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Executive Summary 

Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and 
storage, used fuel processing, etc.) relies on accurate and reliable measurements.  Newer types of sensors, 
and sensors to monitor non-traditional parameters, are expected in next-generation nuclear power plant 
(NPP) and fuel-cycle environments.  A number of factors (besides changes in the monitored variable) 
affect the measured signals, resulting in effects such as signal drift and response time changes, requiring 
techniques to distinguish between signal changes from plant or subsystem performance deviations and 
those from sensor or instrumentation issues.  Advanced algorithms that continuously monitor sensor 
responses can address this issue and facilitate automated monitoring and control of plant and subsystem 
performance.   

Currently, periodic sensor recalibration is performed to avoid problems with signal drift and sensor 
performance degradation.  Periodic sensor calibration involves (1) isolating the sensor from the system, 
(2) applying an artificial load and recording the result, and (3) comparing this “As Found” result with the 
recorded “As Left” condition from the previous recalibration to evaluate the drift at several input values 
in the range of the sensor.  If the sensor output is found to have drifted from the previous condition, then 
the sensor is adjusted to meet the prescribed “As Left” tolerances.  However, this approach is expensive 
and time-consuming, and unnecessary maintenance actions can potentially damage sensors and sensing 
lines.  Online monitoring (OLM) can help mitigate many of these issues, while providing a more frequent 
assessment of calibration and signal validation.  However, widespread utilization of traditional OLM 
approaches is lacking with the need to better quantify OLM uncertainty a key factor in this. 

Sources of uncertainty in OLM can be roughly categorized as (1) process noise, (2) measurement 
uncertainty, (3) electronic noise, and (4) modeling uncertainty.  Approaches to uncertainty quantification 
(UQ) that are data-driven may be capable of providing estimates of uncertainty that are time-varying as 
the quantities being measured vary with time.  Such a capability provides the option of adjusting 
acceptance criteria and, potentially, setpoints in a time-varying fashion to meet the needs of the nuclear 
power system.  

A Gaussian Process (GP) model is proposed in this study for addressing the UQ issue.  The advantage 
of this approach is the ability to account for spatial and temporal correlations among the sensor 
measurements that are used in OLM.  The GP model, as proposed, may be considered an extension of a 
commonly used OLM model and, therefore, the hypothesis is that the UQ methodology may be readily 
extended to accommodate commonly used OLM models.  

Two approaches were taken for generating the data sets needed for evaluating the proposed model.  
Experimental data was acquired using an instrumented flow loop, with varying test conditions.  In 
addition, a simulation model of a flow loop was generated.  The simulation model serves two purposes.  
First, data may be generated from the simulation model that represent conditions the experimental flow 
loop may not be able to achieve.  Second, the use of a model can provide insights into physical 
relationships between measurements from sensors at different locations.  These insights can be used to 
derive new algorithms for OLM, as well as develop methods for generating virtual sensors.  Although 
analysis of data generated from the simulation models is continuing, the models themselves are included 
for completeness. 
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Initial assessment of the proposed UQ methodology using data from an instrumented flow loop 
indicates the feasibility of generating error bounds on measurement data that are time-dependent.  
However, the assessment uses only steady-state data from normal conditions (i.e., no sensor faults are 
present) and will need to be extended to include data from sensor faults and non-steady-state conditions.  

Ongoing work includes completing the assessment of the GP approach to data-driven uncertainty 
quantification using additional experimental data sets, as well as data covering a wider range of 
conditions (including data from sensor faults and non-steady-state conditions).  In addition, the 
applicability of the proposed approach to a wider set of existing OLM models will need to be examined.  
Ongoing work with regard to the simulation models includes incorporating the collected measurement 
data parameters into the model to evaluate or validate the model results.  Additionally, the variable flow 
model will be modified to ensure that it is a robust model of the flow loop, prior to using the simulation 
data for further evaluating the UQ methodology. 

The research being conducted under this “Recalibration Methodology” project (part of the Nuclear 
Energy Enabling Technologies Advanced Sensors and Instrumentation – NEET/ASI – Program) supports 
the needs of several U.S. Department of Energy’s Office of Nuclear Energy programs, including Light 
Water Reactor Sustainability (LWRS), Small Modular Reactor (SMR) R&D, Advanced Reactor Concepts 
(ARC), Materials Protection, Accounting, and Control Technologies (MPACT), Fuel Cycle Research and 
Development (FCRD), and Next Generation Nuclear Plant (NGNP) programs, through the development 
of advanced algorithms for monitoring sensor/system performance and enabling the use of plant data to 
derive information that currently cannot be measured.  These advances are expected to improve the safety 
and reliability of current and planned nuclear power systems as a result of higher accuracies and increased 
reliability of sensors used to monitor key parameters. 
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1.0 Introduction 

Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and 
storage, used fuel processing, etc.) relies on accurate and reliable measurements.  Newer types of sensors, 
and sensors to monitor non-traditional parameters, are expected in next-generation nuclear power plant 
(NPP) and fuel-cycle environments.  During operation, components of nuclear systems, including sensors, 
may degrade from age, environmental exposure, and even maintenance interventions.  These (and other) 
factors (besides changes in the monitored variable) affect the measured signals, resulting in effects such 
as signal drift and response time changes.  There is a need to distinguish between signal changes from 
plant or subsystem performance deviations and those from sensor or instrumentation issues.  Advanced 
algorithms that continuously monitor sensor responses can address this issue and facilitate automated 
monitoring and control of plant and subsystem performance.   

Currently, periodic sensor recalibration is performed to avoid problems with signal drift and sensor 
performance degradation.  However, this approach is expensive and time consuming, and unnecessary 
maintenance actions can potentially damage sensors and sensing lines.  The use of online monitoring 
(OLM) can help mitigate many of these issues, while providing a more frequent assessment of calibration 
and signal validation.  OLM is a non-invasive approach to assess measurement accuracy and component 
condition.  OLM systems generally use models of the plant (or subsystems thereof) to estimate the 
expected sensor values for a group of redundant or related measurements (Hashemian and Jiang 2009).  If 
an anomaly is detected, diagnostic routines are used to determine if it is the result of a sensor fault or a 
change in the condition of the process/component and to isolate the location of the fault.   

Widespread utilization of traditional OLM approaches is lacking, and application of signal validation 
and virtual sensors has not yet entered the commercial space for nuclear systems.  Previously, several 
technical gaps were identified relative to the deployment of OLM in nuclear power systems (Coble et al. 
2012).  These technical gaps will need to be addressed to provide the technical and regulatory bases for 
wider adoption of these technologies.  As the nation looks to the next generation of nuclear systems 
(reactor technologies, fuels, and fuel cycle), a number of other factors are likely to also slow the adoption 
of existing OLM methodologies, including its applicability to non-traditional sensor systems and the 
increased use of digital instrumentation and controls and wireless technologies.  Underpinning all of these 
is the need to better quantify OLM uncertainty to:  (1) support the regulatory basis for OLM-based 
calibration assessment, (2) provide the high confidence levels needed for signal validation, (3) provide 
virtual sensor estimates with meaningful confidence, and (4) evaluate the efficacy of these techniques for 
new sensors and data acquisition systems. 

1.1 Overall Objectives 

The overall objective of this research is to develop the next generation of online monitoring 
technologies for sensor calibration interval extension and signal validation in operating and new reactors.  
This “Recalibration Methodology” research project (part of the Nuclear Energy Enabling Technologies 
Advanced Sensors and Instrumentation – NEET/ASI – Program) supports the needs of several U.S. 
Department of Energy’s Office of Nuclear Energy programs, including Light Water Reactor 
Sustainability (LWRS), Small Modular Reactor (SMR) R&D, Advanced Reactor Concepts (ARC), 
Materials Protection, Accounting, and Control Technologies (MPACT), Fuel Cycle Research and 
Development (FCRD), and Next Generation Nuclear Plant (NGNP) programs, through the development 
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of advanced algorithms for monitoring sensor/system performance and enabling the use of plant data to 
derive information that currently cannot be measured.  These advances are expected to improve the safety 
and reliability of current and planned nuclear power systems as a result of higher accuracies and increased 
reliability of sensors used to monitor key parameters.  Over the course of this project, the goal is to assess 
methods for improved uncertainty quantification in online monitoring, and use the results to develop 
robust virtual sensor technology and formal methods for signal validation. 

