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Executive Summary 

With the increasing complexity resulting from uncertainties and stochastic variations introduced by 
intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and 
new market designs, more and more dynamic behaviors are observed in everyday power system 
operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so 
that effective control actions can be taken in time. 

The dynamic paradigm needs to include three fundamental components: dynamic state estimation; 
look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1.1). These three components 
answer three basic questions: where the system is; where the system is going; and how secure the system 
is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 
components and is the focus of this study.  

Dynamic states (e.g., rotor angle and generator speed) are the minimum set of variables that can 
determine the status of a dynamic system. A dynamic model with accurate states can faithfully reveal 
system responses. Therefore, dynamic state estimation can provide a full dynamic view of a power grid 
and generate critical inputs for other operational tools. 

To estimate the dynamic states of a power grid in real time, we developed and evaluated data 
assimilation methods to fuse phasor measurement unit (PMU) data with power system dynamic models. 
In this study, we defined a general dynamic state estimation problem for a power system and performance 
evaluation criteria. A problem is formulated for estimating the dynamic states of synchronous generators. 
As an initial effort, the following four data assimilation algorithms are developed, implemented and 
applied to estimate the dynamic states of a synchronous generator: 

 Ensemble Kalman filter (EnKF) 

 Extended Kalman filter (EKF) 

 Unscented Kalman filter (UKF) 

 Particle filter (PF) 

By comparing their performance under statistical framework using Monte Carlo methods, it was 
found that  

 The EnKF algorithm outperforms other algorithms when the typical PMU sampling rate is used for 
estimation. 

 Measurement interpolation methods can improve the estimation accuracy of the EKF, UKF, and PF. 
The interpolation does not show significant influence on the performance of the EnKF.  

 Increasing the number of samples can improve the estimation and convergence of the PF.  

 All four algorithms are robust to missing data.  

 The outliers cause some significant errors for all algorithms if the outliers are processed as normal 
data. The EKF, UKF, EnKF are more robust to the outliers than the PF. It takes more time for a PF to 
regain accurate state tracking after the outliers disappear. 
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Based on these preliminary results, we will carry out the following studies to further enhance 
practicability by incorporating realistic conditions: 

 Improve algorithm robustness against modeling and low data quality to improve estimation accuracy. 

 Develop a realistic medium-size system for applying and testing the EnKF and other methods. 

 Speed up computation and reduce computational requirement with acceptable estimation accuracy. 

 Develop a framework for building a flexible, modular, extensible software suite that can be used in a 
range of environments. 

The ultimate goal of these studies is to push forward for a real-world application. 
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Acronyms and Abbreviations 

EKF extended Kalman filter 

EnKF ensemble Kalman filter 

IEEE Institute of Electrical and Electronics Engineers 

MSE mean squared error 

PF particle filter 

PMU phasor measurement unit 

PST Power System Toolbox 

TVE total vector error 

UKF unscented Kalman filter 

WECC Western Electricity Coordinating Council 
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1.1 

1.0 Background 

The electric power grid has been evolving over the last 120 years from a single power line to today’s 
large networks. The evolution will continue at an accelerated rate with extensive smart grid development 
worldwide. In the next 10–15 years, a significant percentage of electricity will come from intermittent 
renewable sources, a large number of cars will be plugged into power grids, and a vast number of loads 
will actively respond to grid conditions and incentive signals. This development is largely driven by 
environmental and economic factors, such as reducing carbon emissions and saving electricity cost for 
consumers. The result is new stochastic behaviors and dynamics that the grid has never seen nor been 
designed for. Operating such a dynamic grid with sufficient reliability and efficiency is a monumental 
challenge.  

Traditionally, a quasi-steady-state assumption is applied to operation studies and decision making to 
simplify operation models and reduce computational complexity. Today’s operation is primarily based on 
a model that largely ignores dynamics in the power grid. Electromechanical interaction of generators and 
dynamic characteristics of loads and control devices are not included in operational models. The quasi-
steady-state assumption reduces the computation complexity by several orders of magnitude and makes 
operation studies on serial computers feasible within the required operational time intervals. This 
assumption was reasonable and historically has contributed significantly to the development of power 
grid computational methods and tools. However, with the rapid evolution of grid requirements and 
computing technologies, it is important to reexamine this assumption for improving grid operation.  

Because of the quasi-steady-state assumption, many dynamic studies cannot be performed in an 
operational environment. Smart grid development makes the grid much less quasi-steady-state and more 
dynamic, compared to the traditional power grid. For future power grids it is essential to establish a 
dynamic operation paradigm relative to today’s steady-state model.  

The dynamic paradigm needs to include three fundamental components: dynamic state estimation, 
look-ahead dynamic simulation, and dynamic contingency analysis (Figure 1.1). These three components 
answer three basic questions: where the system is, where the system is going, and how secure the system 
is against accidents. The dynamic state estimation provides a solid cornerstone to support the other two 
components and is the focus of this study.  

 

Figure 1.1. Integrated Dynamic Paradigm for Future Power Grid Operation Enabled by Dynamic State 
Estimation, Look-Ahead Dynamic Simulation and Real-Time Dynamic Contingency 
Analysis 
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2.0 Introduction Based on Literature Review  

State estimation—a central function in power grid operations—generates critical inputs for other 
operational tools, such as contingency analysis, automatic generation control, and optimal power flow 
(Arbur 2004, Monticelli 2000). Any inaccuracy or deficiency introduced in the state estimation process 
will be propagated and possibly exaggerated through these tools and greatly affect system operation 
efficiency. 

