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SUMMARY

The influence of strain gradient on deformation behavior of nuclear structural materials,
such as body-centered cubic (bcc) iron alloys has been investigated. We have developed and
implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale
crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been
developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel
constitutive law based on dislocation density evolution mechanisms was developed to
investigate the deformation behaviors of single crystals, as well as polycrystalline materials by
coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is
mechanism-based, with parameters measured from experiments or simulated with lower-
length scale models, not an empirical law with parameters back-fitted from the flow curves.

In our current framework, geometrically necessary dislocations are introduced to take
into consideration of strain gradient for the long range interactions. Two approaches have been
proposed to incorporate the influence of strain gradient into the framework: the first one with
analytical solution in a homogenization method, i.e., viscoplastic self-consistent (VPSC) model,
the other one with user material subroutine in finite element method (FEM).

The mesoscale plasticity model is formulated to treat both long-range and short-range
processes and interactions. Models for the evolution of mobile and immobile dislocations, as
well as interstitial loops, and interaction hardening laws, are formulated based on quantifiable
mechanisms from lower length scales, such as dislocation multiplication, annihilation, junction
formation/breakage, and cross-slip in CDD. Long-range interactions, resulting from dislocation
structures, will be treated within a dislocation-based strain gradient theory, compatible with
dislocation theory and driven by densities represented as continuum fields.

Crystal plasticity has been implemented into MARMOT to increase the capability of the
numerical solution framework for mechanical deformation behavior of nuclear structural
materials. Combined with the lower length scale simulation capability in MOOSE, development
in this capability will build up a multi-scale and multi-physics modeling architecture.
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NUCLEAR ENERGY ADVANCED MODELING AND
SIMULATION PROGRAM

Gradient Plasticity Model and its Implementation into
MARMOT

1. INTRODUCTION

Plastic flow strength of nuclear structural materials depends on irradiated
microstructures and other inherent properties. From the perspective of strain, it depends on
strains and strain gradients. In the theory of dislocation dynamics, dislocations from plastic
deformation may be categorized into: statistically stored dislocations (SSD) from bulk plastic
strain and geometrically necessary dislocation (GND) from strain gradient. The strain gradient is
attributed to the heterogeneity of the microstructure and geometric shape and size. In the
early days of the gradient plasticity theory development, most of the studies focused on
geometrically heterogeneous systems, such as sharp crack tip, thin wire torsion, indentation

tests and so on.

In this study, the strain gradient will be focused on the heterogeneity from inherent
microstructure, such as texture, precipitate, voids, and other heterogeneous microstructure
contribution. The strain gradients are inversely proportional to the length scale of investigated
system when the difference of strain is constant. Consequently, the contribution from strain
gradient becomes apparent when the investigated length scale is small enough to reach the
range of micrometer. Phenomenological theories of strain gradient plasticity were proposed by
Fleck, Hutchinson and other front runners in the past decades, as summarized in several

excellent reviews (Evans and Hutchinson, 2009; Fleck and Hutchinson, 1997; Fleck et al., 1994).

In our previous studies (Li et al., in preparation; Zbib et al., 2012), we have developed a
multi-scale modeling framework to simulate the mechanical deformation behavior of nuclear

structural materials including bcc iron alloys. The work flow of this multi-scale framework starts
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from molecular dynamics (MD), to discrete dislocation dynamic (DDD), to continuum

dislocation dynamics (CDD), to crystal plasticity (CP) model and FEM.

Dislocation densit

evolution law

Continuum
Dislocation
Dynamics

Discrete
Molecular Dislocation . .
. — Dislocation
Dynamics mobility .
Dynamics
FEM model materials | Polycrystalline
model RVE | Viscoplasticity model

_Hardening law

Figure 1. Scheme of multi-scale approach in mechanical flow prediction

Scale bridging in this framework has two types, tightly-coupled and loosely-coupled. The

information pass from MD to DDD is loosely-coupled: dislocation mobility as a function of

temperature and alloy composition is calculated from MD and passed in a suitable form to DDD

model. The results gathered from the DDD simulations then lead to the evaluation of the

dislocation density and critical resolved shear stress in Fe-Ni-Cr alloys as well as irradiation

damage. The dislocation density evolution law is passed into CDD for mechanical behavior

prediction. The bridging between CDD and polycrystalline viscoplasticity model is a tightly-

coupled model. Finally, the results from CP are used as a material subroutine in FEM model.

To incorporate the influence of the strain gradient due to the sample geometry, length scale

effect and heterogeneous microstructure, gradient plasticity has been utilized and added to the

current framework. The updated workflow is illustrated in Figure 2 below:

Dislocation densit

evolution law

Continuum
Dislocation
Dynamics

Discrete
Molecular Dislocation . .
. — Dislocation
Dynamics mobility .
Dynamics
FEM model materials | Polycrystalline

model RVE

viscoplasticity model

_Hardening law

GND

strain gradient

Figure 2. Work flow of multi-scale modeling predicting the plastic flow with long range interaction taken
into consideration by strain gradient plasticity
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In the early stage of strain gradient plasticity model, most models are
phenomenological, treating the stress contributing the strain gradient as work conjugate higher
order stresses in the form of couple stresses and double stresses, dealing with the strain
gradient tensor in the form of deformation curvatures (Fleck and Hutchinson, 1993; Fleck and
Willis, 20093, b). The experimental evidences for the scale effect due to the strain gradient have
been observed in the plastic flow of metals and ceramics. For example, the indentation
hardness increases by a factor of 2 as the width of the indent is decreased from about 10 um to
lum (Stelmashenko et al., 1993). This is one example of Hall-Petch effect, the yield strength
increases with the decrease of grain size. To capture the scale effect, or the grain boundary

effect, we incorporated gradient plasticity.

The gradient plasticity theory used in our model is different from the fore-mentioned
approach in two aspects: one is on the contribution of the strain gradient. In our model, two
sources of strain gradients are taken into considerations: one is from sample geometry
calculated by FEM model, the other one is from texture, calculated by polycrystalline
viscoplasticity model. The other difference is our model is mechanism-based, not a
phenomenological one. GND from strain gradient is incorporated in the model at the stage of

dislocation dynamics.

Before the introduction of gradient plasticity, the elastic-plastic formulations developed
since the 1960s are strain rate independent (Asaro and Rice, 1977; Hill, 1966; Mandel, 1965;
Simo and Taylor, 1985) with yield surface defined by Hill’s criterion. Later, a viscoplastic
approach was proposed to achieve unique solutions to avoid the numerical multiple solutions
from using strain rate sensitivity formulations (Asaro and Needleman, 1985; Hutchinson, 1976;
Peirce et al., 1982). The essence of viscoplasticity theory is the hardening law, usually in a
power law format, to relate the shear stress in each slip system to the shear strain rate. The
advantage of the power law formulation is due to the derivation of viscoplastic potential with
the capability to capture saturation effect at a high strain rate. Different versions of isotropic
and anisotropic viscoplastic constitutive theories have been developed. Examples include
MATMOD equations proposed by Miller (Henshall, 1996; Miller, 1976) to describe

viscoplasticity function as a combination of a hyperbolic sine function and a power function.
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Limited to small strain, back stress is used for kinematic hardening and a drag stress for
isotropic hardening. Another example is Robinson’s formulation, which is more complicated,
using a back-stress, a drag stress, a yield stress, and a power function for the viscoplastic flow
(Arnold and Saleeb, 1994). There are many other versions taking into consideration different
factors. With the development of the theory of slip systems, hardening is decomposed into two
parts: latent hardening and self hardening, both in the exponential function form to describe
interaction between different slip systems (Asaro, 1983; Asaro and Needleman, 1985; Peirce et
al., 1982). Nevertheless, most theories of resistance of shear stress evolution are empirical with

the parameters determined by fitting the model to the experimental stress strain curves.