1.2 Objectives of this Report 

The focus of this report is on documenting the outcomes of the first phase of R&D under this project, 
which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, 
and can therefore adjust estimates of uncertainty as measurement conditions change.  Such data-driven 
approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power 
plants experience transients, or as next-generation small modular reactors (SMR) operate in load-
following conditions.   

Several sources of uncertainty contribute to the overall OLM uncertainty, including process noise, 
measurement and electronic noise, and modeling errors and uncertainties; these sources need to be 
accounted for in a systematic manner that can be applied to a wide variety of modeling methods.  The UQ 
results will impact the selection of appropriate acceptance criteria for anomaly detection that help 
discriminate between instrumentation failure and plant performance degradation.  This is due to the need 
to incorporate the overall uncertainty in an OLM system into the fault detection routine to provide a 
prescribed level of confidence that the sensor is operating within specifications and that anomalies in 
plant operation can be identified.  This issue is exacerbated when considering systems (such as SMRs) 
where the monitoring and UQ may need to be performed under conditions (such as load-following) not 
normally encountered in current light water reactors.  

Research to address this specific gap will support several needs of the U.S. nuclear power industry, 
including improved monitoring to achieve higher accuracy and reliability of measured parameters over 
longer operational periods and reduced human errors. 

1.3 Motivation and Potential Benefits 

The current calibration procedure, referred to as “Conventional Calibration,” “Manual Calibration,” 
or “Technician Calibration,” is effective and reliable and has been used in the industry since the inception 
of nuclear facilities.  However, reviews of nearly 40 years of calibration data from nuclear plants have 
revealed that: 

1. More than 90 percent of nuclear plant transmitters do not exceed their calibration acceptance 
criteria over a single fuel cycle (EPRI 2003).   

2. Calibration activities can, on occasion, create problems that would not otherwise occur, such as 
inadvertent damage to transmitters caused by pressure surges during calibration, air/gas entrapped 
in the transmitter or its sensing line during the calibration, improper restoration of transmitters 
after calibration leaving isolation or equalizing valves in the wrong position (e.g., closed instead 
of open or vice versa), valve wear resulting in packing leaks, and valve seat leakage (EPRI 1998). 
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Extending the periodic manual calibrations in NPPs by incorporating OLM affords several direct 
benefits (Hashemian 2011) including increased reliability, safety, and efficiency in the plant.  OLM 
methods can also provide a significant financial savings, especially if outage duration is reduced.  Similar 
benefits are expected with the use of OLM in the next generation of nuclear power plants that are being 
constructed or proposed in the United States.  These include the Gen III+ and advanced reactor designs, 
including SMR designs.  The anticipated harsher operating conditions (particularly in longer-term 
advanced designs), along with potential new sensor materials and designs, may lead to new sensor 
degradation modes and characteristics.  These factors will impact the calibration burden on sensors.  
When combined with an extended refueling cycle (from ~1.5 years presently to ~4–6 years or longer as 
advanced reactors come online), the ability to ensure reliable operation and extend calibration intervals by 
monitoring the calibration performance online becomes increasingly important to maintain safe operating 
envelopes.  

A previously published assessment (Coble et al. 2012) identified several technical gaps that preclude 
the widespread adoption of OLM for calibration monitoring.  Of the gaps identified, better approaches to 
UQ were identified as important to both current approaches to OLM as well as in any future advanced 
methods for OLM.  Research to address these gaps (and in particular, the gap associated with UQ) will 
support several goals of the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and 
Instrumentation (ASI) Program,(a) including improved monitoring to achieve higher accuracy and 
reliability of measured parameters over longer operational periods.  The NEET ASI Program also aims to 
reduce the dependence on humans for certain tasks in order to reduce human errors.  Errors in calibration 
and re-installation during routine maintenance are known to damage otherwise healthy sensors.  By 
targeting recalibration to only those sensors that require it, these maintenance-induced faults and failures 
can be greatly reduced.  

The research to address these gaps will have an impact on a number of programs currently supported 
by the U.S. Department of Energy’s Office of Nuclear Energy.  This research would complete the science 
base needed to enable adoption of OLM for sensor calibration interval extension in U.S. nuclear power 
plants, hence enabling utilities to potentially apply for the license amendment necessary to make the shift 
away from scheduled calibration methodologies.  This directly supports the needs of the Light Water 
Reactor Sustainability program.  

SMRs and advanced reactors are expected to employ longer operating cycles between maintenance 
outages, as well as more highly automated control and information systems; these expectations will 
require a greater awareness of sensor performance, which will be provided by online calibration 
monitoring.  In addition, the ability to monitor instrumentation performance provides a level of 
automation that can help improve economics of plant operation by reducing unnecessary maintenance.  

Similar benefits are envisioned for instrumentation (planned or in-use) in fuel-cycle systems.  
Identifying sensor performance degradation in a timely fashion is necessary to improve confidence in 
operations at nuclear fuel-cycle facilities, and is of particular importance in measurement campaigns that 
generate data for verifying and validating new fuel designs.  

                                                      
(a)  DOE.  Integrated Research Plan for Advanced Sensors and Instrumentation.  Draft August 2012.  

U.S. Department of Energy (DOE), Office of Nuclear Energy. 
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1.4 Organization of the Report 

Section 2 provides the necessary background to online monitoring, including the sensor calibration 
needs in NPPs, current practices and standards used, and an overview of online monitoring.  Section 3 
describes the sources of uncertainty in NPP measurements, and the UQ methodology that is proposed.  A 
description of the experimental setup for measurement data collection, and results of evaluating the 
methodology using this data are provided in Section 4.  Finally, some conclusions about the path forward 
for calibration monitoring and calibration interval extension are given in Section 5.  
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2.0 Background:  Sensor Calibration and Online Monitoring 

Several types of measurement instrumentation are used in nuclear power plants to ensure safety and 
optimize the economics of operation.  Instruments are incorporated for measurements of temperature, 
pressure, flow, neutron flux, and water chemistry (e.g., pH and conductivity).  Additional instrumentation 
may be incorporated to monitor and indicate the position or state of several mechanical devices such as 
control rods and valves and to monitor the speed of rotating machinery (IAEA 2011).  A detailed 
description of sensors used currently in nuclear power, as well as new developments in sensing that may 
be applicable for nuclear power systems, is provided in a previous report (Coble et al. 2012) that also 
includes a detailed description of sensor calibration state-of-practice.   

This section summarizes sensor calibration practices in the nuclear power industry, and describes a 
general overview of OLM along with current methods for uncertainty quantification in OLM.  

2.1 General Approaches to Calibration 

Current practice for calibration of sensors generally depends on the type of sensor.  For pressure, 
level, and flow transmitters, this task is accomplished using a pressure source, such as a dead weight 
tester, that is carried to the field.  Each transmitter is isolated from the process and connected to the 
pressure source to be calibrated.  A set of known pressure inputs (typically corresponding to 0, 25, 50, 75, 
and 100 percent of span) is applied and the output readings (usually measured in Volts or milliamperes) 
recorded.  Sometimes the sensor is also given a decreasing set of pressure inputs (75, 50, 25, and 
0 percent) to account for any hysteresis effect.  This “As-Found” data is compared to the low and high 
acceptance limits.  If the measured values are within the acceptance limits, no action is taken necessarily, 
although calibration technicians sometimes make adjustments to null deviations from perfect calibration 
even when the deviation is within acceptable limits.  If a transmitter fails to meet its acceptance criteria, it 
is calibrated by adjusting the transmitter output for one or more known inputs iteratively until the 
input/output relationship meets the acceptance criteria.  Typically, the acceptance limits after calibration 
are narrower than the “As-Found” limits to ensure that the transmitter calibration is adjusted closer to the 
desired output.   

The calibration procedure for temperature instrumentation is different because temperature sensors 
cannot be calibrated in the normal sense unless they are removed from the plant and calibrated in a 
laboratory.  Cross-calibration of temperature instrumentation is usually used to perform in-situ calibration 
(Hashemian 1990), and requires isothermal plant conditions during which all resistance temperature 
detector (RTDs) of interest are exposed to the same temperature.  Under isothermal conditions, the 
readings of the RTDs are recorded and compared with each other to identify any outliers.  An outlier RTD 
is then removed from the plant and replaced or calibrated in a laboratory.  Newer approaches that use 
cross-calibration data collected during plant startup and/or shutdown periods on all RTDs at least three 
temperatures (e.g., 200, 250, and 300°C) are also being used (Hashemian 2006). 

