PNNL-22631, Rev. 1 ORP-58289



Proudly Operated by Battelle Since 1965

Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

JD Vienna DC Skorski DS Kim J Matyas

July 2013



Prepared for the U.S. Department of Energy under Contract **DE-AC05-76RL01830** 

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.** 

#### PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

#### Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: <u>orders@ntis.gov</u> <http://www.ntis.gov/about/form.aspx> Online ordering: http://www.ntis.gov



PNNL-22631, Rev. 1 ORP-58289

# Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

JD Vienna DS Kim DC Skorski J Matyas

July 2013

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

### Abstract

Recent glass formulation and melter testing data have suggested that significant increases in waste loading in high-level waste (HLW) and low-activity waste (LAW) glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. In addition, the models do not currently address the prediction uncertainties that would be required before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose.

A fundamental tenet underlying the research reported in this document is the attempt to be less conservative than previous studies when developing constraints for the estimation of glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years, and are as successful as early indications suggest they may be. Because of this approach, there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that must be considered, along with other system uncertainties, such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

### Summary

Efforts are being made to increase the loading of Hanford tank wastes in glass while maintaining adequate processability, regulatory compliance, and product quality. These efforts have significantly expanded the composition regions and waste loadings of glasses beyond the point used in current project planning models. The effort documented in this report is aimed at evaluating the current glass formulation, property, and processing data, and to use the data to develop a non-conservative set of constraints and property models that can be used to estimate the amount of glass that would be produced at Hanford if the current advanced waste glass formulation efforts were to be successfully completed according to current plans.

An accurate method of estimating glass volume to be produced from Hanford tank waste is important for making informed decisions regarding the appropriate process options to pursue, as well as estimating the likely cost and schedule for tank waste cleanup mission completion. To help gain an accurate estimate of glass volume, glass property, processing, and composition, data have been gathered from literature including the results of the ongoing advanced glass formulation program being led by the U.S. Department of Energy Office of River Protection with support from the Vitreous State Laboratory at The Catholic University of America and the Pacific Northwest National Laboratory. These data have been evaluated and used in the development of preliminary glass composition-property models as well as property and composition constraints. By combining these models and constraint sets, the reader can estimate the minimum amount of glass to be generated from Hanford tank waste with a given composition. Example calculations are supplied to ensure that the calculations are performed as intended. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose.

Throughout this document, a number of model coefficients and other values are reported with a higher number of figures than are significant. Ideally, the appropriate number of figures to report should be evaluated in detail. However, no such evaluation was performed. We therefore suggest using all reported figures in the model coefficients for consistency with example calculations supplied in this report.

#### **High-Level Waste Glass Property Models**

Models to constrain the composition and loading of high-level waste (HLW) glasses include models to control the amount of spinel in the melter ( $c_{Sp}$ ), the sulfur tolerance of the melter feed, nepheline formation in canister-cooled glass, viscosity of the melt, product consistency test (PCT) response, and liquidus temperature ( $T_L$ ) of zirconia-containing phases. Also reported are component concentration limits for model validity, chromium tolerance, and phosphate tolerance. The recommended models are given below, along with property and component concentration constraints.

The  $c_{sp}$  model is given by:

$$c_{Sp} \cong \sum_{i=1}^{p} \left( a_i + b_i T \right) g_i \tag{S.1}$$

where  $a_i$  and  $b_i$  are the temperature-independent and temperature-dependent component coefficients listed in Table S.1, and  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass.

| Component, <i>i</i> T-Independent |                    | T-Dependent                        |  |  |  |
|-----------------------------------|--------------------|------------------------------------|--|--|--|
|                                   | Coefficient, $a_i$ | Coefficient, $b_{i,} \circ C^{-1}$ |  |  |  |
| $Al_2O_3$                         | 21.24545           | -0.00785                           |  |  |  |
| $B_2O_3$                          | -14.55838          | 0.0078747                          |  |  |  |
| CaO                               | -76.00601          | 0.0646231                          |  |  |  |
| CdO                               | -50.6897           | 0.0621757                          |  |  |  |
| $Cr_2O_3$                         | -52.92551          | 0.1156024                          |  |  |  |
| F                                 | 117.44887          | -0.094526                          |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub>    | 30.882125          | -0.013788                          |  |  |  |
| K <sub>2</sub> O                  | -17.83219          | 0.0106531                          |  |  |  |
| Li <sub>2</sub> O                 | 91.117773          | -0.098169                          |  |  |  |
| MgO                               | 420.6061           | -0.305744                          |  |  |  |
| MnO                               | 62.003538          | -0.038308                          |  |  |  |
| Na <sub>2</sub> O                 | -4.485897          | -0.007289                          |  |  |  |
| NiO                               | 311.47667          | -0.220915                          |  |  |  |
| SiO <sub>2</sub>                  | -13.18649          | 0.009237                           |  |  |  |
| ZrO <sub>2</sub>                  | -0.753569          | 0.0066262                          |  |  |  |
| Others                            | 38.536088          | -0.036449                          |  |  |  |

**Table S.1.** Coefficients for the Recommended  $c_{Sp}$  Model, in vol%

The allowable weight percent SO<sub>3</sub> concentration in the melter feed ( $w_{SO_3}^{Limit}$ ) is given by:

$$w_{SO_3}^{Limit} = \sum_{i=1}^{p} s_i n_i + s_{Li_2O \times Li_2O} n_{Li_2O}^2$$
(S.2)

where  $s_i$  is the *i*<sup>th</sup> component coefficient given in Table S.2,  $s_{Li_2O \times Li_2O}$  is the coefficient for normalized lithium oxide concentration squared, and  $n_i$  is the *i*<sup>th</sup> component concentration in glass normalized to 1 after removing SO<sub>3</sub>:  $n_i = \frac{g_i}{1-g_{SO_3}}$ , where  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass.

| Components, i                       | Coefficients, $s_i$ |
|-------------------------------------|---------------------|
| Al <sub>2</sub> O <sub>3</sub>      | -0.803866           |
| $B_2O_3$                            | 3.0983142           |
| CaO                                 | 5.6570336           |
| Cl                                  | -29.77093           |
| $Cr_2O_3$                           | -7.5784             |
| Li <sub>2</sub> O                   | 3.2746409           |
| Na <sub>2</sub> O                   | 2.7845163           |
| $P_2O_5$                            | 4.4652267           |
| SiO <sub>2</sub>                    | -0.542488           |
| SrO                                 | 2.6347706           |
| TiO <sub>2</sub>                    | 6.3907736           |
| $V_2O_5$                            | 6.2747968           |
| ZnO                                 | 4.2286005           |
| ZrO <sub>2</sub>                    | -1.291709           |
| Other                               | 0.1221757           |
| Li <sub>2</sub> O×Li <sub>2</sub> O | 179.71011           |

**Table S.2.** Coefficients for the Recommended  $w_{SO_3}$  Model, in wt%

The composition effects on nepheline are significantly more non-linear than those for  $c_{Sp}$  or  $w_{SO_3}$ , therefore a neural network (NN) model is used to predict its precipitation. Accordingly, the probability of nepheline formation during slow cooling (*P*) for a given glass is given by:

$$P = \left[1 + Exp\left(a_0 + a_1N_1 + a_2N_2 + a_3N_3\right)\right]^{-1}$$
(S.3)

where  $N_1$ ,  $N_2$ , and  $N_3$  are three nodes of the form

$$N_{\alpha} = TanH\left[\frac{1}{2}\left(w_{\alpha,0} + \sum_{i=1}^{p} w_{\alpha,i}g_{i}\right)\right]$$
(S.4)

where  $w_{a,i}$  is the *i*<sup>th</sup> component coefficient for the  $\alpha^{th}$  node and  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass. The model coefficients are listed in Table S.3.

| Variable             | Prenodal, $a_0$  | Node 1 Coefficients, $w_{1,i}$ | Node 2 Coefficients, $w_{2,i}$ | Node 3 Coefficients, $w_{3,i}$ |
|----------------------|------------------|--------------------------------|--------------------------------|--------------------------------|
| $a_{\alpha}$         | 13.2882662868656 | 16.1270533249324               | -4.26025610502183              | -4.97044005504938              |
| W <sub>a,0</sub>     | -                | -0.368504314788528             | 2.59230438483144               | -17.6191838468361              |
| $W_{\alpha,Al_2O_3}$ | -                | -16.3361586053405              | 32.506920415784                | -71.1921457263483              |
| $W_{\alpha,B_2O_3}$  | -                | 7.92706218213264               | -145.236120123692              | -46.6794443749077              |
| $W_{\alpha,CaO}$     | -                | 1.96944639904736               | 141.41874985731                | 81.2090543151236               |
| $W_{\alpha,Li_2O}$   | -                | -6.37113637206031              | 96.2610336261315               | 421.585615170079               |
| $W_{\alpha, Na_2O}$  | -                | -10.1383393382153              | -71.9972897111855              | 349.303887885242               |
| $W_{\alpha,SiO_2}$   | -                | 7.98567618444061               | 49.559194772126                | -48.7817648739116              |

Table S.3. Coefficients for the Recommended Nepheline Probability Model

The viscosity at 1150°C ( $\eta_{1150}$ ) was modeled previously and used again in this study. The form of the equation is:

$$Ln[\eta_{1150}] = \sum_{i=1}^{p} h_i g_i + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} h_{ij} g_i g_j \right\}$$
(S.5)

where  $h_i$  and  $g_i$  are the *i*<sup>th</sup> component coefficient and mass fraction in glass, respectively. Table S.4 lists the model coefficients.

| Model Term, i                       | Coefficient, $h_i$ |
|-------------------------------------|--------------------|
| $Al_2O_3$                           | 10.6085            |
| $B_2O_3$                            | -9.37529           |
| BaO                                 | -3.41816           |
| CaO                                 | -6.9328            |
| F                                   | -12.3445           |
| K <sub>2</sub> O                    | -3.82491           |
| $La_2O_3$                           | -4.96954           |
| Li <sub>2</sub> O                   | -39.0249           |
| MgO                                 | -3.23141           |
| MnO                                 | -6.88677           |
| Na <sub>2</sub> O                   | -9.63275           |
| $P_2O_5$                            | 5.305007           |
| PbO                                 | -23.1436           |
| SiO <sub>2</sub>                    | 9.368089           |
| SrO                                 | -4.35052           |
| $UO_3$                              | 2.151455           |
| ZnO                                 | -2.69626           |
| $ZrO_2$                             | 7.14044            |
| Others                              | -0.09027           |
| $B_2O_3 \times B_2O_3$              | 24.59262           |
| $Na_2O \times B_2O_3$               | -26.9571           |
| Li <sub>2</sub> O×Li <sub>2</sub> O | 47.35918           |
| $Na_2O \times Al_2O_3$              | 17.51718           |
| $CaO \times Al_2O_3$                | -8.13474           |

**Table S.4.** Coefficients for the Recommended  $\eta_{1150}$  Model, in Ln[Pa·s]

A model for the average natural logarithm of normalized PCT boron, lithium, and sodium response was developed with the form:

$$\operatorname{Ln}[PCT] = \sum_{i=1}^{p} b_{i} g_{i} + b 2_{Al_{2}O_{3}} g_{Al_{2}O_{3}}^{2} + b 3_{Al_{2}O_{3}} g_{Al_{2}O_{3}}^{3} + b 4_{Al_{2}O_{3}} g_{Al_{2}O_{3}}^{4}$$
(S.6)

where  $b_i$  and  $g_i$  are the  $i^{th}$  component coefficient and mass fraction in glass. The coefficients are listed in Table S.5.

| Model Term, i                  | Coefficient, $b_i$ |
|--------------------------------|--------------------|
| $Al_2O_3$                      | -103.76            |
| $B_2O_3$                       | 10.75627           |
| CdO                            | 15.74204           |
| F                              | 26.97387           |
| Fe <sub>2</sub> O <sub>3</sub> | -2.574697          |
| K <sub>2</sub> O               | 11.64107           |
| Li <sub>2</sub> O              | 23.52778           |
| MgO                            | 10.4331            |
| MnO                            | 4.028527           |
| Na <sub>2</sub> O              | 15.27193           |
| SiO <sub>2</sub>               | -2.827361          |
| $SO_3$                         | 20.6466            |
| TiO <sub>2</sub>               | -11.8236           |
| $ZrO_2$                        | -6.265786          |
| Others                         | -0.595703          |
| $(Al_2O_3)^2$                  | 1166.629           |
| $(Al_2O_3)^3$                  | -5871.868          |
| $(Al_2O_3)^4$                  | 10289.47           |

Table S.5. Coefficients for the Recommended Ln[PCT] Model, in Ln[g/m<sup>2</sup>]

A model for the  $T_L$  of zirconium-containing phases was developed and published previously and recommended for use here. This model has the form:

$$T_L = \sum_{i=1}^p t_i g_i \tag{S.7}$$

where  $t_i$  and  $g_i$  are the  $i^{\text{th}}$  component coefficient and mass fraction in glass, respectively. The coefficients are listed in Table S.6.

| Model Term, i                  | Coefficient, $t_i$ |
|--------------------------------|--------------------|
| Al <sub>2</sub> O <sub>3</sub> | 3193.3628          |
| $B_2O_3$                       | 651.39721          |
| $LN_2O_3^{(a)}$                | 2156.4074          |
| Li <sub>2</sub> O              | -1904.417          |
| Na <sub>2</sub> O              | -1947.711          |
| SrO                            | 13011.909          |
| $ZrO_2$                        | 3747.4241          |
| Others                         | 1259.2233          |

**Table S.6.** Coefficients for the Recommended  $T_L$ -Zs Model, in °C

(a)  $LN_2O_3$  is the combined mass fractions of  $Y_2O_3$  and all the rare-earth oxides (which are all assumed to be in the trivalent state). The recommended property constraints are listed in Table S.7 and the recommended component concentration constraints are listed in Table S.8.

| Constraint                          | Limit                                            |
|-------------------------------------|--------------------------------------------------|
| PCT Response                        | Ln[PCT] < 1.39                                   |
| Nepheline                           | P < 27%                                          |
| Spinel                              | $c_{Sp} < 2 \text{ vol}\%$ at 950°C              |
| Zirconium-containing phases         | $T_L$ -Zs < 1050°C if ZrO <sub>2</sub> >4%       |
| Viscosity at 1150°C                 | $4 < \eta_{1150} < 6 \text{ Pa} \cdot s$         |
| $P_2O_5$ and CaO concentrations     | $W_{P_2O_5} \times W_{CaO} < 6.5 \text{ wt}\%^2$ |
| Salt, SO <sub>3</sub> concentration | $W_{SO_3} < W_{SO_3}^{Limit}$                    |
| Eskolaite formation                 | $g_{Cr_2O_3} < 0.03$                             |

Table S.7. HLW Glass Property Constraints

Table S.8. HLW Glass Component Concentration Constraints, in wt%

| Comp, i                        | Min  | Max  |
|--------------------------------|------|------|
| $Al_2O_3$                      | 1.9  | 29   |
| $B_2O_3$                       | 4    | 20   |
| BaO                            | 0    | 4.7  |
| Bi <sub>2</sub> O <sub>3</sub> | 0    | 7    |
| CaO                            | 0    | 7    |
| CdO                            | 0    | 1.5  |
| $Cr_2O_3$                      | 0    | 4    |
| F                              | 0    | 2.5  |
| $Fe_2O_3$                      | 0    | 20   |
| K <sub>2</sub> O               | 0    | 6    |
| Li <sub>2</sub> O              | 0    | 6    |
| MgO                            | 0    | 6    |
| MnO                            | 0    | 7    |
| Na <sub>2</sub> O              | 4.1  | 23   |
| $Nd_2O_3$                      | 0    | 5.9  |
| NiO                            | 0    | 3    |
| $P_2O_5$                       | 0    | 4.5  |
| $SiO_2$                        | 30.3 | 53   |
| SrO                            | 0    | 10.1 |
| $ThO_2$                        | 0    | 6    |
| TiO <sub>2</sub>               | 0    | 3.1  |
| $UO_3$                         | 0    | 6.3  |
| ZnO                            | 0    | 4    |
| ZrO <sub>2</sub>               | 0    | 13.5 |

### Low-Activity Waste Glass Property Models

Models to constrain the composition and loading of low-activity waste (LAW) glasses include models to control the sulfur tolerance of the melter feed PCT response, Vapor Hydration Test (VHT) response, and viscosity. Also reported are component concentration limits for model validity, as well as the chromium, halide, phosphate, and alkali tolerance. The recommended models are given below along with property and component concentration constraints.

The allowable weight percent SO<sub>3</sub> concentration in the melter feed ( $w_{SO_2}$ ) is given by:

$$w_{SO_3}^{Limit} = \sum_{i=1}^{p} s_i n_i + s_{Li_2O \times Li_2O} n_{Li_2O} n_{Li_2O}$$
(S.8)

where  $s_i$  is the component coefficient given in Table S.9 and  $n_i$  is the *i*<sup>th</sup> component concentration in glass normalized to 1 after removing SO<sub>3</sub>:  $n_i = \frac{g_i}{1 - g_{SO_3}}$ , where  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass.

| Table S.9. | Coefficients | for the | Recommended | $W_{so}$ | Model, in wt% |
|------------|--------------|---------|-------------|----------|---------------|
|------------|--------------|---------|-------------|----------|---------------|

| Components, <i>i</i>                | Coefficients, $s_i$ |  |  |  |
|-------------------------------------|---------------------|--|--|--|
| Al <sub>2</sub> O <sub>3</sub>      | -0.803866           |  |  |  |
| $B_2O_3$                            | 3.0983142           |  |  |  |
| CaO                                 | 5.6570336           |  |  |  |
| Cl                                  | -29.77093           |  |  |  |
| $Cr_2O_3$                           | -7.5784             |  |  |  |
| Li <sub>2</sub> O                   | 3.2746409           |  |  |  |
| Na <sub>2</sub> O                   | 2.7845163           |  |  |  |
| $P_2O_5$                            | 4.4652267           |  |  |  |
| SiO <sub>2</sub>                    | -0.542488           |  |  |  |
| SrO                                 | 2.6347706           |  |  |  |
| TiO <sub>2</sub>                    | 6.3907736           |  |  |  |
| $V_2O_5$                            | 6.2747968           |  |  |  |
| ZnO                                 | 4.2286005           |  |  |  |
| $ZrO_2$                             | -1.291709           |  |  |  |
| Other                               | 0.1221757           |  |  |  |
| Li <sub>2</sub> O×Li <sub>2</sub> O | 179.71011           |  |  |  |

A model for the average natural logarithm of normalized PCT boron and sodium response was developed with the form:

$$\operatorname{Ln}[\operatorname{NL}, g/\operatorname{L}] = \sum_{i=1}^{p} b_{i}g_{i} + selected\left\{\sum_{i=1}^{p-1} \sum_{j=i+1}^{p} b_{ij}g_{i}g_{j}\right\}$$
(S.9)

where  $b_i$  and  $g_i$  are the  $i^{th}$  component coefficient and mass fraction in glass. The coefficients are listed in Table S.10.

| Model Term, i                      | Coefficient, $b_i$ |
|------------------------------------|--------------------|
| Al <sub>2</sub> O <sub>3</sub>     | -69.07589          |
| $B_2O_3$                           | 13.020929          |
| CaO                                | -7.234449          |
| $Fe_2O_3$                          | -6.318672          |
| K <sub>2</sub> O                   | 10.099748          |
| Li <sub>2</sub> O                  | 27.748976          |
| MgO                                | 7.1092189          |
| Na <sub>2</sub> O                  | 16.667725          |
| $P_2O_5$                           | -9.063384          |
| SiO <sub>2</sub>                   | -3.07673           |
| $V_2O_5$                           | 9.3277525          |
| $ZrO_2$                            | -8.556034          |
| Others                             | -1.157161          |
| $Al_2O_3 \! \times \! Al_2O_3$     | 361.93083          |
| CaO×Fe <sub>2</sub> O <sub>3</sub> | 163.17256          |
| $MgO \times ZrO_2$                 | 592.93753          |

 Table S.10. Coefficients for the Recommended Ln[PCT] Model, in Ln[g/L]

The composition effects on VHT are significantly more non-linear that those for  $w_{SO_3}$  and Ln[PCT], therefore an NN model is used to predict glass response to VHT. Accordingly, the VHT response (r24) for a given glass is given by the following:

 $r24 = 22.2368486728788 + 162.297620340354 * TanH(0.5 * Fn1) + 146.571639705835 * TanH(0.5 * Fn2) \qquad (S.10)$ 

where Fn1 and Fn2 are given by:

Fn1= -2.0234500345046 +

| 3.42064364061235*    | TanH | 0.5* | 19.6032022867479<br>+ 41.763025292002 * A/2O3<br>+ 7.2247531165788 * B2O3<br>+ 71.440190399197 * CaO<br>+ 21.4866660009179 * Fe2O3<br>+ 5.8285856407714 * K2O<br>+ 14.1674908254771 * Li2O<br>+ 17.712793652953 * MgO<br>+ 4.90653877435819 * Na2O<br>+ 23.999070392784 * SiO2<br>+ 89.261809766372 * ZrO2                                                                          | + | -1.5945608677549* | TanH | 0.5* | 9.71096479446714<br>+ 1.7854759769145 * A/2O3<br>+ 35.9943209948772 * B2O3<br>+ 49.874405307677 * CaO<br>+ 23.2401360961441 * Fe2O3<br>+ 86.620913893724 * K2O<br>+ 9.56939724758103 * L/2O<br>+ 238.90360119104 * MgO<br>+ 3.2019704029069 * Na2O<br>+ -25.27720194201 * SiO2<br>+ 140.437932824307 * ZrO2       |
|----------------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.31555079823014 *1  | TanH | 0.5* | 3.26429869709493<br>+ 104.477522837661 * <i>Al2O3</i><br>+ 4.58157835900144 * <i>B2O3</i><br>+ 0.85255450354859 * <i>CaO</i><br>+ 1.1244826601591 * <i>Fe2O3</i><br>+ 60.7067527477005 * <i>K2O</i><br>+ 62.0556736612157 * <i>Li2O</i><br>+ 62.402468467866 * <i>MgO</i><br>+ 11.4599614081572 * <i>Na2O</i><br>+ 27.425799171143 * <i>SiO2</i><br>+ 49.853555611999 * <i>ZrO2</i> |   | 4.0985855697882*  | TanH | 0.5* | 54.4850934035448<br>+ 14.0759354190093 * A/2O3<br>+ -77.812329749985 * B2O3<br>+ -24.479879404922 * CaO<br>+ -15.422081646139 * Fe2O3<br>+ -64.301191862086 * K2O<br>+ -106.16853767331 * L/2O<br>+ -75.957683994829 * MgO<br>+ -103.98990411707 * Na2O<br>+ -50.469486676587 * S/O2<br>+ -29.590974146236 * ZrO2 |
| 2.42774575785518 * T | ſanH | 0.5* | 10.7282870519699<br>+ 135.592922593436 * A/2O3<br>+ 43.364161952728 * B2O3<br>+ 94.4108021418093 * CaO<br>+ 106.198181220628 * Fe2O3<br>+ 95.8928850646 * K2O<br>+ 62.087358826133 * Li2O<br>+ 8.17353548499568 * MgO<br>+ 36.294958232164 * Na2O<br>+ 44.774632983115 * SiO2<br>+ 52.2713874914766 * ZrO2                                                                          | - | -3.002427812819*  | TanH | 0.5* | 1.36554171806406<br>+ 8.39190437614229 * A/2O3<br>+ 85.1968179640575 * B2O3<br>+ -54.481478008755 * CaO<br>+ 87.6692685766409 * Fe2O3<br>+ -21.332583067516 * K2O<br>+ -0.0388979586356 * Li2O<br>+ 155.446663232058 * MgO<br>+ -25.780955827028 * Na2O<br>+ -2.3634111816427 * SiO2<br>+ -165.81210510989 * ZrO2 |

Fn2= 2.60707890790828 +



The viscosity at 1150°C ( $\eta_{1150}$ ) was modeled previously and used again in this study. The form of the equation is:

$$Ln[\eta_T, P] = \sum_{i=1}^{p} \left( v_i + y_i / [T \cdot 1000]^2 \right) g_i + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} v_{ij} g_i g_j \right\}$$
(S.11)

where  $v_i$ ,  $y_i$ , and  $g_i$  are the *i*<sup>th</sup> component temperature-independent coefficient, temperature-dependent coefficient, and mass fraction in glass, respectively; *T* is the absolute temperature (in K). Table S.11 lists the model coefficients.

|                                                   | Temperature-       | Temperature-       |
|---------------------------------------------------|--------------------|--------------------|
| Model Term, i                                     | Independent        | Dependent          |
|                                                   | Coefficient, $v_i$ | Coefficient, $y_i$ |
| Al <sub>2</sub> O <sub>3</sub>                    | 5.5124             | 24.6423            |
| $B_2O_3$                                          | -42.3772           | -                  |
| CaO                                               | -10.6445           | 13.7793            |
| $Fe_2O_3$                                         | -4.6220            | 15.2036            |
| K <sub>2</sub> O                                  | -0.8689            | -                  |
| Li <sub>2</sub> O                                 | 10.9390            | -82.4815           |
| MgO                                               | -5.6188            | 22.7608            |
| Na <sub>2</sub> O                                 | 0.9073             | -14.5621           |
| $P_2O_5$                                          | -0.8081            | 24.0339            |
| $SiO_2$                                           | 1.5575             | 24.4077            |
| $ZrO_2$                                           | -12.0741           | 48.2286            |
| Others                                            | -9.3903            | 17.3800            |
| $(B_2O_3)^2$                                      | 198.7360           | -                  |
| $(Li_2O)^2$                                       | 133.6906           | -                  |
| Al <sub>2</sub> O <sub>3</sub> ×Li <sub>2</sub> O | -136.5095          | -                  |
| $(MgO)^2$                                         | -179.8249          | -                  |

**Table S.11.** Coefficients for the Recommended  $Ln[\eta]$  Model, in Ln[P]

The recommended property constraints are listed in Table S.12. The waste loading rules give an estimate of the loading of waste in glass, while the property limits, combined with property models described above, allow for optimization of the glass composition along with the recommended component concentration constraints that are listed in Table S.13.

 Table S.12. LAW Glass Property Constraints

| Waste Loading Rules                 | Limit                                                                                       |
|-------------------------------------|---------------------------------------------------------------------------------------------|
| Alkali content                      | $w_{Na_2O} + 0.66 w_{K_2O} < 24 \text{ wt\%}$                                               |
| Alkali and sulfur content           | $w_{Na,O} + 0.66 w_{K,O} \le 33.94 - 11.69 w_{SO_3}$ , wt%                                  |
| Sulfur content                      | $w_{SO_3} < 1.5 \text{ wt\%}$                                                               |
| Halide content                      | $w_{SO_3} \le 1.65 - 0.725 \left( w_{Cl} + 0.3 w_F + 0.4 w_{Cr_2O_3} \right), \text{ wt\%}$ |
| Property                            | Limit                                                                                       |
| Salt, SO <sub>3</sub> concentration | $W_{SO_3} < W_{SO_3}^{Limit}$                                                               |
| PCT response                        | Ln[PCT] < 1.386                                                                             |
| VHT response                        | $r24 < 50 \text{ g/m}^2/\text{d}$                                                           |
| Viscosity at 1150°C                 | $40 < \eta_{1150} < 60 P$                                                                   |

|                   | Lower | Upper |
|-------------------|-------|-------|
| Component         | Limit | Limit |
| $Al_2O_3$         | 5.0   | 9.0   |
| $B_2O_3$          | 5.0   | 16.0  |
| CaO               | 0     | 13.0  |
| $Fe_2O_3$         | 0     | 13.0  |
| K <sub>2</sub> O  | 0     | 8.0   |
| Li <sub>2</sub> O | 0     | 6.0   |
| MgO               | 0     | 10.0  |
| Na <sub>2</sub> O | 5.0   | 26.0  |
| $P_2O_5$          | 0     | 4.5   |
| SiO <sub>2</sub>  | 30.0  | 51.0  |
| $SO_3$            | 0     | 1.6   |
| SnO <sub>2</sub>  | 0     | 5.0   |
| $TiO_2$           | 0     | 4.0   |
| $V_2O_5$          | 0     | 4.5   |
| ZnO               | 0     | 6.0   |
| $ZrO_2$           | 2.6   | 7.0   |

 $\textbf{Table S.13.} \ LAW \ Glass \ Component \ Concentration \ Constraints, in \ wt\%$ 

### **Quality Assurance**

This work was performed under the U.S. Department of Energy (DOE) Office of River Protection (ORP) Inter-Entity Work Order # M0ORV00020. The details of the work and associated requirements are documented in the test plan TP-EWG-00001 (Vienna et al. 2013). Per ORP as stated in the test plan, project work was conducted under a quality assurance program compliant with Title 10 of the Code of Federal Regulations Part 830 (10 CFR 830), "Nuclear Safety Management," Subpart A, "Quality Assurance Requirements" and DOE Order 414.1D, "Quality Assurance" and NQA-1 (ASME 2000); and it was graded in accordance with NQA-1-2000, Subpart 4.2, "Guidance on Graded Application of Quality Assurance (QA) for Nuclear-Related Research and Development." Pacific Northwest National Laboratory's (PNNL's) program is compliant with these requirements.