2.1 Static and Dynamic State Estimation 

Traditional state estimators receive telemetered data from a supervisory control and data acquisition 
(SCADA) system, which are sampled in the time interval of several seconds. The SCADA data are used 
with a steady-state power flow model to estimate a set of static state variables, i.e., bus voltages and phase 
angles. Because the power flow model ignores the dynamic transitions, only the static states of the power 
system are estimated, i.e., only a series of snapshots of the system conditions are generated and the 
dynamic transition between the snapshots is not considered.  

Dynamic states (e.g., rotor angle and generator speed) are the minimum set of variables that can 
determine the status of a dynamic system. A dynamic model with accurate states can faithfully reveal 
system responses. Therefore, Dynamic state estimation provides a full dynamic view of a power grid, 
which further enables real-time dynamic simulation and dynamic contingency analysis and wide-area 
control.  

Dynamic state estimation is made possible by the availability of high quality phasor measurement 
unit (PMU) data and increasing computational capabilities. PMU data has a typical sampling rate of 30 or 
60 samples per second, is well synchronized with the Global Positioning System clock, and can 
continuously capture the dynamic response of a power system under normal and abnormal conditions; 
thus it can enable dynamic state estimation. In the North American grid, almost 1700 PMUs had been 
deployed by 2013 (Silverstein 2013) (Figure 2.1). The PMU data provides a solid cornerstone for 
dynamic state estimation. Computing hardware and software technologies have been significantly 
advanced in the last decade. Computational throughput is being driven by the large-scale use of multi-
core processors, with hundreds of thousands of cores in a large-scale high performance computer. The 
challenge is how to assimilate PMU data into a dynamic model for estimating dynamic states and how to 
utilize advanced computing technologies to perform analysis in real time. In our work, we use the parallel 
filter method to address these challenges. 
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Figure 2.1.  PMUs in the North American Power Grid (Silverstein 2013) 

2.2 Objective Statement  

The objective of this study is to develop fundamental technologies of dynamic state estimation for 
power grid operations. Methods to estimate the real-time dynamic states of the power grid will be 
developed, implemented in a high performance computing environment and evaluated in a practical 
power system. The performance of the developed methods will be evaluated in terms of estimation 
accuracy and computing efficiency for helping real-time operational decisions.  

2.3 Current Practice on Dynamic State Estimation 

Some initial studies have been carried out to explore the feasibility of the dynamic state estimation. 
Huang et al. (2009, 2013) and Fan and Wehbe (2013) used an extended Kalman filter (EKF) for online 
dynamic state estimation. Ghahremani and Kamwa (2011a) used an EKF to simultaneously estimate the 
generator states and unknown inputs. Ghahremani and Kamwa (2011b) used an unscented Kalman filter 
(UKF) to estimate the dynamic states of a single-machine infinite bus system. Zhou et al. (2012) proposed 
an ensemble Kalman filter (EnKF) method to simultaneously estate the states and parameters. Zhou et al. 
(2013) proposed an extended particle filter (PF) to estimate the dynamic states.  

These studies demonstrated the value and feasibility of estimating dynamic states using PMU data 
with Bayesian-based filtering approaches. However, how to address model size, model errors, limited 
data availability, and statistical performance issues for a real-world application is still a big challenge. 
First, robust estimation methods that perform well over a wide range of noise scenarios are needed. 
Existing works usually focus on performance of a simple case, for example, single noise instance has 
been used to evaluate performance (Huang et at. [2007], Huang et al. [2009], Fan and Wehbe [2013] and 
Ghahremani and Kamwa [2011a,b]). Second, to implement effective controls in real time for a real-world 
system, states need to be estimated for a realistic-size system in real time, while the current studies focus 
on small problems with two machines, four machines, or 16 machines using serial computers. For the 
real-world application, the performance scalability of data assimilation methods needs to be evaluated 
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with a medium-size realistic system with modern parallel computation capability. Third, the above studies 
assume that PMU data are available at any desired locations, while in practice the PMUs have been 
deployed and the location cannot be readily changed. Therefore, before estimating a state, a data 
assimilation method needs to be evaluated under a practical PMU setup. Fourth, in a real-world 
application, a dynamic model is only a simplified description of a real system. A practical dynamic state 
estimation method must tolerate the model noise to be applied reliably. Yet, in most studies, the models 
for estimating states have similar structure to the models for generating simulation data. This practice 
does not give enough consideration to how model noises may influence the estimation. With these 
technical gaps in mind, we define a dynamic state estimation problem for a power system. 

 





 

3.1 

3.0 Narrative Problem Statement  

In this section, we define a dynamic state estimation problem for a power system. In the problem 
statement, we clarify the expected outcome of dynamic state estimation, available input, and evaluation 
criteria. The structure of the problem statement is illustrated by Figure 3.1. The problem statement is used 
to develop and evaluate potential solutions.  

Inputs

Dynamic State 
Estimation

PMU Data

Dynamic Model

Estimated States

True States ‐ Performance 
Evaluation

 

Figure 3.1.  Problem Statement of Dynamic State Estimation 

3.1 Expected Outputs  

The goal of dynamic state estimation is to estimate the electromechanical dynamic states of a power 
system. Dynamic states are the minimum set of variables that can determine the status of a dynamic 
system (DeRusso et al. 1998) for a time scale of interest. For the electromechanical dynamics which we 
are interested in, the time scale is at a level between 100 milliseconds and 1 second (Figure 3.2). The 
electromechanical dynamic states can be used to enhance the rotor angle stability of a power system by 
enabling dynamic contingency analysis and state prediction. Note that states are different from parameters 
in that parameters often remain a constant value while states may keep changing.  

 

Figure 3.2.  Timescale of Power System Dynamics 

Depending on the requirement of an application, the states can be estimated for past, current and 
future time (Figure 3.3). A smoothing method estimates the states of past time and can be used to 
reproduce past events for forensic studies. A filtering method estimates the states at the current time and 
can be used to drive control signals to improve system stability. A prediction method estimates the states 
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of future time and can be used to guide proactive remedial actions. The ultimate goal of this study is to 
enhance power system stability in real time, and therefore the focus is placed on the filtering method.  