Thermocouples are almost never calibrated in-situ or even in a laboratory.  A thermocouple that has 
been installed in a process cannot be recalibrated because new junctions can develop where there are large 
temperature gradients (where the thermocouple protrudes into the process environment).  Although this is 
not usually a problem while the thermocouple is installed, it can cause large errors if the thermocouple is 
removed and calibrated in the laboratory.  As such, when a thermocouple loses its calibration, it must be 
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replaced.  However, attempts are sometimes made to ensure that nuclear plant thermocouples that provide 
important temperature data to the control or safety systems are working properly.  These attempts 
typically involve a procedure such as the cross calibration that was just explained.  In doing this, 
thermocouples are often cross calibrated against RTDs, not against each other. 

2.2 Online Monitoring for Sensor Calibration Interval Extension 

Performance monitoring of NPP instrumentation has been an active area of research since the mid-
1980s (Deckert et al. 1983; Oh and No 1990; Ray and Luck 1991; Ikonomopoulos and van der Hagen 
1997).  Early research in signal validation for NPPs relied on direct or analytic measurement redundancy.  
However, additional methods that do not require redundant sensor measurements have been developed for 
application to both safety and non-safety sensors. 

In 1995, Hashemian (1995a) outlined methods to test calibration of sensors during steady-state plant 
operation, including redundant channel averaging, process modeling, and comparison with calibrated 
reference channels.  The results from pilot applications of OLM using a variety of methods for calibration 
monitoring show that common sensor faults, including sensor drift, sensor bias, stuck sensors, etc., can be 
reliably detected (Bickford et al. 2002; Davis et al. 2002; Hines and Davis 2005).  The state of the art in 
OLM for sensor calibration interval extension was reviewed in the NUREG/CR-6895 series (Hines and 
Seibert 2006a; Hines et al. 2008b, c) and a recent International Atomic Energy Agency (IAEA) report 
(IAEA 2008). 

Online calibration monitoring generally involves two steps:  modeling the expected sensed values and 
evaluating the difference between the expected and actual behavior for faults.  Several modeling methods 
have been proposed for evaluating sensor performance of redundant and non-redunant sensor groups 
(Coble et al. 2012).  Modeling methods developed for non-redundant sensor groups require that the 
sensors in a single model contain related information (e.g., temperature and pressure of a gas), typically 
identified by linear correlations or a physical understanding of the measurement relationships.  Redundant 
sensor groups can be paired with other, related measurements, and the full ensemble can be monitored 
through non-redundant sensor modeling methods.  Generally, modeling methods developed for non-
redundant sensor groups can also be applied to redundant sensor groups; however, the converse is not 
true.  The difference between expected (modeled) and actual (measured) behavior, called the residual, 
characterizes system deviations from normal behavior and can be used to determine if the sensor or 
system is operating in an abnormal state.  Fault detection methods commonly applied to residuals for 
calibration monitoring include simple thresholding, error uncertainty limit monitoring (EULM) (Hines 
and Garvey 2006), and sequential probability ratio test (SPRT) (Wald 1945).  EULM fault detection 
adapts simple thresholding for use in the nuclear power industry by monitoring the uncertainty bounds 
about a sensed value (or state estimation residual) and alarming when the uncertainty bounds exceed 
some threshold.  This approach offers an additional level of conservatism to the fault detection, indicating 
when the monitored parameter is no longer within the error thresholds to some specified confidence level.  
SPRT considers a sequence of residuals and determines if they are more likely from the distribution that 
represents normal behavior or that of a faulted distribution, which may have a shifted mean value or 
altered standard deviation from the nominal distribution.  While these fault detection methods are used to 
determine if a fault is present in the system, fault isolation involves determining where the fault has 
occurred.  In the context of sensor calibration monitoring, this involves identifying which sensor has 
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degraded in order to target sensor recalibration efforts.  Fault isolation, also referred to as diagnostics, is 
typically performed with pattern recognition methods, rule-based methods, or expert systems. 

2.2.1 Autoassociative Kernel Regression 

AAKR is a memory-based empirical modeling technique that attempts to predict noise-free estimates 
of the given input signals where the inputs and outputs are of the same dimensions.  Figure 2.1 shows a 
block diagram of the basic AAKR model with three inputs and three outputs. 
 

 

Figure 2.1.  AAKR Model with Inputs X and Outputs Y 
 

AAKR stores its fault-free training data in an NxP memory matrix M, which is made up of N 
observations of P process variables: 
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For each input vector xi = [x1   x2   … xP] presented to the AAKR model, the distance between xi and 
each vector in the memory matrix M is calculated according to a distance function, such as the Euclidean 
distance given by: 

 ( ) 2 2
,1 1 ,, ( ) ... ( )i i i i p pd M x M x= − + + −M x  (2.2) 

For each input vector xi, the calculation in Eq. (2.2) results in a vector di = [d1  d2  …  dN] made up of 
the distances between the input vector xi  and all of the vectors in the memory matrix M.  Next, these 
distances are used to calculate a weighting vector wi according to a similarity function, typically given by 
the Gaussian kernel function: 

 ( )
2 2/d b

i b iw K d e−= = , (2.3) 

where b is the kernel bandwidth.  This effectively gives a higher weight to memory matrix vectors that are 
closer to the input vector xi.  Finally, these weights are used to produce the output prediction, yi according 
to: 
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where the output prediction yi is a weighted average of memory vectors in M.  The difference between 
each model prediction, yi and the corresponding input vector xi form a residual vector, ri.  Each individual 
element of the residual vectors represents the difference between the model prediction and the actual 
measured value, and can be compared to a threshold value to determine if the measured values are outside 
the bounds of normal operation as characterized by the training data. 

One important research area for all OLM models is understanding and quantification of uncertainty.  
In response to specific proposals to apply OLM in operating nuclear power plants (EPRI 1998), aspects of 
uncertainty quantification were part of the requirements identified by the regulator as needing resolution 
from utilities (EPRI 2000a; Hines and Seibert 2006a).  

2.3 Current Approaches to Uncertainty for OLM 

In OLM approaches to calibration assessment, the expected, nominal sensor measurement is 
calculated from a model of the system’s normal behavior.  As in any modeling paradigm, these 
predictions have some level of associated uncertainty.  Understanding and quantifying this uncertainty is 
a key need in developing an OLM system for sensor performance monitoring.  In order to apply OLM in 
NPPs, the sources of uncertainty must be quantitatively bounded and accounted for in the calibration 
acceptance criteria or in the trip setpoint and uncertainty calculations (EPRI 2008).   

Hashemian (1995a) states that, if the process estimate uncertainty is stationary in time and constant 
across the measurement range, the estimate uncertainty does not affect the ability to detect sensor drift.  
However, these uncertainties are important for determining the level of deviation that is acceptable 
(calibration acceptance criteria).  The EULM drift detection method, which was proposed for sensor drift 
monitoring, monitors the uncertainty band about the parameter residual to determine if a sensor is no 
longer in its acceptable calibration tolerance. 

A review of estimating modeling uncertainty for a variety of empirical modeling methods is given in 
Rasmussen (2003).  Rasmussen uses prediction intervals to quantify and bound the parameter estimate 
uncertainty.  However, many sensors contain a significant amount of measurement noise that causes the 
prediction interval uncertainty estimate to exceed the drift allowance even when no drift is present 
(Seibert et al. 2006).  To alleviate this burden, application of confidence intervals (with certain 
assumptions) to the denoised (filtered) residuals to detect sensor drift is proposed.  However, redundant 
sensor models typically do not meet some of the assumptions (Hines et al. 2008c), and the appropriate 
uncertainty interval depends on the modeling method architecture (i.e., redundant or non-redundant 
sensor models).  

Regardless of the approach, the OLM uncertainty is typically characterized by the bias/variance 
decomposition of the model error (Tamhane and Dunlop 2000).  Given a model with prediction variance

( )ˆVar x  and Bias representing the systematic error of the model (Hines et al. 2008b), the total uncertainty 
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is a combination of the prediction variance, the model bias, and the irreducible error (generally considered 
noise): 

 ( ) ( ) 2 2ˆ ˆ  .= + + σnoiseU x Var x Bias  (2.5) 

When it is appropriate to the modeling architecture, the noise can be removed from the uncertainty by 
denoising the model prediction residuals.  The prediction variance portion of uncertainty can be 
calculated through analytic or Monte Carlo techniques (Hines and Rasmussen 2005).  