The PNNL QA program description implements both DOE Order 414.1D and 10 CFR 830, Subpart A. PNNL has also adopted the NQA-1-2000, Quality Assurance Program for Nuclear Facilities, as its single consensus standard for implementation of quality assurance requirements, and graded in accordance with NQA-1-2000, Subpart 4.2, "Guidance on Graded Application of Quality Assurance (QA) for Nuclear-Related Research and Development." PNNL's standards-based management system—How Do I? (HDI)—is a web-based system for communicating the QA program requirements through Laboratory-wide procedures or subject areas. All work at PNNL is subject to the applicable HDI requirements. In the facilities where work in support of this project is conducted, PNNL's "Integrated Operations Systems" is used to implement HDI and safety procedures at the benchtop. As part of the graded approach to quality assurance, this project has a formal Quality Assurance Plan (QAP) that specifies project-specific quality procedures covering technical work.

In accordance with ORP, all analytical project work was performed following the latest "Hanford Analytical Services Quality Requirements Document" (HASQARD). PNNL subcontracted to Southwest Research Institute (SwRI) for analytical services, which required HASQARD compliance. PNNL has audited and accepted SwRI services as being compliant with the HASQARD requirements, and has placed SwRI on the PNNL Evaluated Suppliers List as an acceptable supplier for analytical services in accordance with HASQARD.

No experimentation was conducted as part of the study reported here. The work reported includes the gathering of data from literature, the screening and evaluation of the data, the fitting of glass property models, and the recommendation of constraints for glass formulation based on the literature data and glass formulation experiences. These activities were performed under the QA program described above. However, the data used in the evaluations and models were taken from literature and do not always comply with the above-stated QA requirements or any defined quality assurance program. Therefore, the models reported in this document cannot be considered to comply with NQA-1 (ASME 2000) or RW-0333P (DOE 2008).

## Acknowledgments

We gratefully acknowledge the financial support of the U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger.

The authors also thank the following people for their technical review and consultations on the work leading to this report:

- Albert Kruger ORP
- Rod Gimpel Hanford Tank Waste Treatment and Immobilization Plant (WTP)
- Jeremy Belsher Washington River Protection Solutions (WRPS)
- David Peeler Savannah River National Laboratory (SRNL)
- Pavel Hrma Consultant
- Brian Riley PNNL
- Mary Bliss PNNL
- Ernie Lee WTP
- Paul Certa WRPS
- Peter Empey WRPS
- Kevin Fox SRNL
- Jake Amoroso SRNL
- Connie Herman SRNL

This manuscript was masterfully edited by Susan Ennor. We thank Mike Schweiger, Mary Bliss, Kirsten Meier, and Mona Champion (all of PNNL) for programmatic support during the conduct of this work.

A large fraction of the data described in this report was generated by the Vitreous State Laboratory at The Catholic University of America (VSL). We are thankful to VSL for sharing their data and assistance in data evaluation and interpretation, in particular Professor Ian Pegg.

# Abbreviations/Acronyms

| ASTM            | American Society for Testing and Materials                   |
|-----------------|--------------------------------------------------------------|
| CCC             | canister centerline cooled                                   |
| CFR             | Code of Federal Regulations                                  |
| C <sub>Sp</sub> | equilibrium concentration of spinel in the melt              |
| CVS             | composition variation study                                  |
| DOE             | U.S. Department of Energy                                    |
| DWPF            | Defense Waste Processing Facility                            |
| EA              | environmental assessment                                     |
| $g_i$           | mass fraction of $i^{\text{th}}$ component in glass          |
| G2              | WTP dynamic flowsheet model                                  |
| HASQARD         | Hanford Analytical Services Quality Requirements Document    |
| HDI             | how do I?                                                    |
| HLP             | Hanford LAW product acceptance                               |
| HLW             | high-level waste                                             |
| HTM             | high temperature melter                                      |
| HTWOS           | Hanford Tank Waste Operations Simulator                      |
| HWVP            | Hanford Waste Vitrification Plant                            |
| ILAW            | immobilized low-activity waste                               |
| INEEL           | Idaho National Engineering and Environmental Laboratory      |
| LAW             | low-activity waste                                           |
| MT              | metric ton                                                   |
| ND              | nepheline discriminator                                      |
| n <sub>i</sub>  | normalized mass fraction of $i^{th}$ component in glass      |
| NAlk            | normalized alkali oxide concentration                        |
| NH              | normalized halogen concentration                             |
| NN              | neural network                                               |
| NQA             | nuclear quality assurance                                    |
| NSi             | normalized SiO <sub>2</sub> concentration                    |
| OB              | optical basicity                                             |
| ORP             | Office of River Protection                                   |
| PCT             | Product Consistency Test                                     |
| PNNL            | Pacific Northwest National Laboratory                        |
| QA              | quality assurance                                            |
| QAP             | Quality Assurance Plan                                       |
| r24             | Vapor Hydration Test response rate normalized to 24 day test |
| RPP             | River Protection Project                                     |

| $R^2$     | coefficient of determination                                            |
|-----------|-------------------------------------------------------------------------|
| RMSE      | root mean squared error                                                 |
| RSD       | relative standard deviation                                             |
| SRNL      | Savannah River National Laboratory                                      |
| SwRI      | Southwest Research Institute                                            |
| TanH      | hyperbolic tangent                                                      |
| TCLP      | Toxicity Characteristic Leaching Procedure                              |
| $T_{1\%}$ | temperature at one volume percent crystal in equilibrium with the melt  |
| $T_L$     | liquidus temperature                                                    |
| TWRS      | Tank Waste Remediation System                                           |
| VHT       | Vapor Hydration Test                                                    |
| VSL       | Vitreous State Laboratory at the Catholic University of America         |
| Wi        | weight percent of the $i^{\text{th}}$ component in glass or melter feed |
| WTP       | Hanford Tank Waste Treatment and Immobilization Plant                   |
| WVDP      | West Valley Demonstration Project                                       |
|           |                                                                         |

## Contents

| Abs | tract.                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iii                                                                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sum | mary                                                                                                                                                                                                           | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                                                                                                     |
| Qua | lity A                                                                                                                                                                                                         | Assurance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xix                                                                                                                                                   |
| Ack | nowle                                                                                                                                                                                                          | edgments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xxi                                                                                                                                                   |
| Abb | revia                                                                                                                                                                                                          | tions/Acronyms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | xxiii                                                                                                                                                 |
| 1.0 | Intro                                                                                                                                                                                                          | oduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                   |
|     | 1.1                                                                                                                                                                                                            | High-Level Waste Loading Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |
|     | 1.2                                                                                                                                                                                                            | Low-Activity Waste Loading Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
|     | 1.3                                                                                                                                                                                                            | A Note on Significant Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6                                                                                                                                                   |
| 2.0 | High                                                                                                                                                                                                           | h-Level Waste Glass Constraints Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.1                                                                                                                                                   |
|     | 2.1                                                                                                                                                                                                            | Spinel Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1                                                                                                                                                   |
|     | 2.2                                                                                                                                                                                                            | Sulfur Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |
|     |                                                                                                                                                                                                                | 2.2.1 Crucible-Scale HLW $w_{SO_3}$ Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                       |
|     |                                                                                                                                                                                                                | 2.2.2 Weighted Crucible- and Melter-Scale $w_{SO_3}$ HLW Model                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |
|     |                                                                                                                                                                                                                | 2.2.3 Crucible-Scale LAW and HLW $w_{SO_3}$ Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
|     |                                                                                                                                                                                                                | 2.2.4 Weighted Crucible- and Melter-Scale LAW and HLW $w_{SO_3}$ Model                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
|     |                                                                                                                                                                                                                | 2.2.5 Recommended $W_{SO_3}$ Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |
|     |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |
|     | 2.3                                                                                                                                                                                                            | Nepheline Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |
|     | 2.3<br>2.4                                                                                                                                                                                                     | Nepheline Limit<br>Chromium Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |
|     | <ol> <li>2.3</li> <li>2.4</li> <li>2.5</li> </ol>                                                                                                                                                              | Nepheline Limit<br>Chromium Content<br>Viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |
|     | <ol> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> </ol>                                                                                                                                                 | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
|     | <ol> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> </ol>                                                                                                                                    | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases                                                                                                                                                                                                                                                                                                                                                                                                         | 2.25<br>2.37<br>2.40<br>2.42<br>2.49                                                                                                                  |
|     | <ol> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> </ol>                                                                                                                       | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits                                                                                                                                                                                                                                                                                                                                                                                     | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50                                                                                                          |
|     | <ol> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> </ol>                                                                                                          | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary                                                                                                                                                                                                                                                                                                                                                   | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51                                                                                                  |
|     | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> </ul>                                                                                            | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary                                                                                                                                                                                                                                                                                                                                                   | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53                                                                                          |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> </ul>                                                                               | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set                                                                                                                                                                                                                                                                               | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.51<br>2.53<br>3.1                                                                           |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> </ul>                                                                  | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules                                                                                                                                                                                                                                                              | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1                                                                            |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> </ul>                                                                  | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation                                                                                                                                                                                                                | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1                                                             |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> </ul>                                                                  | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules                                                                                                                                                                    | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.2                                                              |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> <li>3.2</li> </ul>                                                     | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules<br>Sulfur Tolerance                                                                                                                                                | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.1<br>3.2<br>3.8                                                |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> <li>3.2</li> <li>3.3</li> </ul>                                        | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules<br>Sulfur Tolerance<br>Product Consistency Test Response                                                                                                           | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.1<br>3.2<br>3.8<br>3.12                                        |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> </ul>                           | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules<br>Sulfur Tolerance<br>Product Consistency Test Response<br>Vapor Hydration Test Response                                                                          | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.1<br>3.2<br>3.8<br>3.12<br>3.19                                |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> <li>3.5</li> </ul>              | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>v-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules<br>Sulfur Tolerance<br>Product Consistency Test Response<br>Vapor Hydration Test Response<br>Viscosity                                                             | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.1<br>3.2<br>3.8<br>3.12<br>3.30                                |
| 3.0 | <ul> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> <li>2.9</li> <li>2.10</li> <li>Low</li> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> <li>3.5</li> <li>3.6</li> </ul> | Nepheline Limit<br>Chromium Content<br>Viscosity<br>Product Consistency Test<br>Zirconium Containing Phases<br>Phosphate Limits<br>Limits and Constraints Summary<br>O Calculation Examples<br>V-Activity Waste Glass Constraints Set<br>Loading Rules<br>3.1.1 WTP Baseline Formulation Correlation<br>3.1.2 Advanced Formulation Loading Rules<br>Sulfur Tolerance<br>Product Consistency Test Response<br>Vapor Hydration Test Response<br>Viscosity<br>Other Property Models and Component Concentration Limits | 2.25<br>2.37<br>2.40<br>2.42<br>2.49<br>2.50<br>2.51<br>2.53<br>3.1<br>3.1<br>3.1<br>3.1<br>3.2<br>3.8<br>3.12<br>3.8<br>3.12<br>3.19<br>3.30<br>3.32 |

| 4.0  | References                                        | 4.1        |
|------|---------------------------------------------------|------------|
| Appe | endix A High-Level Waste Glass Volume Estimates A | <b>\.1</b> |

# Figures

| Figure 1.1. Pie Charts Showing the Distribution of HLW Glass by Limiting Factors (Kim et al. 2011)                                                                                                                                                                    | 1.2  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.2. Schematic of Current WTP Glass Formulation Rules for Na <sub>2</sub> O-SO <sub>3</sub> with<br>Bounding K <sub>2</sub> O Concentrations. Two horizontal lines represent Na <sub>2</sub> O values for expected<br>K <sub>2</sub> O concentration extremes. | 1.3  |
| Figure 1.3. Schematic of Current WTP Halide Constraints for Cl-F-SO <sub>3</sub>                                                                                                                                                                                      | 1.4  |
| Figure 1.4. Schematic of Current WTP Halide Constraints for Cr <sub>2</sub> O <sub>3</sub> -K <sub>2</sub> O-P <sub>2</sub> O <sub>5</sub>                                                                                                                            | 1.4  |
| Figure 1.5. Comparison of LAW Loadings of Advanced Formulations with Those of the WTP<br>Baseline Glass Formulation Rules (Kim 2013)                                                                                                                                  | 1.5  |
| Figure 1.6. Comparison of Predicted LAW Glass Volumes Using Current WTP Formulation<br>Rules and Advanced Glass Formulation Rules (Kim 2013)                                                                                                                          | 1.5  |
| Figure 2.1. Plot of Predicted vs. Measured $c_{sp}$ with 95% Confidence Interval for Individual Prediction, vol%                                                                                                                                                      | 2.3  |
| Figure 2.2. Scatterplot Matrix of Glasses Used to Fit the $c_{sp}$ Model                                                                                                                                                                                              | 2.4  |
| Figure 2.3. Estimated Hanford HLW Glass Volume as a Function of Crystal Concentration<br>Constraint 2.6                                                                                                                                                               |      |
| Figure 2.4. Dimensions of the Glass Discharge Riser for WTP HLW Melter                                                                                                                                                                                                | 2.7  |
| Figure 2.5. Crystal Accumulation Layer Height as a Function of Crystal vol% in the Melt                                                                                                                                                                               | 2.7  |
| Figure 2.6. Comparison of Melter Test and Crucible-Scale Bubbling Solubility SO <sub>3</sub><br>Concentrations                                                                                                                                                        | 2.10 |
| Figure 2.7. Comparison of SO <sub>3</sub> Concentrations by Bubbling Solubility and Na <sub>2</sub> SO <sub>4</sub> Saturation<br>Tests                                                                                                                               | 2.10 |
| Figure 2.8. Scatterplot Matrix of Component Concentrations in the HLW $w_{SO_3}$ Database ( $n_i$ in mass fraction)                                                                                                                                                   | 2 13 |
| Figure 2.9. Comparison of $W_{SO_3}^{Sat}$ with $W_{SO_3}^{Bubb}$ (open points) and $W_{SO_3}^{Melt}$ (solid point)                                                                                                                                                   | 2.14 |
| Figure 2.10. Comparison of Predicted and Measured Crucible-Scale $w_{so}$ with 95% Confidence                                                                                                                                                                         |      |
| Interval for Individual Prediction, wt%                                                                                                                                                                                                                               | 2.15 |
| Figure 2.11. Comparison of Predicted and Measured Crucible- and Melter-Scale $w_{so}$ with                                                                                                                                                                            |      |
| 95% Confidence Interval for Individual Prediction, wt%                                                                                                                                                                                                                | 2.17 |
| Figure 2.12. Scatterplot Matrix of Component Concentrations in the Combined HLW (blue) and LAW (red) SO <sub>3</sub> Database ( $n_i$ in mass fraction)                                                                                                               | 2.19 |
| Figure 2.13. Comparison of $w_{ac}^{Melt}$ to $w_{ac}^{Bubb}$ (red circles) and $w_{ac}^{Sat}$ (blue squares) for the                                                                                                                                                 |      |
| Combined HLW (solid) and LAW (open)                                                                                                                                                                                                                                   | 2.20 |
| Figure 2.14. Comparison of Predicted and Measured Crucible-Scale HLW and LAW SO <sub>3</sub>                                                                                                                                                                          | 2 21 |
| Figure 2.15 Comparison of the Predicted and Measured Crucible, and Malter Scale III W                                                                                                                                                                                 | 2.21 |
| and LAW SO <sub>3</sub> with 95% Confidence Interval for Individual Prediction, wt%                                                                                                                                                                                   | 2.23 |

| Figure 2.16. Comparison of Crucible-Scale Combined HLW and LAW SO <sub>3</sub> Model<br>Predictions with Measured Melter-Scale SO <sub>3</sub> , in wt%                                                                                                                 | 2.25 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.17. Comparison of <i>NSi</i> to Nepheline Volume Percent from WTP HLW Glasses<br>Subjected to CCC Heat Treatment (Vienna and Kim 2008). ● – quantitative value, ◊ less                                                                                         | 2.26 |
| Figure 2.18 Scatterplot Matrix of Nepheline Model Data Mass Fractions                                                                                                                                                                                                   | 2.20 |
| Figure 2.19 Block Diagram of the Neural Network Nenheline Formation Models                                                                                                                                                                                              | 2.30 |
| Figure 2.20. Detailed Node Diagram From Neural Network                                                                                                                                                                                                                  | 2.30 |
| Figure 2.21. Model Scoring Nomenclature                                                                                                                                                                                                                                 | 2.31 |
| Figure 2.22. Effect of Varying Probability Cutoffs on the True Positive and True Negative Performance                                                                                                                                                                   | 2.33 |
| Figure 2.23. Model Scoring Summary for the Selected Nepheline Neural Network Model                                                                                                                                                                                      | 2.34 |
| Figure 2.24. Effect of Component Concentration on Probability of Nepheline Formation                                                                                                                                                                                    | 2.34 |
| Figure 2.25. Interaction Profile Plot for the Six Components of the Neural Network<br>Nepheline Model. The blue and red lines are the maximum and minimum value for the<br>secondary components.                                                                        | 2.35 |
| Figure 2.26. Nepheline Formation Regions at Different Concentrations of B <sub>2</sub> O <sub>3</sub> , CaO, and Li <sub>2</sub> O [blue – low probability (0-5%), red – high probability (50+%), and orange (27-50%) and green (6-27%) are intermediate probabilities] | 2.36 |
| Figure 2.27. Equation Representing the Probability of a Nepheline Formation (oxide-t values represent mass fraction of those oxides in glass or $g_i$ )                                                                                                                 | 2.37 |
| Figure 2.28. Eskolaite vol% in High-Cr <sub>2</sub> O <sub>3</sub> Crucible-Scale Glasses Heat Treated at 950°C for 70 hours (data from Matlack et al. 2009b)                                                                                                           | 2.38 |
| Figure 2.29. Optical Micrographs of Eskolaite in High Cr <sub>2</sub> O <sub>3</sub> Glasses                                                                                                                                                                            | 2.39 |
| Figure 2.30. Impact of Cr <sub>2</sub> O <sub>3</sub> Mass Fraction on Predicted <i>c</i> <sub>Sp</sub>                                                                                                                                                                 | 2.40 |
| Figure 2.31. Comparison of Predicted and Measured Ln(viscosity) Data for ORP Advanced<br>HLW Glasses Using the 2009 Viscosity Model (Vienna et al. 2009)                                                                                                                | 2.41 |
| Figure 2.32. Comparison of Normalized PCT-B Response of Advanced HLW Glasses to<br>HTWOS 2009 Model Predictions                                                                                                                                                         | 2.43 |
| Figure 2.33. Scatterplot Matrix of HLW PCT Model Data (red points for ORP advanced HLW glasses)                                                                                                                                                                         | 2.45 |
| Figure 2.34. Comparison of PCT(B), PCT(Na), and PCT(Li) (red + is Li, blue × is Na)                                                                                                                                                                                     | 2.46 |
| Figure 2.35. Predicted vs. Measured Average (Ln[PCT]) with 95% Confidence Interval for<br>Individual Prediction.                                                                                                                                                        | 2.47 |
| Figure 2.36. Component Effects "Profiler" for HLW PCT Model                                                                                                                                                                                                             | 2.48 |
| Figure 3.1. Overview of Waste Alkali Concentration ( <i>d</i> ) and SO <sub>3</sub> Loadings for Advanced LAW Glasses (Muller et al. 2010)                                                                                                                              | 3.3  |
| Figure 3.2. Plot of $w_{SO_3}$ vs. $NH = g_{Cl} + 0.607g_F + 0.542 g_{Cr_2O_3} + g_{K_2O}$ from Melter Tests With<br>and Without Salt Accumulation                                                                                                                      | 25   |
| Figure 3.3 Plot of $\mu_1 = \nu_2 = a_{12} + 0.3a_{-} + 0.4a_{-}$                                                                                                                                                                                                       | 2 5  |
| Figure 3.4. Proposed Cl-F-Cr <sub>2</sub> O <sub>3</sub> -SO <sub>3</sub> -K <sub>2</sub> O Loading Rules                                                                                                                                                               | 3.6  |
|                                                                                                                                                                                                                                                                         |      |

| Figure 3.5. Pairwise Plots of Glass Components vs. <i>d</i> and SO <sub>3</sub> for Glasses Used to Define the Waste Loading Limits                                                       | 3.7  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 3.6. Scatterplot Matrix of $w_{SO_3}^{Sat}$ Model Data                                                                                                                             | 3.9  |
| Figure 3.7. Comparison of Predicted and Measured Crucible-Scale $w_{SO_3}^{Sat}$ With 95%                                                                                                 |      |
| Confidence Interval for Individual Prediction, wt%                                                                                                                                        | 3.11 |
| Figure 3.8. Comparison of PCT Normalized Na and B Responses to <i>NAlk</i> of LAW Glasses (NL in g/L, alkali content in mass fraction, × for NL[Na], + for NL[B])                         | 3.13 |
| Figure 3.9. Scatterplot Matrix of PCT Model Data                                                                                                                                          | 3.16 |
| Figure 3.10. Comparison of NL(B), NL(Na), and NL(Si)                                                                                                                                      | 3.17 |
| Figure 3.11. Predicted vs. Measured Average (Ln[NL]) with 95% Confidence Interval for<br>Individual Prediction                                                                            | 3.18 |
| Figure 3.12. Comparison of 200°C VHT Rates, Normalized to 24 d Test, to <i>NAlk</i> of LAW Glasses                                                                                        | 3.20 |
| Figure 3.13. Scatterplot Matrix of VHT Model Data                                                                                                                                         | 3.22 |
| Figure 3.14. Prediction vs. Measured Ln(r24) Partial Quadratic Model with 95% Confidence<br>Interval for Individual Prediction                                                            | 3.23 |
| Figure 3.15. Block Diagram of Neural Network                                                                                                                                              | 3.24 |
| Figure 3.16. Detailed Node Diagram from a Neural Network                                                                                                                                  | 3.24 |
| Figure 3.17. Final Model Results – Actual vs. Predicted r24. The shaded band represents the region of "confidence of prediction."                                                         | 3.27 |
| Figure 3.18. Prediction Profiles for Specific Glasses                                                                                                                                     | 3.28 |
| Figure 3.19. Comparison of Predicted and Measured Ln(viscosity) Data for Both WTP Baseline<br>and ORP Advanced LAW Glasses Using the WTP Baseline Viscosity Model (Muller et al.<br>2012) | 3.31 |
| Figure 3.20. Tree Model of VHT Pass and Fail for Different Composition Domains                                                                                                            | 3.33 |
| Figure A.1. Comparison of Glass Mass Estimates for Each Constraint Set and Feed Vector                                                                                                    | A.11 |

## Tables

| Table S.1. Coefficients for the Recommended $c_{Sp}$ Model, in vol%                             | vi   |
|-------------------------------------------------------------------------------------------------|------|
| Table S.2. Coefficients for the Recommended $W_{SO_3}$ Model, in wt%                            | vii  |
| Table S.3. Coefficients for the Recommended Nepheline Probability Model                         | viii |
| Table S.4. Coefficients for the Recommended $\eta_{1150}$ Model, in Ln[Pa·s]                    | ix   |
| Table S.5. Coefficients for the Recommended Ln[PCT] Model, in Ln[g/m <sup>2</sup> ]             | x    |
| Table S.6. Coefficients for the Recommended $T_L$ -Zs Model, in °C                              | X    |
| Table S.7. HLW Glass Property Constraints                                                       | xi   |
| Table S.8. HLW Glass Component Concentration Constraints, in wt%                                | xi   |
| Table S.9. Coefficients for the Recommended $w_{SO_3}$ Model, in wt%                            | xii  |
| Table S.10. Coefficients for the Recommended Ln[PCT] Model, in Ln[g/L]                          | xiii |
| Table S.11. Coefficients for the Recommended Ln[ $\eta$ ] Model, in Ln[P]                       | xvi  |
| Table S.12. LAW Glass Property Constraints                                                      | xvi  |
| Table S.13. LAW Glass Component Concentration Constraints, in wt%                               | xvii |
| Table 2.1. Coefficients, Validity Constraints, and Summary Statistics for $c_{Sp}$ Model        | 2.2  |
| Table 2.2. Summary of $c_{sp}$ Model Validation                                                 | 2.5  |
| Table 2.3. HLW SO <sub>3</sub> Solubility, Saturation, and Melter Test Data, wt%                | 2.8  |
| Table 2.4. Component Concentration Ranges for HLW $w_{SO_3}$ Database, $n_i$ , in Mass Fraction | 2.12 |
| Table 2.5. Summary of Crucible-Scale HLW $w_{SO_3}^{Limit}$ Model                               | 2.15 |
| Table 2.6. Summary of Crucible-Scale HLW SO <sub>3</sub> Solubility Model Validation            | 2.16 |
| Table 2.7. Summary of Crucible- and Melter-Scale HLW SO <sub>3</sub> Model                      | 2.17 |
| Table 2.8. Summary of Crucible- and Melter-Scale HLW SO <sub>3</sub> Model Validation           | 2.18 |
| Table 2.9. Component Concentration Ranges for the Combined HLW and LAW $W_{SO_3}$ Database      |      |
| ( <i>n<sub>i</sub></i> , in mass fraction)                                                      | 2.18 |
| Table 2.10. Summary of Crucible-Scale HLW and LAW SO3 Model                                     | 2.21 |
| Table 2.11. Summary of Crucible-Scale HLW and LAW SO3 Model Validation                          | 2.22 |
| Table 2.12. Summary of the Crucible- and Melter-Scale HLW and LAW SO <sub>3</sub> Model         | 2.23 |
| Table 2.13. Summary of Crucible- and Melter-Scale HLW and LAW SO <sub>3</sub> Model Validation  | 2.24 |
| Table 2.14. Summary of Data Used in Nepheline Model Development and Validation                  | 2.27 |
| Table 2.15. Component Concentration Ranges for Nepheline Model Data, wt%                        | 2.28 |
| Table 2.16.         Validation Model Set Comparison Targeting False Negative Percentage         | 2.32 |
| Table 2.17. Probability Cutoff Comparison for Neural Network                                    | 2.32 |
| Table 2.18. Comparison of Neural Network and Previous Model Performance                         | 2.33 |
| Table 2.19. Viscosity-Composition Model Coefficients and Selected Statistical Parameters        | 2.42 |

| Table 2.20. Component Concentration Ranges for HLW PCT Model Data, wt%                            | 2.44 |
|---------------------------------------------------------------------------------------------------|------|
| Table 2.21. Summary of HLW PCT Response Model Coefficients and Fit Statistics                     | 2.47 |
| Table 2.22. Summary of PCT Model Validation Data                                                  | 2.49 |
| Table 2.23. T <sub>L</sub> -Zs Composition Model Coefficients and Selected Statistical Parameters | 2.50 |
| Table 2.24.Comparison of HLW Melt and Glass Constraints Used in HLW Glass VolumeEstimation2.51    |      |
| Table 2.25. Summary of Single Component Constraints, wt%                                          | 2.53 |
| Table 2.26. Summary of Example Calculation Results                                                | 2.54 |
| Table 3.1. Summary of Advanced LAW Correlation Glasses                                            | 3.3  |
| Table 3.2. Summary of $w_{SO_3}^{Sat}$ Model Data                                                 | 3.8  |
| Table 3.3. $w_{SO_3}^{Sat}$ Model Data Component Concentration Ranges                             | 3.10 |
| Table 3.4. Summary of $w_{SO_3}^{Sat}$ Model Coefficients and Fit Statistics                      | 3.11 |
| Table 3.5. Summary of $w_{SO_3}^{Sat}$ Model Validation Data                                      | 3.12 |
| Table 3.6.    Summary of LAW PCT Data Sets                                                        | 3.14 |
| Table 3.7. Glasses Excluded from PCT Model Fitting                                                | 3.14 |
| Table 3.8. Component Concentration Ranges for PCT Model Data                                      | 3.15 |
| Table 3.9. Summary of PCT Response Model Coefficients and Fit Statistics, in g/L                  | 3.17 |
| Table 3.10. Summary of PCT Model Validation Data                                                  | 3.19 |
| Table 3.11. Summary of LAW VHT Data Sets                                                          | 3.21 |
| Table 3.12. Component Concentration Ranges for VHT Model Data                                     | 3.21 |
| Table 3.13. Subset Models Applied to All Data                                                     | 3.25 |
| Table 3.14.    Subset Models Applied to Validation Data Only                                      | 3.25 |
| Table 3.15. Most Influential Glasses for Neural Network Development                               | 3.26 |
| Table 3.16. Final Model Results                                                                   | 3.26 |
| Table 3.17. Viscosity-Composition Model Coefficients and Selected Statistical Parameters          | 3.32 |
| Table 3.18. Component Concentration Constraints in wt%                                            | 3.33 |
| Table 3.19. Selected Waste Compositions, wt%                                                      | 3.34 |
| Table 3.20. Glass Composition and Predicted Properties for Example Wastes, wt%                    | 3.35 |
| Table A.1. 2008 Waste Cluster Mean Compositions in Mass Fractions and Total Oxide Mass (M) in MT  | A.3  |
| Table A.2. 2011 Waste Cluster Mean Compositions in Mass Fractions and Total Oxide Mass (M) in MT  | A.4  |
| Table A.3. Summary of Waste Loading Estimates for the WTP Baseline Set of Constraints             | A.7  |
| Table A.4. Summary of Waste Loading Estimates for the HTWOS 2009 Set of Constraints               | A.8  |
| Table A.5.         Comparison of Glass Canister Estimates Between This Study and Literature       |      |
| Values for the HTWOS 2009 Constraint Set                                                          | A.9  |
| Table A.6. Summary of Waste Loading Estimates for the HTWOS 2010 Set of Constraints               | A.9  |
| Table A.7. Summary of Waste Loading Estimates for the Advanced Set of Constraints                 | A.10 |

Table A.8. Summary of Glass Mass (MT) by Constraint for Each of the Constraint Sets ...... A.11

### 1.0 Introduction

The Hanford Tank Waste Operations Simulator (HTWOS) and the Hanford Tank Waste Treatment and Immobilization Plant (WTP) dynamic flowsheet model (G2) are software tools used to evaluate the impacts of process assumptions on the Hanford tank waste cleanup mission (Bergmann 2010; Deng 2011). Both contain modules that calculate the high-level waste (HLW) and low-activity waste (LAW) glass mass to be produced from each batch of tank waste transferred to the WTP. The sum of the glass masses over the life of the Hanford tank waste cleanup mission is a key output of the models that may significantly influence cleanup costs and schedules, which forms part of the basis for the cost and schedule baseline (e.g., the River Protection Project (RPP) system plan) (Certa et al. 2011). It is important, therefore, to incorporate the most up-to-date information on waste loading in glasses into these models.

