literature on specific aspects of oleaginous yeast metabolism. The enzyme ATP-citrate lyase (ACL), 
which catalyzes the conversion of citrate to oxaloacetate, was added to the reaction network of the 
IMM904 template within the cytosol compartment, since it is a key component of lipid synthesis in the 
oleaginous yeasts, but is not found in non-oleaginous yeasts such S. cerevisiae. (Boulton and Ratledge 
1981, Boulton and Ratledge 1981).  In addition, the reaction catalyzed by isocitrate dehydrogenase 
(NAD+) was modified to include AMP as both a reactant and a product to reflect the necessary allosteric 
role of AMP in the enzyme’s function, since (as described above) the reduced activity of this enzyme 
when intracellular AMP levels are decreased is a key factor in elevating the production of lipids by 
oleaginous yeasts under nitrogen limiting conditions.  Nitrogen limitation also causes a relative shift 
toward higher production of C16:0 and C18:1 lipid species in L. starkeyi, as shown in Table A3 which 
was drawn from a 30-liter bioreactor study of growth and lipid production kinetics under PNNL FY13 
project 2.4.1.2 (Fungal Genomics). As such, the metabolic model’s generic “triglyceride” metabolite (an 
aggregate variable accounting for the specific distribution of lipid species in the cell) was reformulated to 
match the lipid profile at the end of an 80-hour culture of L. starkeyi (sample F9-80 in Table A3) that had 
been producing lipids in nitrogen-limited conditions for more than 20 hours.   
 

Table A3. Lipid profile percentages from L. starkeyi grown in a 20-liter bioreactor culture. 
Sample C16:0 C18:2(n6c) C18:3(n6c) C18:1(n9c) C18:0 C24:0 
F3-47 (log phase growth) 26.22 33.45 2.86 30.42 4.03 3.02 
F9-80 (after N limitation) 35.47 8.90 0 44.19 9.47 1.96 

 
In the balanced, steady state model prepared in the present study for FBA simulation of metabolism, the 
mass fluxes of carbon, hydrogen, and oxygen into triglycerides are constrained to match the proportion of 
the pool of lipids in the cell mass composition of an engineered, wild type species of L. starkeyi. It was 
therefore necessary to modify the model to simulate the maximum biochemically feasible yield of 
triglyceride that could be produced by L. starkeyi if it were completely reengineered to channel all of its 
nutrient inputs into fatty acid and triglyceride synthesis. As such, an artificial “demand” reaction to enable 
the unconstrained production of the pool of triglyceride metabolites was added to the L. starkeyi 
metabolic network to facilitate the prediction of the maximum biochemically feasible mass flux of sugars 
into lipids. “Unlimited production” in the sense of a demand reaction means that an internal metabolite is 
not consumed by any following reaction, and is allowed to accumulate within the model outside of the 
steady state mass-balancing requirement for FBA simulations of metabolism (Thiele and Palsson 2010). 
The rate at which the demand metabolite accumulates is the mass flux (in mmol/g dry cell mass/hr) 
through the demand reaction. In the present model, the triglyceride demand reaction was set to be the 
FBA objective function in order to optimize the distribution of mass fluxes in a way that maximizes the 
production of the generic triglyceride described above.  
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