Analytic uncertainty is estimated by closed-form equations derived from the model’s mathematical 
architecture.  Such equations have been derived for several models, including the multivariate state 
estimation technique (MSET), auto-associative kernel regression (AAKR), linear regression, etc. (Hines 
et al. 2008b).  Monte Carlo uncertainty estimation applies a resampling technique to sample the training 
data multiple times and construct a bank of models.  The variation between the predictions of all the 
models is used as the prediction variance portion of the total uncertainty estimation.  Monte Carlo 
methods measure the uncertainty across a population of possible models, while analytic methods estimate 
the uncertainty of the current model; as such, the Monte Carlo estimate of prediction variance tends to be 
slightly larger.  Both techniques have been shown to be conservative (Rasmussen 2003). 

The total uncertainty plays a key role in determining sensor calibration acceptance criteria and trip 
setpoints.  In early work, the channel statistical accuracy (CSA) was used to determine the trip setpoints 
for the plant and the acceptance criteria for OLM.  The CSA is an estimate of the total channel 
uncertainty, and includes process measurement accuracy, calibration accuracy, an allowance for sensor 
drift, pressure and temperature effects, etc.  The OLM acceptance criteria is then the CSA less the 
uncertainty of the parameter prediction (Hashemian 1995a).  More recently Hines and Seibert (2006a) 
defined the acceptance criteria, called the allowable deviation value for online monitoring (ADVOLM), 
as: 

 ( )2 2 2* ,= + + − −UNCADVOLM SD SMTE SCA OLMPE SPMA  (2.6) 

where SD* is the potential sensor drift during the surveillance interval, SMTE is the sensor measurement 
and test equipment accuracy, SCA is the sensor calibration accuracy, OLMPEUNC is the uncertainty in the 
parameter prediction, and SPMA is the single point monitoring allowance.  In this formulation, 
(SD*+SMTE+SCA) is similar to the CSA above.  SPMA arises from the expected steady-state operation of 
the plant during OLM, and is used to account for potential variation in OLM assessment across the range 
of the sensor (as typically, the sensor calibration is being evaluated in OLM algorithms only at the 
operating conditions, while it is evaluated across the full sensor range in traditional calibration 
assessment).   
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3.0 A Data-Driven Approach to Uncertainty Quantification 

While online monitoring for sensor calibration monitoring and interval extension has been an active 
area of research for the past 25 years, several gaps remain to bring this technology to industry.  A key gap 
is the need for better UQ approaches.  Instrument trip setpoints and acceptance criteria for calibration 
both need to account for the uncertainty inherent in OLM, providing some prescribed degree of 
confidence that a sensor is operating within its calibration specification.   

Several sources of uncertainty will contribute to the overall result.  Methods for quantifying the total 
uncertainty are needed to address the remaining gaps in this area.  Data-driven approaches are attractive 
in this regard as they can potentially determine changes in the confidence bounds as conditions change in 
the plant. 

3.1 Specific Sources of Uncertainty in OLM 

Through review of the relevant literature, several sources of uncertainty important to online sensor 
calibration monitoring and signal validation have been identified (Hashemian 1995b; EPRI 2000b; Hines 
and Seibert 2006b).  These uncertainty sources can be roughly categorized as (1) process noise, 
(2) measurement uncertainty, (3) electronic noise, and (4) modeling uncertainty.  The four sources of 
uncertainty are briefly described below. 

Process Noise – Process noise is the result of normal fluctuation of the physical process parameters 
(e.g., temperature, flow, pressure) about the true process value.  This can be from flow characteristics, 
incomplete mixing, or local variations.  Often, process noise is common (or approximately common) to 
co-located, redundant sensors. 

Measurement Uncertainty – Measurement uncertainty is due to a number of factors, including sensor 
accuracy, calibration accuracy (e.g., calibration offset, error in conversion from sensor units to 
engineering units), environmental effects (because of temperature, vibration, pressure, etc.).  These 
uncertainty sources apply to both the sensor and to the rack/isolator.  

Electronic Noise – Transmission of measurements down the instrumentation line can induce 
additional noise, along with the analog-to-digital conversion at the computer input.  Transmission line 
noise may change as instrumentation cables age. 

OLM Model Prediction Uncertainty – The results of OLM models have associated uncertainty.  The 
prediction uncertainty stems from both input uncertainty (related to the process noise, measurement 
uncertainty, and electronic noise outlined above) and modeling error (arising from model selection, model 
training, input selection, etc.).  Depending on the modeling algorithm, closed-form (analytic) uncertainty 
estimates may be derived; for example, uncertainty estimates for linear regression models are well 
understood.  In the absence of analytic uncertainty formulas, Monte Carlo-based estimates can be made 
(indeed, these bootstrap estimates can be made for any model type, although they are more 
computationally intensive). 

OLM calibration assessment routines typically evaluate model residuals (the difference between 
sensor measurements and predicted values) to detect and identify sensor faults.  The total residual 
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uncertainty should account for uncertainty in measurements and in model predictions.  To understand and 
evaluate the propagation of uncertainty from measurements through predictions and residuals, both 
mathematical simulations and experiments are proposed to develop a method to characterize OLM 
uncertainty. 

3.2 General Principles of Uncertainty Quantification 

Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of 
uncertainties in applications.  It tries to determine how likely certain outcomes are if some aspects of the 
system are not exactly known.  

Uncertainty can enter mathematical models and experimental measurements in various contexts.  One 
way to categorize the sources of uncertainty is to consider (Kennedy and O'Hagan 2001):  

• Parameter uncertainty, which comes from the model parameters that are inputs to the computer 
model (mathematical model) but whose exact values are unknown to experimentalists and cannot be 
controlled in physical experiments.  Examples are the local free-fall acceleration in a falling object 
experiment, and various material properties in a finite element analysis for mechanical engineering. 

• Structural uncertainty, aka model inadequacy, model bias, or model discrepancy, which comes 
from the lack of knowledge of the underlying true physics.  It depends on how accurately a 
mathematical model describes the true system for a real-life situation, considering the fact that models 
are almost always only approximations to reality.  One example is when modeling the process of a 
falling object using the free-fall model; the model itself is inaccurate because there always exists air 
friction.  In this case, even if there is no unknown parameter in the model, a discrepancy is still 
expected between the model and true physics. 

• Algorithmic uncertainty, aka numerical uncertainty, which comes from numerical errors and 
numerical approximations per implementation of the computer model.  Most models are too 
complicated to solve exactly.  For example, the finite element method or finite difference method may 
be used to approximate the solution of a partial differential equation, which, however, introduces 
numerical errors.  Other examples are numerical integration and infinite sum truncation that are 
necessary approximations in numerical implementation. 

• Parametric variability, which comes from the variability of input variables of the model.  For 
example, the dimensions of a work piece in a process of manufacture may not be exactly as designed 
and instructed, which would cause variability in its performance. 

• Experimental uncertainty, aka observation error, which comes from the variability of experimental 
measurements.  The experimental uncertainty is inevitable and can be noticed by repeating a 
measurement for many times using exactly the same settings for all inputs/variables. 

• Interpolation uncertainty, which comes from a lack of available data collected from computer 
model simulations and/or experimental measurements.  For other input settings that do not have 
simulation data or experimental measurements, one must interpolate or extrapolate in order to predict 
the corresponding responses. 

Another way of categorization is to classify uncertainty into two categories (Matthies 2007; 
Kiureghiana and Ditlevsen 2009):  

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Free_fall
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Partial_differential_equation
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• Aleatoric uncertainty, aka statistical uncertainty, which involves unknowns that differ each time the 
same experiment is run.  For an example of simulating the take-off of an airplane, even if we could 
exactly control the wind speeds along the run way, if we let 10 planes of the same make start, their 
trajectories would still differ because of fabrication differences.  Similarly, if all we knew is that the 
average wind speed is the same, letting the same plane start 10 times would still yield different 
trajectories because we do not know the exact wind speed at every point of the runway, only its 
average.  Aleatoric uncertainties are therefore something an experimenter cannot do anything about:  
they exist, and they cannot be suppressed by more accurate measurements. 