The purpose of this report is to summarize the advancements in glass formulation and to recommend a set of glass property-composition models and constraints that can be used in HTWOS and G2 to estimate the range of likely HLW and LAW glass volumes that would result if the current glass formulation studies are continued and the models ultimately implemented. It is recognized that some of the models are preliminary in nature and will change in the coming years. In addition, the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose.

A fundamental tenet underlying the research reported in this document is the attempt to be less conservative than previous studies when developing constraints for estimating glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach, there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that must be considered, along with other system uncertainties, such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

The advanced glass formulation efforts have largely been performed by the Vitreous State Laboratory at The Catholic University of America (VSL) under the guidance and support of the U.S. Department of Energy (DOE) Office of River Protection (ORP). Some of the research was performed by the Pacific Northwest National Laboratory (PNNL) and by the Savannah River National Laboratory (SRNL).

#### 1.1 High-Level Waste Loading Limitations

The HLW glass volume estimates are based on optimizing the loading of the waste batch in a borosilicate glass, while simultaneously meeting a full range of predicted property and composition limits (Bergmann 2010; Gimpel 2009). The property predictions are currently based on the glass property models of (Vienna et al. 2009). The use of these models is constrained by maintaining the calculated glass composition within the range of compositions covered by glasses used to fit the models. In

addition, a normalized silica concentration ( $NSi = g_{SiO_2} / (g_{Al_2O_3} + g_{Na_2O} + g_{SiO_2})$ ) constraint is used to avoid the deleterious effects of nepheline formation in the product glass (Li et al. 1997).

An evaluation of the impacts of the property and component concentration constraints showed that five constraints are most influential on the estimated Hanford HLW glass volumes (Belsher and Meinert 2009):

- the temperature at one volume percent spinel crystal in the melt  $(T_{1\%})$  being limited to 950°C,
- the concentration limit of SO<sub>3</sub> of 0.5 wt% (on a melter feed basis) to avoid the accumulation of salt in the melter,
- the concentration limits of 3.2 wt% Bi<sub>2</sub>O<sub>3</sub> and 2.5 wt% P<sub>2</sub>O<sub>5</sub> in glass as constrained by model-validity regions,
- the NSi limit of 0.62 to help avoid nepheline formation in the product, and
- the model-validity constraints for  $Al_2O_3$  of 20 wt%.

Kim likewise found the following limiting factors, based on HTWOS 2009 model predictions, with the fraction of glass limited by each factor given parenthetically (Kim et al. 2011):

- high Al<sub>2</sub>O<sub>3</sub> wastes that are limited by nepheline formation and spinel (46%),
- high Fe<sub>2</sub>O<sub>3</sub> wastes (with and without significant Cr<sub>2</sub>O<sub>3</sub>, MnO, and NiO) forming spinel and other crystals (24%),
- high Cr<sub>2</sub>O<sub>3</sub> and SO<sub>3</sub> wastes that are subject to data range constraints but prone to salt formation and potential eskolaite formation (20%),
- high P<sub>2</sub>O<sub>5</sub> and P<sub>2</sub>O<sub>5</sub>+CaO wastes that are limited by phase separation and potential process upsets (9%), and
- high Na<sub>2</sub>O wastes limited by data range constraints but prone to poor durability (1%).

These are shown graphically in Figure 1.1.



Figure 1.1. Pie Charts Showing the Distribution of HLW Glass by Limiting Factors (Kim et al. 2011)
These constraints are the subject of ongoing research to improve waste loading without significant risk and without requiring changes to planned plant equipment. Some of the improvements were documented in a revised set of constraints for use in HTWOS in 2010 (McCloy and Vienna 2010). A comparison of the glass volume results from the two constraint sets is shown in Figure 1.1.

## 1.2 Low-Activity Waste Loading Limitations

As with HLW, the loading of LAW in glass has been found to be limited by two factors (Kim et al. 2011; Kim and Vienna 2012; Matlack et al. 2007b; Muller et al. 2010):

- alkali content of the glass (primarily Na<sub>2</sub>O, but also K<sub>2</sub>O in some wastes), which causes poor chemical durability in general and more specifically fails the current WTP contract constraints for Product Consistency Test (PCT) and Vapor Hydration Test (VHT) responses (DOE 2000), and
- salt formation in the melter that is promoted by SO<sub>3</sub> concentration and to lesser extents Cr<sub>2</sub>O<sub>3</sub>, Cl, F, and P<sub>2</sub>O<sub>5</sub>.

The ratio of waste limited by each of those two factors depends on the constraint sets and waste composition estimates used. Two methods of estimating the loading of LAW glass are currently used in HTWOS and G2. The first method, used in the WTP G2 model (Gimpel 2010) and also programed as an option in the HTWOS model (Bergmann 2010), is based on the preliminary immobilized LAW (ILAW) glass formulation algorithm approach (Kim and Vienna 2012). A set of waste loading constraints is used to determine the target waste loading as shown graphically in Figure 1.2 through Figure 1.4.



**Figure 1.2**. Schematic of Current WTP Glass Formulation Rules for Na<sub>2</sub>O-SO<sub>3</sub> with Bounding K<sub>2</sub>O Concentrations. Two horizontal lines represent Na<sub>2</sub>O values for expected K<sub>2</sub>O concentration extremes.



Figure 1.3. Schematic of Current WTP Halide Constraints for Cl-F-SO<sub>3</sub>



Figure 1.4. Schematic of Current WTP Halide Constraints for Cr<sub>2</sub>O<sub>3</sub>-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>

Recent and ongoing glass formulation advancements have shown significant gains in LAW loadings in glass. These advancements are compared to the maximum alkali vs. sulfur loading rules of Figure 1.2 in Figure 1.5. The results of this work are summarized by Muller (2010). There is a clear increase in loading for the advanced formulations. Section 3.0 attempts to quantify the differences in glass compositions that led to this dramatic increase in projected waste loadings.



Figure 1.5. Comparison of LAW Loadings of Advanced Formulations with Those of the WTP Baseline Glass Formulation Rules (Kim 2013)

Figure 1.6 compares glass volume estimates using the two sets of waste loading estimates. This study assumed a total of 95,140 metric tons (MT) of  $Na_2O$  (70,580 MT of Na) would be vitrified (including recycles). Roughly 63% of the LAW would be vitrified in the supplemental LAW vitrification facility. The conservative and optimistic halide limits, shown in the plot, are discussed in Section 3.1.2.



Figure 1.6. Comparison of Predicted LAW Glass Volumes Using Current WTP Formulation Rules and Advanced Glass Formulation Rules (Kim 2013)

# **1.3 A Note on Significant Figures**

Throughout this document, a number of model coefficients and other values are reported with a higher number of figures than are significant. Ideally, the appropriate number of figures to report should be evaluated in detail. However, no such evaluation was performed. We therefore suggest using all reported figures in the model coefficients for consistency with example calculations supplied in Sections 2.10 and 3.7.

## 2.0 High-Level Waste Glass Constraints Set

This section summarizes the recent advances in HLW glass formulation, and recommends constraints that can be applied to estimate the amount of HLW glass that may be produced at Hanford. Spinel accumulation, sulfur tolerance, nepheline formation, chromium tolerance, viscosity, PCT response,  $T_L$  of zirconia-containing phases, and phosphate tolerance are discussed in the following subsections. The recommended constraints are then summarized and example waste loading estimates are shown.

### 2.1 Spinel Model

Spinel limits in the form of a liquidus temperature ( $T_L$ ) constraint have been used to control glass composition at the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP) (Jain et al. 1992; Jantzen 1991a; Jantzen and Brown 2007a,b). VSL proposed that the  $T_L$ constraints may be too conservative and inconsistent with the presence of undissolved noble metals (Annamalai et al. 2004). This led to WTP adopting a model to predict the relatively arbitrary 1 vol% spinel temperature limit ( $T_{1\%}$ ) of 950°C for constraining glass composition (Vienna and Kim 2008). This constraint was used as a conservative placeholder until a more technically defensible constraint is developed; it is the basis for both G2 and HTWOS glass HLW estimates. Meanwhile, it was clearly shown by a combination of laboratory testing and melter modeling that crystal fraction and crystal size are far better predictors of potential melter failure caused by spinel buildup than  $T_L$  or  $T_{1\%}$  (Hrma 2002; Hrma et al. 2003; Hrma and Vienna 2003; Hrma 2010).

A study of the design and operation of the WTP HLW melter suggests that the process most likely to cause failure due to spinel accumulation is the plugging of the pour-spout riser (Matyas et al. 2010a,b). This assessment matched previous experiences with pour-spout plugging in test melters (Jantzen 1986; Rankin et al. 1982) and the DWPF melter (Jantzen et al. 2004). It is recognized, however, that crystal accumulation in the melter body must also be considered when setting an ultimate crystal content limit. To implement a more appropriate control strategy, a model is being developed and will be validated to predict the accumulation of spinel in the WTP pour-spout riser and melter body as a function of melt composition, time, and temperature (Matyas et al. 2013, 2011, 2010a). Although this model shows great promise for setting a technically defensible limit for crystallinity in the WTP HLW melter, it is not yet ready to predict glass volumes over a range of waste compositions.

One approach is to predict the equilibrium fraction of spinel  $(c_{Sp})$  as a function of composition and temperature in the pour-spout riser. Two equations for predicting  $c_{Sp}$  as functions of composition and temperature were developed (Hrma and Vienna 2003). The first such equation is based on the freezing point depression equation for an ideal mixture:

$$c_{sp} = c_{sp,0} \left\{ 1 - \exp\left[ -B_L \left( \frac{1}{T} - \frac{1}{T_L} \right) \right] \right\}$$
(2.1)

where  $c_{Sp,0}$  is the equilibrium fraction of spinel as *T* approaches 0 K,  $B_L$  is a fit parameter related to the enthalpy of crystallization over the universal gas constant, and *T* is the absolute temperature in K. The parameters  $c_{Sp,0}$ ,  $T_L$ , and  $B_L$  are then fit to melt composition (typically as first-order glass

property-composition models). Over a relatively narrow range of low  $c_{Sp}$  values, this function can be best approximated by the following:

$$c_{sp} \cong a + bT \tag{2.2}$$

where *a* and *b* are linear fit coefficients that can likewise be fit to melt composition to yield the second equation:

$$c_{sp} \cong \sum_{i=1}^{p} \left( a_i + b_i T \right) g_i \tag{2.3}$$

where

 $a_i$  = the *i*<sup>th</sup> component temperature-independent coefficient,

 $b_i$  = the *i*<sup>th</sup> component temperature-dependent coefficient,

 $g_i =$  the *i*<sup>th</sup> component mass fraction in the melt,

p = the number of components modeled, and

T = temperature (not necessarily absolute temperature) (Hrma and Vienna 2003).

A database of  $c_{Sp}$ , *T*, and composition was compiled and fitted to the simplified model. The database is given in Appendix B, and the resulting model is summarized in Table 2.1 and Figure 2.1. The fit is not precise (with a root mean squared error of 0.47 vol% spinel), but it should be sufficient for estimating the amount of glass to be produced from Hanford HLW. As additional data are collected, the model will be improved to better formulate successful glasses.

Table 2.1 also lists the component mass fraction ranges over which the model was fitted. Figure 2.2 shows that the data coverage across the composition region is generally quite good. Also shown in the scatterplot matrix as red circles are the ten data points removed from the fit as outliers with studentized residuals of greater than four. Only two potential reasons for outliers become obvious in the scatterplot matrix: 1) a glass with both high  $g_{K20}$  and  $g_{Cd0}$  and 2) a glass with both high  $g_F$  and  $g_{Mn0}$ . However, each of those are only single data points and not a trend.

|                   | Temperature- | Temperature-          | Min       | Max       |                      |        |
|-------------------|--------------|-----------------------|-----------|-----------|----------------------|--------|
|                   | Independent  | Dependent             | Mass      | Mass      |                      |        |
| Component,        | Coefficient, | Coefficient,          | Fraction, | Fraction, |                      |        |
| i                 | $a_i$        | $b_{i,} \circ C^{-1}$ | $g_i$     | $g_i$     | Statistic            | Value  |
| $Al_2O_3$         | 21.24545     | -0.00785              | 0.02      | 0.29      | $R^2$                | 0.7326 |
| $B_2O_3$          | -14.55838    | 0.0078747             | 0.03      | 0.203     | $R^2_{ m Adj}$       | 0.7245 |
| CaO               | -76.00601    | 0.0646231             | 0         | 0.08      | $R_{ m Press}^2$     | 0.7121 |
| CdO               | -50.6897     | 0.0621757             | 0         | 0.02      | RMSE, vol%           | 0.4735 |
| $Cr_2O_3$         | -52.92551    | 0.1156024             | 0         | 0.02      | #                    | 1053   |
| F                 | 117.44887    | -0.094526             | 0         | 0.02      | Mean $c_{sp}$ , vol% | 1.152  |
| $Fe_2O_3$         | 30.882125    | -0.013788             | 0.026     | 0.20      | -                    | -      |
| K <sub>2</sub> O  | -17.83219    | 0.0106531             | 0         | 0.06      | -                    | -      |
| Li <sub>2</sub> O | 91.117773    | -0.098169             | 0         | 0.06      | -                    | -      |

Table 2.1. Coefficients, Validity Constraints, and Summary Statistics for  $c_{Sp}$  Model

|                   | Temperature- | Temperature-          | Min            | Max<br>Maas           |           |       |
|-------------------|--------------|-----------------------|----------------|-----------------------|-----------|-------|
| Component         | Coefficient  | Coefficient           | Fraction       | Fraction              |           |       |
| i                 | $a_i$        | $b_{i,} \circ C^{-1}$ | g <sub>i</sub> | <i>g</i> <sub>i</sub> | Statistic | Value |
| MgO               | 420.6061     | -0.305744             | 0              | 0.01                  | -         | -     |
| MnO               | 62.003538    | -0.038308             | 0              | 0.06                  | -         | -     |
| Na <sub>2</sub> O | -4.485897    | -0.007289             | 0.04           | 0.25                  | -         | -     |
| NiO               | 311.47667    | -0.220915             | 0              | 0.03                  | -         | -     |
| SiO <sub>2</sub>  | -13.18649    | 0.009237              | 0.215          | 0.53                  | -         | -     |
| $ZrO_2$           | -0.753569    | 0.0066262             | 0              | 0.062                 | -         | -     |
| Others            | 38.536088    | -0.036449             | 0              | 0.16                  | -         | -     |
| <i>T</i> , °C     | -            | -                     | 654            | 1328                  | -         | -     |
| $c_{Sp}$ , vol%   | -            | -                     | 0              | 5.3                   | -         | -     |



**Figure 2.1**. Plot of Predicted vs. Measured  $c_{sp}$  with 95% Confidence Interval for Individual Prediction, vol%

| 4.5<br>3<br>1.5              | (\$ <i>\$</i> \$19\$\$ |                                            |                                              |                          |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       |              |                                       |                           |                        |                                        | <b>İ</b>           |            |
|------------------------------|------------------------|--------------------------------------------|----------------------------------------------|--------------------------|--------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|--------------|---------------------------------------|---------------------------|------------------------|----------------------------------------|--------------------|------------|
| 1250<br>1050<br>850<br>650   |                        | T (°C)                                     |                                              |                          |                          | Ĭ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | Ŕ                                      |                                           |                                       |              | <b>Ú</b>                              |                           |                        |                                        | <b>IX</b> E        |            |
| 0.26<br>0.18<br>0.1<br>0.02  | <b>.</b>               |                                            | AI2O3                                        |                          | یند.<br>. تن <b>ید</b> : |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,<br>                                                                                      |                                        |                                           | •                                     | N.           |                                       |                           | <b>.</b><br><b>9</b> 7 |                                        |                    |            |
| 0.14                         |                        |                                            |                                              | B2O3                     | 88°, .<br>               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       |              |                                       |                           |                        |                                        | <b>,</b>           |            |
| 0.06<br>0.04<br>0.02<br>0    |                        |                                            | • • • • • • • • • • • • • • • • • • •        | <br>                     | CaO                      |                | <b>*</b> •<br>**•<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • \$                                                                                        | • <b>ද</b> •                           | \$<br>8.<br><b>\$*</b>                    | *):<br>                               | t<br>Lenzi - |                                       |                           | 4.<br>                 | nii .<br>                              | ،<br>              | ÷          |
| 0.018<br>0.012<br>0.006<br>0 | <b></b><br><b></b> .   |                                            | • <b>,</b> .<br>• <b>7</b> .                 | • <b>/</b> *<br>******** | i<br>*••                 | CdO            | •<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | •••••••••••••••••••••••••••••••••••••• |                                           | · · · · · · · · · · · · · · · · · · · | '∣<br>!.:;;. | • <b>/</b> ••                         | مر، ۰<br>پیچید ،<br>پیچید |                        | •<br>•<br>•                            |                    | /<br>***** |
| 0.018<br>0.012<br>0.006<br>0 | <b>.</b>               |                                            |                                              |                          |                          |                | Cr2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                        |                                           |                                       |              |                                       |                           | ý.                     |                                        |                    |            |
| 0.018<br>0.012<br>0.006<br>0 |                        |                                            |                                              |                          | •<br>                    | <br>• .<br>• . | ••••<br>•••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                           | • • • • • • • • • • • • • • • • • • •  | ••••••<br>••••••••••••••••••••••••••••••• |                                       |              | • • • • • • • • • • • • • • • • • • • | ***********               | *****                  | •••••••••••••••••••••••••••••••••••••• | ••••<br>•••<br>••• |            |
| 0.14<br>0.08<br>0.02         |                        |                                            |                                              | <b>*</b> .               |                          |                | Ì.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | Fe2O3                                  |                                           | Ŷ.                                    | <u>k</u> ir  |                                       | ×.                        |                        |                                        | <u></u>            |            |
| 0.04<br>0.02<br>0            |                        | 3000<br>•••••••••••••••••••••••••••••••••• | 000 0000<br>0000 0000<br>0000000000000000000 |                          |                          |                | 10.<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>1 | • • • •                                                                                     |                                        | K20                                       |                                       |              |                                       | 880%                      |                        |                                        |                    | * *        |
| 0.04<br>0.02<br>0            |                        |                                            |                                              |                          |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | ×.                                     |                                           | Li2O                                  | <b>,</b> /   |                                       |                           |                        | ×.                                     |                    |            |
| 0.009<br>0.006<br>0.003<br>0 |                        | • • • • • • • • • • • •                    |                                              |                          | <b>:</b><br>             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       | MgO          | * 12300<br>• 1000<br>• 1000           |                           |                        |                                        |                    | ¥          |
| 0.04<br>0.02<br>0            |                        |                                            |                                              |                          |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       |              | MnO                                   |                           |                        |                                        |                    |            |
| 0.22<br>0.16<br>0.1<br>0.04  |                        |                                            |                                              | <b>.</b>                 |                          |                | <b>i</b> r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             | X                                      |                                           | •                                     |              |                                       | Na2O                      | Ŷ.                     |                                        |                    |            |
| 0.02                         |                        |                                            |                                              |                          |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       |              |                                       |                           | NiO                    |                                        |                    |            |
| 0.5                          |                        |                                            |                                              |                          |                          | <b>1</b> 4 x   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | <b>%</b> :                             | <b>,</b>                                  |                                       | ŴĶ.          |                                       | Yez                       |                        | SiO2                                   | 1% r.'             |            |
| 0.04<br>0.02<br>0            |                        |                                            |                                              |                          |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                        |                                           |                                       |              |                                       |                           |                        |                                        | ZrO2               |            |
| 0.12<br>0.08<br>0.04<br>0    | 01234                  |                                            | 0.020.16                                     | 0.020.1                  | 00.020.06                | \$ 8<br>0.008  | 0 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.008                                                                                     | 0.020.1                                | 0.002                                     |                                       | °°°          | 0 0.02                                | 0.040.14                  | 0 0.01                 | .20.35                                 | 0.020.05           | Others     |

Figure 2.2. Scatterplot Matrix of Glasses Used to Fit the  $c_{sp}$  Model

The model-fit can be summarized by the coefficient of determination  $(R^2)$ , which describes the fraction of the variation in data that is accounted for by the model. Three variations of the  $R^2$  are also considered: 1) the  $R^2$  adjusted for the number of coefficients used to fit the model ( $R_{Adj}^2$ ), 2) the  $R^2$  calculated from data used to validate the model that was not used in model fitting ( $R_{Val}^2$ ), and 3) a special case of the  $R_{Val}^2$  in which each data point is "left out of the fit" in evaluating how well the model predicts the property for each data point to yield  $R_{Press}^2$ . The  $R_{Press}^2$  estimates the fraction of variability that would be explained in predicting new observations drawn from the same composition space. Another commonly reported statistic for model fitting is the root mean square error (RMSE), which is the square root of the mean squared difference between predicted and measured response values, and is an estimate

of the experimental plus measurement standard deviation if the model does not have a statistically significant lack of fit.

To calculate the  $R_{Val}^2$ , data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by  $c_{Sp}$  value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data. The same model form (including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 2.2 summarizes the results of the model validation.

The  $R^2$  values are all close to each other at approximately 0.74. The  $R_{Val}^2$  are all in the range of 0.72, with the exception of group 1 with an  $R_{Val}^2$  of 0.66. The average  $R_{Val}^2$  is almost identical to the  $R_{Press}^2$  value of 0.71. This model is well validated and should give predictions of unknown data within the model-validity region nearly as well as for the model-fit data.

| Fit Statistics        | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|-----------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                 | 0.7313     | 0.7468 | 0.7314 | 0.7296 | 0.7299 | 0.7293 | 0.7334  |
| $R^2_{ m Adj}$        | 0.7231     | 0.7372 | 0.7211 | 0.7193 | 0.7196 | 0.7189 | 0.7232  |
| $R_{ m Press}^2$      | 0.7101     | 0.7213 | 0.7034 | 0.7022 | 0.7039 | 0.7018 | 0.7065  |
| RMSE                  | 0.475      | 0.464  | 0.477  | 0.477  | 0.475  | 0.481  | 0.475   |
| RMSE <sub>Press</sub> | 0.486      | 0.477  | 0.492  | 0.491  | 0.488  | 0.495  | 0.489   |
| Validation            |            |        |        |        |        |        |         |
| $R_{ m Val}^2$        | -          | 0.6604 | 0.7215 | 0.7221 | 0.7249 | 0.7276 | 0.7113  |

**Table 2.2**. Summary of  $c_{sp}$  Model Validation

To apply this model, one must select a temperature and a  $c_{Sp}$  limit at that temperature. A number of melter test campaigns have been performed with finite  $c_{Sp}$  in the melt (Barnes and Larson 1981; Baron and Smith 1988; Bjorklund 1980; Cooper et al. 1994; Dierks 1980; Goles et al. 2002; Hutson 1993; Jain and Barnes 1991; Jantzen 1986; Jantzen and Lambert 1999; Matlack et al. 2009b; McElroy 1976; McElroy et al. 1979a,b; Mendel et al. 1977; Rankin et al. 1982; Ross and Mendel 1979). The two reports of most direct interest have quantified the crystal fraction at 950°C as well as compared the crystals discharged and remaining in the melter (Goles et al. 2002; Matlack et al. 2009b). Goles et al. (2002) successfully processed a glass melt with 3.2 vol% spinel (at 950°C) in a short (120 h) test using the research scaled melter with an overflow pour-spout. They concluded that the  $T_{1\%} < 950^{\circ}$ C limit was too conservative, but they did not perform sufficient testing to determine an appropriate limit. Matlack et al. (2009b) performed five short tests (50 h each) with between 1.6 to 4.2 vol% spinel and eskolaite (at 950°C) using the DM-100 melter with a scaled airlift pour-spout. All the melts processed fine, with no suggestion that the concentrations may yield a problem. However, they concluded that the testing was not yet sufficient to redefine a "crystal limit" since the tests were relatively short and did not include multiple idlings.

A study was performed to determine what the relative impact would be if the crystal fraction limit was set to a value between 1% (current arbitrary limit) and 5% (extent of data used to fit the current model). The results are shown in Figure 2.3. Although the details of these calculations are beyond the scope of this report, three conclusions can be drawn: 1) the new crystal fraction model (shown as C950 in Figure 2.3) results closely match those from the previous  $T_{1\%}$  at 950°C model, adding validity to this new model, 2) a significant reduction of glass volumes can be achieved by increasing the crystal limit, and 3) the additional benefits are insignificant after roughly 4 vol% spinel at 950°C, because other properties limit the loadings of waste in glass.



Figure 2.3. Estimated Hanford HLW Glass Volume as a Function of Crystal Concentration Constraint

Figure 2.4 shows the dimensions of the glass discharge riser for the WTP HLW melter. The pattern-filled part represents a volume of glass (~ 3.3 L) available for precipitation, growth, and accumulation of crystals during melter idling. Figure 2.5 shows the accumulated crystal layer heights that were calculated for various volume fractions of crystals in the glass and 35% packing density of crystals in the layer (a typical compaction value seen in the laboratory tests [Matyas et al. 2010b]) based on an assumption that there was enough time during idling for all of the crystals to precipitate, settle, and accumulate in the bottom of the pour-spout riser.



Figure 2.4. Dimensions of the Glass Discharge Riser for WTP HLW Melter

In the lab, the presence of the latency period has been demonstrated during which crystals grow but do not accumulate (Matyas et al. 2013). The length of this period varied with the glass composition, but was always longer than a day. Therefore, for a large number of short idling periods of less than a day or two, the accumulated layer in the riser, if any, should be small. However, idling periods longer than a few days can lead to thick layers that can eventually plug the riser and prevent pouring of the glass (Figure 2.5).



Figure 2.5. Crystal Accumulation Layer Height as a Function of Crystal vol% in the Melt

With a roughly 8-cm-high orifice in the bottom of the pour-spout riser, a reasonable accumulation height that could be envisioned is half of the height, or 4 cm, which translates to a 2 vol% crystal constraint in

the melt. Until sufficient data on spinel accumulation in the melter is obtained, a limit will be used of 2 vol% at 950°C using the model with coefficients in Table 2.1.

### 2.2 Sulfur Tolerance

The *Preliminary IHLW* [Immobilized High-Level Waste] *Formulation Algorithm Description* limits SO<sub>3</sub> mass fraction in glass ( $g_{SO_3}$ ) to 0.0044 ( $w_{SO_3} \le 0.44$  wt%) based on only three melter test results available at the time of the report (Vienna and Kim 2008). The 2010 constraint report recommends a constant  $g_{SO_3}$  limit of 0.006 ( $w_{SO_3} \le 0.60$  wt%), which was the average concentration of melter tests that did not accumulate a salt from the limited tests available at the time (McCloy and Vienna 2010).