Available Data

30ms 60ms 90ms-30ms-60ms-90 ms-120ms-150min Current
Time

 Prediction
(Future States)

Smoothing
(Past States)

Filtering
(Current States)

States

Time

 

Figure 3.3.  Illustration of Smoothing, Filtering and Prediction Methods 

3.2 Available Inputs  

To estimate the current dynamic states, only the data and models that are available up to the current 
time can be used as the inputs of a filtering method. All the PMU data available up to the current time can 
be used. Dynamic models that are available may also be used. Studies shall be carried out with proper 
considerations of the practical constraints of models and data. 

1. PMU data:  

a. PMU data have measurement noise. The measurement noises are defined as total vector errors 
(TVEs). For a PMU that follows Institute of Electrical and Electronics Engineers (IEEE) Standard 
C37.118, the device error shall be smaller than 1%, in addition to the noise incurred by the PMU 
device (Martin et al. 2008). Additional noise is often introduced by current transformers (CT) and 
potential transformers (PT). 

b. Because of the cost of PMU installation, there are limited numbers of PMUs available. Compared 
to the size of a power grid, PMU data are sparse and mainly available on high voltage lines. 

c. Because of unexpected sensor and data communication failures, outliers and missing data are not 
uncommon in PMU data. 

2. Dynamic models 

a. Dynamic models are often available to describe the dynamic features of a power system. The 
dynamic models are only an approximate description of a power system. Therefore, the system 
responses and model responses to a stimulation are often different at various levels. The response 
difference reveals the modeling noises and deficiencies, and must be considered for a real 
application.  

3.3 Evaluation Criteria  

There are many algorithms for estimating dynamic states of a power system. Evaluation criteria are 
needed to evaluate and compare the estimation performance and select a proper estimation algorithm. The 
following measurements can be applied to quantify the performance of a dynamic state estimation 
algorithm under a statistical framework. 
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1. Accuracy: Accuracy is defined as the difference between estimated states and true states. However, 
because the true states are unknown in a real power system, several indexes based on measurement 
residuals will be used to evaluate state estimation accuracy (Guo et al. 2013, Al-Othman and Irving 
2006).  

2. Robustness against modeling errors and measurement errors: The robustness of an algorithm can be 
measured by its tolerance of noise in a model and data. In practice, the robustness of an algorithm is 
evaluated by the maximum modeling errors or measurement errors under which the algorithm can 
still achieve the required state estimation accuracy.  

3. Speed of computation: The speed of an algorithm can be measured by the capability of an algorithm 
to keep up with the speed of inflowing data. Ideally, the results are available before the next set of 
data arrives. This is not currently possible for large real-world systems. In this case it may be 
necessary to use multiple computing systems to maintain a constant latency of results in order to 
process all the data.  

4. Scalability: Scalability of an algorithm refers its effectiveness when it is applied a larger system. 
There are multiple aspects that need to be considered, including serial scalability, parallel scalability, 
and accuracy. Serial scalability determines how much longer a calculation will take when the problem 
size is increased but the amount of computation is not. For example, if the problem size doubles but 
the solution takes four times as long, the algorithm is said to scale as the square of the problem size. 
Algorithms that scale linearly or less, e.g., logarithmically, are highly desirable. Parallel scalability is 
often considered in terms of strong and weak scaling. In strong scaling, the time required to solve a 
problem is directly proportional to the amount of computation being used, i.e., two processors can 
solve the problem twice as fast as one processor, ten processors ten times as fast, etc. Amdahl’s law, 
which states that parallel speedup is limited by the amount of serial computing required by an 
algorithm, makes the range of strong scaling generally very limited. Weak scaling, on the other hand, 
allows the use of more processors on bigger problems because the serial sections scale differently 
than the parallel sections. Eventually, however, adding more processors actually slows the rate at 
which results are generated. Algorithms that slow down later rather than sooner are obviously 
preferred. An algorithm that performs fewer arithmetic operations (multiplies and adds) may not scale 
as well as the one that does more operations if it has to move more data between processors, so the 
scalability of an algorithm’s compute-to-communicate ratio is important. Finally, a robust, 
numerically stable algorithm may be able to solve larger problems than one that is computationally 
more efficient but numerically unstable, e.g., one that takes the differences of small numbers—a 
process that can destroy numerical precision. Scalability at all levels is critical because methods that 
work for small problems may fall apart when applied to large real-world problems. 
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4.0 Problem Formulations  

In this section, we formulate a specific dynamic state estimation problem to estimate dynamic states 
of a synchronous generator. We will discuss the dynamic models of a generator, dynamic states to be 
estimated, available PMU data, and objective functions.  

4.1 Transient Models for Estimation  

This subsection introduces estimation models used by filtering algorithms for estimating dynamic 
states of a synchronous machine. Also, to apply a filtering method for discrete measurements, a modified 
Euler method is applied to discretize the continuous model (Kundur 1994).  

1. Continuous-time models for generators 

A fourth-order model (1) can be used to model a synchronous machine in local d-q reference frame to 
estimate the states (Kundur 1994). 
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(1.a) 
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(1.c) 
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In (1), δ is the rotor angles in radians, by which the local q axis leads the global R axis (Kundur 
1994); Δω is rotor speed deviation; and ed' and eq' are the transient voltages along q and d axes. The 
parameter Tm is the mechanical torque; Te is the electric air-gap torque; and Efd is the internal field 
voltage. The parameter ω0 is the rated value of the angular frequency; H is the inertia constant, and KD is 
the damping factor. The parameters Td0' and Tq0' are the open circuit time constants in the directions of the 
d and q axes respectively; xd and xq are the synchronous reactance at the d and q axes respectively; and xd' 
and xq' are the transient reactance at the d and q axes respectively.  