With the advent of dislocation dynamics and multi-scale modeling, alternative
constitutive laws were proposed to introduce the knowledge generated from dislocation theory
to the continuum plasticity framework. For example, Zbib and de la Rubia (Zbib and Diaz de la
Rubia, 2002), Devincre (Devincre et al., 2008), Groh et al. (Groh et al., 2009), and Alankar et al.
(Alankar et al., 2012b) proposed multi-scale approaches to establish a dislocation-based
continuum model to incorporate discrete and intermittent aspects of plastic flows. In these
approaches, strain hardening can be predicted through the modeling of mean free paths of
dislocations. Other statistical aspects from dislocation dynamics simulation, such as dislocation
densities, are used as internal state variables to capture deformation behavior of single crystals
(Arsenlis and Parks, 2002; Ortiz et al., 2000). Another front noteworthy is Sandfeld’s work
(Hochrainer et al., 2007; Sandfeld et al., 2011) to bridge statistical continuum mechanics with
dislocation dynamics by dislocation density tensor. Using a statistical description of dislocation
interactions in terms of a Taylor-type yield stress and a back stress, which describes short-range
repulsion of dislocations of the same sign, key features from discrete dislocation dynamics
simulations were captured. The core of the interaction between the discrete dislocation

dynamics and crystal plasticity is the evolution law of dislocation density.

Discrete dislocation dynamics (DDD) is a powerful tool that has been advanced
significantly in the past decade (Canova et al., 1993; Ghoniem and Sun, 1999; Zbib et al., 1996,
1998). It has been used to explain the effect of irradiation on mechanical properties through

large-scale simulations of interaction of numerous numbers of dislocations with defect clusters.
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The work of Zbib and co-worker has shown that dislocations interactions with the elastic fields
of nano-sized defect clusters in Cu and Pd lead to hardening followed by localized deformation
and channel formation resulting from defect cluster annihilation by dislocations (Diaz de la
Rubia et al., 2000; Ghoniem et al., 2000; Hiratani et al., 2002a; Hiratani et al., 2002b; Khraishi et
al., 2002a; Li et al., 2010; Zbib et al., 2000). In the present work we investigate the effect of
irradiation hardening in Fe-Ni-Cr systems. The goal is to predict the stress-strain curve and the
critical resolved shear stress as a function of defect density, which is then used in the crystal
plasticity model. However, in order for this method to work, a detailed knowledge of the
dislocation mobility in an analytical form inside the materials is required. To effectively predict
the mechanical behavior of the materials under irradiation at the continuum scale, critical

information should be determined and progressively passed from one scale to another.

2. STRAIN GRADIENT CONTINUUM DISLOCATION
DYNAMICS

The strain gradient CDD framework uses the strain gradient calculated from VPSC and FEM
model to feed back for the GND and recalculate the flow stress. The principle of crystal
plasticity was improved by introducing more physics-based mechanisms to substitute
empirically derived constitutive and hardening laws. Based on the traditional kinematics of
crystal plasticity, CDD also has three fundamental assumptions. First, the total deformation
gradient F (Peeters et al., 2000; Schoenfeld et al., 1995) is assumed to be the product of two

terms, elastic part F° and plastic part F’:
F=FF" (1)

where, F° is due to the elastic distortion of the lattice, and the plastic part F* is due to the slip

by the dislocation motion in the unrotated intermediate configuration. It evolution rate, Fp, is

expressed by the kinematic relation:

FP=L"F* (2)
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In the second assumption, the plastic velocity gradient L” is expressed as the sum of a number

of crystallographic slip rates, y :

N
L= E;}“n“ ®m*”
a=1 (3)
where n® and m” are the vectors representing slip direction and slip plane normal of slip system

a, and N is the number of slip systems.

In the third assumption here, the lattice deformation is equal to the elastic material
deformation. The plastic velocity gradient consists of a symmetric part, strain rate D, and an

antisymmetric part, total spin w’:

N
et [e4 a a a
S nims +nim?)

1
D} = symm(L}) = >
a=1 (4)

ij

1 - - a a a a a
W} =symm(L}) = EE y (nl. m$ —nim; )
a=1 (5)
Here, the plastic strain rate D” determines the deformation behavior by updating the
stress strain curve; while the total plastic spin W’ is used to update the orientation of crystals,

texture, in polycrystalline materials.

Normally, the shear strain rate of each slip system o, y“, is determined by a strain-rate-
dependent power law function of the form:

b
sign(r“)

a

(6)
where 7, is reference strain rate, 7 is the slip resistance of the slip system a, 7% is the
resolved shear stress along slip system o, and m is the rate sensitivity exponent. The

parameters 7 and m are obtained from experimental results using curve fitting.

In SCCE-T, the hardening law defines the evolution of critical resolved shear stress

(CRSS) of slip system and is defined as follows (Asaro, 1983):
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7y = ;haﬁy’“ (7)

where, h,s is the hardening coefficient matrix with self-hardening and latent hardening

components.

In contrast, in the CDD model discussed below, another form of power law is used by
utilizing the results from DDD. Our constitutive law for the shear strain rate is based on the

Orowan relation (Orowan, 1940):

ye = Pﬁb"g (8)

o
where Py is the mobile dislocation density of slip system a, b is the Burgers vector, and v;fis

the average dislocation glide velocity in slip system a.

In previously developed models, the dislocation glide velocity v;’, is expressed in a

power law of resolved shear stress 7% similar with shear strain rate of slip system a, z{:

A
sign(r“) (9)

a
a —
v, =V,

a
7“—0

Here the expression of dislocation glide velocity is improved to a general law using Kock-
type activation enthalpy:

Vg = {VDlgexp [_%(1 - (H%)p)q] sign()  Wwhen [Tl>t )

0 when |t%] < 1§

where /g is the distance between the barriers. For a kink height, /, is close to Burgers vector. Vp
is the Debye frequency, and k is the Boltzmann constant. T is temperature, AFy is Kock-type
activation enthalpy, tp is the Peierls lattice resistance of the slip system a, and p and q are
strain rate parameters. In this new proposed law, all parameters have physical meaning
calculated from lower-length scale models. The slip resistance of slip system a, 7, is a

summation of reference resistance tp from lattice friction stress for moving dislocations;
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resistance due to dislocation-defect interaction t,%, mainly from irradiation; and resistance from

dislocation hardening 77, :
(04 a a
Ty =Ty +7T; +7y, (11)

According to the Baily-Hirsch model (Ohashi, 1994), the resistance from dislocation
hardening is slip resistance of statistically stored dislocations on other slip systems against

moving ones on one specific slip system a. It is a function of interaction matrix of slip systems

Qam .

Ty, = Eabp@“m\/?

(12)

Here, b is Burgers vector, W is shear modulus, a is a numerical factor on the order of 0.1,

and p" is the density of statistically stored dislocations accumulated on the slip system m.