• Epistemic uncertainty, aka systematic uncertainty, which is from things we could in principle know 
but do not in practice.  This may be because we have not measured a quantity sufficiently accurately, 
or because our model neglects certain effects, or because particular data are deliberately hidden. 

In real-life applications, both kinds of uncertainties are often present.  Uncertainty quantification 
intends to work toward reducing epistemic uncertainties to aleatoric uncertainties.  The quantification for 
the aleatoric uncertainties is relatively straightforward to perform.  Techniques such as the Monte Carlo 
method are frequently used.  A probability distribution can be represented by its moments (in the 
Gaussian case, the mean and covariance suffice), or more recently, by techniques such as Karhunen–
Loève and polynomial chaos expansions.  To evaluate epistemic uncertainties, the efforts are made to 
gain better knowledge of the system, process, or mechanism.  Methods such as fuzzy logic or evidence 
theory (Dempster–Shafer theory – a generalization of the Bayesian theory of subjective probability) are 
used. 

Parameter estimate uncertainty could come from many contributing sources.  For empirical modeling 
techniques, inaccuracies in the training data and inherent limitations of the model contribute to the total 
uncertainty.  For parity spaced-based methods, the user-defined inputs, the number of redundant channels, 
and the noise level and amount of drift present in each channel contribute to the uncertainty of the 
parameter estimate. 

3.3 Uncertainty Analysis Assumptions 

There are also several assumptions made in the application of the various uncertainty analysis 
algorithms in this study.  These include: 

• Monte Carlo methods make use of an estimate of the “true value” of the sensor. 

• Measurement data is assumed to be stationary. 

• The analytical techniques used to date assume that the variance portion of uncertainty is much larger 
than the bias portion.   

These assumptions and their effect on predictive uncertainty must be investigated and quantified.  Future 
research will examine and attempt to quantify the overall effect of this assumption. 

 

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Moment_%28mathematics%29
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem
http://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem
http://en.wikipedia.org/wiki/Polynomial_chaos
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
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3.4 Uncertainty Quantification Methods for Uncertainty Estimation in 
Online Sensor Calibration Monitoring 

3.4.1 Polynomial Chaos Methods 

Polynomial chaos (PC), also called “Wiener Chaos expansion” (Wiener 1938), is a non-sampling-
based method to determine evolution of uncertainty in a dynamical system, when there is probabilistic 
uncertainty in the system parameters. 

PC was first introduced by Wiener where Hermite polynomials were used to model stochastic 
processes with Gaussian random variables.  It can be thought of as an extension of Volterra’s theory of 
nonlinear functionals for stochastic systems.  Such an expansion converges in the L2 sense for any 
arbitrary stochastic process with finite second moment (Ghanem and Spanos 1991).  This applies to most 
physical systems.  Xiu (2010) generalized the result of Cameron-Martin to various continuous and 
discrete distributions using orthogonal polynomials from the so-called Askey-scheme and demonstrated 
L2 convergence in the corresponding Hilbert functional space.  This is popularly known as the generalized 
polynomial chaos (gPC) framework.  The gPC framework has been applied to applications including 
stochastic fluid dynamics, stochastic finite elements, solid mechanics, nonlinear estimation, and 
probabilistic robust control.  It has been demonstrated that gPC-based methods are computationally 
superior to Monte Carlo-based methods in a number of applications.  However, the method has a notable 
limitation.  For large numbers of random variables, polynomial chaos becomes very computationally 
expensive and Monte Carlo methods are typically more feasible. 

3.4.2 Gaussian Process Model 

In probability theory and statistics, a Gaussian process is a stochastic process whose realizations 
consist of random values associated with every point in a range of times (or of space) such that each such 
random variable has a normal distribution.  Moreover, every finite collection of those random variables 
has a multivariate normal distribution.  Details of the Gaussian Process model are presented in 
Appendix A; here we present a brief overview of Gaussian Process models. 

A Gaussian process can be used as a prior probability distribution over functions in Bayesian 
inference (Rasmussen and Williams 2006; Liu et al. 2010).  Given any set of N points in the desired 
domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram 
matrix of your N points with some desired kernel, and sample from that Gaussian. 

Inference of continuous values with a Gaussian process prior is known as Gaussian process 
regression, or kriging; extending Gaussian process regression to multiple target variables is known as co-
kriging (Stein 1999).  As such, Gaussian processes are useful as a powerful non-linear interpolation tool.  
Additionally, Gaussian process regression can be extended to address learning tasks both in a supervised 
(e.g., probabilistic classification (Rasmussen and Williams 2006)) and an unsupervised (e.g., manifold 
learning) learning framework. 

Physical systems usually have responses that consist of a set of distinct outputs (e.g., velocity, 
temperature, and pressure) that evolve also in space and time and depend on many unknown input 
parameters (e.g., physical constants, initial conditions, etc.).  Furthermore, essential engineering 

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Hermite_polynomials
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Gaussian
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Nonlinear
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Monte-Carlo
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procedures such as uncertainty quantification, inverse problems, or design are notoriously difficult to 
carry out mostly because of the limited simulations available.  The aim of this work is to introduce a fully 
Bayesian approach for treating these problems that accounts for the uncertainty induced by the finite 
number of observations. 

Our model is built on a multi-dimensional Gaussian process that explicitly treats correlations between 
distinct output variables as well as space and/or time.  In this way, we obtain error bars for the statistics of 
interest that account for the finite number of observations.  The novelty of this work is to introduce a 
Gaussian process model into the power plant monitoring.  We use this model to build boundaries of the 
steady-state process to obtain error bars for the statistics of interest that account for the finite number of 
observations.  We can also detect deviations from the steady-state process statistics (mean, variance, 
correlation parameters, etc.) for the variables of interest.  

Let us consider a physical problem with input domain kX R ξ
ξ ⊂ , spatial domain sk

sX R⊂ , and 

temporal domain, which is expressed as an interval XT=[0,T], where kξ, ks are the dimensions of the input 
and spatial domain.  The input domain Xξ usually represents a bounded domain and can thus be 

considered a compact subset of kR ξ  while the spatial domain Xs and time domain T can be given intervals 
on skR R+× . 

In the computer simulations, we usually fix the spatial and temporal domain and sample the input 
domain.  This gives us computational flexibility because we can represent the domain as a tensor product 
of the input, spatial, and temporal domain.  For an input parameter Xξξ ∈ , the computer simulation 
returns the (multi-output) response on a given (a priori known) set of ns spatial points 

( )1,..., s s
s

T n k
s nX s s R ×= ∈ , where ks = 1,2, or 3 is the number of spatial dimensions, at each one of the nt 

timesteps ( ) 1
1,..., t

t
n

t nX t t R ×= ∈ .  That is, a single choice of the input domain ξ generates a total of 

s tn n×  training samples.  Therefore, the response is a matrix in ( )s tn n qR × , where q is the number of the 
output variables of the computer simulation. 

For modeling reasons, we will represent the problem as a q multivariate response ( ), , q
i i is t Rξ ∈  

given input, spatial and time point ( ), ,i i ii s tξ= .  We denote the multiple observed output vector as 

( ) ( )( )1 ,...,
TTT

NY x xβ β=  and ( )1 ,...,T T
NX x x=  as its corresponding input, spatial, and time vector.  For 

simplification purposes, we call the input domain, spatial domain, and temporal domain as input, space, 
and time, respectively.  Throughout this report we will collectively denote input of ( )β ⋅  by ( ), ,x s tξ=  

and the space domain by [ ]0,sX X X Tξ≡ × × .  Finally, we denote s tN n n nξ= × ×  as the total sample 
size of the new setting. 

Gaussian Process (GP) is a tool that has been successful building surrogate models for the computer 
simulations.  The challenge in GP is to model the mean and the variance.  A linear regression model for 
the mean is usually a good choice for continuous fields.  The covariance function is harder to model and 
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usually depends on the computational complexity and the form of ( )β ⋅ .  In this report, we use a 
combination of linear model of coregionalizations and the separable model.  The Bayesian formulation 
assumes a GP prior distribution for the function ( )β ⋅ , conditional on various hyperparameters.  This prior 

distribution is updated using a preliminary training sample on input domain [ ]0,sX X Tξ × × .  The goal of 
this work is to interpolate within the Bayesian framework a multivariate function 

( ) : sk qR R R Rξ +⋅ × × →  based on some observations. 