To facilitate the notation, (1) is transformed into a general state space model as given in (2) and (3). 
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 Tdq eex    (3.a) 

 TIRfdm iiETu   
(3.b) 

 TIR eey   
(3.c) 

In (2)–(3) x is the state vector, u is the input vector, and y is the output vector. Functions fc (*) and 
hc(*) are the state transition and output functions, respectively. The subscript “c” indicates the 
continuous-time model. The vectors 

cw  and 
cv  represent the process and output noise, respectively. They 

are modeled as Gaussian white noise whose covariance matrices are defined by (2.c) and (2.d) as Q and 
R. E[*] represents statistical expectation. To transform (1) into fc(*) in (2.a), id, iq, and Te were written as 
functions of x and u using (4).  

 

 cossin IRd iii   (4.a) 

 cossin RIq iii  (4.b) 

qddqdqqdte ixieixiePT )()(   (4.c) 

Similarly, to implement output function hc(*) in (2.b), eI and eR were written as functions of x and u 
using (5). Note that id and iq in (5) are the functions of iR and iI as in (4.a) and (4.b). The model defined by 
(1), (4), and (5) is then discretized and used for estimating states.  
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2. Discretization method and discrete time models 

To estimate states using the discrete measurements, the continuous-time model in (2) was discretized 
into a discrete time model (6), where the subscript k indicates the time at kt. 
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More specifically, the state transition function (2.a) was discretized by applying the modified Euler 
method (Zhou et al. 2013) using (7). In (7), 

cf
~  can be calculated by (8). When t is small enough, the 

discrete process noise wk-1 can be approximated by (9). Because the continuous-time process noise wc is 
defined by (2.c), the mean of wk-1 is 0 and the covariance of wk-1 can be calculated as (10). Equation (10) 
indicates that the variance of process noise can be increased proportionally with the sampling interval t 
during the state estimation. 
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Measurement equation (2.b) can be discretized into (11). Here, vk is the discrete time output noise. 
Because the continuous-time output noise vc is defined by (2.b), the mean value of vk is 0. The covariance 
of vk depends on how measurement instruments are set up. To simplify the study, this report assumes no 
prefilter. Therefore, the covariance of the vk may be computed using (12) (Schinkel et al. 2003).  
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4.2 PMU Data  

PMUs are deployed in power systems to measure the voltage and the current phasors at major 
transmission lines. PMU data have a typical sampling rate of 30 or 60 samples per second, are well 
synchronized with the Global Positioning System clock, and can continuously capture the dynamic 
response of a power system under normal and abnormal conditions. According to IEEE Standard 
C37.118-2005 (Martin et al. 2008), TVEs are used to quantify the accuracy of a PMU. Measurement 
noise may also include the noise from current transformers and potential transformers. 

In addition to normal measurement noises, it is not uncommon for PMU measurements to be 
corrupted by missing data and outliers. Missing data may be caused by temporary communication 
failures, and is often identified and marked out by error detection schemes associated with 
communication protocols. Outliers are measurements with significantly large measurement errors that 
may be caused by extraordinary disturbances or temporary sensor failures. By checking the residuals, an 
outlier detector may be able to detect some outliers. Yet, because such an outlier detector needs to 
maintain a balance between correct and erroneous determinations (false positives and false negatives), it 
will not be able to detect all outliers. Undetectable outliers (false negatives) carry misleading information 
and present a major challenge to state estimation algorithms. 

Typically there are two categories of data that are often used in estimating dynamic states of a power 
system: simulation data and field measurement data  
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1. Simulation data:  

Simulation data are generated by performing dynamic simulation using a dynamic power system 
model. Note that the simulation model may be different from the estimation model discussed in the 
previous subsection. A simulation model is for mimicking system behaviors while an estimation model is 
for estimating states. There are several advantages of using simulation data. i) For a simulation data set, 
the true states are available. Therefore, it is easy to evaluate the accuracy of an estimation. ii) It is easy to 
set up a large number of representative scenarios to study the statistical performance of an estimation 
method. Often, Monte Carlo methods are used to evaluate the average performance. iii) It is easy to test 
the applicability of an estimation method on different systems because switching among different systems 
is easy for simulation studies. iv) Measurements can be generated at any desired points for simulation 
data. Therefore, the influence of certain measurements on the estimation results can be readily evaluated. 
Because of these advantages, simulation data have been used in almost all the studies to evaluate 
algorithm performance.  

One caveat is that the quality of simulation data depends on how well a model describes a system. 
The responses from a simulation model are different from a system’s responses to some degree. 
Therefore, field measurement data shall be used to test the applicability of a state estimation method in a 
real-world application. 

2. Field measurement data  

Field measurement data are collected from sensors deployed into a system. The measurement data 
carry invaluable information about the status of a real system. Information and knowledge extracted from 
field measurement data can improve situational awareness of a power system operator and directly 
support real-time decision making in power system operations.  

Unlike simulation data, there are many more uncertainties in field measurement data. For example, is 
the noise in field measurement Gaussian or non-Gaussian? How do these uncertainties impact dynamic 
estimation methods? Field measurement data requires that state estimation methods be highly robust 
against noise. Ultimately, a dynamic state estimation method needs to be tested using real-world data to 
evaluate its applicability. 