The evolution rate of statistically stored dislocation density is related to the mean free

path of moving dislocations on slip system a, L* (Ohashi et al., 2007):
pa =C}}a/bLa (13)
where y“ is the shear strain rate of slip system a, and c is a numerical constant of order 1. L% is

a function of dislocation density.

Assuming defects are distributed randomly for all slip systems, a modified dispersed

barrier hardening model is used to express irradiation resistance 7§ from dislocation-defect

interaction:
T, = /?)dﬂ(pdd)” (14)

where py is the defect density and d is the defect size. In a traditional dispersed barrier

hardening model, n=0.5. In our proposed model, n is calculated directly from discrete DD.

In the previously proposed DD-based crystal plasticity models, the dislocation density
evolution laws are either ignored or used a fitted curve to represent the evolution (as proposed

by Kocks (Kocks, 1976)):
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Vi

1
bl k

a

- ko [ as

where k, and k, are material parameters for dislocation generation and annihilation,
respectively. This formulation was utilized by Wagoner et al. (Lee et al., 2010a) and Zbib et al.
(Zbib and de la Rubia, 2002) on flow simulation of single crystals. Simulation results from this

model will be compared with the mechanism-based CDD.

The evolution rate of the dislocation density is based on mechanisms that can be
quantified from the discrete DD. Generally, the statistical stored dislocations can be divided

into two types, mobile and immobile:
Ps =Py +P; (16)

In CDD, the evolution of mobile dislocation density is composed of six terms with
different physical contribution. The first mechanism is from the multiplication and growth of
resident dislocations and the production of new dislocations from Frank-Reed sources in slip

system a:

=
%

P, = a0l (17)

a

~

where a; is the dislocation multiplication coefficient, p,; is the mobile dislocation density

distributed on slip system o, and /“ is the mean free path of dislocations on slip system a.

The second mechanism captures the mutual annihilation of two mobile edge or screw

dislocations with opposite signs in slip system a:

Py, = —20,R, (/OJ(:J )2 ‘7g (18)

where a, is the dislocation annihilation coefficient and R. is the capture radius for the

dislocation annihilation event.

The third mechanism describes the transition of mobile type to immobile type due to

the interaction between dislocations:
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. a ‘_)g
Pus ==Ly 7 (19)

where az is the immobilization parameter.

Conversely, the fourth mechanism is about the mobilization of immobile dislocations

due to the breakup of junctions, dipoles, pinning parts, etc., at a critical stress condition:

T
T

where a4 is the mobilization parameter.

The fifth mechanism considers cross-slip, the phenomena where screw dislocation
segments on one slip plane move to another glide plane during plastic deformation. Extensive
reviews of cross-slip in experiments and simulations have been given by Jackson (Jackson, 1985)
and Pischl (Puschl, 2002). Cross-slip has been observed in experimental work and simulated
using molecular dynamics, dislocation dynamics, and other low-length scale models (Alankar et
al., 2012a; Bitzek et al., 2008; Piischl, 2002). In large-length scale, cross-slip was incorporated in
a continuum model in an empirical way, either assuming a recombination distance or a
dissociation energy (Pischl, 2002). There is a disconnection in the modeling influence of cross-
slip on deformation behavior across different length scales. In most continuum texture models,
cross-slip has been ignored. In our model, evolution of mobile dislocation due to cross-slip is

defined as below:

a
p}(‘x“ = U gpaﬂpﬁng

p=1 l (21)
where a5 is the cross-slip parameter, N is the number of cross-slip planes available for each
Burgers vector, e.g. in fcc N=2, and in bcc N=12. P” is the cross-slip probability matrix; the
components of this matrix are either 0, -1 or +1; P7 =0 means no cross-slip of dislocations

from system S to system ¢, P = +1 indicates cross-slip of dislocation from f to «, and

P? = -1 means that the system ¢ lost dislocations to system [ by cross-slip. In this setup,
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cross-slip is treated as a stochastic process and, therefore, we use a Monte-Carlo type analysis
similar to that used in the discrete dislocation dynamics for cross-slip (Rhee et al., 1999; Zbib et
al.,, 1998). We emphasize the introduction of this stochastic term that makes it possible to
predict the anisotropic behavior of single crystals for different loading directions as shown in
the next section. More details regarding the implementation of cross-slip in the continuum

dislocation theory are given in Li et al (Li et al., in preparation).

The sixth mechanism is similar to the second one, also annihilation, but between mobile

and immobile type dislocations:
Pus =—AR. py PV, (22)

Combining all of the preceding considerations, the evolution rate of mobile dislocations is:

r
a

- a av: a 2 _ avg T av;( < ap /3‘7: a oa—a
Py = %Py ZT_Zach(pM) Ve _a3leT+a4 - P ZT"'O‘SEP leT_aGRL'pI PuV,
’ (23)

The aforementioned mechanisms of mobile dislocations evolution, including Eq. (19),
(20), and (22), also involve the immobile dislocations. Based on these, the evolution rate of

immobile dislocation density is:

r

@ —a

—a

v \%
N = a g 8 a a—a
Pr =0y 7 a, - P 7 AR ] PV,

(24)

The predicted mobile and immobile dislocation density are used to calculate the total
dislocation density using Eq. (16), which in turn predicts the resistance from dislocation

hardening according to Eq. (12).

The evolution rate of statistically stored dislocation density along slip system a is
treated as the summation of the two dislocation density evolution rate above, similar to Eq.

(16):

Ps =p; + P (25)
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In our current framework, another kind of dislocation, geometrically necessary

dislocation, is introduced to taken into consideration of strain gradient for the long distance

interaction. The evolution rate of total dislocation, '0, is composed of two parts, evolution rate
of GND, P6 and the evolution rate of SSD, Ps .
p=pS+pG=ng+pG (26)

In traditional strain gradient theory, the magnitude of the plastic strain gradient is of the
order of the average shear strain in the crystal divided by the local length scale A of the
deformation field. The strain gradient is y/A, where y is macroscopic plastic shear strain. In

approximate terms,

&

p =
“ bA (27)

And the flow stress, or macroscpic shear yield stress is approximately
7 =CGb,/ p; + P (28)

where G is the shear modulus, b is the magnitude of the Burger’s vector, and C is the constant

taken to be 0.3 by Ashby (1970).

In our framework, this geometrically necessary dislocation is calculated out by:

= \/ (pg,edge)z + (pg,screW)z (29)

a 1 ay(”) a 1 a}/(n)

p eage = _:—n Ga -
G, edg b aé_—() nd screw b aé'(n)

s

where

Here § and { denote, respectively, directions parallel and perpendicular to the slip direction on

the slip plane.
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3. STRAIN GRADIENT FIELD CALCUALTED FROM
POLYCRYSTALLINE VISCOPLASTICITY MODEL

To simulate the deformation behavior of polycrystalline materials, we used a
viscoplasticity self-consistent model (Lebensohn and Tomé, 1994). As mentioned previously,
fully plastic deformation is assumed, and it is further asserted that the deformation takes place
through shear and is independent of the hydrostatic stress. This allows a five dimensional
vector space to be used to in the formulation of inelastic deformation in terms of conjugate
deviatoric stress and strain rate tensors. Interchanging two components of the stress and
strain convention adopted by Lequeu et al. (Lequeu et al., 1987), the stress and strain rate

vectors from second order tensor are given by

T

(25)

{O.v} _ \/E{(Gw _Onlj'/gon _Gzz) , 0, ;011 ’023,013’012}

B

The scalar product of these two vectors gives the stress power, i. e.,

{8}=\/5{(8§3_&1)2+(8§3_8§2)’8§2;8ﬁ3853,&3,8&} (26)

o' € =0 &, (27)
where it is understood that the sum on subscript k is over the range 1,2,...,5. Inelastic
deformation occurs only when a slip and/or twin system is active. Both slip and twin systems
are characterized by two vectors: the slip systems unit normal vector n and the unit vector b in
the slip direction. Again, twinning is treated in this formulation as pseudo-slip, with the same
formulation of the kinematics as crystalline slip.