Due to the impact of  $g_{SO_3}$  limits on projected HLW glass volumes, additional testing was performed to better estimate the effect of composition on SO<sub>3</sub> tolerance and to refine the concentration limit. Three methods were used to evaluate  $g_{SO_3}$  in simulated HLW glasses: 1) melter tests with progressively higher concentrations of SO<sub>3</sub> in the melter feed, 2) SO<sub>3</sub> solubility measurements made by bubbling crucible melts with mixtures of SO<sub>2</sub> and O<sub>2</sub> gases, and 3) Na<sub>2</sub>SO<sub>4</sub> saturation in crucible melts. The data available for these three measurement methods are summarized in Table 2.3. These data and the data discussed in this section are based on the amount of SO<sub>3</sub> in the melter feed rather than the fraction retained in glass. The use of wt% is on a calcined melter feed basis (e.g., after removal of volatiles such as H<sub>2</sub>O, NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, etc., but no removal of semivolatiles such as Cs<sup>+</sup> or SO<sub>4</sub><sup>2-</sup>).

|            | $W_{SO_3}$ ,      | $W_{SO_3}$ , | $W_{SO_3}$ , Melter, | $W_{SO_3}$ , Melter, |
|------------|-------------------|--------------|----------------------|----------------------|
| Glass ID   | Saturation        | Bubbling     | Max w/o Salt         | Min w/ Salt          |
| HLW98-77   | 0.38              | 0.58         | NM                   | NM                   |
| HLW98-86   | NM <sup>(a)</sup> | 0.73         | 0.44                 | 0.5                  |
| HLW98-96   | NM                | 0.54         | NM                   | NM                   |
| HLW02-15   | NM                | 0.83         | NM                   | NM                   |
| HLW02-22   | 0.63              | 0.6          | NM                   | NM                   |
| HLW02-24   | NM                | 0.58         | NM                   | NM                   |
| HLW02-26   | NM                | 0.61         | NM                   | NM                   |
| HLW02-43   | NM                | 0.82         | NM                   | NM                   |
| HLW02-46   | NM                | 0.53         | 0.7                  | 0.9                  |
| HLW02-50   | NM                | 0.59         | NM                   | NM                   |
| HLW03-01   | NM                | 1.12         | NM                   | NM                   |
| HLW03-03   | 0.62              | 0.63         | NM                   | NM                   |
| HLW04-07   | NM                | 0.62         | 0.19                 | 0.19                 |
| HLW06-16   | 0.52              | 0.84         | NM                   | NM                   |
| HLW06-22   | 1.34              | 1.6          | NM                   | NM                   |
| HLW06-24   | NM                | 0.65         | NM                   | NM                   |
| HLW06-27   | NM                | 0.64         | NM                   | NM                   |
| HLW06-29   | NM                | 0.72         | NM                   | NM                   |
| HLW06-32   | NM                | 0.85         | NM                   | NM                   |
| HLW-ALG-03 | NM                | 0.87         | NM                   | NM                   |
| HLWS-01    | 0.80              | 1.05         | NM                   | NM                   |
| HLWS-02    | 0.70              | 0.86         | NM                   | NM                   |
| HLWS-03    | 0.78              | NM           | NM                   | NM                   |

Table 2.3. HLW SO<sub>3</sub> Solubility, Saturation, and Melter Test Data, wt%

|             | $W_{SO_3}$ , | $W_{SO_3}$ , | $W_{SO_3}$ , Melter, | $W_{SO_3}$ , Melter, |
|-------------|--------------|--------------|----------------------|----------------------|
| Glass ID    | Saturation   | Bubbling     | Max w/o Salt         | Min w/ Salt          |
| HLWS-04     | 1.29         | 1.31         | NM                   | NM                   |
| HLWS-05     | 1.38         | 1.30         | NM                   | NM                   |
| HLWS-06     | 1.19         | NM           | NM                   | NM                   |
| HLWS-07     | 1.10         | NM           | NM                   | NM                   |
| HLWS-08     | 1.29         | 1.29         | NM                   | NM                   |
| HLWS-09     | 1.63         | 1.78         | 1.91                 | NM                   |
| HLWS-10     | 1.55         | 1.74         | NM                   | NM                   |
| HLWS-11     | 1.09         | 1.58         | NM                   | NM                   |
| HLWS-12     | 1.33         | 1.78         | NM                   | NM                   |
| HLWS-13     | 0.85         | 1.25         | NM                   | NM                   |
| HLWS-14     | 1.18         | 1.25         | NM                   | NM                   |
| HLWS-15     | 1.14         | NM           | NM                   | NM                   |
| HLWS-16     | 1.33         | NM           | NM                   | NM                   |
| HLWS-17     | 0.79         | NM           | NM                   | NM                   |
| HLWS-18     | 0.74         | NM           | NM                   | NM                   |
| HLWS-19     | 0.64         | NM           | NM                   | NM                   |
| HLWS-20     | 1.26         | NM           | NM                   | NM                   |
| HLW-NGFe2   | NM           | 0.83         | 0.50                 | 0.60                 |
| HLW04-09    | NM           | 0.65         | NM                   | NM                   |
| HLW-E-Bi-6  | NM           | 0.74         | NM                   | NM                   |
| HLW-E-Al-27 | NM           | 1.09         | NM                   | NM                   |
| HLW-EANa-22 | NM           | 0.87         | NM                   | NM                   |
| HWI-Al-19   | NM           | 1.25         | 1.30                 | 1.40                 |
| HLW98-80    | NM           | 0.66         | NM                   | NM                   |
| HLW98-95    | NM           | 0.66         | NM                   | NM                   |

(a) NM-not measured

With so little melter test data, the correlation between melter salt separation response and crucible-scale test data is used. There is significantly more crucible-scale testing. The six glasses with both melter test and bubbling solubility data show a distinct correlation as shown in Figure 2.6. For all but the highest sulfur glass, there are two data points that represent a single measured solubility by bubbling in the crucible and two concentrations used in melter tests, the circles being salt free in the melter test and the triangles for  $SO_3$  concentrations that accumulated salt in the melter tests. It is the circular points that are later used as the "maximum  $SO_3$  concentration in melter tests without salt accumulation."

Figure 2.7 compares the SO<sub>3</sub> concentrations measured using the bubbling solubility and Na<sub>2</sub>SO<sub>4</sub> saturation methods. The different symbols represent data from different reports. The strong correlation between all three methods suggests either that the more abundant crucible-scale data can be used to model sulfur tolerance or that the data can reasonably be combined into a single data set for modeling. However, the Na<sub>2</sub>SO<sub>4</sub> saturation data is consistently below the bubbling solubility data (by roughly 0.2 wt% SO<sub>3</sub>); this data must be offset by that amount before combining with the other two data sets. The validity of this approach will be revisited as we model the data as a function of target glass composition in the coming subsections.



Figure 2.6. Comparison of Melter Test and Crucible-Scale Bubbling Solubility SO<sub>3</sub> Concentrations



Figure 2.7. Comparison of SO<sub>3</sub> Concentrations by Bubbling Solubility and Na<sub>2</sub>SO<sub>4</sub> Saturation Tests

The composition basis was adjusted to enable modeling. Because  $g_{SO_3}$  is both the dependent variable and part of the independent variables (mass fractions of oxides in glass), the composition was normalized after removing the concentration of SO<sub>3</sub>:

$$n_i = \frac{g_i}{1 - g_{SO_3}} \tag{2.4}$$

where  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass and  $n_i$  is the *i*<sup>th</sup> components normalized concentration, so that the concentrations of all components except SO<sub>3</sub> sum to 1.

Four approaches to modeling  $W_{SQ_2}^{Limit}$  were ultimately attempted using different model data sets:

- 1. In the first approach, the 48 crucible-scale bubbling solubility and Na<sub>2</sub>SO<sub>4</sub> saturation data were combined using the following rules: if bubbling solubility data were available for a given glass, they were used (because these data most closely matched melter data) and if bubbling solubility data were not available, then the saturation data with the appropriate offset were used. The combined crucible-scale data were then fitted to composition, and are summarized in Section 2.2.1.
- 2. In the second approach, the maximum melter wt% SO<sub>3</sub> without salt accumulation ( $w_{SO_2}^{Melt}$ ) was

combined with the crucible-scale data using the rule that data were taken in order of priority for each glass: melter, bubbling solubility, then saturation plus offset. Because the melter data are the highest priority and only exist for 6 of the 48 compositions, the data were weighted to give melter data equal weight as crucible data. The combined melter and crucible-scale data were then fitted to composition, and are summarized in Section 2.2.2.

Although the HLW-only  $W_{so}$  models fit the data used to fit them very well (with  $R^2$  values of roughly

0.9), they did not validate well with  $R_{Press}^2$  and  $R_{Val}^2$  values in the 0.6 to 0.7 range. It was therefore concluded that with insufficient HLW  $w_{SO_3}$  data, an attempt would be made to fit the combined LAW and HLW  $w_{SO_3}$  data set.

- 3. In the third approach, the combined LAW and HLW crucible-scale (bubbling solubility and Na<sub>2</sub>SO<sub>4</sub> saturation) data were combined using the following rules: if bubbling solubility data were available for a given glass, they were used (because these data most closely matched melter data) and if bubbling solubility data were not available, then the saturation data with the appropriate offset were used. The combined LAW and HLW crucible-scale data were then fitted to composition, and are summarized in Section 2.2.3.
- 4. In the fourth approach, the combined LAW and HLW melter- and crucible-scale data were modeled as a function of composition. Here, as in the second approach, the melter data were weighted equally with the crucible data. Likewise, the saturation data were offset by the average difference between melter and saturation wt% SO<sub>3</sub> ( $w_{SO_3}$ ). The combined LAW and HLW melter- and crucible-scale data were then fitted to composition, and are summarized in Section 2.2.4.

The four modeling approaches are contrasted in Section 2.2.5. The results lead to a recommended final  $g_{SO_2}$  to be used in glass formulation and waste loading estimation.

#### 2.2.1 Crucible-Scale HLW *w*<sub>SO</sub> Model

There are 48 glass compositions in the HLW  $w_{SO_3}$  database. The composition region covered by these glasses is summarized in Table 2.4 and shown in a scatterplot matrix in Figure 2.8.

| Comp, i           | Min   | Max   |
|-------------------|-------|-------|
| $Al_2O_3$         | 0.019 | 0.239 |
| $B_2O_3$          | 0.043 | 0.203 |
| CaO               | 0.000 | 0.086 |
| Cl                | 0.000 | 0.002 |
| $Cr_2O_3$         | 0.000 | 0.008 |
| F                 | 0.000 | 0.008 |
| $Fe_2O_3$         | 0.014 | 0.171 |
| K <sub>2</sub> O  | 0.000 | 0.016 |
| Li <sub>2</sub> O | 0.000 | 0.061 |
| MgO               | 0.000 | 0.012 |
| MnO               | 0.000 | 0.080 |
| Na <sub>2</sub> O | 0.037 | 0.200 |
| $P_2O_5$          | 0.000 | 0.051 |
| $SiO_2$           | 0.270 | 0.531 |
| SrO               | 0.000 | 0.103 |
| TiO <sub>2</sub>  | 0.000 | 0.010 |
| $V_2O_5$          | 0.000 | 0.041 |
| ZnO               | 0.000 | 0.040 |
| $ZrO_2$           | 0.000 | 0.115 |
| $Bi_2O_3$         | 0.000 | 0.067 |
| CdO               | 0.000 | 0.017 |
| $La_2O_3$         | 0.000 | 0.012 |
| NiO               | 0.000 | 0.017 |
| ThO <sub>2</sub>  | 0.000 | 0.060 |
| $UO_3$            | 0.000 | 0.065 |

**Table 2.4**. Component Concentration Ranges for HLW  $w_{SO_3}$  Database,  $n_i$ , in Mass Fraction



**Figure 2.8**. Scatterplot Matrix of Component Concentrations in the HLW  $w_{SO_3}$  Database ( $n_i$  in mass fraction)

The 48-glass data set is made up of 38  $w_{SO_3}^{Bubb}$  and 9  $w_{SO_3}^{Sat}$ . Because there is only one data point with both  $w_{SO_3}^{Melt}$  (1.91 wt%) and  $w_{SO_3}^{Sat}$  (1.63 wt%), the  $w_{SO_3}^{Sat}$  offset was estimated by the difference between both  $w_{SO_3}^{Melt} - w_{SO_3}^{Sat}$  and  $w_{SO_3}^{Sat} - w_{SO_3}^{Sat}$ , as shown graphically in Figure 2.9. The average offset is 0.185 (wt% SO<sub>3</sub>).



**Figure 2.9.** Comparison of  $w_{SO_3}^{Sat}$  with  $w_{SO_3}^{Bubb}$  (open points) and  $w_{SO_3}^{Melt}$  (solid point)

Once properly adjusted, the 48 data were fitted to the composition according to:

$$w_{SO_3}^{Limit} = \sum_{i=1}^{p} s_i n_i \tag{2.5}$$

where  $W_{SO_3}^{Limit}$  is the sulfur tolerance limit (in wt%),  $s_i$  is the *i*<sup>th</sup> component coefficient, and  $n_i$  is the *i*<sup>th</sup> component normalized (after removing SO<sub>3</sub>) mass fraction. The results are shown in Figure 2.10 and summarized in Table 2.5.



Figure 2.10. Comparison of Predicted and Measured Crucible-Scale  $w_{SO_3}$  with 95% Confidence Interval for Individual Prediction, wt%

| Components, <i>i</i>           | Coefficients, $s_i$ | Summary Statistics    | Value  |
|--------------------------------|---------------------|-----------------------|--------|
| $Al_2O_3$                      | -1.8897             | $R^2$                 | 0.8928 |
| $B_2O_3$                       | 4.74159             | $R^2_{ m Adj}$        | 0.8600 |
| CaO                            | 9.152743            | $R_{\rm Press}^2$     | 0.7851 |
| $Cr_2O_3$                      | -27.3782            | RMSE                  | 0.139  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.071244            | RMSE <sub>Press</sub> | 0.172  |
| Li <sub>2</sub> O              | 13.65928            | -                     | -      |
| Na <sub>2</sub> O              | 3.528745            | -                     | -      |
| SiO <sub>2</sub>               | -1.51497            | -                     | -      |
| $V_2O_5$                       | 6.752861            | -                     | -      |
| ZnO                            | -3.37833            | -                     | -      |
| $ZrO_2$                        | -1.23971            | -                     | -      |
| Others                         | 2.623079            | -                     | -      |

**Table 2.5.** Summary of Crucible-Scale HLW  $w_{SO_3}^{Limit}$  Model

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by  $w_{SO_3}$  value. The data were then numbered 1, 2, 3, 4, 5, 1,

2, ... to split them into five representative groups of roughly 20% of the data. The same model form (including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 2.6 summarizes the results of the model validation. The model-fit  $R^2$  values are all close to each other at approximately 0.9. The  $R_{Val}^2$  values, however, vary significantly, from 0.72 to 0.95. The  $R_{Press}^2$  value of 0.79 is also significantly lower than the model-fit  $R^2$  of 0.89. In addition, 6 of the 12 model coefficients varied by more than a 25% relative standard deviation (RSD) for the validation set, with the largest difference being 788% RSD for Fe<sub>2</sub>O<sub>3</sub>. This model validation suggests that insufficient data are available to clearly model the composition effects.

| Fit Statistics        | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|-----------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                 | 0.8928     | 0.8988 | 0.8733 | 0.9157 | 0.9219 | 0.9031 | 0.9025  |
| $R_{ m Adj}^2$        | 0.8600     | 0.8559 | 0.8196 | 0.8800 | 0.8901 | 0.8636 | 0.8619  |
| $R_{ m Press}^2$      | 0.7851     | 0.7236 | 0.6405 | 0.7952 | 0.8133 | 0.7958 | 0.7537  |
| RMSE                  | 0.139      | 0.140  | 0.155  | 0.126  | 0.126  | 0.140  | 0.1375  |
| RMSE <sub>Press</sub> | 0.172      | 0.194  | 0.219  | 0.165  | 0.164  | 0.172  | 0.1827  |
| Validation            |            |        |        |        |        |        |         |
| $R_{ m Val}^2$        | -          | 0.7213 | 0.9498 | 0.7834 | 0.9399 | 0.9550 | 0.8699  |

Table 2.6. Summary of Crucible-Scale HLW SO<sub>3</sub> Solubility Model Validation

#### 2.2.2 Weighted Crucible- and Melter-Scale *w*<sub>SO</sub>, HLW Model

To focus more on the melter response to SO<sub>3</sub> tolerance, the data set was developed by using the maximum SO<sub>3</sub> in the melter test without salt formation where available (six data points). If no melter data were available, bubbler data were used (33 data points), and if no bubbler data were available, saturation plus offset data were used (nine data points). Equal weighting was given to melter data and crucible data using a weighting factor. The weighting for  $w_{SO_3}^{Melt}$  was 48/6/2=4, while the weighting for both  $w_{SO_3}^{Bubb}$  and  $w_{SO_3}^{Sat}$  was 48/42/2=0.571.

Once properly adjusted, the 48 data were fitted to composition according to Equation 2.5. The results are shown in Figure 2.11 and summarized in Table 2.7.



**Figure 2.11**. Comparison of Predicted and Measured Crucible- and Melter-Scale  $w_{SO_3}$  with 95% Confidence Interval for Individual Prediction, wt%

| Components, <i>i</i>           | Coefficients, $s_i$ | Summary Statistics    | Value  |
|--------------------------------|---------------------|-----------------------|--------|
| Al <sub>2</sub> O <sub>3</sub> | -1.8897             | $R^2$                 | 0.8928 |
| $B_2O_3$                       | 4.74159             | $R^2_{ m Adj}$        | 0.8600 |
| CaO                            | 9.152743            | $R_{\rm Press}^2$     | 0.7851 |
| $Cr_2O_3$                      | -27.3782            | RMSE                  | 0.139  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.071244            | RMSE <sub>Press</sub> | 0.172  |
| Li <sub>2</sub> O              | 13.65928            | -                     | -      |
| Na <sub>2</sub> O              | 3.528745            | -                     | -      |
| SiO <sub>2</sub>               | -1.51497            | -                     | -      |
| $V_2O_5$                       | 6.752861            | -                     | -      |
| ZnO                            | -3.37833            | -                     | -      |
| $ZrO_2$                        | -1.23971            | -                     | -      |
| Others                         | 2.623079            | -                     | -      |

Table 2.7. Summary of Crucible- and Melter-Scale HLW SO<sub>3</sub> Model

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by  $w_{SO_3}$  value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data. The same model form

(including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 2.8 summarizes the results of the model validation. The model-fit  $R^2$  values are all close to each other at approximately 0.9. The  $R_{Val}^2$  values, however, vary significantly, from 0.50 to 0.80. The  $R_{Press}^2$  value of 0.79 is also significantly lower than the model-fit  $R^2$  of 0.89. In addition, 6 of the 12 model coefficients varied by more than 25% RSD for the validation set, with the largest difference being 788% RSD for Fe<sub>2</sub>O<sub>3</sub>. This model validation suggests that insufficient data are available to clearly model the composition effects.

| Fit Statistics               | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|------------------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                        | 0.8928     | 0.8988 | 0.8733 | 0.9157 | 0.9219 | 0.9031 | 0.9025  |
| $R_{ m Adj}^2$               | 0.8600     | 0.8559 | 0.8196 | 0.8800 | 0.8901 | 0.8636 | 0.8619  |
| $R_{ m Press}^2$             | 0.7851     | 0.7236 | 0.6405 | 0.7952 | 0.8133 | 0.7958 | 0.7537  |
| RMSE                         | 0.139      | 0.140  | 0.155  | 0.126  | 0.126  | 0.140  | 0.1375  |
| <b>RMSE</b> <sub>Press</sub> | 0.172      | 0.194  | 0.219  | 0.165  | 0.164  | 0.172  | 0.1827  |
| Validation                   |            |        |        |        |        |        |         |
| $R_{ m Val}^2$               | -          | 0.7343 | 0.7843 | 0.7823 | 0.7950 | 0.5031 | 0.7198  |

Table 2.8. Summary of Crucible- and Melter-Scale HLW SO<sub>3</sub> Model Validation

#### 2.2.3 Crucible-Scale LAW and HLW *w*<sub>SO</sub> Model

The difficulties with the HLW SO<sub>3</sub> model validation suggest that LAW and HLW  $w_{SO_3}$  should be combined and modeled. To accomplish this, we first compiled all the LAW and HLW  $w_{SO_3}$  data. A total of 312 data points were available. The composition region covered by these glasses is summarized in Table 2.9 and shown in a scatterplot matrix in Figure 2.12.

| a |                   |        |        |  |                                |        |        |  |  |  |  |
|---|-------------------|--------|--------|--|--------------------------------|--------|--------|--|--|--|--|
|   | Comp, i           | Min    | Max    |  | Comp, i                        | Min    | Max    |  |  |  |  |
|   | $Al_2O_3$         | 0.0188 | 0.2387 |  | SiO <sub>2</sub>               | 0.2703 | 0.5310 |  |  |  |  |
|   | $B_2O_3$          | 0.0398 | 0.2030 |  | SrO                            | 0      | 0.1032 |  |  |  |  |
|   | CaO               | 0      | 0.1294 |  | $SnO_2$                        | 0      | 0.0501 |  |  |  |  |
|   | Cl                | 0      | 0.0117 |  | TiO <sub>2</sub>               | 0      | 0.0411 |  |  |  |  |
|   | $Cr_2O_3$         | 0      | 0.0100 |  | $V_2O_5$                       | 0      | 0.0439 |  |  |  |  |
|   | F                 | 0      | 0.0306 |  | ZnO                            | 0      | 0.0586 |  |  |  |  |
|   | $Fe_2O_3$         | 0      | 0.1707 |  | $ZrO_2$                        | 0      | 0.1150 |  |  |  |  |
|   | $K_2O$            | 0      | 0.0834 |  | BaO                            | 0      | 0.0790 |  |  |  |  |
|   | Li <sub>2</sub> O | 0      | 0.0607 |  | Bi <sub>2</sub> O <sub>3</sub> | 0      | 0.0670 |  |  |  |  |
|   | MgO               | 0      | 0.1010 |  | CdO                            | 0      | 0.0165 |  |  |  |  |
|   | MnO               | 0      | 0.0800 |  | ThO <sub>2</sub>               | 0      | 0.0596 |  |  |  |  |
|   | Na <sub>2</sub> O | 0.0248 | 0.2605 |  | UO <sub>3</sub>                | 0      | 0.0652 |  |  |  |  |
|   | $P_2O_5$          | 0      | 0.0508 |  | -                              | -      | -      |  |  |  |  |
|   |                   |        |        |  |                                |        |        |  |  |  |  |

**Table 2.9**. Component Concentration Ranges for the Combined HLW and LAW  $w_{SO_3}$  Database ( $n_i$ , in mass fraction)



**Figure 2.12**. Scatterplot Matrix of Component Concentrations in the Combined HLW (blue) and LAW (red)  $SO_3$  Database ( $n_i$  in mass fraction)

The few melter-scale data are compared to crucible-scale data in Figure 2.13. It is clear from this plot that, similar to the HLW SO<sub>3</sub> data, the combined data show an excellent correlation between  $w_{SO_3}^{Melt}$  and  $w_{SO_3}^{Bubb}$  as well as a good correlation with an offset between  $w_{SO_3}^{Melt}$  and  $w_{SO_3}^{Sat}$ . The average offset  $w_{SO_3}^{Melt}$  -  $w_{SO_3}^{Sat} = 0.216$  wt%. The final model data set used  $w_{SO_3}^{Bubb}$  for any glass with bubbler data available (77 data points) and  $w_{SO_3}^{Sat}$  + offset for all other glasses (235 data points).



**Figure 2.13**. Comparison of  $w_{SO_3}^{Melt}$  to  $w_{SO_3}^{Bubb}$  (red circles) and  $w_{SO_3}^{Sat}$  (blue squares) for the Combined HLW (solid) and LAW (open)

Once properly adjusted, the 312 data were fitted to composition according to:

$$w_{SO_{3}}^{Limit} = \sum_{i=1}^{p} s_{i}n_{i} + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} s_{ij}n_{i}n_{j} \right\}$$
(2.6)

where

 $W_{SO_3}^{Limit}$ = the sulfur tolerance limit (in wt%),

 $s_i$  = the *i*<sup>th</sup> component coefficients,  $n_i$  = the *i*<sup>th</sup> component normalized (after removing SO<sub>3</sub>) mass fraction, and  $s_{ij}$  = the *i*<sup>th</sup> time *j*<sup>th</sup> component coefficient.

The results are shown in Figure 2.14 and summarized in Table 2.10.



**Figure 2.14**. Comparison of Predicted and Measured Crucible-Scale HLW and LAW SO<sub>3</sub> Solubility with 95% Confidence Interval for Individual Prediction, wt%

| Components, <i>i</i>                | Coefficients, $s_i$ | Summary Statistics    | Value  |
|-------------------------------------|---------------------|-----------------------|--------|
| Al <sub>2</sub> O <sub>3</sub>      | -0.803866           | $R^2$                 | 0.8419 |
| $B_2O_3$                            | 3.0983142           | $R_{ m Adj}^2$        | 0.8339 |
| CaO                                 | 5.6570336           | $R_{ m Press}^2$      | 0.8176 |
| Cl                                  | -29.77093           | RMSE                  | 0.139  |
| Cr <sub>2</sub> O <sub>3</sub>      | -7.5784             | RMSE <sub>Press</sub> | 0.146  |
| Li <sub>2</sub> O                   | 3.2746409           | $R^2$ (HLW-only)      | 0.7619 |
| Na <sub>2</sub> O                   | 2.7845163           | -                     | -      |
| $P_2O_5$                            | 4.4652267           | -                     | -      |
| SiO <sub>2</sub>                    | -0.542488           | -                     | -      |
| SrO                                 | 2.6347706           | -                     | -      |
| TiO <sub>2</sub>                    | 6.3907736           | -                     | -      |
| $V_2O_5$                            | 6.2747968           | -                     | -      |
| ZnO                                 | 4.2286005           | -                     | -      |
| $ZrO_2$                             | -1.291709           | -                     | -      |
| Other                               | 0.1221757           | -                     | -      |
| Li <sub>2</sub> O×Li <sub>2</sub> O | 179.71011           | -                     | -      |

Table 2.10. Summary of Crucible-Scale HLW and LAW SO<sub>3</sub> Model

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by  $w_{SO_3}$  value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data. The same model form (including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 2.11 summarizes the results of the model validation. The model-fit  $R^2$  values are all close to each other at approximately 0.84. The  $R_{Val}^2$  values range from 0.80 to 0.85, which is a significantly lower variation than the HLW-only models. The  $R_{Val}^2$  value of 0.82. The coefficients for individual fits also varied less broadly than the HLW-only models. This model is well validated and should give predictions of unknown data within the model-validity region nearly as well as for the model-fit data.

| Fit Statistics               | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|------------------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                        | 0.8419     | 0.8481 | 0.8361 | 0.8482 | 0.8431 | 0.8470 | 0.8445  |
| $R^2_{ m Adj}$               | 0.8339     | 0.8383 | 0.8256 | 0.8385 | 0.8331 | 0.8372 | 0.8345  |
| $R_{ m Press}^2$             | 0.8176     | 0.8169 | 0.8063 | 0.8157 | 0.8111 | 0.8185 | 0.8137  |
| RMSE                         | 0.139      | 0.137  | 0.141  | 0.138  | 0.140  | 0.138  | 0.1390  |
| <b>RMSE</b> <sub>Press</sub> | 0.146      | 0.146  | 0.149  | 0.148  | 0.149  | 0.146  | 0.1475  |
| Validation                   |            |        |        |        |        |        |         |
| $R_{ m Val}^2$               | -          | 0.7994 | 0.8530 | 0.7980 | 0.8201 | 0.8093 | 0.8160  |

Table 2.11. Summary of Crucible-Scale HLW and LAW SO<sub>3</sub> Model Validation

Applying this model to the HLW data yielded an  $R^2$  value of only 0.76. Although this is lower than the model-fit  $R^2$  value for the HLW-only models in Sections 2.2.1 and 2.2.2, it is still on the same order or higher than the HLW-only  $R_{Val}^2$  and  $R_{Press}^2$  values.

## 2.2.4 Weighted Crucible- and Melter-Scale LAW and HLW W<sub>SO</sub> Model

To focus more on the melter response to SO<sub>3</sub> tolerance, the data set was developed by using the maximum SO<sub>3</sub> in the melter test without salt formation where available (19 data points). If no melter data were available, bubbler data were used (64 data points), and if no bubbler data were available, saturation plus offset data was used (229 data points). Equal weighting was given to melter data and crucible data using a weighting factor. The weight for  $w_{SO_3}^{Melt}$  was 312/19/2=8.21, while the weighting for both  $w_{SO_3}^{Bubb}$  and  $w_{SO_4}^{Sat}$  was 312/293/2=0.532.

Once properly adjusted, the 312 data points were fitted to composition according to Equation 2.5. Note that second order compositional terms were investigated using Equation 2.6 without yielding a sufficient advantage to be used. The model results are shown in Figure 2.15 and summarized in Table 2.12.