4.3 Problem Formulation  

We formulate a real-time dynamic state estimation problem for synchronous generators as follows. 
Assuming a sampling interval of t seconds, given measurements of voltage phasors, current phasors at 
some locations for time instance of t = t , 2t, 3t ···, kt, estimate the synchronous machine’s states 
δ(kΔt), Δω(kΔt), e'q(kΔt) and e'd(kΔt). A user may choose a dynamic model for the estimation. 
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5.0 Solution Methods Using Data Assimilation Techniques 

The Kalman filter is the most widely used Bayesian-based data assimilation method. It was named 
after Rudolf Kalman, who published his famous recursive method to estimate dynamic states of a linear 
system (Kalman 1960). Assuming Gaussian noise, the Kalman filter provides minimum-variance 
estimates of states through a recursive approach. 

In addition to its original successful applications in linear systems, there are many publications 
extending the Kalman filter to nonlinear systems. The major difference among different nonlinear 
Kalman-filter methods is their approach to propagating the mean and covariance of the dynamic states. 
The EKF (Welch and Bishop 2006, Shih and Huang 2002) linearizes the state space model using a first-
order approximation. The mean and covariance of states are propagated using Jacobian matrices. The 
UKF (Wan and van der Merwe 2001) propagates the mean and covariance of states using a deterministic-
sampling approach to achieve a second-order approximation. The EnKF propagates the mean and 
covariance of states using a Monte Carlo sampling approach (Evensen 1994). In the EnKF, the 
distribution of the states is represented by a collection of samples, referred to as ensembles. All the above 
Kalman filters assume the joint Gaussian distribution of both measurements and states, and use the 
Bayesian approach to derive the Kalman gain. In contrast, the PF (Arulampalam et al. 2002) is a more 
general Bayesian approach, which does not rely on Gaussian noise assumption. Similar to the EnKF, the 
PF also uses the samples (also known as particles) to represent the probability distribution of random 
variables. Different from the EnKF, the PF directly corrects the states without assuming Gaussian 
distribution. This general approach is more applicable to highly nonlinear systems. However, the PF 
usually requires a very large number of samples and therefore is difficult to apply to high-dimensional 
systems.  

5.1 Overview of Data Assimilation in Other Domains  

The goal of data assimilation is to fuse model and data together to get better results than using model 
or data alone. Data assimilation has been widely studied in many scientific fields, especially in the fields 
of geosciences, hydrology and weather forecasting. For example, data assimilation has been used to 
integrate atmospheric models with radiosonde and satellite observations (Houtekamer and Mitchell1998). 
It is also used in oceanography to integrate ocean model with radar data. (Hoteit and Pham 2004).  

Models used in data assimilation can be classified as deterministic or stochastic according to whether 
randomness is considered in the system. They may also be classified as static or dynamic models 
depending on whether continuous time-dependent change is accounted for. Different methods have been 
developed for data assimilation for different types of models. In the least squares method and its variants, 
for example, generalized least squares are commonly used to deal with deterministic data assimilation 
problems. As for statistical estimation, Fisher’s maximum likelihood techniques and the Bayesian 
approach, including maximum a posteriori (MAP) estimate and minimum-variance estimate, form two 
basic frameworks of assimilation methods. Under the Bayesian framework, the Kalman filter, a recursive 
version of a minimum-variance estimator, is becoming a standard method for data assimilation 
(Houtekamer and Mitchell 1998). 
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5.2 Overview of Kalman Filter (UKF, EKF, EnKF, PF)  

Under a Bayesian framework, the implementations of theses algorithms have a similar structure. After 
initialization, all the filtering algorithms assimilate one snapshot of data at every time step. For one 
snapshot of data, there are two steps: a prediction step and a correction step. In the prediction step, the 
mean and covariance of states at time step k are predicted based on the states at step k − 1. In the 
correction step, the predicted mean and covariance are corrected based on new measurements obtained at 
time step k. The algorithms for implementing these filtering methods are detailed as follows. 

5.2.1 EKF 

The EKF linearizes the system at the current operating point using the Jacobian matrices as in (13), 
(14) and (15) (Welch and Bishop 2006).  

EKF Prediction: 
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where 
kx and 

kP are known as the a priori mean and covariance (of the states) respectively. They are 

estimated from the data up to time step k −1. The symbols xk and Pk are known as the a posteriori mean 

and covariance of the states, respectively, which are derived by adding the information from zk to 
kx  and 


kP . The symbol Kk is the Kalman gain. The symbol ky~ is the residual between estimate ),( 11 


 kk Vh x  and 

measurement zk. Fk and Hk are Jacobian matrices defined by (15). A perturbation approach is used to 
numerally derive the Jacobian matrices in this report.  
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5.2.2 UKF 

The UKF uses an unscented transform to pick a set of samples to represent the probability distribution 
of states and propagates these samples through the nonlinear functions f and h to reconstruct the mean and 
covariance. The UKF estimation method is summarized as (16) and (17) (Wan and van der Merwe 2001). 
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UKF Correction 
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where i
kx  and iW  are 12 n  sigma points and their corresponding weights.   is a scaling parameter that 

controls the positions of the sigma points. 
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5.2.3 EnKF 

The EnKF uses samples (also known as ensembles) to represent and propagate the probability 
distributions of the states. By using a large number of samples, the probability density can be 
approximated with high accuracy. The EnKF can be summarized by (18) and (19) (Evensen 1994). 

EnKF Prediction 
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EnKF Correction 
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where nenKF is the total number of samples, which are used to represent the distribution. The variable 
i
kw 1 is a sample generated according to the Qd to simulate process noise. The symbol i

kx  stands for the 

samples of a posteriori states. Note that using (19.c) and (19.d), the covariance matrix Pk does not need to 
be expressively calculated. 