Each grain of the polycrystal has the kinematic relation provided by CDD. The VPSC
model couples the strain-rate and the stress in each grain with the average strain rate and
stress of the polycrystal (Lebensohn and Tomé, 1993). Each grain is regarded as an

inhomogeneity embedded in the homogeneous equivalent medium (HEM) having a viscoplastic
compliance M"® and a reference strain rate ﬁ@, whose behavior is identical to the average of

the polycrystal with a viscoplastic compliance M*®®and a reference strain rate &. This
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inhomogeneity has a local stress field when a uniform stress is applied to the HEM. Using the

Eshelby formalism, the inhomogeneity is replaced by an ‘equivalent inclusion” having the same
moduli as the polycrystal, subjected to a fictitious transformation strain rate &.

The overall viscoplastic compliance moduli of the grain, M “®, can be calculated in a
self-consistent iterative way, as the HEM is assumed to describe the average behavior of the
aggregate. This forces the weighted average of stress and strain rate over the grains to coincide
with corresponding macroscopic values.

Texture evolution is simulated by enforcing the polycrystal deformation through

successive incremental steps. These are obtained by imposing a macroscopic strain rate 3
during the time interval A7, with a guess value at each step used for the strain rate & in each
grain. The first deformation step uses a Full Constraints guess. The stress is then calculated

with each following step using the values from previous steps as the starting guesses. The

macroscopic secant modulus M®® is estimated using the Voigt average, M®' = <M°(S°°)“>

for the first step, with the following steps using preceding values to derive the next estimate.
This modulus is then used to calculate the Eshelby tensor, S, the interaction tensor, 1\%, and the

accommodation tensor, B¢. The average (M°*“B¢) is used as an improved guess for M®,
g

with repeated iterations until the average coincides with the input tensor, under a certain
tolerance. This value is then used to calculate the macroscopic stress

3= M (28)

Each grain is then allowed to reorient due to slip and twinning, following a convergence

criterion. The lattice rotation rate for each grain is given by

klmn i

- 1 S_.S S_.S
& =& +11, S, &,gm-EE(bi -bn))R (29)

5
where Q is the anti-symmetric component of the macroscopic distortion rate, II is the
reorientation of the associated ellipsoid, and § is the antisymmetric component of the plastic
distortion rate (plastic spin); II is proportional to the difference between the strain rate of the
grain and that of the polycrystal. Tiem et al. (Tiem, 1986) showed that for the elastic inclusion

case, IT increases with ellipsoid distortion. The modeling of the grain orientation will then use
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the Volume Transfer Scheme as described by Lebensohn and Tome (Lebensohn, 1991; Tome,
1991) for twinned volume fractions. The polycrystal is represented as a discrete set of
orientations. These orientations are fixed, but their representative volume fractions evolve
during deformation. The Euler space is partitioned regularly in equiaxed cells or bins of 10
degrees on dimension of Euler angle. The orientations coincide with the centers of the cells. A
certain volume fraction of the material is assigned to each cell, corresponding to the initial
texture. The reorientation of lattice orientation that drives texture evolution during inelastic
deformation is visualized as displacements in Euler space of the represented points. If the cell
as a whole displaces rigidly and partially overlaps neighbors, then the volume fraction of
material in the overlap is subtracted and transferred to the neighbors. This is repeated every

iteration, providing gradual texture evolution.

4. RESULTS AND DISCUSSION

4.1 Low Length Scale Models Providing Dislocation Density

Evolution Law
While this work focus on continuum dislocation dynamics, some example of molecular

dynamics and discrete dislocation dynamics simulation results is presented here to

demonstrate the flow of the information from microscale to mesocale.

In the dislocation dynamics framework, the mobility of a screw dislocation is considered to
be a small constant fraction of the mobility of the edge dislocation therefore, if the mobility of
either an edge or a screw dislocation is known, the mobility of the other type can be calculated
in terms of this mobility (Gilbert et al., 2011; Marian and Caro, 2006). Therefore, if the mobility
of the edge dislocation is known, the mobility of the screw can be also found. Results for the
dislocation mobility in iron alloys have been reported elsewhere in (Lim et al., 2011; Mastorakos
et al., 2010; Mastorakos et al., 2011a; Mastorakos et al., 2011b). The Embedded Atom Method
(EAM) (Daw and Baskes, 1983) and potentials developed in (Bonny et al., 2009; Mendelev et al.,

2003; Stukowski et al., 2009) for the pure iron, Fe-Cr and Fe-Ni respectively were used. In
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particular, the dislocation mobility in a series of Fe-Ni-Cr systems at different temperatures has

been simulated using molecular dynamics.
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Figure 3. Dislocation mobility as a function of the temperature in Fe-Ni system, with concentration of
nickel or chromium was varied from 5% to 20%

Representative results for the edge dislocation mobility, in Fe-Ni alloy with nickel
composition at 0%, 10%, 15% and 20%, are shown in Figure 3. The results from these

simulations lead to power law relationship for the dislocation mobility of the form
M =a, +m/1/T—TO where M is the mobility, T the absolute temperature, a,, and m are

numerical parameters. ag varies between 3771 to 5135, and m between 321 to 367. The results
reveal that edge dislocation mobility is higher in the Fe-Ni systems compared to the a-Fe and
increases as the Ni concentration increases. On the other hand, the dislocation mobility inside
the Fe-Cr is comparable to that of pure iron although it still is about 5% higher. The higher edge
mobility of the alloys compared to the pure Fe is backed by experimental observations that
show a higher density of screw dislocations in alloys because the edge dislocations are very fast
and disappear at the surface of the specimen (Guyot and Dorn, 1967; Nadgorny, 1988). This is
also backed by other simulations of screw dislocations mobility showing that it is lower than the

edge mobility (Gilbert et al., 2011; Marian and Caro, 2006)
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Figure 4. a) Dislocation-defect structure after plastic deformation. b) Stress-strain curves simulated by
DDD for iron single crystal at different defect densities (a:0, b:2x10%, ¢:5x10%, d: 7x10%, e: 1x10> | f:
2x10%)

Dislocation mobilities of iron alloys calculated from molecular dynamics are used in
conjunction with the dislocation dynamics simulations to predict the evolution of dislocation
density as a function of alloy and defect density. The DD simulation unit cell, shown in Figure
4(a), is a 4.5x4.5x5.97 um> cube cell that contains an initial density of Frank-Read sources
distributed randomly on the primary (Hiratani et al.) slip planes. In the simulations, periodic
boundary conditions were imposed. The cell is loaded in tension with a constant strain rate of
100/s. The effect of irradiation is accounted for by mapping into the DD box a spatial
distribution of FS loops with density ranging from 10%° /m? to 10** /m>. The loops are 1 to 3
nanometers in radius, and the radius is randomly generated to fall within the specified interval.
The model also generates Frank-Read sources, represented as finite dislocation segments

pinned at ends, lying on (Hiratani et al.) glide planes, and Burgers vectors of the type <111>.