**Figure 2.15**. Comparison of the Predicted and Measured Crucible- and Melter-Scale HLW and LAW SO<sub>3</sub> with 95% Confidence Interval for Individual Prediction, wt%

| Components, <i>i</i>           | Coefficients, $s_i$ | Summary Statistics    | Value  |
|--------------------------------|---------------------|-----------------------|--------|
| $Al_2O_3$                      | 0.104254            | $R^2$                 | 0.8832 |
| CaO                            | 6.689832            | $R^2_{ m Adj}$        | 0.8785 |
| Cl                             | -21.1286            | $R_{ m Press}^2$      | 0.8038 |
| Cr <sub>2</sub> O <sub>3</sub> | -14.135             | RMSE                  | 0.135  |
| Fe <sub>2</sub> O <sub>3</sub> | -1.40865            | RMSE <sub>Press</sub> | 0.172  |
| K <sub>2</sub> O               | -1.05279            | $R^2$ (HLW-only)      | 0.6917 |
| Li <sub>2</sub> O              | 9.38707             | -                     | -      |
| Na <sub>2</sub> O              | 1.543692            | -                     | -      |
| $P_2O_5$                       | 8.120125            | -                     | -      |
| SiO <sub>2</sub>               | -0.55299            | -                     | -      |
| TiO <sub>2</sub>               | 9.818723            | -                     | -      |
| $V_2O_5$                       | 7.464254            | -                     | -      |
| Others                         | 2.464308            | -                     | -      |

Table 2.12. Summary of the Crucible- and Melter-Scale HLW and LAW SO<sub>3</sub> Model

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by  $w_{SO_3}$  value. The data were then numbered 1, 2, 3, 4, 5, 1,

2, ... to split them into five representative groups of roughly 20% of the data. The same model form (including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 2.13 summarizes the results of the model validation. The model-fit  $R^2$  values are all close to each other at approximately 0.88. The  $R_{Val}^2$  values range from 0.61 to 0.84, which is broader than the combined HLW and LAW crucible-scale-only model, but narrower than the HLW-only models. The  $R_{Press}^2$  value of 0.80 is also significantly lower than the fit  $R^2$  value of 0.88 and significantly above the average  $R_{Val}^2$  value of 0.74. The coefficients for individual fits also varied significantly, with %RSD values as high as 512. This model validation suggests that composition effects are not well captured by the model.

| Fit Statistics        | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|-----------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                 | 0.8832     | 0.8957 | 0.8855 | 0.8745 | 0.8966 | 0.8869 | 0.8878  |
| $R_{ m Adj}^2$        | 0.8785     | 0.8885 | 0.8797 | 0.8681 | 0.8914 | 0.8811 | 0.8818  |
| $R_{\rm Press}^2$     | 0.8038     | 0.7944 | 0.7987 | 0.7828 | 0.8188 | 0.8026 | 0.7995  |
| RMSE                  | 0.135      | 0.118  | 0.140  | 0.141  | 0.130  | 0.136  | 0.1331  |
| RMSE <sub>Press</sub> | 0.172      | 0.160  | 0.181  | 0.181  | 0.169  | 0.176  | 0.1732  |
| Validation            |            |        |        |        |        |        |         |
| $R_{ m Val}^2$        | -          | 0.7016 | 0.8391 | 0.8171 | 0.6149 | 0.7131 | 0.7372  |

Table 2.13. Summary of Crucible- and Melter-Scale HLW and LAW SO<sub>3</sub> Model Validation

Applying this model to only the HLW data yielded an  $R^2$  value of 0.69, which is lower than all other modeling approaches attempted.

#### 2.2.5 Recommended $w_{SO_2}$ Model

Four different modeling approaches were attempted to describe the impact of composition on the sulfur tolerance of either HLW glass melts or combined LAW and HLW glass melts. Those models for HLW-only data described the model data well, but they were poorly validated. Likewise, the model used to fit the weighted melter-scale and crucible-scale combined LAW and HLW data did not validate well.

The crucible-scale-only, combined HLW and LAW model performed the best in validation. Applying this model to the melter-scale SO<sub>3</sub> values shows a very good correlation (Figure 2.16). The  $R_{Val}^2$  value calculated for melter-scale data predicted by the crucible-scale model is 0.841 for all melter data and 0.769 for HLW data only. The point at a maximum melter SO<sub>3</sub> of 0.19 wt% and the predicted  $w_{SO_3}$  of 0.68 (HLW04-07) was found to be an outlier. This data point was identified as an outlier when the initial melter test (DM-100) showed the unexpected formation of salt. After reviewing the data, it was decided to proceed with a DM-1200 melter test with the same composition, which, as expected, did not show any signs of salt. Removing this data point from the validation data set would increase the  $R_{Val}^2$  value calculated for melter-scale data predicted by the crucible-scale model to 0.852 for HLW data and 0.908 for LAW and HLW data. It is therefore recommended that the model described in Section 2.2.3 with coefficients listed in Table 2.10 be used to predict sulfur limits for HLW glasses. As discussed in the LAW sulfur tolerance section of this report (Section 3.2), this combined HLW and LAW, crucible-scale,  $w_{SO_3}$  model is also compared favorably to the LAW-only model. It should also be pointed out that at the predicted value of 0.7 wt% SO<sub>3</sub>, the data is highly scattered. Additional data needs to be collected in the 0.5 to 1 wt% region to improve the predictions in this critical point of SO<sub>3</sub> concentration.



**Figure 2.16**. Comparison of Crucible-Scale Combined HLW and LAW SO<sub>3</sub> Model Predictions with Measured Melter-Scale SO<sub>3</sub>, in wt%

#### 2.3 Nepheline Limit

If nepheline (ideally NaAlSiO<sub>4</sub>) precipitates from HLW glass during canister cooling, it will likely reduce the chemical durability of the glass by removing Al and Si from the residual glass at a 1:1:1 ratio with Na (Kim et al. 1995). It will also make it difficult to predict the PCT response of the glass. Because PCT response must be controlled and reported to meet current disposal criteria (DOE 1996), nepheline precipitation must either be avoided, or the amount of nepheline formed and its impact on PCT must be predicted. Because canistered waste glass will be subjected to a broad range of thermal histories, a simulated canister centerline cooling (CCC) is used as a bounding thermal history to determine the risk of nepheline formation. A nepheline discriminator (ND) was developed and shown to successfully reduce the risk of nepheline precipitation in CCC heat treated waste glasses (Li et al. 1997). The ND is based on limiting the normalized SiO<sub>2</sub> concentration (*NSi*) as follows:

$$NSi = \frac{g_{SiO_2}}{g_{SiO_2} + g_{Al_2O_3} + g_{Na_2O}}$$
(2.7)

to >0.62 in the glass as shown in Figure 2.17. The ND constraint is overly conservative, however. As can be seen in the plot, several glasses with NSi < 0.62 do not form nepheline on slow cooling, some as low as NSi = 0.47. The lower NSi glasses are those with the highest waste loadings, and therefore a less

conservative method of limiting nepheline precipitation is needed to both maintain acceptable glasses and allow higher waste loading.



Figure 2.17. Comparison of NSi to Nepheline Volume Percent from WTP HLW Glasses Subjected to CCC Heat Treatment (Vienna and Kim 2008). ● – quantitative value, ◊-- less than value, Δ -- greater than value

McCloy et al. proposed a revised constraint whereby glasses with NSi < 0.62 would be allowed as long as the optical basicity (OB) of the melt was greater than 0.55 (McCloy et al. 2010; McCloy and Vienna 2010; Rodriguez et al. 2011). This approach did reduce some of the conservatism, but still limited the potential loading of high alumina wastes in glass. A new approach to limiting the nepheline precipitation on CCC is clearly needed to optimize waste loading in glass.

The proposed nepheline prediction model uses a neural network (NN) to model the complex non-linear interactions between the components. The final model comprised a network with a single layer and three nodes, all using the hyperbolic tangent (TanH) activation function. These nodes are classified as the hidden layers of the model. A series of modeling experiments explored the effects of many different glass descriptors, including OB, normalized concentrations of SiO<sub>2</sub> (*NSi*), Na<sub>2</sub>O, and Al<sub>2</sub>O<sub>3</sub>, and the unnormalized mass fractions ( $g_i$ ) of Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, Li<sub>2</sub>O, MgO, Na<sub>2</sub>O, and SiO<sub>2</sub>. It was determined that the normalized component concentrations and OB were not as effective in predicting nepheline formation as the unnormalized oxide concentrations.

An original set of 20 models was generated using different combinations of predictors ( $g_i$ ). From this study, two sets were determined to be the most promising: 1) Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, CaO, Li<sub>2</sub>O, Na<sub>2</sub>O, and SiO<sub>2</sub>, and 2) Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, Li<sub>2</sub>O, MgO, Na<sub>2</sub>O, and SiO<sub>2</sub>. It was ultimately determined that model set 1 offered the greatest predictive ability with the lowest complexity and lowest chance of overfitting.

A data set of 629 glasses was used to train and validate the model as summarized in Table 2.14. Ideally, a data set with a single heat treatment method (WTP CCC) is preferred as other heat treatments (e.g., DWPF CCC and 950°C isothermal) may show different nepheline formation results. However, it was determined that there is insufficient data (149 of 629 glasses) to develop the NN model if restricted to only WTP CCC heat treatment data. As this is a preliminary model, it was decided to include all three heat treatments to develop the model and collect additional data with the single WTP CCC heat treatment for final model fitting in the future. The compositional ranges for these glasses are described in Table 2.15 and are shown graphically in Figure 2.18. In an effort to create the most predictive model possible, K-fold cross validation was used. This method splits the data set into k subsets. Each of these subsets contains 1/(1-k) of the data for modeling as well as a unique 1/k of the data for validation. Each of these subsets is modeled and the best model based on validation performance is presented. With Kfold validation, it is possible to evaluate the predictive properties of the model by retaining a portion of the data during the modeling of each subset. This allows maximum use of the data while maintaining a validation set. Studies were performed on the data varying k from 5 to 628.

| Heat                                                                                                  |       |                   |                          |                            |                             |  |
|-------------------------------------------------------------------------------------------------------|-------|-------------------|--------------------------|----------------------------|-----------------------------|--|
| Glass Family <sup>(a)</sup>                                                                           | #     | Lab               | Treatment <sup>(b)</sup> | Ref for Glass Compositions | Ref for Crystal Measurement |  |
| EM                                                                                                    | 30    | SRNL              | DWPF CCC                 | (Johnson and Edwards 2009) | unpublished                 |  |
| SRNL-JB                                                                                               | 18    | SRNL              | DWPF CCC                 | unpublished                | unpublished                 |  |
| SRNL-JB02                                                                                             | 20    | SRNL              | DWPF CCC                 | unpublished                | unpublished                 |  |
| HWI-ALS                                                                                               | 13    | VSL               | DWPF CCC                 | (Matlack et al. 2010b)     | (Matlack et al. 2010b)      |  |
| HWI-Al                                                                                                | 8     | VSL               | WTP CCC                  | (Matlack et al. 2010a)     | (Matlack et al. 2010a)      |  |
| IWL-SLC                                                                                               | 7     | PNNL              | WTP CCC                  | (Kim et al. 2011)          | (Kim et al. 2011)           |  |
| IWL-HAC                                                                                               | 10    | PNNL              | WTP CCC                  | (Kim et al. 2011)          | (Kim et al. 2011)           |  |
| NE3                                                                                                   | 29    | SRNL              | DWPF CCC                 | (Fox and Edwards 2009)     | (Rodriguez et al. 2011)     |  |
| NP2                                                                                                   | 25    | SRNL              | DWPF CCC                 | (Fox and Edwards 2008)     | (Rodriguez et al. 2011)     |  |
| HWI-Al                                                                                                | 15    | VSL               | WTP CCC                  | (Matlack et al. 2008)      | (Rodriguez et al. 2011)     |  |
| HLW-E-Al                                                                                              | 14    | VSL               | WTP CCC                  | (Matlack et al. 2007a)     | (Rodriguez et al. 2011)     |  |
| PNNL-Al-24-X                                                                                          | 13    | PNNL              | WTP CCC                  | (Rodriguez et al. 2011)    | (Rodriguez et al. 2011)     |  |
| HLW-E-ANa                                                                                             | 13    | VSL/PNNL          | WTP CCC                  | (Matlack et al. 2007a)     | (Rodriguez et al. 2011)     |  |
| HLW-E-ANa-X                                                                                           | 24    | PNNL              | WTP CCC                  | (Rodriguez et al. 2011)    | (Rodriguez et al. 2011)     |  |
| А                                                                                                     | 6     | PNNL              | WTP CCC                  | (Hrma et al. 2010)         | (Rodriguez et al. 2011)     |  |
| HAL                                                                                                   | 19    | PNNL/SRNL         | WTP CCC                  | (Kim et al. 2008)          | (Rodriguez et al. 2011)     |  |
| NP                                                                                                    | 20    | PNNL              | WTP CCC                  | (Li et al. 1997)           | (Li et al. 1997)            |  |
| NEPH                                                                                                  | 12    | SRNL              | DWPF CCC                 | (Peeler et al. 2005)       | (Rodriguez et al. 2011)     |  |
| NEPH2                                                                                                 | 27    | SRNL              | DWPF CCC                 | (Peeler et al. 2006)       | (Rodriguez et al. 2011)     |  |
| NEPH3                                                                                                 | 16    | SRNL              | DWPF CCC                 | (Fox et al. 2006)          | (Rodriguez et al. 2011)     |  |
| DZr                                                                                                   | 24    | PNNL/SRNL         | INEEL CCC                | (Crum et al. 2002)         | (Riley et al. 2001)         |  |
| US                                                                                                    | 44    | PNNL/SRNL         | DWPF CCC                 | (Fox et al. 2008)          | (Fox et al. 2008)           |  |
| CVS1, CVS2                                                                                            | 121   | PNNL              | HWVP CCC                 | (Hrma et al. 1994)         | (Hrma et al. 1994)          |  |
| CVS3                                                                                                  | 39    | PNNL              | HTM CCC                  | (Vienna et al. 1996b)      | (Vienna et al. 1996b)       |  |
| EM09-                                                                                                 | 22    | PNNL              | 950°C, 24h               | (McCloy et al. 2010)       | (McCloy et al. 2010)        |  |
| SB5NEPH                                                                                               | 40    | SRNL              | 950°C, 24h               | (Fox et al. 2007)          | (Rodriguez et al. 2011)     |  |
| (a) See original                                                                                      | citat | ions for glass fa | amily nomencl            | ature.                     |                             |  |
| (b) INEEL = Idaho National Engineering and Environmental Laboratory. $HTM = high temperature melter.$ |       |                   |                          |                            |                             |  |

Table 2.14. Summary of Data Used in Nepheline Model Development and Validation

| Component                      | Min   | Max   |
|--------------------------------|-------|-------|
| $Al_2O_3$                      | 0     | 39.00 |
| $B_2O_3$                       | 0     | 28.65 |
| Bi <sub>2</sub> O <sub>3</sub> | 0     | 16.37 |
| CaO                            | 0     | 18.20 |
| $Cr_2O_3$                      | 0     | 2.97  |
| $Fe_2O_3$                      | 0     | 19.95 |
| F                              | 0     | 6.50  |
| K <sub>2</sub> O               | 0     | 24.07 |
| Li <sub>2</sub> O              | 0     | 9.14  |
| MnO                            | 0     | 5.59  |
| Na <sub>2</sub> O              | 2.00  | 39.00 |
| NiO                            | 0     | 2.91  |
| $P_2O_5$                       | 0     | 9.00  |
| $SiO_2$                        | 17.44 | 60.00 |
| $SO_3$                         | 0     | 1.50  |
| SrO                            | 0     | 3.00  |
| TiO <sub>2</sub>               | 0     | 2.12  |
| ZnO                            | 0     | 2.00  |
| $ZrO_2$                        | 0     | 16.00 |

Table 2.15. Component Concentration Ranges for Nepheline Model Data, wt%



Figure 2.18. Scatterplot Matrix of Nepheline Model Data, Mass Fractions

A graphical representation of the NN used for this model is presented in Figure 2.19. Each of the inputs to the model is listed on the left. The values from these inputs are fed into the three circular nodes immediately after the input. These nodes (called the hidden layer of the model) are composed of an intercept and a transfer function to create an understandable output from the inputs. A detail of an example node from the diagram is shown in Figure 2.20.



Figure 2.19. Block Diagram of the Neural Network Nepheline Formation Models



Figure 2.20. Detailed Node Diagram From Neural Network

Efforts were made to create a quantitative prediction model for the nepheline fraction in glass, but there were not a sufficient number of data points to create an accurate model. As a result, a binary response (i.e., nepheline forms or not) was modeled and the misclassification rate, as well as a weighted model score, were used to qualify the model. These results rely on classifying each glass into one of four categories. The test result is classified as positive or negative. Based on a comparison of the actual nepheline response to the predicted nepheline response, if they match, the data point is classified as true. Therefore, a glass that is predicted to form nepheline is a positive, and it becomes a true positive if the composition actually forms nepheline. The model scoring nomenclature is graphically presented in Figure 2.21.



Figure 2.21. Model Scoring Nomenclature

The misclassification percentage is defined by:

$$Misclassification \% = \frac{Number \ of \ incorrect \ predictions}{Total \ number \ of \ predictions}$$
(2.8)

and the weighted model score is defined as follows:

$$Weighted \ Model \ Score = \frac{True \ Positives * 2.7142 + True \ Negatives}{Positives * 2.7142 + Negatives}$$
(2.9)

These two metrics were combined with the false negative percentage, which examines the percentage of data that formed nepheline but were not correctly predicted by the model. In general, a balanced data set would simply use the misclassification rate as the other scoring metric, but this data set is highly biased towards non-forming compositions. As a result, low misclassification rates can be obtained with a model that has a bias towards a non-forming prediction. The weighted model score normalizes this bias and ensures the model is valid for both forming and non-forming glasses.

As the data being modeled is a binary response, the final output is the probability that the composition will form nepheline. This slight difference offers a number of benefits for the analyst; primarily, a percentage can be chosen to match the desired risk threshold. This percentage cutoff can be set in many different ways, all of which affect the resulting model metrics. The initial selection is made at a simple 50% probability. This value was rarely the optimal value based on risk thresholds or weighted scores. As a result, new probability cutoffs were chosen that maximized the weighted score of the model or that matched the false negative threshold from previous models.

The predictive ability of a model is not necessarily a function of the original fit on data points used to train the model; therefore, validation sets of data were used to select the most predictive model. This portion of data is never used to train the data and is only used at the completion of model creation.

Original sensitivity studies were performed using 50%, 75%, and 98% of the data, as well as different K-fold values. Three models were created at each of the subsets, and the resulting accuracies were averaged together. Based on these studies, a k value of 10 was chosen for cross validation.

Further studies were performed by fitting models to each of five randomly selected data subsets. The results were processed to select an optimal cutoff value based on a maximum false negative rate of 3%. After a cutoff value was determined, the validation set was used to evaluate the predictive performance of the model. The cutoff values and the performance of the validation models are shown in Table 2.16.

|         | Test Data   |                   |          | Validation Data   |          |  |
|---------|-------------|-------------------|----------|-------------------|----------|--|
|         | Weighted    |                   |          | Weighted          |          |  |
|         | Probability | Misclassification | False    | Misclassification | False    |  |
|         | Cutoff      | Rate              | Negative | Rate              | Negative |  |
| Group 1 | 11%         | 7.8%              | 2.4%     | 9.5%              | 3.1%     |  |
| Group 2 | 9%          | 8.9%              | 2.4%     | 10.5%             | 6.3%     |  |
| Group 3 | 15%         | 7.4%              | 2.4%     | 13.2%             | 6.3%     |  |
| Group 4 | 20%         | 5.4%              | 2.4%     | 10.1%             | 12.9%    |  |
| Group 5 | 9%          | 8.2%              | 2.4%     | 15.5%             | 12.9%    |  |
| Average | 12.8%       | 7.6%              | 2.4%     | 11.8%             | 8.3%     |  |

 Table 2.16.
 Validation Model Set Comparison Targeting False Negative Percentage

In the final model, 90% of the data was used to train the model and the remaining 10% was used as a validation set. This corresponded to 10 K-fold cross validation. Based on the results of 200 model trials, the model with the best validation metrics was chosen. The model was evaluated across the 10 folds from cross validation and 2 probability of formation cutoffs were determined, one for the minimum weighted misclassification rate and one for the targeted false negative rate. This is similar to the two levels of OB in previous models (McCloy and Vienna 2010). The final metrics of the model are shown in Table 2.17.

|               | Test Data   |                   |          | Validation I      | Data     |
|---------------|-------------|-------------------|----------|-------------------|----------|
|               |             | Weighted          |          |                   |          |
|               | Probability | Misclassification | False    | Misclassification | False    |
|               | Cutoff      | Rate              | Negative | Rate              | Negative |
| Optimal Score | 27%         | 6.6%              | 5.6%     | 6.3%              | 5.1%     |
| Minimum Risk  | 10%         | 10.1%             | 2.2%     | 9.4%              | 2.6%     |

 Table 2.17.
 Probability Cutoff Comparison for Neural Network

A probability cutoff of 27% was selected for the optimal model. It is clear from the table that the optimal model score allows for more false negatives. With a false negative rate similar to previous models, the overall weighted misclassification rate of the model is 10%. Neither the probability cutoff or misclassification rate should be misinterpreted as the prediction uncertainties used in waste form qualification efforts. The graphical effect of varying the cutoff probability can be observed in Figure 2.22. As the graph shows, increasing the probability cutoff will result in a higher percentage of
true negatives and a lower percentage of true positives. The location on the graph where the two lines cross corresponds to the maximum weighted model score.



Figure 2.22. Effect of Varying Probability Cutoffs on the True Positive and True Negative Performance

Previous models have described the nepheline formation region using ND and OB cutoffs. The model presented by McCloy et al. (2011) is used as a comparison to benchmark the performance of the NN model. This comparison shows a significant reduction in both the absolute and the weighted misclassification rates at similar or lower false negative rates. A full table of comparisons is shown in Table 2.18. To summarize this data, the outcome of each of the 629 glass data set is described in Figure 2.23.

|                                 | NE        | NN         |            |
|---------------------------------|-----------|------------|------------|
|                                 | OB = 0.55 | OB = 0.575 | P(Y) = 27% |
| True Positive                   | 155       | 137        | 147        |
| False Positive                  | 209       | 125        | 32         |
| True Negative                   | 262       | 346        | 439        |
| False Negative                  | 3         | 21         | 11         |
| Standard Misclassification Rate | 33.7%     | 23.2%      | 6.8%       |
| Weighted Misclassification Rate | 24.1%     | 26.5%      | 6.8%       |

Table 2.18. Comparison of Neural Network and Previous Model Performance

|                    |    | Experimentally Formed<br>Nepheline |                               |  |  |  |  |
|--------------------|----|------------------------------------|-------------------------------|--|--|--|--|
|                    |    | Yes                                | No                            |  |  |  |  |
| E                  | s  | True                               | False<br>Positive             |  |  |  |  |
| to Fo              | Ye | 147 (23%)                          | 32 (5.1%)                     |  |  |  |  |
| Predicted<br>Nepho | No | False<br>Negative<br>11 (1.7%)     | True<br>Negative<br>439 (70%) |  |  |  |  |

Figure 2.23. Model Scoring Summary for the Selected Nepheline Neural Network Model

The components of the NN have an effect that is aligned with previous research aimed at predicting nepheline formation. As expected, increased  $SiO_2$  decreases the probability of formation, while both  $Al_2O_3$  and  $Na_2O$  increase the probability of formation. These results can be seen in the main effects plot presented in Figure 2.24.



Figure 2.24. Effect of Component Concentration on Probability of Nepheline Formation

A full interaction plot of the components of the model is presented in Figure 2.25. Each plot shows how varying one component (bottom scale) will affect the probability of formation at the high- and low-level for the second component (right axis). As an example, higher  $Al_2O_3$  values will generally increase the probability of formation, but as more  $Na_2O$  is added, this effect is seen at lower  $Al_2O_3$  levels. This can be seen in the plot in column one, row five. Plots that overlap, such as the  $Li_2O$  and CaO, show no interaction between components.



**Figure 2.25**. Interaction Profile Plot for the Six Components of the Neural Network Nepheline Model. The blue and red lines are the maximum and minimum value for the secondary components.

The inclusion of the six compositional inputs in the model also allows for profiling to determine regions with a higher probability of formation. An example of the composition effects is shown for an earlier version of the model that uses normalized SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Na<sub>2</sub>O ( $N_{Si}$ ,  $N_{Al}$ , and  $N_{Na}$ , respectively) concentrations for illustration purposes. This model was found to be less predictive than the final model discussed in this report, but is similar in component effects, and allows for direct visualizations of the nepheline formation regions on Na<sub>2</sub>O-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> ternary plots as shown in Figure 2.26. These regions generally agree with observations made in previous work (McCloy et al. 2011). These ternary plots illustrate the effects of B<sub>2</sub>O<sub>3</sub>, CaO, and Li<sub>2</sub>O on the probability of the nepheline formation region in the SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Na<sub>2</sub>O submixture.



**Figure 2.26**. Nepheline Formation Regions at Different Concentrations of B<sub>2</sub>O<sub>3</sub>, CaO, and Li<sub>2</sub>O [blue – low probability (0-5%), red – high probability (50+%), and orange (27-50%) and green (6-27%) are intermediate probabilities]

As described earlier, the NN comprises three hidden nodes with six inputs. The complete set of equations for the NN is described in Figure 2.27. This model determines the probability that the glass composition will form nepheline.



**Figure 2.27**. Equation Representing the Probability of a Nepheline Formation (oxide-t values represent mass fraction of those oxides in glass or  $g_i$ )

The NN model described above gives a reasonable first step in defining a composition region in which nepheline is likely to form. However, it is far from a final solution to the nepheline management problem. The next steps include development of a method for quantifying the prediction uncertainties of such a model as well as the expansion of the data set so that the prediction can be based on a single representative heat treatment method (i.e., WTP CCC). Additional data is required in the pertinent, high-alumina, glass composition region to reduce the prediction uncertainties within that region (e.g., the orange and green regions in Figure 2.26).

# 2.4 Chromium Content

If the content of chromium in the melter feed is too high, one of three things will most likely occur (Hrma 2006):

1. A chromate- (and sulfate-) containing salt will accumulate on the melt surface. This typically, but not always, occurs in melts high in sulfate and other salt-forming compounds.

- 2. Transition metal spinel, (Fe,Ni,Mn,Zn)(Fe,Cr)<sub>2</sub>O<sub>4</sub>, will form. This typically occurs in melts with relatively high concentrations of iron, nickel, manganese, and/or zinc.
- 3. Eskolaite, Cr<sub>2</sub>O<sub>3</sub>, will form. This typically occurs only in melts that are relatively low in sulfur, iron, nickel, manganese, and/or zinc.

Additionally, chromate species such as  $Na_2Cr_2O_7$ , are semi-volatile and partition to some extent to the off-gas system, where they are captured and eventually recycled back to the melter (e.g., Jantzen 1991b). This is partially offset by the addition of small amounts of chromium from corrosion/erosion of high chromium melter materials such as K-3 and Inconel 690.

The formation of salt in waste glasses is clearly influenced by the chromium content of the feed, as seen in the salt models described in Section 2.2. The  $Cr_2O_3$  content of the melt also strongly increases the amount of spinel formed at a given temperature as seen in the spinel models described in Section 2.1.

A series of high  $Cr_2O_3$  glasses were formulated and tested in the DM-100 melter (Matlack et al. 2009b). The  $Cr_2O_3$  content of these glasses extended up to 6 wt%. Crucible-scale testing of these glasses showed that for the glasses specifically formulated to have low sulfur and transition metals (e.g., those prone to eskolaite formation), the fraction of eskolaite in the melt after 70-hour heat treatments at 950°C roughly corresponded to the total  $Cr_2O_3$  content of the glass. This is shown in Figure 2.28, where the blue data points ("ES series" glasses) form eskolaite concentrations roughly equal to the maximum amount of all  $Cr_2O_3$  precipitated in the form of eskolaite. There is a slightly higher eskolaite fraction for the glasses with >3 wt%  $Cr_2O_3$ , which is likely caused by the inclusion of some  $Al_2O_3$  and/or  $Fe_2O_3$  in the eskolaite, because they are known to form solid solutions. Also shown in the plot is a single "M-series" glass that precipitated both spinel and eskolaite—only the eskolaite fraction is shown on the plot.



**Figure 2.28**. Eskolaite vol% in High-Cr<sub>2</sub>O<sub>3</sub> Crucible-Scale Glasses Heat Treated at 950°C for 70 hours (data from Matlack et al. 2009b)

Eskolaite crystals are typically small, plate-like crystals that do not settle readily in glass melts. An example is shown in Figure 2.29. It is thus theorized that on an equal volume basis, eskolaite is less likely to cause melter operation problems than spinel.



Figure 2.29. Optical Micrographs of Eskolaite in High Cr<sub>2</sub>O<sub>3</sub> Glasses

Two tests were performed to develop an initial indication of the eskolaite behavior in the melter (Matlack et al. 2009b). In the first test, a glass with 2 vol% eskolaite was fabricated (measured in crucible-scale glass heat treated at 950°C). In the second test a glass with 4.2 vol% combined eskolaite and spinel was fabricated (measured in crucible-scale glass heat treated at 950°C). These tests were operated for roughly 50 hours each of continuous feeding in the DM-100 melter. The melter was then idled for 181 to 299 hours. The results, although too limited to clearly define if this amount of crystals could be processed over extended time periods, did not indicate any potential problems with this amount of crystals. Additionally, it was shown that during idling, the spinel settled significantly faster than either eskolaite or hematite crystals.