The classical multivariate Gaussian process can be written as:  

 ( ) ( ) ( ) ( )x x w x xβ µ ε= + + ,  (3.1) 

where µ(x) is the mean which is usually modeled as a linear regression, w(x) is the spatial correlation, and 
ε(x) denotes the nugget error.  Modeling the cross-covariance function of w is one of the most important 
questions we have to answer.  Different strategies to model the cross-covariance of w are described in 
Appendix A. 

3.4.2.1 Gaussian Process Models and Other OLM Models 

As discussed earlier, a number of other OLM models have been proposed in the literature (Hines et al. 
2008a).  In almost all cases, the OLM problem is modeled in terms of an input-output relationship of the 

form ( ) ( )( )1 ,...,
TTT

NY x xβ β=  where ( )1 ,...,T T
NX x x=  is the input vector.  The prediction for an input 

vector *Tx is computed as: 

 
( )
( )

*

*1 1

1

,
ˆ

,

T T T
N Ni i i T

i iN T Ti i
i i

i

x x x
y w x

x x

κ

κ= =

=

= =∑ ∑
∑
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where ( )iκ •  is a kernel function (Hines et al. 2008a).  Typical kernel functions include Gaussian 
functions, inverse distance, exponential, etc., although the choice of kernel function appears to be non-
critical in the performance of this type of model.  

As described in Rasmussen and Williams (2006), the Gaussian Process model can also be represented 
in terms of a kernel smoother (as in Eq. (3.2)), using an equivalent kernel or weight function.  As a result, 
the Gaussian process model may be viewed as equivalent to kernel regression approaches prevalent in 
statistics, and which have been adapted for use in OLM.  While this equivalence may be established, the 
Gaussian Process model can also be viewed as a generalization of classical regression models, in as much 
as GP models enable the ability to capture spatial and temporal relationships that may not be represented 
in classical kernel-regression models.  As a result, extension of the Gaussian Process model to address 
auto-associative models is straightforward, and the approach may be used to potentially improve error 
bounds on the prediction in auto-associative models by accounting for covariance and correlations 
between the different sensor measurements much more efficiently, using the same basic framework of 
Gaussian processes.   
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3.4.3 Estimates of Noise on Sensors and UQ Methods for De-noising 

The current approach to quantifying uncertainty in nuclear instrumentation relies on estimates of 
noise and environmental effects on sensors, typically provided by the manufacturer (Hashemian 1995a).  
Combined instrument channel uncertainty is then calculated according to ISA-RP67.04.02-2010 (ISA 
2010).  This approach provides a conservative estimate of the channel uncertainty, which then affects the 
plant trip setpoints and acceptable operating envelopes.  OLM introduces additional uncertainties, such as 
model prediction uncertainty (Hines and Seibert 2006a), which must also be accounted for in assessing 
the accuracy of sensors and instrumentation.  Methods of UQ based on the measured data are being 
investigated to alleviate some of the conservatism inherent in the current approach. 

One of the major issues is the technique used to provide what Argonne National Laboratory (ANL) 
calls “Perfect Signal Reconstruction.”  These “perfect” or noise-free signals are needed to estimate the 
bias term in the uncertainty analysis, as well as to quantify the noise, and its distribution, present in each 
sensor input.  The technique, termed the Stochastic Parameter Simulation System (SPSS), is a wavelet-
based technique originally developed by Miron (2001) to whiten residuals for input to the Sequential 
Probability Ratio Test (SPRT), which was used in the past for drift detection.  The SPRT is developed 
under the assumptions of white residuals, meaning that each residual is uncorrelated with itself over time.  
The SPSS method was developed as an alternative to the Reactor Parameter Signal Simulator (RPSS) 
developed at ANL (Gross and Hoyer 1993) for SPRT residual whitening.  The SPSS was also used to 
estimate noise-free signals so that noise distributions could be quantified and the Latin Hypercube 
Sampling technique could be applied. 

The ICA algorithm, which has been applied to sensor calibration monitoring (Ding 2004), could be 
used as an alternative to the wavelet-based approach.  It is assumed that because the sensors in OLM are 
all redundant, the ICA technique will perform as well as, or better than, the wavelet de-noising technique 
in estimating the true process measurement.  ICA is only applicable to stationary signals.  However, with 
single-point monitoring in effect, it is expected to be a valid technique.  Miron’s SPSS program is used to 
analyze steady-state plant signals.  It decomposes the signal into its deterministic and stochastic 
components, and then reconstructs a new, simulated signal that possesses the same statistical noise 
characteristics as the actual signal for use in the Monte Carlo-based uncertainty analysis.  It is also used as 
a filtering device.  For filtering, it isolates the principal serially correlated, deterministic components from 
the analyzed signal so that the remaining stochastic signal can be analyzed with signal validation tools.  
The wavelet de-noising function decomposes the signal into its low-frequency (approximation) and high-
frequency (detail) components. 

3.4.4 Summary 

The proposed UQ methods can statistically determine the uncertainty of a model at a single operating 
point.  Comparing to the classic Monte Carlo methods, the proposed UQ methods can greatly improve the 
predictive capability and the accuracy of predicting uncertainty with the same number of samples.  We 
are evaluating the proposed UQ methods using data from simulations and experimental flow loops.  The 
results of these analyses will be compared to the uncertainty results of the traditional method to evaluate 
any potential gains.   

 





 

4.1 

4.0 Preliminary Results 

This section describes preliminary results of the data-driven uncertainty quantification approach.  
Two approaches were taken for generating the data sets needed for this evaluation.  Experimental data 
was acquired using an instrumented flow loop, with varying test conditions.  In addition, a simulation 
model of a flow-loop was generated.  The simulation model serves two purposes.  First, data may be 
generated from the simulation model that represent conditions the experimental flow loop may not be able 
to achieve.  Second, the use of a model can provide insights into physical relationships between 
measurements from sensors at different locations.  These insights can be used to derive new algorithms 
for OLM, as well as develop methods for generating virtual sensors.  Although analysis of data generated 
from the simulation models is continuing, the models themselves are included in this section for 
completeness.   

4.1 Experimental Data for Evaluation of UQ Methods 

4.1.1 Flow Loop Configuration 

An instrumented flow loop was used to produce the data for analysis.  The 17 sensors in the loop 
consist of pressure and differential pressure transmitters to measure pressures and flows, and a 
combination of thermocouples and RTDs to measure temperatures.  A schematic of the loop along with a 
table of the instruments used is shown in Figure 4.1.  Water is pumped through the loop by a 7.5-HP 
centrifugal pump, shown at the bottom left of the figure.  The water flow direction is clockwise relative to 
the figure.  The primary loop is constructed of 4-inch Schedule 40 PVC pipe, the heat exchanger lines are 
1.5-inch Schedule 40 PVC pipe, and the sensing lines are 0.25-inch copper tubing. 

Because this is a closed loop, heat generated by the pump must be removed to prevent temperature 
runaway.  To accomplish this, water is diverted to an air-cooled heat exchanger via a diverting valve that 
is controlled by a temperature controller.  The temperature controller senses the water temperature via an 
RTD at location #10 on the diagram, and positions the diverting valve based on cooling demand.  The 
cooled water leaves the heat exchanger and mixes back with the process water near the pump inlet, 
between locations 14 and 15 on the diagram.  The heat exchanger is cooled by ambient air via a 2-HP 
forced-air fan.  Because the heat exchanger is cooled by ambient air, the minimum operating temperature 
of the water in the loop is limited to about 10–15°F above the local outdoor ambient temperature. 

Similar to temperature, pressure is controlled by a pressure controller.  The controller senses static 
gauge pressure at location 14 on the diagram, and its outputs are connected to two normally closed 
solenoid valves.  A solenoid valve located near the pump inlet raises system pressure by letting water 
enter the system from the building water supply, and a second solenoid valve located at the highest point 
in the system releases pressure via a vent line to the atmosphere.  Note that the maximum system pressure 
is limited to both the building supply water pressure and the maximum pressure rating of the PVC piping, 
which is about 80 PSIG. 
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Figure 4.1.  Flow Loop Piping and Instrumentation Diagram 
 

4.1.2 Data Collection Method 

Data were collected from the sensors via Analysis and Measurement Services’ OLM-32 data 
acquisition system and its accompanying software.  A picture of the OLM-32 system is shown in 
Figure 4.2.  The OLM-32 hardware is capable of sampling data with 24-bit resolution at a maximum rate 
of 50 kHz, although data for this project were collected at 200, 20, and 10 Hz (depending on the test). 