Dislocation density evolution and the mobile-dislocation-related CRSS are predicted from
discrete DD. The dislocation structure shown in Figure 4a is composed mainly of extended
dislocations of screw character, resulting from the fact that the mobility of the screw

dislocation is three orders of magnitude less than the edge. As the dislocations sweep through
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the cloud of the FS loops, some of the loops get annihilated, depending on their interaction
energy with the sweeping dislocations as discussed before by various authors (Ghoniem et al.,

2000; Hiratani et al., 2004; Khraishi et al., 2002a).

This results in the formation of defect-free channels, and subsequently causes a drop in the
flow stress as deduced from the stress-strain curves. Figure 4(b) demonstrates the initial
deformation behavior of pure iron with different defect densities. In all cases, the stress
initially increases linearly until it is high enough for dislocations to overcome internal barriers
and the pinning effect of the defects, which arises only from dislocation-FS loops elastic
interactions.  As the dislocations propagate and interact with the defects, their interaction
energy with the defect at a critical distance can cause defect absorption within the dislocation
core, which, in turn, leads to a drop in stress (Khraishi et al., 2002b) and a decrease in defect

density.
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Figure 5. Discrete dislocations dynamics results: Evolution of defect density (a) and dislocation density

(b) for iron alloy with 5%Ni concentrations at different initial irradiation defect density: (a:0, b:2x10%,

c:5><1022, d: 7><1022, e: 1x10% , T 2x10% .) , (c) evolution of total dislocation density, cross-slip segments

and dislocations junctions.
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Figure 5(a) shows typical DD results for the evolution of the defect density with
deformation. In all cases, the defect density remains unchanged during the elastic loading as
expected. As the stress becomes high enough to cause the dislocations to move, the
dislocations interact with the defects and some of them get annihilated, causing a decrease in
the defect density. In the meantime, the dislocation densities in Fe-Ni alloys with different
initial defect density generally increase with deformation, as shown in Figure 5(b). Dislocations
are further categorized and recorded during the deformation process. Figure 5(c) provides the
detailed information of evolution of cross slip and junction. This information will be used in

calculating the dislocation density evolution parameters a..

4.2 CDD in Predicting Mechanical Properties of Fe Single Crystal

With the predicted dislocation density evolution from DDD, CDD is used in predicting
the flow behaviors of Fe single crystals. The advantage of this framework is the physical
meaning of all the parameters in the mesoscale model. With consideration of cross-slip,
anisotropic Peierls stress for different slip systems, CDD can predict the strength and
deformation behavior of single crystals with higher fidelity. The parameters for pure a-Fe used

are listed in Table 1, partially built upon Lee’s previous works (Lee et al., 2010b; Lim et al.,

2011).

Table 1 . List of parameters used in the continuum dislocation dynamics model
Symbol Denotation Value
M Shear modulus 80GPa
N Poisson’s ratio 0.3
Cu Anisotropic elasticity constant 242 GPa
Ci Anisotropic elasticity constant 150 GPa
Cug Anisotropic elasticity constant 112 GPa
Yo Reference strain rate 4x10” m/s
M Strain rate sensitivity 0.012
A Baily-Hirsch hardening coefficient 0.4
B Magnitude of Burger vector 2.54x10™"°m
T Peierls stress (internal friction) 11.0MPa
B Irradiation hardening coefficient 0
o Mobile dislocation multiplication coefficient 0.02
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o Mobile-mobile dislocation annihilation coefficient 1.0

R. Critical radius for annihilation in units of Burger vector | 15

o3 Immobilization parameter, mobile to immobile 0.002

oy Mobilization parameter, mobile to immobile 0.002

os Cross-slip coefficient 0.018

s Mobile-immobile annihilation coefficient 1.0

One point should be emphasized here: the parameters are either experimentally
measured (such as u and C;;) or calculated from the discrete DD (e.g., the parameters in the
mechanisms of dislocation density evolution law, a;, a,, etc.). Along with the advantages
already mentioned, there are four other salient points in the proposed framework. The first is
the application of cross-slip, the second is the anisotropic Peierls stress, the third is the updated
strain rate sensitivity law with information of dislocation density, and the fourth is the
capability to predict irradiation hardening by introducing hardening due to interaction between

dislocation and defects.

We compared the CDD prediction results with the experimental results measured by
Keh et al. (Keh, 1965) and simulation results from SCCE-T and SCCE-D. The CDD parameters
used in Table 2 are from predicted results using DDD and lower-length scale models. The
parameters used in SCCE-T and SCCE-D are from back-fitting the mechanical testing results. 12
(110)[111)and 12 (11 2)[1 1 1] slip systems in body center cubic (BCC) crystal systems were
considered for crystallographic slip. In the initial state, mobile and immobile defect density are

considered the same, and are distributed uniformly along 24 slip systems.

Using uniaxial tension stress strain curve of Fe single crystals along [100] direction as a
benchmark in SCCE-T and SCCE-D, the simulated flow curves along [100], [011] and [-348] are
shown in Figure 6. The process of back-fitting constitutive parameters in SCCE-T and SCCE-D are
detailed in previous works (Lee et al., 2010a). Using the parameters fit from [100] direction,
SCCE-D and SCCE-T both agree with experimental data along [100], even better than the
prediction results from CDD. However, using the same parameters to simulate the flow curve
along [011] direction, SCCE-D underestimates and SCCE-T overestimates the stress. When

applied on [-348] direction, SCCE-D overestimates more than 50% of the experimental results
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while SCCE-D overestimated more than 100% of the experimental data. Predicted results using

CDD agree well with experimental data along all three directions.
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Figure 6. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D

and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011]

and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back-fit to the

[100] results.

On the other hand, if the constitutive parameters are back-fitted using the

experimental data along [-348] direction, SCCE-T and SCCE-D only work in the benchmark case,

[-348] shown here in Fig. 7(c). But they will not work in the other directions, as shown in Fig.
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7(a) and (b). The large deviation demonstrates the limitations of empirical constitutive

equations without scientific mechanisms in background support.
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Figure 7. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D
and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011]
and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back fit to the [-
348] results.

Experimental data of single crystal iron demonstrated large behavior differences when
uniaxially stretched along different directions. The yield stresses are similar for all directions,
around 35 to 40 MPa. Contrasting to the large strain hardening with the stress increased
dramatically to over 90MPa along [100] direction, there is little strain hardening when

stretched along [-348] direction. This is due to the number of slip systems activated. Fig. 8
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shows the evolution of mobile dislocation density (Fig. 8a) and total dislocation density (Fig.
8b). With the increase of strain, the dislocation density along (-211)[111] increases with small
vibration due to annihilation and transfer to immobile type. Dislocation densities along all the
other directions keep almost constant to the end. Combined with the information from
immobile dislocation, the total dislocation density increased smoothly with strain, compared

with the evolution of mobile dislocation density along (-211)[111].

Some parameters used in CDD may be measured directly from experiments; some from
DDD and MD simulations. Parameters like cross slip coefficient is a parameter hard to measure
from experiment, while difficult to simulate directly since it is sensitive to the dislocation
microstructure. It is the same to Peierls stress anisotropic factor. A parameter sensitivity study
has been carried out to conduct the comparison of the variance with different CDD parameters.
Experimental stress strain curve of iron single crystal is used to verify the choice of parameters.