5.2.4 Basic PF 

The PF can be applied to systems with Gaussian and other distributions. A basic PF approximates a 
probability distribution function by a set of weighted discrete samples, as shown in (20).  
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After processing several data snapshots, a PF often suffers from a degeneracy problem (i.e., the 
weight of only one particle tends to 1 while weights of all other particles tend to 0). To reduce the 
degeneracy problem, a resampling step is often added to re-disperse the discrete samples by generating a 
new set of particles according to the discrete distribution of (20). To detect degeneracy, the effective 
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sampling size Neff is defined by (23). In the following simulation tests, resampling is initiated when 
Neff<0.1Npf. The basic PF process is described by the following equations (Arulampalam et al. 2002). 

PF Prediction 
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PF Resampling if degeneracy is detected using (23) 
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where i
kW

~
 is prior weights of the ith state sample.  ),(| k

i
kkv uxhzp

k

  is the likelihood of zk given the prior 

states i
kx  and inputs ku . The likelihood function is determined by the measurement noise model (i.e., 

Rd). Symbol nPF is the total number of samples that are used to represent the probability distribution of a 
state. 

 





 

6.1 

6.0 Preliminary Results  

In this section, dynamic simulation is carried out to compare the performance of the EKF, UKF, 
EnKF, and PF for the purpose of estimating dynamic states of a power system. The Power System 
Toolbox (PST) (Chow and Cheung 1992) was selected to generate simulation data that mimic the 
responses of a real system. The two-area, four-machine test system shown in Figure 6.1 (stored as 
d2asbeghp.m in PST) is used to generate the system dynamic responses to a three-phase fault. The fault is 
applied to Bus 3 on the line between Buses 3 and 101 at 1.1 seconds. The fault is cleared at 1.15 seconds 
at Bus 3 and at 1.20 seconds at Bus 101. To capture the dynamics and reduce integration errors, the 
simulation time step is chosen to be 0.001 second. The simulation during is set to be 15seconds. 
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Figure 6.1.  The Two-Area, Four-Machine System (Chow and Cheung1992) 

Assume that PMUs are available at the generator Bus 1 to measure the voltage and the current 
phasors. Filtering algorithms are set up to estimate the dynamic states of Generator 1. To mimic the 
measurements from PMUs, the system responses are down-sampled to a rate of 25 samples per second. 
According to IEEE Standard C37.118-2005 (Martin et al. 2008), a certain percentage of TVEs are added 
to the system responses to mimic measurement noise. Because of the randomness of the measurement and 
process noise, the Monte Carlo methods are applied to generate M = 100 sets of simulation data to 
represent various instances of random noise. The mean squared error (MSE) defined in (24) is used as a 
metric for comparing estimation accuracy. Here, the symbol 

Truekx ,
 represents the true state at the kth time 

step, while 
mkx ,ˆ  is the corresponding estimated state in the mth Monte Carlo test case.  
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To increase the dynamic range, 10log10(MSE) in dB is used to compare the algorithm performance 
under the following four scenarios. 

6.1 A Simple Scenario 

The goal of this scenario (Scenario A) is to set a benchmark for comparison. The simulations are set 
up as follows. 

 To simulate the generators’ dynamic responses, a fourth-order transient model as shown in (1) is 
used. Governors and exciters are included. Sub-transient dynamics and field saturation effects are not 
modeled. 

 For the PMU measurements, 1.0% measurement noise in TVE is added to the voltage and current 
phasors. Tm and Efd are recorded with 1.0% measurement noise. The PMU sampling rate of 25 
samples per second used for generating the measurement data are also used for estimation. 
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 For all the algorithms, the initial states are estimated by setting 0x  in (2) and then solving (2) using 
the Gauss-Seidel method. To reflect uncertainty of the initial states, covariance P0 is set to be 10 
times of the largest changes of the states, i.e., P0 = (10max{abs[diff(x1:N)]})2. The output variance Rd 
is set to be 0.012 corresponding to the 1.0% of errors added, which is diag([0.01, 0.01])2 for this 
study. Qd is set to be 1.0% of the largest changes of the states, i.e., Qd = 1.0%  max{abs[diff(x1:N)]}, 
which is diag ([0.0474, 0.0042, 0.0289, 0.0137])2 for this study.  

The MSEs of the four states from EKF, UKF, EnKF, and PF are summarized in Figure 6.2. Both 
EnKF and PF use samples to represent state probability distribution. To evaluate the influence of the 
sample number on MSEs, 200 and 2000 samples were used for testing these algorithms. It can be 
observed from Figure 6.2 that the EnKF has the smallest MSE. Increasing the number of samples in 
EnKF does not significantly influence its estimation accuracy. In contrast, the MSEs of the PF noticeably 
decrease when the sample number is increased from 200 to 2000. UKF and PF have larger MSEs than the 
other methods. 

Figure 6.3 shows the EnKF’s estimation results for all 100 sets of Monte Carlo simulation with 
npf = 200 samples. All 100 of the EnKF estimates converge to the true states within 1.5 seconds. Note that 
to help the illustration, the true value of Generator 4’s rotor angle is used as the reference angle to 
generate the first plot of Figure 6.3. For the PF with npf = 2000 samples, 80 sets out of the 100 PF 
estimates converged and the other 20 sets diverged. When the sample number of the PF is reduced from 
2000 to 200, the number of converged sets decreases to 47. For the UKF, only 67 sets of estimates 
converged. For the EKF, all 100 estimates converged, but they have larger MSEs than the EnKF.  