By assuming that eskolaite and spinel can be tolerated equally well in the melter, preliminary limits for  $Cr_2O_3$  in glass can be postulated. The predicted impacts of changes in  $g_{Cr_2O_3}$  on  $c_{Sp}$  for a typical high  $Cr_2O_3$  Hanford HLW glass are shown in Figure 2.30. Taking a conservative assumption that all of the  $Cr_2O_3$  precipitates in the form of either high chromium spinel ([Fe,Mn,Ni,Zn]Cr\_2O\_4) or eskolaite (Cr\_2O\_3), the maximum amount of crystal formed for each mass fraction increase in  $Cr_2O_3$  would range between 0.46 and 0.77 vol% (assuming densities of 2.5, 5.2, and 4.6 for melt, eskolaite, and spinel, respectively). This maximum value represents 72 to 120% of the effect of  $Cr_2O_3$  shown in Figure 2.30 (0.555). This suggests that using the  $c_{Sp}$  model will give a reasonable estimate of the maximum fraction of crystal to form in high  $Cr_2O_3$  glasses. This also gives a reasonable justification for extrapolation of the  $c_{Sp}$  model to higher  $Cr_2O_3$  concentrations that were found in the data used to fit the model (max  $Cr_2O_3$  in the model data was 2 wt%). If all  $Cr_2O_3$  crystallized as eskolaite and there was a 2 vol% limit on eskolaite at 950°C, then the maximum  $w_{Cr_sO_2}$  would be 4 wt%.



Figure 2.30. Impact of  $Cr_2O_3$  Mass Fraction on Predicted  $c_{Sp}$ 

No similar, simple approach is possible to evaluate the impacts of high  $Cr_2O_3$  concentrations on salt formation. However, it is interesting to note that aside from Cl,  $Cr_2O_3$  has the highest impact on the allowable sulfur concentration in melter feed. Using component effects on the same high  $Cr_2O_3$  Hanford HLW glass discussed above, the most impactful components on salt formation are (with their effects relative to SO<sub>3</sub>): SO<sub>3</sub> (1) > Cl (0.30) > Cr<sub>2</sub>O<sub>3</sub> (0.083). Until sufficient additional data becomes available, it must be assumed that this model (Table 2.10) adequately represents the impacts of  $Cr_2O_3$  on salt formation.

# 2.5 Viscosity

The viscosity of waste glass melts should be maintained between roughly 20 and 80 P (2 to 8 Pa $\cdot$ s) at the melting temperature (nominally 1150°C). It is not appropriate to fit new viscosity models for advanced HLW glass formulations at this time, because:

- the current models can be extrapolated to the new composition region quite reliably (as shown in Figure 2.31), and
- the viscosity of glass must be maintained in the correct range to estimate glass composition, but has little influence on the ultimate waste loading of the HLW glasses.

There is a somewhat consistent offset in the predicted values of roughly 0.32 on a  $Ln[\eta_{1150}, Pa \cdot s]$  basis. This roughly translates to measured values of 2.75 and 11.0 for predicted values of 2 and 8 Pa  $\cdot s$ , respectively. The correction can be added to the predictions when comparing to viscosity limits, if desired. For the purposes of the example calculations, no correction was used.



Figure 2.31. Comparison of Predicted and Measured Ln(viscosity) Data for ORP Advanced HLW Glasses Using the 2009 Viscosity Model (Vienna et al. 2009)

It is therefore recommended that the 2009 viscosity  $Ln[\eta_{1150}]$  model be applied to estimate reasonable glass compositions. This model is of the following form:

$$Ln[\eta_{1150}] = \sum_{i=1}^{p} h_i g_i + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} h_{ij} g_i g_j \right\}$$
(2.10)

where

 $\eta_{1150}$  = the viscosity at 1150°C (in Pa·s)

 $h_i$  = the *i*<sup>th</sup> component coefficient,  $g_i$  = the *i*<sup>th</sup> component mass fraction, and  $h_{ij}$  = the *i*<sup>th</sup> times *j*<sup>th</sup> component coefficient.

This model is summarized in Table 2.19. Like the other models, composition is in mass fraction. Alternative models for viscosity as a function of temperature, such as that recently published by Hrma et al. (2009) based on the Arrhenius relationship.

|                                                  | Coefficient,      |                  |       |
|--------------------------------------------------|-------------------|------------------|-------|
|                                                  | $Ln(\eta_{1150},$ |                  |       |
| Model Term                                       | Pa·s)             | Statistic        | Value |
| Al <sub>2</sub> O <sub>3</sub>                   | 10.6085           | $R^2$            | 0.962 |
| $B_2O_3$                                         | -9.37529          | $R_{ m Adj}^2$   | 0.961 |
| BaO                                              | -3.41816          | $R_{ m Press}^2$ | 0.959 |
| CaO                                              | -6.9328           | $R_{ m Val}^2$   | 0.962 |
| F                                                | -12.3445          | RMSE, Ln(Pa·s)   | 0.163 |
| K <sub>2</sub> O                                 | -3.82491          | # of glasses     | 967   |
| $La_2O_3$                                        | -4.96954          | -                | -     |
| Li <sub>2</sub> O                                | -39.0249          | -                | -     |
| MgO                                              | -3.23141          | -                | -     |
| MnO                                              | -6.88677          | -                | -     |
| Na <sub>2</sub> O                                | -9.63275          | -                | -     |
| $P_2O_5$                                         | 5.305007          | -                | -     |
| PbO                                              | -23.1436          | -                | -     |
| $SiO_2$                                          | 9.368089          | -                | -     |
| SrO                                              | -4.35052          | -                | -     |
| $UO_3$                                           | 2.151455          | -                | -     |
| ZnO                                              | -2.69626          | -                | -     |
| $ZrO_2$                                          | 7.14044           | -                | -     |
| Others                                           | -0.09027          | -                | -     |
| $B_2O_3 \times B_2O_3$                           | 24.59262          | -                | -     |
| $Na_2O \times B_2O_3$                            | -26.9571          | -                | -     |
| Li <sub>2</sub> O×Li <sub>2</sub> O              | 47.35918          | -                | -     |
| Na <sub>2</sub> O×Al <sub>2</sub> O <sub>3</sub> | 17.51718          | -                | -     |
| $CaO \times Al_2O_3$                             | -8.13474          | -                | -     |

Table 2.19. Viscosity-Composition Model Coefficients and Selected Statistical Parameters

## 2.6 Product Consistency Test

The WTP contract (DOE 2000), the Waste Acceptance Product Specifications (DOE 1996), and the Waste Acceptance System Requirements Document (OCRWM 2008) all require the PCT responses of HLW glasses to meet the standard, with sufficient confidence, and be reported during production. The standard is that the PCT responses of B, Li, and Na, normalized to their concentration in the glass, be below those of the DWPF Environmental Assessment (EA) glass (Jantzen et al. 1993).

Existing PCT models (Piepel et al. 2008; Vienna et al. 2009) were first evaluated to determine if they adequately predicted the PCT responses of advanced HLW glasses. However, it was clear that they did not accurately predict the responses of the newer glasses and they were not generally conservative (as seen in Figure 2.32 and reported by Muller et al. [2012]). The significantly underpredicted PCT responses shown in the plot are primarily from higher alumina glasses. It has long been known that the impact of Al<sub>2</sub>O<sub>3</sub> on PCT response is highly non-linear (Vienna et al. 1996a). At low concentrations ( $g_{Al_2O_3} \leq 0.05$ ), additions of Al<sub>2</sub>O<sub>3</sub> significantly reduce the PCT response of a glass. At higher concentrations, additions of Al<sub>2</sub>O<sub>3</sub> have little impact on the PCT response of glass. With the advanced HLW glass formulations, unprecedented high concentrations of Al<sub>2</sub>O<sub>3</sub> are added to glass, and we theorize

that at these higher concentrations,  $Al_2O_3$  additions may increase PCT response. It was therefore decided that a new PCT model must be used to help bound the response of advanced HLW glass formulations.



Figure 2.32. Comparison of Normalized PCT-B Response of Advanced HLW Glasses to HTWOS 2009 Model Predictions

A database of HLW glasses was compiled to model their PCT responses. These data include the data used in the development of the HTWOS 2009 PCT models (1115 data points tabulated and described by (Vienna et al. 2009), excluding the 31 data points found to be outliers in that report) and the advanced HLW glass data (111 data points tabulated and described by Muller et al. [2012]). The data concentration ranges are summarized in Table 2.20 and shown graphically in a scatterplot matrix in Figure 2.33. It should be noted that these glasses are a combination of quenched crucible melts and melter test glasses. They do not include CCC glasses that in some cases precipitate nepheline as described and modeled in Section 2.3.

| Component,                     | HTW            | OS            | ORP A          | Adv             | Total |      |
|--------------------------------|----------------|---------------|----------------|-----------------|-------|------|
| i                              | Min            | Max           | Min            | Max             | Min   | Max  |
| Al <sub>2</sub> O <sub>3</sub> | 1.6            | 20.0          | 1.9            | 26.6            | 1.6   | 26.6 |
| $B_2O_3$                       | 4.0            | 20.0          | 4.3            | 20.2            | 4.0   | 20.2 |
| BaO                            | 0.0            | 4.7           | 0.0            | 0.2             | 0.0   | 4.7  |
| CaO                            | 0.0            | 10.4          | 0.2            | 14.2            | 0.0   | 14.2 |
| CdO                            | 0.0            | 1.5           | 0.0            | 0.9             | 0.0   | 1.5  |
| F                              | 0.0            | 2.5           | 0.0            | 1.1             | 0.0   | 2.5  |
| $Fe_2O_3$                      | 0.0            | 17.4          | 2.7            | 21.3            | 0.0   | 21.3 |
| K <sub>2</sub> O               | 0.0            | 6.9           | 0.0            | 15.3            | 0.0   | 15.3 |
| Li2O                           | 0.0            | 9.0           | 0.0            | 5.8             | 0.0   | 9.0  |
| MgO                            | 0.0            | 8.0           | 0.0            | 3.1             | 0.0   | 8.0  |
| MnO                            | 0.0            | 7.0           | 0.0            | 8.0             | 0.0   | 8.0  |
| Na <sub>2</sub> O              | 4.1            | 23.0          | 3.6            | 20.0            | 3.6   | 23.0 |
| $Nd_2O_3$                      | 0.0            | 5.9           | 0.0            | 0.3             | 0.0   | 5.9  |
| $P_2O_5$                       | 0.0            | 5.0           | 0.0            | 6.0             | 0.0   | 6.0  |
| SiO <sub>2</sub>               | 30.3           | 62.8          | 17.4           | 53.1            | 17.4  | 62.8 |
| $SO_3$                         | 0.0            | 2.5           | 0.0            | 0.8             | 0.0   | 2.5  |
| SrO                            | 0.0            | 10.1          | 0.0            | 9.3             | 0.0   | 10.1 |
| $ThO_2$                        | 0.0            | 6.0           | 0.0            | 3.6             | 0.0   | 6.0  |
| TiO <sub>2</sub>               | 0.0            | 4.0           | 0.0            | 1.6             | 0.0   | 4.0  |
| UO <sub>3</sub>                | 0.0            | 6.5           | 0.0            | 5.6             | 0.0   | 6.5  |
| ZnO                            | 0.0            | 5.8           | 0.0            | 4.5             | 0.0   | 5.8  |
| $ZrO_2$                        | 0.0            | 13.5          | 0.0            | 10.6            | 0.0   | 13.5 |
| Others <sup>(a)</sup>          | 0.0            | 9.4           | 0.5            | 11.3            | 0.0   | 11.3 |
| (a) Others equa                | als the sum of | f all compone | nts not specif | ically listed h | ere.  |      |

 Table 2.20.
 Component Concentration Ranges for HLW PCT Model Data, wt%



Figure 2.33. Scatterplot Matrix of HLW PCT Model Data (red points for ORP advanced HLW glasses).

Repeated analyses show that, in general, normalized boron, lithium, and sodium responses are nearly the same. This is confirmed to be the case with our data set in Figure 2.34. Therefore, there is no need to model or control the composition for each elemental PCT response. Rather than fit PCT(B), PCT(Li), and PCT(Na) separately, it was decided to average the natural logarithm (Ln) of the three values for each glass, and fit the average (Ln[PCT(B), g/m<sup>2</sup>], Ln[PCT(Li), g/m<sup>2</sup>], and Ln[PCT(Na), g/m<sup>2</sup>]) value as a measure of PCT response of these glasses.



Figure 2.34. Comparison of PCT(B), PCT(Na), and PCT(Li) (red + is Li, blue × is Na)

Only one model form was attempted to model the HLW glass PCT response—the partial quadratic model:

$$\operatorname{Ln}[PCT] = \sum_{i=1}^{p} b_{i}g_{i} + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} b_{ij}g_{i}g_{j} \right\} + b2_{Al_{2}O_{3}}g_{Al_{2}O_{3}}^{2} + b3_{Al_{2}O_{3}}g_{Al_{2}O_{3}}^{3} + b4_{Al_{2}O_{3}}g_{Al_{2}O_{3}}^{4} + \dots$$
(2.11)

where Ln[PCT] is the mean response (Ln[PCT(B), g/m<sup>2</sup>], Ln[PCT(Li), g/m<sup>2</sup>], Ln[PCT(Na), g/m<sup>2</sup>],  $b_i$  is the *i*<sup>th</sup> component coefficient,  $g_i$  is the *i*<sup>th</sup> component mass fraction in glass, and  $b2_{Al_2O_3}$ ,  $b3_{Al_2O_3}$ ,  $b4_{Al_2O_3}$ ... are the coefficients for higher order Al<sub>2</sub>O<sub>3</sub> mass fraction terms. During the modeling effort, both the model-fit and validation statistics improved with the higher order Al<sub>2</sub>O<sub>3</sub> terms, as was expected. No other cross product or higher order term was found to be significant in comparison to the first-order terms and higher order Al<sub>2</sub>O<sub>3</sub> terms. Ultimately, validation statistics were used to decide which first-order terms and how many higher order Al<sub>2</sub>O<sub>3</sub> terms to include. The final model terms are summarized in Table 2.21 and the model-fit is shown graphically as a predicted vs. measured plot in Figure 2.35.

| Term              | Coefficient | Statistic                    | Value  |
|-------------------|-------------|------------------------------|--------|
| $Al_2O_3$         | -103.76     | $R^2$                        | 0.7629 |
| $B_2O_3$          | 10.75627    | $R_{ m Adj}^2$               | 0.7595 |
| CdO               | 15.74204    | $R_{ m Press}^2$             | 0.7547 |
| F                 | 26.97387    | RMSE                         | 0.397  |
| $Fe_2O_3$         | -2.574697   | <b>RMSE</b> <sub>Press</sub> | 0.401  |
| $K_2O$            | 11.64107    | Mean of response             | -0.799 |
| Li <sub>2</sub> O | 23.52778    | # of data points             | 1,226  |
| MgO               | 10.4331     | -                            | -      |
| MnO               | 4.028527    | -                            | -      |
| Na <sub>2</sub> O | 15.27193    | -                            | -      |
| SiO <sub>2</sub>  | -2.827361   | -                            | -      |
| $SO_3$            | 20.6466     | -                            | -      |
| TiO <sub>2</sub>  | -11.8236    | -                            | -      |
| $ZrO_2$           | -6.265786   | -                            | -      |
| Others            | -0.595703   | -                            | -      |
| $(Al_2O_3)^2$     | 1166.629    | -                            | -      |
| $(Al_2O_3)^3$     | -5871.868   | -                            | -      |
| $(Al_2O_3)^4$     | 10289.47    | -                            | -      |

Table 2.21. Summary of HLW PCT Response Model Coefficients and Fit Statistics



Figure 2.35. Predicted vs. Measured Average (Ln[PCT]) with 95% Confidence Interval for Individual Prediction

Because such high order terms for any component are unusual in waste glass property-composition models, we must first evaluate the predicted impacts of components on the Ln[PCT] response. Figure 2.36 shows the impacts of changing each component, one at a time, from an average glass on the predicted Ln[PCT] response. The impact of  $Al_2O_3$  change, the only non-linear impact, is zoomed in on for further consideration. The general trends are as expected, including the non-linear effect of  $Al_2O_3$ , which dramatically reduces the response at low concentrations, levels off in intermediate concentrations, and dramatically increases the response at the highest concentrations. This, along with the validation statistics, adds comfort to an unprecedented non-linear model.



Figure 2.36. Component Effects "Profiler" for HLW PCT Model

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were first divided into the set used to fit the HTWOS 2009 model and those from the ORP advanced glasses. Then each set was sorted by average (Ln[PCT]) response value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data, each set containing roughly equal portions of glasses from the two data sets. The model was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group

of four subsets and used to predict the remaining subset in sequence. Table 2.22 summarizes the results of the model validation. The coefficients are reasonably close, having an RSD of less than 25% for all components. The model-fit  $R^2$  values are all close to each other at approximately 0.76. The  $R_{Val}^2$  values are also close to 0.75. The average  $R_{Val}^2$  value is almost identical to the  $R_{Press}^2$  value of 0.75. This model is well validated, and should give predictions of unknown data within the model-validity region nearly as well as for the model-fit data.

| Components                     | Full Model | Grp 1     | Grp 2     | Grp 3     | Grp 4     | Grp 5     | %RSD   |
|--------------------------------|------------|-----------|-----------|-----------|-----------|-----------|--------|
| Al <sub>2</sub> O <sub>3</sub> | -103.76    | -102.4011 | -106.4965 | -103.1341 | -103.89   | -104.0309 | -1%    |
| $B_2O_3$                       | 10.75627   | 11.15146  | 10.69746  | 10.74049  | 10.62057  | 10.62811  | 2%     |
| CdO                            | 15.74204   | 16.44303  | 16.9026   | 12.18981  | 17.86679  | 15.1351   | 14%    |
| F                              | 26.97387   | 26.65909  | 25.58735  | 29.66286  | 27.11623  | 25.77008  | 6%     |
| $Fe_2O_3$                      | -2.574697  | -3.302401 | -2.665192 | -2.293572 | -2.023997 | -2.58754  | -19%   |
| K <sub>2</sub> O               | 11.64107   | 12.09041  | 12.11811  | 11.26681  | 11.4803   | 11.14698  | 4%     |
| Li <sub>2</sub> O              | 23.52778   | 23.18214  | 23.49416  | 23.75547  | 23.17885  | 24.06747  | 2%     |
| MgO                            | 10.4331    | 11.24244  | 11.37676  | 10.39039  | 9.8022    | 9.534219  | 8%     |
| MnO                            | 4.028527   | 4.636964  | 4.999633  | 2.691618  | 3.406623  | 4.493336  | 24%    |
| Na <sub>2</sub> O              | 15.27193   | 15.18371  | 15.37501  | 15.47002  | 14.94776  | 15.36367  | 1%     |
| SiO <sub>2</sub>               | -2.827361  | -2.83753  | -2.782461 | -2.892939 | -2.777461 | -2.820917 | -2%    |
| $SO_3$                         | 20.6466    | 21.27637  | 21.11248  | 18.60138  | 21.88151  | 20.50533  | 6%     |
| TiO <sub>2</sub>               | -11.8236   | -11.32367 | -12.11721 | -12.95733 | -11.08802 | -11.42091 | -6%    |
| $ZrO_2$                        | -6.265786  | -6.590919 | -6.876644 | -6.493511 | -5.35194  | -6.021701 | -10%   |
| Others                         | -0.595703  | -0.580153 | -0.58186  | -0.443082 | -0.64686  | -0.672792 | -15%   |
| $(Al_2O_3)^2$                  | 1166.629   | 1146.06   | 1,226.44  | 1157.207  | 1158.115  | 1163.735  | 3%     |
| $(Al_2O_3)^3$                  | -5871.868  | -5774.142 | -6309.478 | -5815.044 | -5751.041 | -5820.943 | -4%    |
| $(Al_2O_3)^4$                  | 10289.47   | 10151     | 11247.87  | 10166.06  | 9955.12   | 10142.39  | 5%     |
| Fit Statistics                 |            |           |           |           |           |           |        |
| $R^2$                          | 0.7629     | 0.7617    | 0.7689    | 0.7577    | 0.7728    | 0.7595    | 0.7641 |
| $R^2_{ m Adj}$                 | 0.7595     | 0.7575    | 0.7648    | 0.7534    | 0.7687    | 0.7553    | 0.7599 |
| $R_{ m Press}^2$               | 0.7547     | 0.7516    | 0.7588    | 0.7471    | 0.7627    | 0.7493    | 0.7539 |
| RMSE                           | 0.397      | 0.398     | 0.394     | 0.403     | 0.389     | 0.400     | 0.3969 |
| RMSE <sub>Press</sub>          | 0.401      | 0.403     | 0.399     | 0.408     | 0.394     | 0.405     | 0.4019 |
| Validation                     |            |           |           |           |           |           |        |
| $R_{\rm Val}^2$                | -          | 0.7592    | 0.7311    | 0.7789    | 0.7165    | 0.7711    | 0.7513 |

Table 2.22. Summary of PCT Model Validation Data

# 2.7 Zirconium Containing Phases

Advanced glass formulation efforts have not yet focused on expanding the range of glasses containing significant concentrations of zirconium; therefore, there is little basis for changing the zirconium-containing phase  $T_L$  model or limit. It is recommended that the HTWOS 2009 model and constraint be used for advanced glass formulations until additional data are developed (Vienna et al. 2009).

This model is of the following form:

$$T_L = \sum_{i=1}^p t_i g_i \tag{2.12}$$

where  $T_L$  is the liquidus temperature (in °C),  $t_i$  is the *i*<sup>th</sup> component coefficient, and  $g_i$  is the *i*<sup>th</sup> component mass fraction. This model is summarized in Table 2.23. Similar to the other models the composition is in mass fraction. This model was shown to validate well and be predictive as long as the glasses were sufficiently high in ZrO<sub>2</sub> concentration (Vienna et al. 2009). The minimum  $g_{ZrO_2}$  for which the model is valid is 0.04 (i.e., 4 wt%). This model should not be applied to glasses with lower  $g_{ZrO_2}$ .

| Component, i                                                                                                                             | Coefficient, °C | Statistic        | Value  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------|--|--|--|
| Al <sub>2</sub> O <sub>3</sub>                                                                                                           | 3193.3628       | $R^2$            | 0.9069 |  |  |  |
| $B_2O_3$                                                                                                                                 | 651.39721       | $R_{ m Adj}^2$   | 0.8962 |  |  |  |
| LN <sub>2</sub> O <sub>3</sub> <sup>(a)</sup>                                                                                            | 2156.4074       | $R_{ m Press}^2$ | 0.8693 |  |  |  |
| Li <sub>2</sub> O                                                                                                                        | -1904.417       | $R_{ m Val}^2$   | 0.8718 |  |  |  |
| Na <sub>2</sub> O                                                                                                                        | -1947.711       | RMSE             | 26.2   |  |  |  |
| SrO                                                                                                                                      | 13011.909       | Mean             | 1079   |  |  |  |
| $ZrO_2$                                                                                                                                  | 3747.4241       | n                | 69     |  |  |  |
| Others                                                                                                                                   | 1259.2233       | -                | -      |  |  |  |
| (a) $g_{LN_2O_3} = g_{Y_2O_3} + g_{Ce_2O_3} + g_{Pr_2O_3} + g_{Nd_2O_3} + g_{Pm_2O_3} + g_{Sm_2O_3} + g_{Eu_2O_3} + g_{Gd_2O_3} + \dots$ |                 |                  |        |  |  |  |

Table 2.23. T<sub>L</sub>-Zs Composition Model Coefficients and Selected Statistical Parameters

## 2.8 Phosphate Limits

Vienna and Kim (2008) evaluated a broad range of high phosphate glasses ( $1 \le w_{P_2O_5} \le 6.49 \text{ wt\%}$ ) and found that the following rules effectively excluded glasses that showed deleterious effects of phosphorous on glass processing and product-quality-related properties:

$$g_{P_2O_5} \le 0.045 \tag{2.13}$$

----

$$g_{Ca0} \times g_{P_2 O_5} < 6.5 \times 10^{-4} \tag{2.14}$$

$$g_{Li_20} \le 0.06$$
 (2.15)

where  $g_i$  is the *i*-th oxide mass fraction in glass. However, the model-validity constraints for some properties were found to be lower than this limit because of a lack of data coverage at higher concentrations of P<sub>2</sub>O<sub>5</sub>. McCloy and Vienna (2010) further evaluated the impact of P<sub>2</sub>O<sub>5</sub> concentrations on various key properties of HLW glasses and recommended: ...that additional data with  $P_2O_5$  concentrations extending to 4.5 wt% and above be collected and used to revise glass property models, including  $T_L$ ,  $T_{1\%}$ , PCT-Li, and  $N_{TCLP}$ . While these data are being developed, there is a low risk of using the existing models, reported by Vienna et al. (2009), for glasses with phosphate concentrations up to 4.5 wt%.

We recommend adopting the same set of  $P_2O_5$  limits for this effort; additional study of high phosphate (e.g., >1 wt%) glasses should also be conducted to refine the limits and ensure that phase separated glasses are avoided.

## 2.9 Limits and Constraints Summary

Table 2.24 lists the commonly applied limits for HLW glass and melt properties. Table 2.24 also compares the limits and models used in the WTP formulation algorithm (Vienna and Kim 2008), the HTWOS model (Vienna et al. 2009), the updated HTWOS model (McCloy and Vienna 2010), and those recommended for advanced HLW glass volume estimation. These constraints have evolved in consecutive steps; changed constraints from the previous step are highlighted in red in Table 2.24.

|                           | W                       | ΤP                       | HTWO                               | 08 2009                            | HTWO                               | HTWOS 2010                         |                                    | Advanced                           |  |
|---------------------------|-------------------------|--------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
|                           | Model                   | Value                    | Model                              | Value                              | Model                              | Value                              | Model                              | Value                              |  |
| PCT-B                     | WTP                     | <16.7 g/L <sup>(b)</sup> | 2009 rpt                           | $<4 \text{ g/m}^{2}$               | 2009 rpt                           | $<4 \text{ g/m}^2$                 |                                    |                                    |  |
| PCT-Na                    | WTP                     | <13.35 g/L               | 2009 rpt                           | $<4 \text{ g/m}^2$                 | 2009 rpt                           | $<4 \text{ g/m}^2$                 | New PCT                            | $<4 \text{ g/m}^2$                 |  |
| PCT-Li                    | WTP                     | <9.57 g/L                | 2009 rpt                           | $<4 \text{ g/m}^2$                 | 2009 rpt                           | $<4 \text{ g/m}^2$                 |                                    | -                                  |  |
| Nepheline                 | NSi                     | >0.62                    | NSi                                | >0.62                              | NSi<br>OB                          | >0.62<br>< <b>0.575</b>            | New                                | <27% prob                          |  |
| TCLP <sup>(a)</sup>       | WTP                     | <0.48 mg/L               | not used                           |  |
| T <sub>1%</sub> Spinel    | WTP                     | <950°C                   | 2009 rpt                           | <950°C                             | 2009 rpt                           | <950°C                             | New                                | 2vol%,<br>950°C                    |  |
| Nonspinel                 | Al+Th+Zr<br>Th+Zr<br>Zr | <18%<br><13%<br><9.5%    | <i>T<sub>L</sub></i> -Zr, 2009 rpt | <1050°C if<br>ZrO <sub>2</sub> >4% | <i>T<sub>L</sub></i> -Zr, 2009 rpt | <1050°C if<br>ZrO <sub>2</sub> >4% | <i>T<sub>L</sub></i> -Zr, 2009 rpt | <1050°C if<br>ZrO <sub>2</sub> >4% |  |
| Low $\eta_{1150}$         | WTP                     | >2 Pa·s                  | 2009 rpt                           | >4 Pa·s                            | 2009 rpt                           | >4 Pa·s                            | 2009 rpt                           | >4 Pa·s                            |  |
| High $\eta_{1150}$        | WTP                     | <8 Pa·s                  | 2009 rpt                           | <6 Pa·s                            | 2009 rpt                           | <6 Pa·s                            | 2009 rpt                           | <6 Pa·s                            |  |
| High $\eta_{1100}$        | WTP                     | <15 Pa·s                 | not used                           |  |
| Low $\varepsilon_{1100}$  | WTP                     | >0.1 S/cm                | not used                           |  |
| High $\varepsilon_{1200}$ | WTP                     | <0.7 S/cm                | not used                           |  |
| $CaO \times P_2O_5$       | $CaO \times P_2O_5$     | $<6.5 \text{ wt}\%^2$    | $CaO \times P_2O_5$                | <6.5 wt% <sup>2</sup>              | $CaO \times P_2O_5$                | <6.5 wt% <sup>2</sup>              | $CaO \times P_2O_5$                | <6.5 wt% <sup>2</sup>              |  |
| Salt                      | SO <sub>3</sub>         | <0.44 wt%                | SO <sub>3</sub>                    | <0.5 wt%                           | SO <sub>3</sub>                    | <0.6 wt%                           | New                                | SO <sub>3</sub> limit              |  |
| Noble Metal               | Pd+Ru+Rh                | <0.25 wt%                | Pd+Ru+Rh                           | <0.25 wt%                          | Pd+Ru+Rh                           | <0.25 wt%                          | Pd+Ru+Rh                           | <0.25 wt%                          |  |

 Table 2.24.
 Comparison of HLW Melt and Glass Constraints Used in HLW Glass Volume Estimation

(a) TCLP = Toxicity Characteristic Leaching Procedure. This constraint is only active for one waste tank with high CdO concentrations and it has been repeatedly shown not to significantly influence glass volumes. (b) PCT responses may be normalized to component concentration in glass and reported in units of  $g_{glass}/L_{solution}$  or normalized to both component concentration in glass and glass surface area and reported in units of  $g_{glass}/m_{glass}^2$  surface. If the glass has a density of roughly 2.65 g/cm<sup>3</sup> (as these glasses do) and a surface area to solution volume of 2000 m<sup>-1</sup> is used for the test (as it was) then the 1 g/L is equivalent to 0.5 g/m<sup>2</sup>. With new models come new model-validity constraints. Table 2.25 summarizes the single component constraints, primarily due to model-validity ranges. Between the HTWOS 2010 constraints and the advanced constraints, there have been a number of changes (listed below).