The table below shows a part of the parameter fit results we obtained for the variance:

Table 2. Variance of the simulation results from experimental stress strain curve for two CDD parameters

Peierls stress
anisotropic
parameters factor=1 1.5 2 2.5 3.5 4 4.5
cross slip
coefficient=0 0.514 | 0.6211 | 0.6153 | 0.6056 | 0.6056 | 0.6056 | 0.6056
0.004 0.5094 | 0.5353 | 0.4708 | 0.4641 | 0.4637 | 0.4626 | 0.4655
0.008 0.4407 | 0.3864 | 0.3239 | 0.3189 | 0.3177 | 0.3229 | 0.3199
0.012 0.2976 | 0.2138 | 0.1749 | 0.1861 | 0.1739 | 0.1725| 0.1779
0.016 0.1284 | 0.0562 0.064 | 0.0523 | 0.0434 | 0.0472 0.049
0.02 0.0525 | 0.0334 | 0.0433 | 0.0448 | 0.0436 | 0.0397 | 0.0343

For a robust simulation, cross lip coefficient of 0.02 and Peierls stress anisotropic factor

of 1 are the best from the simulated results demonstrated in Table 2.
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4.3 Prediction of Deformation Behavior and Texture Evolution using
CDD-CP

Constitutive law based on dislocation density evolution predicted from continuum
dislocation dynamics is introduced into the viscoplasticity model to solve the boundary
condition loading stress and strain. This is in turn passed into the continuum dislocation
dynamics model to solve the evolution of mobile and immobile dislocation density in each

crystal and the corresponding slip resistance for each slip system.

CDD-CP is applied in a polycrystalline iron alloy with bcc crystal structure and random
texture, composed of 100 crystals. (100), (110) and (111) pole figures of the selected system is

demonstrated in Fig. 8. The maximum texture intensity in them is lower than 1.3 times random.

Figure 8. (a) 100, (b) 110, and (c) 111 pole figures of simulated bcc iron sample with random texture.

Under uniaxial tension, the predicted stress strain curve up to a strain of 10% is presented

below, with features of strain hardening and saturation hardening captured.

The stress flow in Fig. 9 demonstrated yielding around a strain of 0.02. After that, strain

hardening started to saturate. Texture evolution during uniaxial tension is shown in Fig. 10:
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stress strain curve of polycrystalline iron alloy predicted
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Figure 9. Predicted stress strain curve of the random texture iron using CDD-CP model.
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Figure 10. Predicted (100), (110) and (111) pole figures of random bcc iron alloys under uniaxial tension
at strain of (a) 2% and (b) 10%.
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In the (100) pole figure, a texture component with (001) aligned along machine direction

(tensile here) appeared at a strain of 2% and strengthened at 10%.

A simulated microstructure with single crystal grid was generated with random texture.
Each grid represented a single crystal with different orientation. The heterogeneous
microstructure introduce different strain field, with a strain gradient field. Below is a work flow
for the closely coupled crystal plasticity model and CDD. In the gradient plasticity CDD informed
CP, the feed from CP has strain gradient added while the return from CDD to CP has more

information on the GND, SSD and updated constitutive law.

Constitutive law,
dislocationdensity
Stress, strain,

boundary condition

(a)

SSD density
GND density

Constitutive law
Strain gradient field
stress, strain,
boundary condition

(b)

Figure 11. Scheme of data flow in closely coupled CDD and CP (a) without (b) with long distance
interaction considered.

The simulation results for the strain of a random microstructure are illustrated in the figure
below. There are 10x10 single crystals, the strain of each grain, or grid, is represented by a color

grain when the sample is uniaxial tensioned to a different effective strain in Fig. 12.
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Figure 12. Strain field of random textured polycrystalline agglomerate after uniaxial tensioned to a strain
of(a) 0.1, (b) 0.2 (¢) 0.3 (d) 0.5 (e) 0.8 and () 1.0.

Correspondingly, the strain gradient calculated from the above strain field is illustrated in the

figure below.
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Figure 13. Strain gradient field of random textured polycrystalline agglomerate after uniaxial tensioned to
a strain of (a) 0.1, (b) 0.2 (¢) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0

When a large system with 2000 crystals, a grid of 40x50, is used, the distribution of strain is

more uniform, as shown in figure below.

(d) (e) ()

Figure 14. Strain field of random textured polycrystalline agglomerate with 2000 grains after uniaxial
tensioned to a strain of (a) 0.1, (b) 0.2 (¢) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0

The responding strain field calculated is illustrated below:
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(d) (e) (f)

Figure 15. Strain gradient field of random textured polycrystalline agglomerate with 2000 grains after
uniaxial tensioned to a strain of (a) 0.1, (b)0.2 (¢) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0

Further comparison with experimental data is necessary for validation.

5. IMPLEMENTATION OF CRYSTAL PLASTICITY IN
MARMOT

A simplified version of the CDD model was also implemented as a material calls
within MARMOT, a multi-physics, finite element simulation tool focused on the mesoscale.

MARMOT is implemented using the MOOSE framework from INL (Tonks, 2012).

As discussed in Section 2, our constitutive law for the shear strain rate is based on the

Orowan relation (Orowan, 1940):

}}a = P;b"g (30)
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o
where Pu is the mobile dislocation density of slip system a, b is the Burgers vector, and v;fis

the average dislocation glide velocity in slip system a.

As in previously developed models, for our simplified CDD model the dislocation glide

velocity v;’, is expressed in a power law of resolved shear stress ¢ similar with shear strain

rate of slip system a, 7" :

A
sign(r“) (31)

a
a —_—
v, =V,

a
7“—0

It should be noted, this is a deviation from our CDD model implementation in the VPSC
framework. The dislocation glide velocity expression shown in Eq. (10) will be implemented in

future work. As shown in Eq. (11), the slip resistance of slip system a, 7, is a summation of

reference resistance tp from lattice friction stress for moving dislocations; resistance due to
dislocation-defect interaction 74, mainly from irradiation; and resistance from dislocation

hardening 73, :
T, =T, +T, +T,, (32)

The dislocation hardening term, 77, , is the resistance of statistically stored dislocations on
each slip system from moving dislocation on the system n.
T, = EabyQ“m\/p’"
m (33)
where Q" is the interaction matrix of the slip systems and p” is the summation of the
mobile and immobile dislocation densities. For this initial simplified implementation, the

dislocation density term excludes the strain gradient influence.

For the VPSC implementation, defects are assumed to be distributed randomly for all slip
systems and a modified dispersed barrier hardening model (Eq. 14) is used to express

irradiation resistance 7§ from dislocation-defect interaction. For this simplified
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implementation, the defect density and defect size are held constant and available as model

inputs. Therefore £¢ , becomes constant for a given simulation.
d

The statistically stored dislocations required by the dislocation hardening term can be
generally divided into two types, mobile and immobile, as shown in Eg. (16). The evolution
equations for both types of dislocations are shown in Eq. (23) and (24), respectively. See

Section 2 for further discussion of the evolution equations.

5.1 MARMOT Implementation

The CDD implementation in MARMOT begins from the strong form of the governing

equations on the domain 2 and boundary I = r, U I, asfollows:

V-0+b=01in Q (34)
u=ginl, (35)
o-n=linT, (36)

where O is the Cauchy stress tensor, u is the displacement vector, b is the body force, n is
the unit normal to the boundary, g is the prescribed displacement on the boundary, and [ is

the prescribed traction on the boundary. The weak form of the residual becomes:
R=(0.Ve,)-{L¢,)-(b.4,)=0 (37)

where () and <> represent volume and boundary integrals, respectively. The Jacobian

required by Newton’s method for solving the residual equation can be expressed as the

following, when ignoring the boundary terms:

~ 00
==,V
S (aVu ¢m) (38)
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The stress is a nonlinear function of the strain during plastic deformation. This function is
defined by crystal plasticity theory (see section 2, Eq. 1-5) and our simplified CDD constitutive

model as described in the previous section.