 

Figure 6.2. Comparison of MSEs from the EKF, EnKF, PF, and UKF for 100 Sets of Monte Carlo 
Simulations of a Simple Scenario 
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Figure 6.3. Estimated States from the EnKF with 200 Samples of 100 sets of Monte Carlo Simulations 
for a Simple Scenario (All 100 sets converge) 

6.2 A Scenario with Measurement Interpolation 

The goal of this scenario (Scenario B) is to evaluate how the interpolation method (Huang et al. 2003, 
2009) may influence the algorithms’ performance. The interpolation method inserts the additional 
pseudo-measurement points between two consecutive measurement samples. Introducing additional 
measurements increases the effective sampling rate, and reduces the linearization errors. In this scenario, 
the sampling rate is increased from 25 samples/s to 200 samples/s by adding seven additional pseudo-
measurements between every two measurement points through linear interpolation.  

Note that because of the interpolation, the sampling time interval t in (7) is reduced from 40 ms to 5 
ms. Following (10), the process noise covariance Qd is reduced to 1/8 of that in Scenario A. The Rd 
remains the same as in (12). All the rest of the setup remains the same as that in Scenario A. 

The MSEs from the EKF, UKF, EnKF and PF are compared in Figure 6.4 between the cases with 
interpolation as in this scenario and the cases without interpolation as in Scenario A. It can be observed 
that the MSEs of the EKF, UKF and PF are significantly reduced with the interpolation method. In 
comparison, changes of MSEs for the EnKF are less significant. In addition, with interpolation, the MSEs 
of the EKF, UKF and EnKF are significantly smaller than those of the PF. With the interpolation method, 
all 100 sets of EKF, UKF, EnKF and PF estimates converge.  
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Figure 6.4. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 sets of Monte Carlo 
Simulations for the Scenarios with Measurement Interpolation and without Interpolation  

6.3 A Realistic Scenario Considering Model Inadequacy 

In this scenario (Scenario C), the simulation model for generating measurement data are more 
complex than the estimation model used for estimating state. The goal is to mimic the more common 
reality where an available model is often a simplified representation of a real system. In addition, the 
measurement noise level is increased to include transformer noise. Finally, some model inputs (e.g., Tm 
and Efd) have to be estimated because they are not usually measured by PMUs. 

 To simulate generator responses, a sub-transient model is used. Field saturation effects are modeled 
by adding S1 = 0.0654, S2 = 0.4786 (Chow 2008). To increase oscillatory dynamics, the power system 
stabilizers are intentionally removed. By adding the sub-transient model and saturation effects, the 
simulation model is more complex than the estimation model shown in (1).  

 For the PMU measurements, 5% of measurement noise in TVE is added to the voltage and current 
phasors. Note that additional noise is added to include measurement noise introduced by current 
transformers and potential transformers. In addition, because PMUs may not be available near all 
generators, Efd and Tm are not measured in this scenario. Efd is estimated as a special state. Tm is 
estimated by low-pass filtering Pe. 

 For all the algorithms, the setup is same as that in Scenario B (e.g., the data sampling rate is increased 
to 200 samples/s through linear interpolation), except that the output variance Rd is set to be 
diag([0.05, 0.05])2 because the 5.0% measurement noise was added.  
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The MSEs from the EKF, UKF, EnKF, and PF are summarized in Figure 6.5. It can be observed that 
the EnKF, EKF, and UKF have similar MSEs. After approximately 4 seconds, the MSEs of the PF with 
2000 samples converge to similar levels. In contrast, the MSEs of the PF with 200 samples are 
persistently the largest among all the algorithms, indicating performance degradation. All 100 estimates 
from EKF, UKF and EnKF converge. All 100 estimates from PF with 2000 samples converge. In 
contrast, there are five sets of estimates that diverge for the PF using 200 samples.  

 

Figure 6.5. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 Sets of Monte Carlo 
Simulations for the Realistic Scenario 

6.4 A Realistic Scenario with Missing Data and Outliers 

The goal of this scenario (Scenario D) is to evaluate all the algorithms when the PMU measurements 
are corrupted by missing data and outliers. To simulate missing data, all (simulated) measurement data 
between the fourth and fifth seconds is chosen to be “missing” and marked out. The missing data are then 
patched through linear interpolation. To mimic outliers, errors on the order of 10 times the standard 
deviations of the voltage magnitudes and angles are added to the voltage phasor measurements between 
10.0 and 10.5 seconds. These outliers are assumed to be undetected (false negatives) and are processed as 
normal data by all the filtering algorithms. The remaining setup is the same as that for Scenario C.  

The MSEs from the EKF, UKF, EnKF and PF are compared in Figure 6.6 between the cases with 
missing data and outliers as in this scenario, and the cases without missing data and outliers as in Scenario 
C. It can be observed that the MSEs of all the algorithms are very similar for cases with and without 
missing data. This indicates that all algorithms are robust against missing data that last for one second.  
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Figure 6.6. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 Sets of Monte Carlo 
Simulations for the Realistic Scenario with and without Missing Data and Outliers  

On the other hand, the outliers at the tenth second cause significant increases in the MSEs of all the 
algorithms. After the outliers disappear at 10.5 seconds, the MSEs of the EKF, UKF, and EnKF return to 
the original value quickly, while it takes more time for the MSEs of the PF (with 2000 samples) to return 
to the original values. This observation indicates that the EKF, UKF, EnKF are more robust to outliers 
than is the PF.  

Figure 6.7 shows that all 100 sets of EnKF estimates converge to the true states. Also, the estimates 
of the EKF and UKF for all 100 sets of data converge. 
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Figure 6.7. Estimated States from the EnKF of 100 Sets of Monte Carlo Simulations for the Realistic 
Scenario with Missing Data and Outliers (All 100 sets converge) 
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7.1 

7.0 Preliminary Conclusions  

Accurate information about dynamic states is critical to efficient control of a power system, especially 
with the increasing complexity resulting from uncertainties and stochastic variations introduced by 
intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and 
new market designs. Using a statistical framework, this report compares the performance of an EKF, a 
UKF, an EnKF, and a PF for the purpose of estimating dynamic states from real-time phasor 
measurements. The following are shown through the simulation using a two-area, four-machine test 
system: 

1. The EnKF algorithm outperforms other algorithms when the typical PMU sampling rate is used for 
estimation. 

2. Measurement interpolation methods can improve the estimation accuracy of the EKF, UKF, and PF. 
The interpolation does not show significant influence on the performance of the EnKF.  