• Maximum  $g_{Al_2O_3}$  was increased to 29 wt%. This value represents the range of data used in the

nepheline and spinel models. The viscosity, SO<sub>3</sub>, and  $T_L$ -Zr models will need to be extrapolated. This extrapolation is not expected to be a problem because the high alumina wastes are typically limited by spinel and nepheline in the glass, not by the other properties. The PCT model ranges to 27 wt% Al<sub>2</sub>O<sub>3</sub>, which is close to the maximum and, based on the strong upward effect of Al<sub>2</sub>O<sub>3</sub> at higher concentrations, is likely to be conservative. The viscosity model was tested against advanced glasses with Al<sub>2</sub>O<sub>3</sub> concentrations as high as 29 wt%, and other than a small offset, was found to predict quite well.

- Maximum  $g_{Cr_2O_3}$  was increased to 4 wt%. This value represents the crystal fraction of 2 vol% if all the Cr<sub>2</sub>O<sub>3</sub> precipitates as eskolaite. The viscosity, PCT, SO<sub>3</sub>, nepheline, and spinel models will all need to be extrapolated. This extrapolation poses a substantive risk for both the SO<sub>3</sub> (with a 1 wt% validity range) and spinel (with a 2 wt% validity range) models. Both models indicate strong negative impacts of Cr<sub>2</sub>O<sub>3</sub>. Chromia concentrations greater than ~ 1 wt% are expected to precipitate either as spinel (high transition metal wastes) or eskolaite (low transition metal wastes). Additional work is required to validate these models in the future.
- Maximum  $g_F$  was increased to 2.5 wt%. This value represents the range of data used in the HTWOS 2009 PCT and viscosity models; the nepheline model contained data with up to 6.5 wt%, the spinel model up to 2 wt%, and the SO<sub>3</sub> model up to 3 wt%. The HTWOS 2009  $T_L$ -Zr model does not report an F concentration range, but lists "others" ranging up to 3.3 wt%.
- The  $g_{Fe_2O_3}$  lower bound was decreased to 0 and upper bound increased to 20 wt%. The upper limit represents the range of data used in the HTWOS 2009 viscosity model, the nepheline model, and the spinel model. The lower limit represents the data in the SO<sub>3</sub>, nepheline, and HTWOS 2009 viscosity model. Spinel generally does not form in glasses with less than the 2.6 wt% lower limit for that model, so the model (and associated constraint) becomes moot at the low concentrations. HTWOS 2009 PCT models must be extrapolated from 17.4 wt% to the new 20 wt% maximum.
- Maximum  $g_{Na_2O}$  was increased to 23 wt%. This value represents the range of data used in the HTWOS 2009 PCT-B and PCT-Na, and is below the maximum values in the HTWOS 2009 viscosity, nepheline, SO<sub>3</sub>, and spinel models. The viscosity, PCT, SO<sub>3</sub>, and  $T_L$ -Zr models will need to be extrapolated.

|                                | W                                                                                    | TP <sup>(a)</sup> | HTWC      | OS 2009   | HTWC       | OS 2010    | Adva     | unced |  |
|--------------------------------|--------------------------------------------------------------------------------------|-------------------|-----------|-----------|------------|------------|----------|-------|--|
| Comp, i                        | Min                                                                                  | Max               | Min       | Max       | Min        | Max        | Min      | Max   |  |
| $Al_2O_3$                      | 1.8 [1.9]                                                                            | 13 [8.5]          | 1.9       | 20        | 1.9        | 20         | 1.9      | 29    |  |
| $B_2O_3$                       | 4.5                                                                                  | 15                | 4         | 20        | 4          | 20         | 4        | 20    |  |
| BaO                            | 0                                                                                    | "O"               | 0         | 4.7       | 0          | 4.7        | 0        | 4.7   |  |
| Bi <sub>2</sub> O <sub>3</sub> | 0                                                                                    | "O"               | 0         | 3.2       | 0          | 7          | 0        | 7     |  |
| CaO                            | 0                                                                                    | 1                 | 0         | 7         | 0          | 7          | 0        | 7     |  |
| CdO                            | 0                                                                                    | 0.1 [1.6]         | 0         | 1.5       | 0          | 1.5        | 0        | 1.5   |  |
| $Cr_2O_3$                      | 0                                                                                    | 0.6 [0.5]         | 0         | 1.2       | 0          | 1.2        | 0        | 4     |  |
| F                              | 0                                                                                    | 0.44              | 0         | 2         | 0          | 2          | 0        | 2.5   |  |
| $Fe_2O_3$                      | 1.4 [1.9]                                                                            | 15 [14]           | 4         | 17.4      | 4          | 17.4       | 0        | 20    |  |
| K <sub>2</sub> O               | 0                                                                                    | 1.6               | 0         | 6         | 0          | 6          | 0        | 6     |  |
| Li <sub>2</sub> O              | 0 [1.9]                                                                              | 6                 | 0         | 6         | 0          | 6          | 0        | 6     |  |
| MgO                            | 0                                                                                    | 1.2               | 0         | 6         | 0          | 6          | 0        | 6     |  |
| MnO                            | 0                                                                                    | 8 [7]             | 0         | 7         | 0          | 7          | 0        | 7     |  |
| Na <sub>2</sub> O              | 3.9                                                                                  | 20 [15]           | 4.1       | 21.4      | 4.1        | 21.4       | 4.1      | 23    |  |
| $Nd_2O_3$                      | 0                                                                                    | "O"               | 0         | 5.9       | 0          | 5.9        | 0        | 5.9   |  |
| NiO                            | 0                                                                                    | 1                 | 0         | 3         | 0          | 3          | 0        | 3     |  |
| $P_2O_5$                       | 0                                                                                    | 4.5               | 0         | 2.5       | 0          | 4.5        | 0        | 4.5   |  |
| PbO                            | 0                                                                                    | 1                 | 0         | -         | 0          | -          | 0        | -     |  |
| SiO <sub>2</sub>               | 35                                                                                   | 53                | 30.3      | 53        | 30.3       | 53         | 30.3     | 53    |  |
| SrO                            | 0                                                                                    | 10                | 0         | 10.1      | 0          | 10.1       | 0        | 10.1  |  |
| ThO <sub>2</sub>               | 0                                                                                    | 6                 | 0         | 6         | 0          | 6          | 0        | 6     |  |
| TiO <sub>2</sub>               | 0                                                                                    | 1                 | 0         | 3.1       | 0          | 3.1        | 0        | 3.1   |  |
| UO <sub>3</sub>                | 0                                                                                    | 6.5 [6.3]         | 0         | 6.3       | 0          | 6.3        | 0        | 6.3   |  |
| ZnO                            | 0                                                                                    | 4                 | 0         | 4         | 0          | 4          | 0        | 4     |  |
| $ZrO_2$                        | 0                                                                                    | 9.6 [9.1]         | 0         | 13.5      | 0          | 13.5       | 0        | 13.5  |  |
| Others                         | 0                                                                                    | 5.19 [4.26]       | 0         | -         | 0          | -          | 0        | -     |  |
| (a) WTP                        | model-valid                                                                          | lity constraints  | are diffe | rent depe | nding on   | if the Toy | kicity   |       |  |
| Charae                         | cteristic Lea                                                                        | aching Procedu    | re (TCL)  | P) model  | is used. ' | TCLP mo    | del-vali | dity  |  |
| constr                         | constraints are given in square brackets for those components with differences. This |                   |           |           |            |            |          |       |  |

Table 2.25. Summary of Single Component Constraints, wt%

This revised set of constraints and models is recommended for assessing the potential impact of continuing advanced HLW glass formulation efforts on the likely volume of HLW glass to be produced at Hanford.

model is used for glasses with  $g_{CdO} > 0.1$  wt%.

# 2.10 Calculation Examples

Two examples are given for use in determining if application and coding of the HLW models are correct. To make these examples, two hypothetical wastes, based loosely on real projected Hanford HLW feeds, were used in glass optimization calculations. The glass formulations were optimized for maximum waste loading while maintaining component concentrations and property values within the limits described in Section 2.9. Additives, including those currently available in the WTP design (Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, Li<sub>2</sub>O, MgO, Na<sub>2</sub>O, SiO<sub>2</sub>, ZnO, and ZrO<sub>2</sub> as pure oxides without impurities) were selected,

and their concentrations adjusted along with waste loading until a maximum waste loading was obtained. Only  $B_2O_3$ ,  $Li_2O$ ,  $Na_2O$ , and  $SiO_2$  were selected for inclusion. The details are summarized in Table 2.26.

Example 1 is a high alumina waste. It was optimized until it met four constraints with four additives (all the degrees of freedom being used up):  $Li_2O=6.0$  wt%,  $SiO_2=30.3$  wt%,  $\eta_{1150}=6$  Pa·s, and a probability of nepheline formation = 27%. The resulting waste loading of 47.06 wt% was obtained.

Example 2 is a high iron waste. It was optimized until it met three constraints with three additives (all the degrees of freedom being used up):  $\eta_{1150} = 4 \text{ Pa} \cdot \text{s}$ , spinel vol% at 950°C = 2, and a probability of nepheline formation = 27%. The resulting waste loading of 56.99 wt% was obtained.

|                                        | Lin  | nits        |                     | Example | e 1    |       | Example 2 |        |
|----------------------------------------|------|-------------|---------------------|---------|--------|-------|-----------|--------|
| Oxide                                  | LL   | UL          | Waste               | Add     | Glass  | Waste | Add       | Glass  |
| Al <sub>2</sub> O <sub>3</sub>         | 1.9  | 29          | 60.00               | -       | 28.24  | 17.00 | -         | 9.70   |
| $B_2O_3$                               | 4    | 20          | -                   | 33.73   | 17.86  | -     | 13.12     | 5.63   |
| Bi <sub>2</sub> O <sub>3</sub>         | 0    | 7           | 2.00                | -       | 0.94   | 2.00  | -         | 1.14   |
| CaO                                    | 0    | 7           | 1.00                | -       | 0.47   | 3.00  | -         | 1.71   |
| $Cr_2O_3$                              | 0    | 4           | 2.00                | -       | 0.94   | 1.00  | -         | 0.57   |
| $Fe_2O_3$                              | 0    | 20          | 4.00                | -       | 1.88   | 30.00 | -         | 17.12  |
| Li <sub>2</sub> O                      | 0    | 6           | -                   | 11.33   | 6.00   | -     | 0.00      | 0.00   |
| MnO                                    | 0    | 7           | 2.00                | -       | 0.94   | 3.00  | -         | 1.71   |
| Na <sub>2</sub> O                      | 4.1  | 23          | 19.00               | 1.70    | 9.84   | 22.00 | 24.12     | 22.91  |
| NiO                                    | 0    | 3           | 0.50                | -       | 0.24   | 2.00  | -         | 1.14   |
| $P_2O_5$                               | 0    | 4.5         | 1.00                | -       | 0.47   | 1.50  | -         | 0.86   |
| SiO <sub>2</sub>                       | 30.3 | 53          | 4.50                | 53.24   | 30.30  | 8.00  | 62.77     | 31.52  |
| UO <sub>3</sub>                        | 0    | 6.3         | 4.00                | -       | 1.88   | 6.50  | -         | 3.71   |
| $ZrO_2$                                | 0    | 13.5        |                     | -       | 0.00   | 4.00  | -         | 2.28   |
| Loading                                | -    | -           | 47.06               | 52.94   | 100.00 | 57.06 | 42.94     | 100.00 |
| Property                               |      |             |                     |         |        |       |           |        |
| $\eta_{1150}$ , Pa·s                   | 4    | 6           | -                   | -       | 6.00   | -     | -         | 4.00   |
| $T_L$ -Zrs, °C                         | -    | 1050, if Zi | rO <sub>2</sub> >4% |         | 1192   | -     | -         | 735    |
| $CaO \times P_2O_5$ , wt% <sup>2</sup> | -    | 6.5         | -                   | -       | 2.2    | -     | -         | 1.5    |
| Crystal fraction, vol%                 | -    | 2           | -                   | -       | 1.45   | -     | -         | 2.00   |
| Nepheline Probability                  | -    | 27          | -                   | -       | 27     | -     | -         | 27     |
| SO <sub>3</sub> limit, wt%             | -    | -           | -                   | -       | 1.26   | -     | -         | 0.66   |
| PCT Response, g/m <sup>2</sup>         | -    | 4           | -                   | -       | 2.39   | -     | -         | 0.41   |

 Table 2.26.
 Summary of Example Calculation Results

To demonstrate the application of these models to the Hanford mission and document the current expectations for increased waste loadings across the estimated HLW types, a study was performed and documented in Appendix A. The results of the calculations in Appendix A can also be used as examples to verify correct application of the models and constraints.

# 3.0 Low-Activity Waste Glass Constraints Set

This section summarizes the recent advances in LAW glass formulation, and recommends constraints that can be applied to estimate the amount of LAW glass that may be produced at Hanford. Alkali, sulfur, and halide loading rules, sulfur tolerance model, PCT response, VHT response, and viscosity are discussed in the following subsections. The recommended constraints are then summarized and example waste loading estimates are shown.

## 3.1 Loading Rules

The WTP baseline LAW glass formulation method is based on setting a waste loading and initial glass composition based on a correlation that interpolates between successful (up to pilot scale) formulations for wastes with different normalized alkali ( $NAlk = g_{Na_2O} + 0.66g_{K_2O} + 2g_{Li_2O}$ )-to-sulfur ratios of the waste. This method is summarized in Section 3.1.1. A similar approach can be used to identify the loading of advanced LAW glasses (as described in Section 3.1.2). However, the resulting glass compositions are less amenable to interpolation, as the component concentrations in glass are not smooth functions of *NAlk* from the waste. Therefore, the glass compositions (and waste loadings) will be estimated based on a combination of the rules in Section 3.1.2 and key waste glass properties constraints (sulfur tolerance, PCT response, VHT response, and viscosity) implemented by the use of property-composition models.

#### 3.1.1 WTP Baseline Formulation Correlation

LAW glasses were formulated for a series of wastes spanning the range of waste compositions expected during the initial phase of WTP operation. Following the results of Gimpel (2002), Muller et al. (2004) fit functions between glass component concentrations and the concentrations of Na<sub>2</sub>O, K<sub>2</sub>O, and SO<sub>3</sub> in the LAW. The original waste loading was determined as the minimum of four rules:

$$w_{Na_2O} \le 21 \text{ wt}\%,$$
 (3.1)

$$w_{Na_2O} + 0.66 \ w_{K_2O} \le 21.5 \ \text{wt\%},$$
 (3.2)

$$w_{Na_2O} + 42.5 w_{SO_3} \le 35.9 \text{ wt\%}, \text{ and}$$
 (3.3)

$$w_{SO_2} \le 0.77 \text{ wt\%}.$$
 (3.4)

These constraints are shown schematically in Figure 1.2. However, later analysis showed the need to add loading rules related to the concentrations of halogens, chromium, and phosphorous in the waste (Kim and Vienna 2012):

$$NH \le 1.4656 - 2.1111 \times w_{SO_3} \text{ wt\% for } w_{SO_3} \le 0.59 \text{ wt\%}$$
(3.5)

$$NH \le 0.22 \text{ wt\% for } w_{SO_3} > 0.59 \text{ wt\%}$$
 (3.6)

$$W_{C_{P_s}O_s} \le 0.63 \text{ wt\% for } W_{P_sO_s} \ge 2.79 \text{ wt\%}$$
 (3.7)

$$w_{K_2O} \le 5 \text{ wt\% for } w_{P_2O_5} \ge 2.79 \text{ wt\%}$$
 (3.8)

$$W_{C_{P_2O_3}} \le 0.63 \text{ wt\% for } W_{P_2O_5} < 2.79 \text{ wt\% and } W_{K_2O} \le 0.54 \text{ wt\%}$$
 (3.9)

$$W_{Cr_2O_3} \le 0.08 \text{ wt\% for } W_{P_2O_5} < 2.79 \text{ wt\% and } 0.54 < W_{K_2O} \le 5 \text{ wt\%}$$
 (3.10)

where *NH* is normalized halogen (=  $w_{Cl} + 0.3 w_F$ ). These rules are shown schematically in Figure 1.2 and Figure 1.4.

#### 3.1.1.1 Glass Composition Determination

With the waste loading determined, the concentration of other components in glass are either held constant or are based on the waste alkali concentration  $d = Na_2O + 0.66 K_2O$  wt%. Constant concentrations (wt%) of Al<sub>2</sub>O<sub>3</sub> (6.1), B<sub>2</sub>O<sub>3</sub> (10), Fe<sub>2</sub>O<sub>3</sub> (5.5), TiO<sub>2</sub> (1.4), ZnO (3.5), and ZrO<sub>2</sub> (3) are targeted. The concentrations of CaO, MgO, and Li<sub>2</sub>O are determined from fitted smooth functions of *d* (Muller et al. 2004):

$$w_{Ca0} = 1.5 + 5.5 \left\{ 1 + \exp\left[\frac{d - 17}{2}\right] \right\}^{-1}$$
(3.11)

$$w_{Li_2O} = 4.3 \left\{ 1 - \frac{\left[d - 5.4\right]^2}{12.75^2} \right\}^{0.7} \text{ wt\% for } d < 18.15\%$$

$$= 0 \text{ wt\% for } d \ge 18.15 \text{ wt\%}$$
 (3.12)

$$w_{MgO} = 1.48 + 1.49 \{1 + \exp[d - 9]\}^{-1} \text{ wt\%}.$$
 (3.13)

Finally, the SiO<sub>2</sub> concentration is then adjusted so that the glass composition sums to 100%:

$$w_{SiO_2} = 100 - w_{Waste} - w_{Al_2O_3} - w_{B_2O_3} - w_{Fe_2O_3} - w_{TiO_2} - w_{ZrO_2} - w_{CaO} - w_{Li_2O} - w_{MgO}$$
(3.14)

## 3.1.2 Advanced Formulation Loading Rules

A similar approach to determining advanced glass waste loading was developed by Muller et al. (2010) as shown schematically in Figure 3.1. The data used to develop this plot are summarized in Table 3.1.

This correlation leads to the following rules:

$$W_{Na_2O} + 0.66 W_{K_2O} \le 24, \text{ wt\%}$$
 (3.15)

$$w_{Na_2O} + 0.66 \ w_{K_2O} \le 33.94 - 11.69 \ w_{SO_3}$$
, wt% (3.16)

$$W_{SO_2} \le 1.5, \text{ wt\%}$$
 (3.17)

These rules are compared in Figure 3.1.



**Figure 3.1**. Overview of Waste Alkali Concentration (*d*) and SO<sub>3</sub> Loadings for Advanced LAW Glasses (Muller et al. 2010)

|           | Target     | Measured   | Target      | Target     |       |
|-----------|------------|------------|-------------|------------|-------|
| Glass ID  | $W_{SO_3}$ | $W_{SO_3}$ | $W_{Na_2O}$ | $W_{K_2O}$ | d     |
| ORPLG9    | 0.2        | 0.21       | 21.08       | 5.77       | 24.89 |
| ORPLG27   | 0.5        | -          | 21.08       | 5.77       | 24.89 |
| ORPLA20   | 0.7        | 0.63       | 24.04       | 0.54       | 24.40 |
| ORPLC5    | 0.7        | 0.61       | 23.69       | 0.54       | 24.05 |
| ORPLA38-1 | 0.8        | -          | 24.24       | 0.54       | 24.60 |
| ORPLB4    | 0.85       | 0.81       | 24.12       | 0.11       | 24.20 |
| LAWA187   | 0.95       | 0.77       | 23.17       | 0.51       | 23.51 |
| LAWA161   | 1          | -          | 20.70       | 0.44       | 20.99 |
| LAWC100   | 1.1        | 1.05       | 20.24       | 0.15       | 20.34 |
| ORPLD1    | 1.1        | 0.89       | 21.21       | 0.16       | 21.31 |
| ORPLD6    | 1.2        | 1.25       | 22.22       | 0.17       | 22.34 |
| LAWB99    | 1.5        | 1.14       | 10.08       | 0.41       | 10.35 |
| ORPLE12   | 1.5        | 1.38       | 16.20       | 0.56       | 16.57 |
| ORPLF7    | 1.5        | 1.35       | 12.24       | 0.51       | 12.57 |

Table 3.1. Summary of Advanced LAW Correlation Glasses

The impacts of halogen and chromium concentrations on the d-SO<sub>3</sub> loading limits need to be evaluated. Two methods were used to estimate these impacts:

- 1. Conservative method: Plot the concentrations of  $SO_3$ -Cl-F-Cr<sub>2</sub>O<sub>3</sub> in melter tests and divide the compositions with salt from those without salt. This is the same approach used for the WTP baseline formulation correlation waste loading rules (Section 3.1.1).
- 2. Optimistic method: Compile both the successful melter test and crucible-scale SO<sub>3</sub> solubility data and identify the maximum SO<sub>3</sub> solubility as a function of Cl, F, and Cr<sub>2</sub>O<sub>3</sub> in the feed. This would give an optimistic upper bound on Cl, F, and Cr<sub>2</sub>O<sub>3</sub> tolerance without salt separation. Note that Section 3.2 discusses the correlation between SO<sub>3</sub> solubility and salt accumulation during melter tests.

To define the conservative approach, the melter tests with salt accumulation and without salt accumulation are plotted in Figure 3.2. A range of component ratios were considered to better separate the salt-forming from the non-salt-forming compositions using the general functional form:

$$NH = \sum_{i=1}^{p} b_i g_i \tag{3.18}$$

where *NH* is the modified normalized halogen concentration,  $b_i$  is the *i*<sup>th</sup> component coefficient, and  $g_i$  is the *i*<sup>th</sup> component mass fraction.

The number of "false-positives" (the number of tests predicted to form salt while not forming salt) was minimized while maintaining no "false negatives" by adjusting the coefficients  $b_i$  and using no more than three line segments. It was found that when i = Cl, F,  $Cr_2O_3$ , and  $K_2O$ ,  $b_i$  values were 1.000, 0.607, 0.542, and 1.000, respectively. The results are shown in Figure 3.2 with the two fitted line segments with equations:

$$g_{Cl} + 0.607g_F + 0.542 g_{Cr_2O_3} + g_{K_2O} \le 3.746 - 4.694 w_{SO_3} \text{ for } w_{SO_3} < 0.59 \text{ wt\%}$$
(3.19)

$$g_{Cl} + 0.607g_F + 0.542 g_{Cr_2O_3} + g_{K_2O} \le 1.243 - 0.4506 w_{SO_3} \text{ for } w_{SO_3} \ge 0.59 \text{ wt\%}$$
(3.20)



**Figure 3.2**. Plot of  $w_{SO_3}$  vs.  $NH = g_{Cl} + 0.607g_F + 0.542 g_{Cr_2O_3} + g_{K_2O}$  from Melter Tests With and Without Salt Accumulation

For an optimistic halide rule, the crucible-scale SO<sub>3</sub> saturation and maximum SO<sub>3</sub> in melter tests without salt accumulation are plotted against  $NH(g_{Cl}+0.3g_F+0.4g_{Cr_2O_3})$ . The following equation of a line roughly represents the maximum concentrations of SO<sub>3</sub>, Cl, F, and Cr<sub>2</sub>O<sub>3</sub> that do not form a salt (see related plot in Figure 3.3):

$$w_{SO_2} \le 1.65 - 0.725(g_{Cl} + 0.3g_F + 0.4g_{Cr_2O_2})$$
(3.21)

This "optimistic" method describes the maximum concentrations of halides and chromium for which glasses have been formulated and tested without salt formation. Therefore, applying it will give an estimate of the maximum that could be formulated for each given waste.



**Figure 3.3**. Plot of  $w_{SO_3}$  vs.  $g_{Cl} + 0.3g_F + 0.4 g_{Cr_2O_3}$ 

To summarize the "halide" rules, two options are considered. The first approach is a conservative limit that avoids salt formation for all the melter tests performed. The second approach is optimistic and represents the maximum loadings that have been successfully demonstrated at the crucible or melter-scale. Real "halide" limits likely lie between the two approaches. Figure 3.4 summarize these rules.



Figure 3.4. Proposed Cl-F-Cr<sub>2</sub>O<sub>3</sub>-SO<sub>3</sub>-K<sub>2</sub>O Loading Rules

### 3.1.2.1 Glass Composition Determination

The glass compositions used to define the loading rules for advanced LAW formulations were plotted (Figure 3.5) as functions of *d*,  $w_{SO_3}$ , and  $w_{SO_3}/d$  to try to develop a correlation similar to the one used for the WTP baseline formulations. Trends are apparent for some additive components—CaO, Li<sub>2</sub>O, MgO, SnO<sub>2</sub>, and ZrO<sub>2</sub>—but not apparent for other additive components—Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and V<sub>2</sub>O<sub>5</sub>. In the case of the WTP baseline formulations, concentration trends (as a function of *d*) were apparent for every additive component. Therefore, determining the compositions of advanced LAW glasses will not be as simple as applying a correlation to interpolate between successful, optimized data points.



**Figure 3.5**. Pairwise Plots of Glass Components vs. *d* and SO<sub>3</sub> for Glasses Used to Define the Waste Loading Limits

It is therefore recommended that once the loading is determined based on the rules defined in Section 3.1.2, the glass property models and constraints discussed in Sections 3.2 through 3.6 be used to develop an optimized glass formulation meeting all the constraints. To assist in this formulation, the trends in CaO, Li<sub>2</sub>O, MgO, SnO<sub>2</sub>, and ZrO<sub>2</sub> concentrations can be used in obtaining a starting point for the optimization.

## 3.2 Sulfur Tolerance

Salt accumulation in the melter will increase the corrosion rates of melter components in contact with the salt, increase volatility, and potentially supersaturate the melt with salt that will separate into a water-soluble phase when the glass is canister-cooled. Therefore, constraints must be put in place to avoid the accumulation of salt in the melter. SO<sub>3</sub> tolerance models were developed for HLW glasses and combined the data sets of HLW and LAW glasses in Section 2.2. It was concluded in Section 2.2.5 that a combined HLW and LAW SO<sub>3</sub> model was the preferred option for predicting the salt accumulation in the HLW glasses. Here, a model is developed with the crucible-scale LAW-only data as described in Section 2.2 for comparison purposes.