There are a series of material base classes available through MARMOT. The CDD model was
implemented using the FiniteStrainMaterial base class that is part of TensorMechanicsMaterial
implemented in ELK, another component of MOOSE. All material base classes provide methods
for initializing state properties, calculating incremental strain updates, and calculating the
current stress. The CDD implementation utilizes the existing strain update method while

overriding the initialization and stress calculation methods.

The method computeStrain follows the algorithm outlined by Rashid (Rashid, 1993) for
calculating the incremental deformation gradient. The method computeQpStress is left pure
virtual for any material that inherits to override with the desired constitutive relationship.
Finally, the method initQpStatefulProperties can be overridden and expanded to initialize

additional state variables as needed.

The computeQpStress implementation used here follows the patterns seen elsewhere in

MARMOT.
e =¢c +A¢e
DP =¢g”
solveStressResidual(o,,A¢,Cy,, Dy,,0,,,) (39)
‘9;1;1 = RD:;HRT
On+1 = R0n+1RT

where the elastic strain, £¢, and plastic strain, €?, are first updated. Then the stress residual is

solved. This method updates values of the plastic strain rate, D}, and stress, g,,,. Before

exiting, rotations are applied. The bulk of the constitutive model is implemented within the

method solveStressResidual.

solveStressResidual integrates the CDD constitutive model in an incremental manner using a

Newton Raphson implementation. Given the complexity of the constitutive model this is
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implemented in two levels. An internal loop solves the stress residual while an external loop

updates and solves the slip resistance residual.

5.2 Plan for Strain Gradient Addition to MARMOT Implementation

The incorporation of a strain gradient term to the CDD model will enable this crystal
plasticity model to more accurately capture the effects of long-range dislocation interactions.
While the evolution equations for immobile dislocations presented above account for short-
range interactions among dislocations, these evolution equations do not at present include the
effects of long-range interactions. Long-range forces also act to impede dislocation motion. In
the vein of the work of Fleck and Hutchinson (Fleck and Hutchinson, 1997; Fleck et al., 1994;
Fleck and Willis, 2009a), and following the work of Zbib and Aifantis (Zbib and Aifantis, 1992,
2003), we introduce the use of a strain gradient term to capture long-range geometrically

necessary dislocations (GNDs).

Long-range forces resulting from GNDs are an important source of hardening. In the
formulation used here, the gradient of the plastic strain with respect to both the normal and
tangential in-plane directions is calculated, representing edge and screw GNDs, respectively.
The plastic strain values are equivalent to the slip in each crystallographic slip system.
Multiplied by a length scale term, these strain gradient values are used to update the mean free

dislocation glide path term:

o *

c

\/Ewaﬁ (plﬂ + pgND)
B

Ay
“=——_ where " =
Pr bL

(40)

where, L* is the updated mean free path term. The mean free path term is used in the
evolution of immobile dislocation equations. Inclusion of the strain gradient term allows for a

more accurate hardening model.

Numerically the strain gradient term is acquired as the derivative of strain values collected
at the integration points of several elements. It is critically important that the strain gradient

term depend on strain values from more than a single element. Methods that calculate the
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strain gradient within a single element through a second derivative of the shape functions, such
as work by Busso et.al. (Busso et al., 2000), fail to capture the long-range nature of GND
interactions. While these methods are computationally compact, these formulations limit the
range of GND interactions. The potential for the introduction of numerical artifacts also exists
within these single element methods. Furthermore these methods, which calculate the strain

gradient within a single element, produce a mesh-dependent strain gradient value.

Employed here is a formulation that links the strain gradient term to strain values across a
cumulative volume of elements. The use of multiple elements in the calculation of the strain
gradient term enables a mesh-independent strain gradient: the long-range effects captured in

this manner are not bound by the size of elements.

Concerns about the continuity of the strain are an issue with which the strain gradient
calculation must deal. Previous work in the field has made use of meshless methods or higher
order (C') formulations to reach across element boundaries. As discussed below in greater

detail, care is taken to address continuity when using strain values from multiple elements.

Original efforts to implement a strain gradient term into the CDD model focused on
leveraging previous work within the context of an ABAQUS UMAT at Washington State
University (WSU). Unfortunately direct porting of the strain gradient calculation from the
UMAT was not possible: the absence of key utility functions in MOOSE and the heavy
computational effort required by the WSU UMAT method forced the exploration of ct
formulations. Thermodynamic consistency and straightforward integration with existing CDD
formulations were of primary consideration in selecting and deriving an appropriate C'
formulation. For developmental ease, the isotropic hardening small strain C' formulation is

presented below.

The previous implementation utilized a moving weighted least squares regression method.
Through the use of a computationally expensive ABAQUS utility function, strain values from
across multiple elements are used to calculate the strain gradient. Integration points from
multiple elements are selected within a radius of capture, and the strain values from these

selected integration points are numerically collected with the utility function. These collected
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strain values are fitted to a second order polynomial curve using a Moving Weighted Least
Squares Regression (MWLSR); the moving description refers to the use of the radius of capture
to select integration points. For each integration point in the model a new selection process is
performed by sweeping a sphere, defined by the radius of capture, around the integration

point.

Following the work of Abu Al-Rub et al. (Abu Al-Rub et al., 2007), a weighting function is
used to assign more importance to the fit of strain values from integration points near the
center of the sphere. As a result of this method strain values within the same central element
are weighted more heavily by the MWLSR method than strain values from outer elements. The
reasoning of the use of the weighting function is threefold: 1) the weighting function provides a
more stable numerical solution, 2) the weighting function in some way mimics the 1/r behavior
of long-range dislocation interactions, and 3) the weighting function provides a limited ability to
address continuity issues. As noted by de Borst et al. (De Borst and Pamin, 1996), only the
discretization of the gradient term requires C'-continuous shape functions. In the vein of
meshless methods, the weighting function is an attempt to provide continuity in the strain

gradient calculation despite the use of strain values from several C° elements.

The derivative of the second-order MWLSR produced curve, with respect to the normal and
tangent directions, is taken as the strain gradient for each of the slip systems in the crystal.
Using this method two strain gradient terms are calculated for each slip system, increasing the

computational effort required.

This procedure, used to calculate the strain gradient in ABAQUS, is extremely computational
expensive. The obvious main source of computational load is the MWLSR, which is completed
twelve times for every integration point in the mesh of an FCC crystal system. Contributing
factors also include the calculation of selected integration points via the radius of capture and
the use of the utility function to call the strain values at all of the selected integration points.
The error introduced by the MWLSR process should also not be disregarded; this error is carried

forward into the crystal hardening.



Gradient Plasticity and its Implementation into MARMOT
Aug 2013 37

Although the strain gradient term would be the most useful in polycrystalline simulations,
the computational effort required by this implementation severely limits the number of crystals

that can be included in an ABAQUS simulation.