3. Increasing the number of samples can improve the estimation and convergence of the PF.  

4. All of the algorithms are robust to missing data. The outliers cause some significant errors for all 
algorithms if the outliers are processed as normal data. The EKF, UKF, and EnKF are more robust to 
the outliers than the PF. It takes more time for a PF to regain accurate state tracking after the outliers 
disappear than for the EKF, UKF, and EnKF. 

 





 

8.1 

8.0 Scope of Further Study and Expected Outcome  

Because of the robustness, accuracy and potential scalability of the EnKF algorithm, we choose to 
focus on developing EnKF algorithms while continuing to use EKF and other methods as a benchmark to 
compare their performance. Also, based on the preliminary study results, we propose continuing some 
engineering studies to explore the potentials of increasing estimation accuracy and improving execution 
efficiency in the areas that follow. 

8.1 Improve Algorithm Robustness against Modeling and Low Data 
Quality  

This study is to extend Kalman filter techniques by developing algorithms to improve estimation 
robustness against modeling noise and low data quality. The scope of the study is detailed as follows.  

i) Modeling noise: A dynamic model is only a simplified description of a real system. Ideally, a 
dynamic model can approximate the corresponding system behaviors reasonably well. The 
difference between the model responses and real-system responses is reasonably small and 
can be captured by noise models. To achieve optimal performance, Kalman filters use state 
transition models to predict the next states and measurement models to correct the prior 
states. A stationary Gaussian noise model is used to describe the difference between the 
model and system responses. In a real-world application, it is not uncommon to encounter a 
large modeling noise that cannot be well described by a stationary Gaussian noise model. The 
planned study will improve algorithm performance by quantifying and improving modeling 
noise. The goal is to improve the robustness of a Kalman filter against modeling noise.  

ii) Low data quality: In theory, PMUs could be deployed at every bus and provide data with 
minimal noise in real time at a high speed. In real-world applications, only a limited number 
of PMUs can be deployed. IEEE Standard C37.118-2005 (IEEE 2005) requires maximum 1% 
TVE for PMU measurements. In addition, the noise from external disturbances, temporary 
sensor failure, temporary communication failure, current transformers and potential 
transformers cannot be ignored in the real-world PMU measurements. As a result, missing 
data, outliers, and burst noises are often observed in PMU measurements. To give an accurate 
state estimation, the proposed study will quantify measurement noises and improve algorithm 
robustness against measurement noise. 

8.2 Develop a Realistic Model for Applying and Testing EnKF using 
Field Measurement Data  

To gain credibility for real-world application, a dynamic state estimation method needs to be tested 
and evaluated using field measurement data from a real system. To achieve this goal, we will collect 
PMU data from a real system and establish a dynamic model corresponding to the real system. In order to 
fuse the data with it, a dynamic model must be established to describe a power system. PMU data from 
the Western Electricity Coordinating Council (WECC) are streamed into the Electricity Infrastructure 
Operations Center in real time and archived regularly at Pacific Northwest National Laboratory. The data 
are readily accessible to the team and therefore are chosen to carry out the proposed study.  



 

8.2 

The PMU data are sparse compared to the size of the system. For example, the WECC system has 
more than 3,000 generators and 16,000 buses, while there are only about 522 PMUs (Silverstein 2013). 
With a limited number of PMUs available, it is impossible to estimate all the dynamic states for the entire 
system. Observability of the dynamic states can only be achieved at a limited number of devices and 
locations. Therefore, we plan to implement the dynamic state estimation algorithm in a local subsystem 
where a sufficient number of PMUs have been deployed. 

In this effort, we will identify a local subsystem in the WECC system with a sufficient number of 
PMUs and cut it out to build a reduced-order model. In the subsystem, the voltage magnitude and angle at 
all buses can be measured directly or indirectly by PMUs to make sure that the subsystem has full 
observability. Real PMU measurements will be used with the reduced-order model for the subsystem to 
test the performance of EnKFs.  

8.3 Speed Up Computation and Reduce Computational Requirement 
with Acceptable Estimation Accuracy 

Creating a parallel version of EnKF is relatively straightforward, at least compared to the other 
Kalman methods, because each ensemble member can be processed independently as a series of matrix 
operations. The rate-limiting step is performing the Cholesky decomposition (Dereniowski and Kubale. 
2004) of the quantity in parenthesis in Equation (19.b) (the Cholesky decomposition is twice as fast as an 
LU decomposition [Gobub and Van Loan 1996]) and scales as the cube of the number of measurements, 
m, which is twice the number of buses. If the data error covariance matrix R is diagonal (the errors are 
uncorrelated), then the Sherman-Morrison-Woodbury formula (Woodbury 1950) can be used to further 
reduce the scaling so that it is only linear in the number of measurements, specifically mN2 + nN2 + N3 
instead of m3, where N is the number of ensembles (approximately the number of generators) and n is the 
number of states, which is a small multiple (typically 2) of the number of generators. 

The largest problem solved so far has 2,361 generators and 16,072 buses. Using 7,168 cores, the 
problem could be solved in 92 seconds, a speedup of 442, but over half the time was being spent in serial 
sections of the code. The speedup curve was nearly flat at this point, but had not yet tipped over to where 
performance was actually decreasing as more cores were added. The performance of the complex matrix 
multiplication is somewhat lower than expected. Addressing these issues should enable productive runs 
with over 10,000 cores. 
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