Each sensor output was routed through a transmitter before reaching the data acquisition system.  The 
transmitters converted the raw sensor output to a 1–5 V signal. 
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Figure 4.2.  OLM-32 Data Acquisition System 
 

4.1.3 Test Conditions 

Testing was generally conducted at steady-state conditions.  As previously mentioned, the steady-
state temperature of the loop depends on the ambient temperature (because of the ambient air-cooled heat 
exchanger).  Testing was conducted during the months of July and August where the daytime 
temperatures averaged around 85°F.  This limited the minimum operating temperature of the loop to 
about 95°F; therefore, 100°F was used as the steady-state condition for most of the tests.  

As previously mentioned, pressure was maintained by a pressure controller located on the operator 
control panel.  Because building water pressure was used as the pressure source, and to prevent excess 
stress to the PVC piping, the pressure was limited to about 80 PSIG.  The steady-state pressure setpoint 
was 55 PSI. 

4.1.4 OLM Algorithm 

Empirical models of the test loop data were created using the auto-associative kernel regression 
technique.  For the test loop data, AAKR models consisting of data from all 17 sensors of the test loop 
were created using fault-free data.  The models were then presented with measured values under various 
fault-free and fault conditions for each test that was performed.  The residuals for each test were then 
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calculated and compared to threshold values.  Threshold values of ±1% of the calibrated range of each 
sensor were used to determine if the measured values deviated significantly from normal operation. 

4.2 Uncertainty Analysis and Quantification 

Data from the instrumented flow loop were used for initial assessment of the proposed UQ 
methodology.  The flow loop operated at steady state for each setpoint for at least five minutes.  The 
steady-state data, taken from the no-fault cases, was used for this initial assessment.  The data was divided 
into a training set and a verification set, where the training set data were at several temperature setpoints 
varying from 90°F to 110°F and various pressure setpoints, with the sample rate set to 20 Hz.  We use 
these data to obtain error bars for the statistics of interest that account for the different values of initial 
conditions. 

Conditioned on some hyperparameters that control the mean and the variance, we assume that our 
data follow a multivariate normal distribution.  The Bayesian formulation assumes a Gaussian prior 
distribution for the function β(⋅) conditional on the hyperparameters.  This prior distribution is updated 
using preliminary training data, as a function of the input domain (temperature and/or pressure setpoints) 
and time.  The overall goal is to give an analytical representation of the response surface of the 
multivariate function β(⋅) for arbitrary input values and time based on some observations. 

Because we can exactly specify the prediction (posterior) distribution of β(⋅) at an arbitrary input 𝑥 at 
time 𝑡 given the data and the hyperparameters, we can calculate the prediction distribution of β(⋅) at an 
arbitrary input 𝑥 at time 𝑡 given only the data by Bayesian model averaging (Hoeting et al. 1999).  

An example of the type of results that may be obtained from this process is shown in Figure 4.3.  The 
data shown in this figure presents the prediction estimates of each of the sensor responses as a function of 
temperature (assuming that the input variable is temperature only).  Each sensor prediction shows the 
predicted value (the central curve in each plot) and the prediction error bounds (lower and upper curves).  
Note that the data presents a snapshot in time; that is, the predicted values shown are at a single instant in 
time.  Similar predictions may be made for other time instances.  

Clearly, the ability to rapidly compute such error bounds provides the capability for quantifying the 
uncertainty from the data itself, assuming the model postulated (Gaussian Process).  Clearly, for OLM, 
sensor drift or faults will have to result in measurements that exceed these bounds, which are computed 
from no-fault data.  The assessment of data from faulted sensors in this framework is ongoing.  
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Figure 4.3. Snapshot of Predictions for All Sensor Data, Assuming a Single Input Variable 
(temperature).  The horizontal axis of each plot shows temperature in °F.  The vertical axes 
show, depending on the sensor type, either temperature (°F) or differential pressure (inches 
H2O).  

 

To further assess the approach, we performed an analysis where two input variables (temperature and 
differential pressure) were assumed.  Figure 4.4 shows the results of the prediction at time t = 4990 
seconds.  The left column presents the observed data as a function of temperature (horizontal axis) and 
differential pressure (vertical axis), with the values of the sensor data color-coded using the color-bar on 
the right.  The response surface (prediction) for the corresponding sensor is presented in the right column.  
The data is presented for 9 of the 17 sensors used in the instrumented flow loop.  As with the 1-D 
response surfaces, only steady-state data from the no-fault conditions are used in the generation of the 
response surfaces.  Note that the prediction accuracy appears to be reasonable, although confidence 
bounds are not presented in this particular example.   

Figure 4.5 shows an example of the prediction in fault conditions over a time interval using control 
temperature.  The model itself was derived using data from normal operation, steady-state conditions.  
The prediction results indicate that the model developed using steady-state conditions is incapable of 
capturing the range of variabilities that may result in sensor-fault conditions.  As a result, it is likely that 
the prediction results may provide insights into the development of fault detection techniques for OLM 
sensor fault identification and localization.  
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 
Figure 4.4. Predicted Response Surfaces at a Single Time Instant, Assuming Two Input Variables.  

(a), (c), (e), (g), (i), (k), (m), (o), (q):  Observed data from each of the nine sensors used in 
this analysis.  The horizontal axis corresponds to temperature (°F) and the vertical axis 
corresponds to differential pressure (inches H2O).  Both input variables correspond to the 
control parameters of the instrumented flow loop.  (b), (d), (f),(h),(j),(l), (n), (p), (r):  
Prediction surfaces (response surfaces) for the nine sensor measurements presented as a 
color-coded map.  The response surface data only shows the prediction value and does not 
present the associated error bars. 
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Figure 4.4.  cont’d 
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Figure 4.4.  cont’d 
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Figure 4.5. Predicted Responses and 95% Confidence Intervals from the 17 Sensors in the 
Experimental Flow Loop, Over a 500 Point Time Window (corresponding to data collected 
over 50 seconds).  The prediction used control temperature as the independent variable. 

 

The analysis also turned up unexpected insights into factors that impact the ability to reliably perform 
OLM.  A major factor is the presence of unknown or hidden variables that impact the measurement 
process.  For instance, the ambient (outside) temperature varied by several degrees (F) during the time 
period that measurements were made using the instrumented flow loop.  Because the heat exchanger was 
open to the ambient environment, these variations resulted in changes in the control temperature and 
pressure to maintain the set-points.  Consequently, significantly different measurements were obtained 
under normal, steady-state conditions depending on the ambient temperature when the measurements 
were made.  Developing a model of “normal” conditions is difficult when such variabilities are present in 
what is considered “normal”; in turn, this can impact the ability to reliably distinguish between normal 
and abnormal or fault conditions using OLM.  These types of hidden variables that can impact the 
measurement process will need to be identified and documented to improve the ability to distinguish 
between sensor and process fault conditions using OLM. 

4.3 Simulation Models (Flow Loop Model with Counter Flow Heat 
Exchanger) 

Two models of a heat exchanger flow loop were simulated in MATLAB Simulink software.  The first 
model assumed a constant flow rate in the control loop so only the temperature was controlled with a 
proportional integral derivative (PID) controller.  The second model contained a pump, enabling the 
control of both the temperature and the flow rate with a controller.  For both models, a concentric tube 
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counter flow heat exchanger was represented by a series of equations.  The inputs, assumptions, and 
outputs are listed for the constant flow model in Table 4.1. 

The temperatures of the cold and hot outlet streams were calculated for given cold and hot inlet 
conditions, which included temperatures and mass flow rates.  Within the algorithm, the heat transfer area 
and overall heat transfer coefficient are assumed.  The specific heat of water was also used in the 
calculations.  The calculations were based on an Effectiveness-NTU (number of transfer units) method 
with the total heat transfer (Q) also calculated in units of watts.  Mass flow rates of the hot and cold 
streams were unaffected by the heat exchanger calculations so output mass flow rates were equal to the 
input mass flow rates.   
 