In light of these complications with the strain gradient calculation method used in ABAQUS,
we elected to explore the option of a higher order c! formulation. The decision to move to the
' formulation was affirmed by the absence of a MOOSE utility function to numerically collect
strain values from several integration points. The higher order ¢! formulation proposed for
implementation into the CDD model in Marmot is more strongly rooted in thermodynamic
principles. Following the strain gradient reformulation done by Abu Al-Rub, this C' formulation
is admissible under the Clausius-Duhem Inequality when non-local quantities are properly

considered.

Since the C' formulation is continuous in both displacement and strain, this formulation has
the potential to be more accurate than MWLSR method currently employed in the ABAQUS
UMAT at WSU. Since the strain is continuous across neighboring elements, it is not necessary
to use a weighting function to force continuity for the strain gradient calculation. The C'
method could also eliminate the error resulting from the curve-fitting, if the additional degrees

of freedom (moments) are adequately treated.

In the literature comparisons (Huang et al., 2004) of c® and higher order formulations have
noted that the primary difference between these two categories of formulations is seen at
interfaces. Based on perturbation work performed by (Shu et al., 2001), the effect of higher
order formulations is evident only in a thin layer near boundaries. While many groups have
often neglected this thin boundary layer, capture of this boundary layer could prove to be
useful in future multi-scale modeling efforts. We would argue that use of the more complex C*

formulation is a responsible choice for enabling future model development.

Finally, and critically, the C' formulation would not require the use of a computationally
intensive utility function to call strain values from multiple elements. Rather the C* formulation
would make use of the additional degrees of freedom available in the third-order Hermite

element to calculate the strain gradient.
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The challenges associated with a C* formulation should not be overlooked. As discussed by
Zhang et al. (Zhang et al., 2013) in a phase field application, a C' formulation significantly
increases the stiffness matrix bandwidth. This increased bandwidth results in a longer
simulation wall clock time. At present, only a limited number of hermite elements are available
in the libMesh library; therefore, only simple geometries can be studied with a higher order
formulation for now. Proper treatment of the higher order terms introduced in a C*-continuous
yield condition is not trivial. Any development work considering a C' formulation should
carefully weight the potential increased accuracy against the certain increase in computational

expense.

5.21 Theoretical Overview of Higher Order Strain Gradient
Formulation
A brief overview of the theory behind the proposed C' formulation to calculate the strain

gradient is presented here. Several excellent reviews of the current field of strain gradient
work are available in the literature (Abu Al-Rub et al., 2009; Evers et al., 2004; Fleck and
Hutchinson, 1997; Huang et al.,, 2004; Roters et al., 2010); however, we only discuss key

concepts for brevity's sake.

We motivate the use of the strain gradient to account for GNDs through the definition of
the Nye's tensor (Arsenlis and Parks, 1999; Bassani, 2001; Nye, 1953). The Nye's dislocation
density tensor is a general representation of the i-component of the net Burger's vector related

to the GNDs with j direction:

a; = %pgNDbiﬁt]ﬁ (41)

, Where pgND is the GND density, biﬁ is the Burger's vector, and tjﬁ is the tangent unit vector for
the ## slip system. The use of the generalized Nye's tensor allows for the accurate non-uniform
distribution of GNDs through the crystal geometry. Following (Arsenlis and Parks, 1999;

Bassani, 2001; Fleck and Hutchinson, 1997), the definition for the Nye's dislocation density
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tensor can be written as a function of the second derivative of displacement through

application of the Stokes' theorem.

Oy = €l (42)

Because of the choice to use the Hermite third-order element, the second derivative of
displacement u/, could be accessed directly via the second derivative variable class in MOOSE.

However, to ensure thermodynamic consistency, the second derivative of displacement can be

related to an effective plastic strain variable through the plastic strain

p= \/zé.’.’éf - \/Eueue
3 -y 3 gy
(43)

Substituting the definition of the effective plastic strain from Eq. 43 into Eq 42, we derive

the Nye's dislocation density tensor as a function of effective plastic strain

a; = Epfejkhui/f (44)
B

as in Gao et.al. (Gao et al., 1999). The introduction of the effective strain gradient to
incorporate additional isotropic hardening has been employed by several groups in various
forms (Acharya and Bassani, 2000; Muhlhaus and Aifantis, 1991; Polizzotto et al., 1998). Gurtin
(Gurtin, 2000, 2003) treated dependence on plastic strain gradients through microforce
balances and supplemented classical boundary conditions with non-local boundary conditions

from the flow rule.

Within the CDD model represented by equation Eq. 40, the scalar accumulation of the GND
density is used. By taking the square root of the square of equations Eq. 41 and Eq. 44, we
propose that the accumulated density of GNDs can be calculated from the effective plastic
strain by setting these two equations equal to each other:

a=.|o,0 =bpgy, =2\/m'
B

(45)
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when interactions among dislocations on different slip systems are neglected. A similar
approach to an effective strain gradient is employed by Gao (Gao et al.,, 1999). Eq. 45
demonstrates the calculation of the density of the GNDS from the gradient of the effective
strain. This calculated effective GND density can then be used to update the mean free
dislocation glide path (Eq. 40 within the larger CDD model. The use of an accumulated GND
density value is in contrast to the tensor approach used by Akasheh et.al. (Akasheh, 2007 #100)

although this difference in approach should be evident only in the numerical implementation.

The effective strain gradient model we use here, differs from previous approaches (Acharya
and Bassani, 2000; Muhlhaus and Aifantis, 1991; Polizzotto et al., 1998) in the inclusion of the
effective strain gradient in the internal power expression. The principle of virtual power is used

to derive the microforce balance in the vein of Gurtin (Gurtin, 2003).

Considering higher order variables, introduced as the work conjugate to the gradient of
effective strain as done by Shu et al. (Shu et al., 2001), the virtual power balance is written for a
body V.

‘f/ 0,,0udV + [ (T, -0y, )oudS + é (7;N; - R+ 0, 0pdV + j"/ (m=-Q,n,)opdS =0
J

1% (46)

In this expression N is the flow direction, R represents the nonlocal dislocation drag stress
related to isotropic hardening, and Q is the higher order nonlocal work conjugate of the
effective strain gradient. This virtual power balance expression is based on the concept that
power expended can be associated with a force system; therefore, independent treatment of

the coupling of the nonlocal variables may not be needed.

Following the usual treatment, the boundary conditions can be determined from the virtual
power balance expression by requiring that variational displacement and effective strain (v and
p) may be arbitrarily specified. On the macroscopic level the classical boundary conditions

remain unchanged:

0,,=0and T, =o;n, (47)
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Additionally two nonlocal boundary conditions also appear: the nonlocal microforce

condition

TUNU. =R- Qk,k (48)
and the microtraction bound condition

m=Q,n, (49)

The nonlocal microforce boundary condition may be considered as the nonlocal yield
condition, following Gurtin (Gurtin, 2003), and a nonlocal application of the Clausius-Duhmen
inequality may be used demonstrate thermodynamic admissibility of the associated
constitutive equations (Abu Al-Rub et al., 2007). The microtraction boundary condition is
considered to represent the interaction of long-range dislocation forces across interfaces, such

as the grain boundaries.

The use of a C' formulation to incorporate the effects of long-range dislocations into the
CDD model is proposed as a solution to the numerical challenges and mathematical limitations
of the C° formulation currently employed within the WSU ABAQUS UMAT subroutine. Although
this proposed C1 formulation is not without its own numerical implementation concerns, the

potential to capture the effects of long range GND densities is exciting
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