 

Table 4.1.  Constant Flow Model Inputs, Assumptions, and Outputs 

 Inputs  
Tc_in Cold side inlet temperature (°C) [224] 
Mc_in Cold side mass flow rate (g/s) [3.4E6] 
Th_in Hot side inlet temperature (°C) [300] 
Mh_in Hot side flow rate (g/s) [3.0E6] 

 Assumptions  
A Heat transfer surface area (m2)  
U Overall heat transfer coefficient (W/m2 °K) [(U)(A) = 1.0E8] 
c Specific heat of water [4.186 (J/g °C) or (J/g °K)] 

 Outputs  
Tc_out Cold side outlet temperature (°C) [calculated output] 
Mc_out Cold side outlet mass flow rate (g/s) [same as the input] 
Th_out Hot side outlet temperature (°C) [calculated output] 
Mh_out Hot side outlet mass flow rate (g/s) [same as the input] 

Notes or guidelines for selected values: 
Todreas and Kazimi (1990), Nuclear Systems I, page 418:  U = 2500–50000 for boiling water and 

250–12000 for water under forced convection in pipes.  Page 5:  primary coolant inlet temperature 
278°C, average outlet temperature 288, core flow rate 13.1 Mg/s. 

Buongiorno (2010), MIT class notes slide 3:  Core inlet temperature 278.3°C, outlet 287.2°C, feed 
water flow rate 1820 kg/s, temperature 220°C, steam flow rate 1820 kg/s, temperature 287.2°C). 

 

The simulation was run with an Ode45 (Dormand-Prince) variable-step solver.  The solver determines 
the time of the next step in the simulation and applies a numerical method to solve the set of ordinary 
differential equations representing the given model within the accuracy requirements specified.  A 
tolerance of 1E-3, which ensures that the computed state is accurate to within 0.1%, and a run time of 
800 seconds were selected. 

Multiple sensors were added to a model, each one as a subsystem.  A sensor subsystem was 
individually tailored to represent simulated noise at the sensor level.  The noise levels could be matched 
to the type of physical sensor such as an RTD or thermocouple temperature sensor.  A sensor subsystem 
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could also represent errors such as drift, nonlinearity, and sensor bias.  Furthermore, process noise was 
added to the constant flow model.  These additions of noise to the models were selected to represent 
sensor and process uncertainty.  A sensor subsystem is easily adapted to produce its output in either 
engineering units (for temperature in degrees) or sensor units (volts).  The added noise was assumed to be 
Gaussian and was defined by a selected mean and variance.   

In the constant flow model, a flow loop with a defined input set-point temperature, PID controller, 
and an output tracking monitor was represented as shown in Figure 4.6.  The flow loop model is shown in 
detail in Figure 4.7 with the heat exchanger, to the right, defined by a series of equations in Matlab code.  
An initial input temperature on the hot side of the heat exchanger was assumed to be 300°C and the cold 
side input was fixed at 224°C.  Flow rates on the hot and cold sides were set to 3.4E6 and 3.0E6 (g/s), 
respectively.  The full set of input parameters and assumptions are listed in Table 4.1.  In-line process 
noise was added to the model at the point marked by the arrow in Figure 4.7.  The process noise in the 
flow loop was defined as a Gaussian distributed random signal with 0 mean and variance of 2.  Sensor 
noise was added at each of the ‘Record T’ subsystems in the loop.  The specified input set-point function 
and output tracking results are displayed in Figure 4.8, left and right side, respectively.  There is good 
agreement between the output and input with evidence of the process noise.  Finally the temperature over 
the course of the simulation at two points in the flow loop is displayed in Figure 4.9, again showing the 
effects of added process noise.   
 

 

Figure 4.6.  Flow Loop Control Model with Constant Flow 
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Figure 4.7. Flow Loop Details with Heater on the Left, Heat Exchanger on the Right, and Process 
Noise Added at the Poisition Noted by the Arrow 

 

 

Figure 4.8.  Input Setpoint Temperature on the Left and the Output Temperature on the Right 
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Figure 4.9. Temperatures at Different Locations in the Flow Loop, Scope 7 on the Left and Scope 1 on 
the Right.  The horizontal axes represent time in seconds and the vertical axes represent 
temperature in °C. 

 

The variable flow model is still under development to address instabilities that occasionally lead to 
the model not converging or unrealistic temperatures or flow rates at some points in the loop.  In general, 
however, the output tracked the input set-point function well.  Sensor subsystems were added at various 
points of interest in the model to measure either temperature or flow rates and they contained sensor noise 
or other anomalies.  The model is shown in Figure 4.10 with flow loop details shown in Figure 4.11.  The 
same set of heat exchanger equations were used in this model as were used in the constant flow model.   
 

 

Figure 4.10.  Flow Loop Model with Variable Temperature and Flow 
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Figure 4.11. Flow Loop Details with Heater, Pump Control, Heat Exchanger, and Multiple Sensors 
(Record Subsystems) 
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5.0 Summary 

Periodic sensor calibration involves (1) isolating the sensor from the system, (2) applying an artificial 
load and recording the result, and (3) comparing this “As Found” result with the recorded “As Left” 
condition from the previous recalibration to evaluate the drift at several input values in the range of the 
sensor.  If the sensor output is found to have drifted from the previous condition, then the sensor is 
adjusted to meet the prescribed “As Left” tolerances.  Previous reviews of recalibration logs suggest that 
the current practice of periodic recalibration adds a significant amount of unnecessary maintenance during 
busy maintenance outages.  Advanced algorithms that continuously monitor sensor responses can address 
this issue and facilitate automated monitoring and control of plant and subsystem performance.   

Widespread utilization of traditional OLM approaches is lacking and a key gap that needs to be 
addressed to increase adoption of these technologies, particularly in the nuclear power plant arena, is the 
need to better quantify OLM uncertainty.  Sources of uncertainty in OLM can be roughly categorized as 
(1) process noise, (2) measurement uncertainty, (3) electronic noise, and (4) modeling uncertainty.  
Approaches to UQ that are data-driven may be capable of providing estimates of uncertainty that are 
time-varying as the quantities being measured vary with time.  Such a capability provides the option of 
adjusting acceptance criteria and, potentially, setpoints in a time-varying fashion to meet the needs of the 
nuclear power system.  

A Gaussian Process model is proposed for addressing the UQ issue.  The advantage of this approach 
is the ability to account for spatial and temporal correlations among the sensor measurements that are 
used in OLM.  The GP model, as proposed, may be considered an extension of a commonly used OLM 
model and, therefore, the hypothesis is that the UQ methodology may be readily extended to 
accommodate commonly used OLM models.  

Assessment of the proposed UQ methodology using data from an instrumented flow loop indicates 
the feasibility of generating error bounds on measurement data that are time-dependent.  Assessments 
using steady-state data from normal conditions (i.e., no sensor faults are present) and from sensor fault 
conditions indicate that the approach may provide insights into the development of fault detection 
techniques for OLM sensor fault identification and localization.  

The analysis also turned up unexpected insights into factors that impact the ability to reliably perform 
OLM.  A major factor is the presence of unknown or hidden variables that impact the measurement 
process.  Developing a model of “normal” conditions is difficult when variabilities are present in what is 
considered “normal”; in turn this can impact the ability to reliably distinguish between normal and 
abnormal or fault conditions using OLM.  These types of hidden variables that can impact the 
measurement process will need to be identified and documented to improve the ability to distinguish 
between sensor and process fault conditions using OLM. 

In parallel, simulation models of a flow loop with a counter-flow heat exchanger were developed.  
The simulation model serves two purposes.  First, data may be generated from the simulation model that 
represent conditions the experimental flow loop may not be able to achieve.  Second, the use of a model 
can provide insights into physical relationships between measurements from sensors at different locations.  
These insights can be used to derive new algorithms for OLM, as well as develop methods for generating 
virtual sensors.  Evaluation of the models themselves, and analysis of data generated from the simulation 
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models, is ongoing.  Future work in this regard includes incorporating the collected measurement data 
parameters into the model to evaluate or validate the model results.  Additionally, the variable flow model 
will be modified to ensure that it is a robust model of the flow loop.  
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Kronecker Product Properties for the Multi-output 
Gaussian Processes 

 
 
 



 

 

 