A database of crucible-scale SO<sub>3</sub> saturation data was compiled for modeling. The crucible-scale saturation test included the melting of a target glass composition with excess Na<sub>2</sub>SO<sub>4</sub>. This forms a two-phase mixture—a glass melt and a Na<sub>2</sub>SO<sub>4</sub>-based molten salt. The melt is quenched and ground. The resulting powders are acid leached to remove the excess salt. The remaining glass is dissolved and analyzed for concentration of SO<sub>3</sub>, which is reported as the crucible saturation concentration of SO<sub>3</sub>. Note that the physical/chemical form of sulfur in the glass is not determined and tracked for each glass. Therefore, the concentration is listed as SO<sub>3</sub> only as a mass accounting method for glass composition. Nine data sets are combined to generate the SO<sub>3</sub> concentration model data. These data are listed in Appendix B and summarized in Table 3.2. The compositions listed are normalized after removing the SO<sub>3</sub> concentration. Figure 3.6 shows a scatterplot matrix of the compositions associated with the model data. It was determined through modeling efforts that the halogen impacts the salt separation in a ratio of Cl + 0.3 F, or normalized halogen (*NH*). With the exceptions of the following pairs, the data appear to cover the composition space well: K<sub>2</sub>O-Li<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub>, Li<sub>2</sub>O-SnO<sub>2</sub>, and K<sub>2</sub>O-V<sub>2</sub>O<sub>5</sub>. The ranges of component concentrations for the data are listed in Table 3.3.

|                             |       | Number of   |                        |                                |
|-----------------------------|-------|-------------|------------------------|--------------------------------|
| Data Set                    | Group | Data Points | Reference Document     | Comments                       |
| TWRS Part A LAW             | WTP   | 1           | (Muller et al. 1998)   | -                              |
| 2001 WTP LAW                | WTP   | 42          | (Muller et al. 2001)   | -                              |
| WTP Baseline                | WTP   | 58 (55)     | (Muller and Pegg 2003) | 3 data points did not use acid |
|                             |       |             | (                      | leaching and so were excluded  |
| SO <sub>3</sub> Improvement | ORP   | 14          | (Matlack et al. 2005)  | -                              |
| Env. C Improvement          | ORP   | 4           | (Matlack et al. 2006b) | -                              |
| Env. A, B Improvement       | ORP   | 36          | (Matlack et al. 2006a) | -                              |
| Enhanced LAW                | ORP   | 41          | (Matlack et al. 2007b) | -                              |

**Table 3.2**. Summary of  $w_{SO_2}^{Sat}$  Model Data

|             |       | Number of   |                        |          |
|-------------|-------|-------------|------------------------|----------|
| Data Set    | Group | Data Points | Reference Document     | Comments |
| LAW DM-10   | ORP   | 41          | (Matlack et al. 2009a) | -        |
| LAW Loading | ORP   | 30          | (Muller et al. 2010)   | -        |

| 0.13<br>0.11<br>0.09<br>0.07<br>0.05          | AI2O3                                     | •2000<br>•2000                        |                         |                                                                                                  |                 | 0 0 <b>0</b><br>0<br>0<br>0<br>0     |                                                                                                  |                                                                                              |                                          |                                                                                                  | °°                   |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|-----------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|-------------|--------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0.12<br>0.08<br>0.04                          |                                           | B203                                  |                         |                                                                                                  |                 |                                      |                                                                                                  | <b>8</b> 8<br>8<br>8                                                                         |                                          |                                                                                                  | ູ້                   |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 0.12<br>0.08<br>0.04<br>0                     |                                           |                                       | CaO                     |                                                                                                  |                 |                                      |                                                                                                  |                                                                                              |                                          |                                                                                                  | °<br>• °             |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| .008 -<br>.006 -<br>.004 -<br>.002 -<br>0 -   |                                           |                                       |                         | Cr2O3                                                                                            |                 |                                      | ୖ<br>ଢ଼୦ <b>ଌ୩</b> ୦୦<br>ଵୄୖ <u>୦</u> ୧୪୪୫୭୫୫୫                                                   |                                                                                              | <b></b>                                  |                                                                                                  | 。<br>●               |             | 8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | ଁ<br>ମି <b>ନ୍ଦ୍ରେ</b><br>ମିନ୍ଦ୍ର |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 0.08                                          |                                           | ۰ (2000)<br>ویکویکی<br>روانیکی        | • <b>6</b>              | م<br>م                                                                                           | Fe2O3           | 00°0 (<br>8<br>0 ● (                 |                                                                                                  | <b>Å</b>                                                                                     | 600<br>600                               |                                                                                                  | • • •                |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | °            |
| 0.06<br>0.04<br>0.02<br>0                     |                                           | •<br>•                                | 00000<br>00000<br>00000 |                                                                                                  | ● °<br>• ∞ • ℃  | K20                                  |                                                                                                  |                                                                                              | روه م<br>ه ۵ ه                           | •<br>•<br>•<br>•                                                                                 |                      | <b>*</b>    |                                                                                                  |                                  | 08 <b>(</b> )<br>8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 0.04                                          |                                           |                                       |                         |                                                                                                  |                 | 8                                    | Li2O                                                                                             |                                                                                              |                                          | ° °                                                                                              | ، ج<br>د و           |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 0.08<br>0.06<br>0.04<br>0.02<br>0<br>0        |                                           | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | ۵۵<br>هوه<br>هوه        | , 9<br>, 9<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0<br>, 0                 | <b>°</b>        | °<br>8<br>8<br>8<br>8<br>9<br>°      |                                                                                                  | MgO                                                                                          | 。<br>•                                   | °<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9 | °<br>8<br>•<br>8     | 。<br>•<br>• |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •<br>•<br>•  |
| 0.2 -<br>0.15 -<br>0.1 -<br>0.05 -<br>0 -     |                                           |                                       |                         |                                                                                                  |                 | 8                                    |                                                                                                  |                                                                                              | Na2O                                     |                                                                                                  | ° ° •                |             |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| .012<br>.008<br>.004                          |                                           | ಁೲೲ                                   | ം<br>പ്രത്യം<br>പ്രത്യം |                                                                                                  |                 |                                      |                                                                                                  | ജ്<br>ജോയം<br>ജോം                                                                            | ° ° °                                    | NHal                                                                                             | ອັ<br>ອີ<br>ອີ<br>ດີ |             |                                                                                                  |                                  | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 0.02                                          | •<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | • •<br>•                              | ° © °                   | ີ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ<br>ເ | 000<br>00<br>00 |                                      |                                                                                                  |                                                                                              | ° ° °                                    | າ<br>ວິດິດ<br><b>ດີ</b>                                                                          | P205                 | ° @°<br>°   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | • •<br>◎ <sup>•</sup> •<br>•     | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 0.45 -<br>0.4 -<br>0.35 -<br>0.3 -            |                                           | 8                                     |                         |                                                                                                  |                 | 8°                                   | 0.08                                                                                             |                                                                                              |                                          |                                                                                                  | <b>0</b> 00000       | SiO2        |                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •          |
| 0.04<br>0.03<br>0.02<br>0.01<br>0.01          |                                           |                                       |                         | ° 60<br>8 0<br>9                  |                 |                                      |                                                                                                  | 39<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                                          |                                                                                                  | •<br>•               |             | SnO2                                                                                             |                                  | ିତ<br>୦.୦୦୦<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥିତ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନିସ୍ଥ<br>ଜୁନି<br>ଜୁନି<br>ଜୁନି<br>ଜୁନି<br>ଜୁନି<br>ଜୁନି<br>ଜୁନ<br>ଜୁନି<br>ଜୁନ<br>ଜୁନି<br>ଜୁନ<br>ଜୁନି<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ<br>ଜୁନ |              |
| 0.04<br>0.03<br>0.02<br>0.01<br>0             |                                           |                                       |                         | ິ<br>ຊີຍີ່<br>ສຸດແຫຼດ                                                                            |                 |                                      | 0<br>8<br>8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                              | 600000<br>8 <b>0</b> 00<br>8 <b>0</b> 00 |                                                                                                  |                      |             |                                                                                                  | V2O5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 0.07                                          |                                           |                                       |                         |                                                                                                  |                 | °<br>°<br>°<br>°<br>°<br>°<br>°<br>° |                                                                                                  |                                                                                              | •<br>•                                   |                                                                                                  |                      |             |                                                                                                  |                                  | ZrO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 0.1 -<br>0.08 -<br>0.06 -<br>0.04 -<br>0.02 - |                                           | •<br>•<br>•                           |                         | •<br>•<br>•                                                                                      |                 | °<br>° °                             |                                                                                                  | °<br>°                                                                                       |                                          |                                                                                                  | °<br>° <sub>80</sub> | •<br>•      | °                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Others       |
|                                               | 0.05 0.090.12                             | 0.040.080.12                          | 0 0.04 0.1 0            | 0.0040.008                                                                                       | 0 0.04 0.1 0    | 0 0.02 0.05                          | 0 0.020.04                                                                                       | 00.02 0.06                                                                                   | 00.05 0.15                               | 0 0.004 0.01                                                                                     | 0 0.010.02           | 0.3 0.4     | 00.01 0.03                                                                                       | 0 0.01 0.03                      | 0.030.050.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.020.06 0.1 |

**Figure 3.6**. Scatterplot Matrix of  $w_{SO_3}^{Sat}$  Model Data

| Oxide                                                                                                                          | Min                 | Max              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|--|--|
| Al <sub>2</sub> O <sub>3</sub>                                                                                                 | 5.53                | 13.95            |  |  |  |  |
| $B_2O_3$                                                                                                                       | 3.98                | 16.06            |  |  |  |  |
| CaO                                                                                                                            | 0.00                | 12.94            |  |  |  |  |
| Cl                                                                                                                             | 0.00                | 1.17             |  |  |  |  |
| $Cr_2O_3$                                                                                                                      | 0.01                | 1.00             |  |  |  |  |
| F                                                                                                                              | 0.00                | 3.06             |  |  |  |  |
| $Fe_2O_3$                                                                                                                      | 0.00                | 13.54            |  |  |  |  |
| K <sub>2</sub> O                                                                                                               | 0.11                | 8.34             |  |  |  |  |
| Li <sub>2</sub> O                                                                                                              | 0.00                | 5.86             |  |  |  |  |
| MgO                                                                                                                            | 0.00                | 10.10            |  |  |  |  |
| Na <sub>2</sub> O                                                                                                              | 2.48                | 26.05            |  |  |  |  |
| $P_2O_5$                                                                                                                       | 0.00                | 3.08             |  |  |  |  |
| $SiO_2$                                                                                                                        | 30.05               | 50.64            |  |  |  |  |
| $SnO_2$                                                                                                                        | 0.00                | 5.01             |  |  |  |  |
| $TiO_2$                                                                                                                        | 0.00                | 4.11             |  |  |  |  |
| $V_2O_5$                                                                                                                       | 0.00                | 4.39             |  |  |  |  |
| ZnO                                                                                                                            | 0.00                | 5.86             |  |  |  |  |
| $ZrO_2$                                                                                                                        | 2.62                | 9.02             |  |  |  |  |
| Minor <sup>(a)</sup>                                                                                                           | 0.00                | 7.91             |  |  |  |  |
| (a) Minor equals a                                                                                                             | ll other components | not specifically |  |  |  |  |
| listed. Only BaO, Bi <sub>2</sub> O <sub>3</sub> , CoO, CuO, Gd <sub>2</sub> O <sub>3</sub> , La <sub>2</sub> O <sub>3</sub> , |                     |                  |  |  |  |  |
| MnO, Sb <sub>2</sub> O <sub>3</sub> , and SrO are in more than one wt% in                                                      |                     |                  |  |  |  |  |
| the minor components. SrO, $La_2O_3$ , and $Gd_2O_3$ are                                                                       |                     |                  |  |  |  |  |
| >1 wt% for two glasses each, while BaO, Bi <sub>2</sub> O <sub>3</sub> , CoO,                                                  |                     |                  |  |  |  |  |
| CuO, MnO, and $Sb_2O_3$ are >1 wt% for only one glass                                                                          |                     |                  |  |  |  |  |

**Table 3.3.**  $W_{SO_3}^{Sat}$  Model Data Component Concentration Ranges

Only one model form was attempted to model the SO<sub>3</sub> saturation data—the partial quadratic model in Equation 2.6. Initial attempts were to include only linear terms (first term in the model form above). However, it was quickly determined that the addition of a second order term ( $Li_2O \times Li_2O$ ) improved both the model-fit statistics and the model validation statistics. The final model terms are summarized in Table 3.4, and the model-fit is shown graphically as a predicted vs. measured plot in Figure 3.7.

each.

| Term                                | Coefficient | Statistic Value              | ;  |
|-------------------------------------|-------------|------------------------------|----|
| $Al_2O_3$                           | -2.228782   | $R^2 = 0.887$                | 71 |
| $B_2O_3$                            | 2.7402042   | $R_{\rm Adj}^2$ 0.879        | €7 |
| CaO                                 | 3.8795344   | $R_{\mathrm{Press}}^2$ 0.866 | 58 |
| $Cr_2O_3$                           | -12.93979   | RMSE 0.11                    | 14 |
| $Fe_2O_3$                           | -0.24149    | RMSE <sub>Press</sub> 0.12   | 20 |
| K <sub>2</sub> O                    | 0.900221    | Mean of response 0.786       | 55 |
| Li <sub>2</sub> O                   | 2.9000608   | # of data points 26          | 53 |
| MgO                                 | -1.270796   | -                            | -  |
| Na <sub>2</sub> O                   | 3.0095451   | -                            | -  |
| NH                                  | -22.20178   | -                            | -  |
| $P_2O_5$                            | 4.3573512   | -                            | -  |
| SiO <sub>2</sub>                    | -0.233355   | -                            | -  |
| $SnO_2$                             | -2.503471   | -                            | -  |
| $V_2O_5$                            | 8.0476827   | -                            | -  |
| $ZrO_2$                             | -2.117697   | -                            | -  |
| Others                              | 1.5505865   | -                            | -  |
| Li <sub>2</sub> O×Li <sub>2</sub> O | 262.04827   |                              | -  |

**Table 3.4**. Summary of  $W_{SO_3}^{Sat}$  Model Coefficients and Fit Statistics



**Figure 3.7**. Comparison of Predicted and Measured Crucible-Scale  $w_{SO_3}^{Sat}$  With 95% Confidence Interval for Individual Prediction, wt%

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to

validate the model. The data were sorted by SO<sub>3</sub> saturation value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data. The same model form (including the same set of terms) was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 3.5 summarizes the results of the model validation. The coefficients are reasonably close, having RSDs of less than 25%, with the exceptions of Fe<sub>2</sub>O<sub>3</sub>, MgO, P<sub>2</sub>O<sub>5</sub>, and SiO<sub>2</sub>. Only the Fe<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> coefficients show >50% RSD, and those coefficients are very close to 0. The model-fit  $R^2$  values are all close to each other at approximately 0.89. The  $R_{Val}^2$  values are all between 0.82 and 0.90. The average  $R_{Val}^2$  value is almost identical to the  $R_{Press}^2$  value of 0.86. This model is well validated, and should give predictions of unknown data within the model-validity region nearly as well as for the model-fit data.

| Fit Statistics        | Full Model | Grp 1  | Grp 2  | Grp 3  | Grp 4  | Grp 5  | Average |
|-----------------------|------------|--------|--------|--------|--------|--------|---------|
| $R^2$                 | 0.8871     | 0.8971 | 0.8910 | 0.8820 | 0.8913 | 0.8856 | 0.8894  |
| $R^2_{ m Adj}$        | 0.8797     | 0.8886 | 0.8820 | 0.8722 | 0.8823 | 0.8762 | 0.8803  |
| $R_{\rm Press}^2$     | 0.8668     | 0.8756 | 0.8667 | 0.8541 | 0.8628 | 0.8596 | 0.8638  |
| RMSE                  | 0.114      | 0.110  | 0.113  | 0.116  | 0.114  | 0.117  | 0.114   |
| RMSE <sub>Press</sub> | 0.120      | 0.116  | 0.120  | 0.124  | 0.123  | 0.124  | 0.122   |
| Validation            |            |        |        |        |        |        |         |
| $R_{ m Val}^2$        | -          | 0.8272 | 0.8587 | 0.8960 | 0.8525 | 0.8819 | 0.8633  |

**Table 3.5**. Summary of  $w_{SO_3}^{Sat}$  Model Validation Data

To apply this model (based on crucible-scale  $SO_3$  saturation data) to the consistently higher melterscale data, an offset must be added. There is a roughly constant offset between the melter data and the crucible-scale saturation data (Figure 2.13). Taking the data listed in Table 3.2, we subtracted the crucible-scale  $SO_3$  saturation from the maximum concentration of  $SO_3$  in melter tests without salt formation. The average difference (melter-saturation) is 0.2115 wt%, with a standard deviation of 0.1398 wt%. Using this offset, we can estimate the sulfur tolerance of a feed by adding 0.2115 wt% to the predicted crucible-scale  $SO_3$  saturation value.

Comparing this model to that described in Section 2.2.3, both models fit the data and are well validated with data not used in their fitting. However, the slightly improved fit statistics of the LAW-only model does not, in our opinion, outweigh the advantage of the additional data, broader composition region, and more general applicability of the combined LAW and HLW model. We therefore recommend that the combined LAW and HLW crucible-scale model described in Section 2.2.3 and recommended in Section 2.2.5 be used to determine LAW SO<sub>3</sub> tolerance.

## 3.3 Product Consistency Test Response

The WTP contract requires glasses to have 7-d normalized PCT Na, B, and Si responses below 2  $g/m^2$  (DOE 2000):

2.2.2.17.2 Product Consistency Test: The normalized mass loss of sodium, silicon, and boron shall be measured using a seven day product consistency test run at 90°C as defined in ASTM C1285-98. The test shall be conducted with a glass to water ratio of 1 gram of glass (-100 +200 mesh) per 10 milliliters of water. The normalized mass loss shall be less than 2.0 grams/m<sup>2</sup>. Qualification testing shall include glass samples subjected to representative waste form cooling curves. The product consistency test shall be conducted on waste form samples that are statistically representative of the production glass.

For glasses with typical densities near the reference value of 2.65 g/cm<sup>3</sup>, this translates to normalized losses of 4.0 g/L.

Glasses with high alkali content tend to challenge this constraint (Figure 3.8). PCT responses of all glasses fall far below the limit when the *NAlk* is below 18 wt%. However, above a *NAlk* of 18 wt%, some glasses exceed the contract limit PCT response while others do not. In fact, glasses with *NAlk* as high as 26 wt% (ORPLA25) still meet the contract limits. A model is needed to predict PCT responses of high alkali glasses to avoid failing the contract PCT constraint.



**Figure 3.8**. Comparison of PCT Normalized Na and B Responses to *NAlk* of LAW Glasses (NL in g/L, alkali content in mass fraction, × for NL[Na], + for NL[B])

A database of LAW glasses was compiled to model their PCT responses. These data include crucible-scale tests with simulants, melter tests with simulants, and crucible-scale tests with actual LAW. The data, summarized in Table 3.6, were compiled for modeling, and are listed in Appendix B. It should

be noted that two additional LAW glass datasets were considered for inclusion in the model data set: 1) the in-container vitrification set (Kim et al. 2003), which was excluded because it was based on boron free glasses, and 2) the Tank Waste Remediation System (TWRS) low-level waste glass set (Feng et al. 1996), which was excluded because of the large fraction of data points falling outside the target composition region. The data set was evaluated for composition coverage and appropriateness to use in models. Five data points (Table 3.7) with relatively extreme compositions were excluded from the fit, leaving a relatively even coverage of the remaining composition space. Note that Fe<sub>2</sub>O<sub>3</sub> and V<sub>2</sub>O<sub>5</sub> plus K<sub>2</sub>O and V<sub>2</sub>O<sub>5</sub> are almost mutually exclusive in the data set; V<sub>2</sub>O<sub>5</sub> is found in significant concentrations only in glasses with very low Fe<sub>2</sub>O<sub>3</sub> and K<sub>2</sub>O contents (Figure 3.9). The final PCT model component concentration ranges are listed in Table 3.8.

Table 3.6. Summary of LAW PCT Data Sets

|          | # of Data |                       |                                                             |
|----------|-----------|-----------------------|-------------------------------------------------------------|
| Data Set | Points    | Reference             | Comments                                                    |
| ORP      | 174       | (Muller et al. 2012)  | Advanced glass formulations with high waste loading         |
| WTP      | 264       | (Piepel et al. 2007)  | Data used to develop WTP LAW glass models                   |
| HLP      | 63        | (Vienna et al. 2001a) | Study glasses used to set the contract limits for LAW glass |
|          |           |                       | performance                                                 |

Table 3.7. Glasses Excluded from PCT Model Fitting

| Excluded Component Concentration Region | Glasses Removed |
|-----------------------------------------|-----------------|
| $B_2O_3 < 2 \text{ wt\%}$               | HLP-52          |
| $Cr_2O_3 > 1 \text{ wt\%}$              | LAWECr2CCC      |
| $Fe^{II}/Fe \text{ total} > 10\%$       | HLP-44, HLP-45  |
| $La_2O_3 > 0.5 \text{ wt\%}$            | HLP-51          |
| Component                      | Min          | Max       |  |  |
|--------------------------------|--------------|-----------|--|--|
| Al <sub>2</sub> O <sub>3</sub> | 3.50         | 13.85     |  |  |
| $B_2O_3$                       | 5.00         | 15.15     |  |  |
| CaO                            | 0.00         | 12.81     |  |  |
| Cl                             | 0.00         | 1.17      |  |  |
| $Cr_2O_3$                      | 0.00         | 0.63      |  |  |
| Cs <sub>2</sub> O              | 0.00         | 0.19      |  |  |
| F                              | 0.00         | 1.00      |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00         | 15.77     |  |  |
| K <sub>2</sub> O               | 0.00         | 8.08      |  |  |
| Li <sub>2</sub> O              | 0.00         | 6.29      |  |  |
| MgO                            | 0.00         | 9.94      |  |  |
| Na <sub>2</sub> O              | 2.46         | 26.01     |  |  |
| $P_2O_5$                       | 0.00         | 4.75      |  |  |
| SiO <sub>2</sub>               | 29.82        | 59.80     |  |  |
| $SnO_2$                        | 0.00         | 5.00      |  |  |
| $SO_3$                         | 0.06         | 2.17      |  |  |
| TiO <sub>2</sub>               | 0.00         | 8.59      |  |  |
| $V_2O_5$                       | 0.00         | 3.00      |  |  |
| ZnO                            | 0.00         | 5.82      |  |  |
| ZrO <sub>2</sub>               | 0.00         | 6.75      |  |  |
| Minors <sup>(a)</sup>          | 0.07         | 2.17      |  |  |
| (a) Minors eq                  | jual the sur | n of all  |  |  |
| componer                       | nts not spec | cifically |  |  |
| listed here                    | e.           |           |  |  |

 Table 3.8.
 Component Concentration Ranges for PCT Model Data



Figure 3.9. Scatterplot Matrix of PCT Model Data

Repeated analyses show that the PCT normalized silicon responses fall well below those of sodium and boron; generally sodium and boron responses are nearly the same. With the exception of one outlier (HLP-46, LD6-5412), NL(Si) are below NL(B), and generally NL(B)  $\cong$  NL(Na) as shown in Figure 3.10. Therefore, there is no need to model or control composition for NL(Si). Rather than fit NL(B) and NL(Na) separately, it was decided to average the natural logarithm (Ln) of the two values for each glass and fit the average (Ln[NL(B)], Ln[NL(Na)]) value as a measure of PCT response of these glasses.



Figure 3.10. Comparison of NL(B), NL(Na), and NL(Si)

Only one model form was attempted to model the LAW glass PCT response—the partial quadratic model:

$$Ln[NL,g/L] = \sum_{i=1}^{p} b_i g_i + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i+1}^{p} b_{ij} g_i g_j \right\}$$
(3.22)

Initial attempts were to include only linear terms (first term in the model form above). However, it was quickly determined that the addition of second order terms improved both the model-fit statistics and the model validation statistics. The final model terms are summarized in Table 3.9, and the model-fit is shown graphically as a predicted vs. measured plot in Figure 3.11.

| Term                           | Estimate  | Statistic                    | Value  |
|--------------------------------|-----------|------------------------------|--------|
| Al <sub>2</sub> O <sub>3</sub> | -69.07589 | $R^2$                        | 0.8229 |
| $B_2O_3$                       | 13.020929 | $R_{ m Adj}^2$               | 0.8174 |
| CaO                            | -7.234449 | $R_{ m Press}^2$             | 0.8022 |
| Fe <sub>2</sub> O <sub>3</sub> | -6.318672 | RMSE                         | 0.334  |
| K <sub>2</sub> O               | 10.099748 | <b>RMSE</b> <sub>Press</sub> | 0.348  |
| Li <sub>2</sub> O              | 27.748976 | Mean of Response             | 0.011  |
| MgO                            | 7.1092189 | # of data points             | 496    |
| Na <sub>2</sub> O              | 16.667725 |                              | -      |
| $P_2O_5$                       | -9.063384 |                              | -      |
| $SiO_2$                        | -3.07673  |                              | -      |
| $V_2O_5$                       | 9.3277525 |                              | -      |
| $ZrO_2$                        | -8.556034 |                              | -      |
| Others                         | -1.157161 |                              | -      |
| $Al_2O_3 \times Al_2O_3$       | 361.93083 |                              | -      |
| $CaO \times Fe_2O_3$           | 163.17256 | -                            | -      |
| MgO×ZrO <sub>2</sub>           | 592.93753 | -                            | -      |

Table 3.9. Summary of PCT Response Model Coefficients and Fit Statistics, in g/L



**Figure 3.11**. Predicted vs. Measured Average (Ln[NL]) with 95% Confidence Interval for Individual Prediction

To validate the model, data not used in model fitting must be obtained. Because all appropriate data within the desired composition region were used in model fitting, subsets of the model data were used to validate the model. The data were sorted by average (Ln[NL]) value. The data were then numbered 1, 2, 3, 4, 5, 1, 2, ... to split them into five representative groups of roughly 20% of the data. The model was then refit to subsets 2 to 5 and used to predict data in subset 1. Then the model was fit to each group of four subsets and used to predict the remaining subset in sequence. Table 3.10 summarizes the results of the model validation. The coefficients are reasonably close; they had an RSD of less than 25%, with the exceptions of MgO and Others. Only the "Others" coefficients show >40% RSD. The model-fit  $R^2$  values are all close to each other at approximately 0.82. The  $R_{Val}^2$  values are also close to 0.82, with the exception of group 4, which has an  $R_{val}^2$  of 0.75 and an MgO coefficient roughly double all the other groups. It is not clear why the fit for group 4 is different from the rest. The average  $R_{val}^2$  value is almost identical to the  $R_{Press}^2$  value of 0.80. This model is well validated and should give predictions of unknown data within the model-validity region nearly as well as for the model-fit data.

| Components                     | Full Model | Grp 1     | Grp 2     | Grp 3    | Grp 4    | Grp 5    | %RSD   |
|--------------------------------|------------|-----------|-----------|----------|----------|----------|--------|
| Al <sub>2</sub> O <sub>3</sub> | -69.07589  | -67.969   | -69.2049  | -71.1411 | -67.6869 | -68.8492 | -2.0   |
| $B_2O_3$                       | 13.020929  | 12.197258 | 14.045565 | 13.22309 | 13.17081 | 12.67552 | 5.3    |
| CaO                            | -7.234449  | -6.956006 | -7.640977 | -6.97383 | -7.40321 | -7.20958 | -4.0   |
| Fe <sub>2</sub> O <sub>3</sub> | -6.318672  | -5.164495 | -7.457974 | -6.49346 | -7.22671 | -5.52111 | -16.0  |
| K <sub>2</sub> O               | 10.099748  | 9.9833717 | 9.7882282 | 10.72099 | 9.299774 | 10.65577 | 6.0    |
| Li <sub>2</sub> O              | 27.748976  | 26.665821 | 26.461763 | 28.20851 | 26.77714 | 30.20904 | 5.7    |
| MgO                            | 7.1092189  | 6.4462014 | 5.1138895 | 5.889306 | 11.95775 | 6.67606  | 38.2   |
| Na <sub>2</sub> O              | 16.667725  | 16.131029 | 16.51355  | 17.07661 | 16.50862 | 17.01485 | 2.4    |
| $P_2O_5$                       | -9.063384  | -7.696309 | -8.870755 | -9.9238  | -9.86013 | -8.8276  | -10.1  |
| SiO <sub>2</sub>               | -3.07673   | -2.839805 | -2.922018 | -2.98631 | -3.38361 | -3.31255 | -7.9   |
| $V_2O_5$                       | 9.3277525  | 10.143102 | 8.5526628 | 10.16775 | 9.774255 | 7.815441 | 11.3   |
| $ZrO_2$                        | -8.556034  | -7.953202 | -8.623589 | -9.26938 | -7.79964 | -8.65066 | -6.9   |
| Others                         | -1.157161  | -1.8559   | -1.151154 | -2.36069 | 1.147849 | -1.49196 | -117   |
| $Al_2O_3 \!\!\times\! Al_2O_3$ | 361.93083  | 361.12859 | 357.04268 | 373.223  | 348.7296 | 364.6893 | 2.5    |
| $CaO \times Fe_2O_3$           | 163.17256  | 144.79261 | 173.52954 | 172.3198 | 168.3196 | 159.5469 | 7.3    |
| MgO×ZrO <sub>2</sub>           | 592.93753  | 586.23343 | 627.85814 | 672.4307 | 443.8195 | 622.4125 | 14.8   |
| Fit Statistics                 |            |           |           |          |          |          |        |
| $R^2$                          | 0.8229     | 0.8143    | 0.8220    | 0.8235   | 0.8354   | 0.8309   | 0.8252 |
| $R_{ m Adj}^2$                 | 0.8174     | 0.8069    | 0.8150    | 0.8165   | 0.8289   | 0.8242   | 0.8183 |
| $R_{ m Press}^2$               | 0.8022     | 0.7875    | 0.7947    | 0.7975   | 0.8107   | 0.8043   | 0.7989 |
| RMSE                           | 0.348      | 0.340     | 0.339     | 0.337    | 0.324    | 0.327    | 0.333  |
| <b>RMSE</b> <sub>Press</sub>   | 0.334      | 0.356     | 0.357     | 0.354    | 0.341    | 0.345    | 0.351  |
| Validation                     |            |           |           |          |          |          |        |
| $R_{ m Val}^2$                 |            | 0.8436    | 0.8127    | 0.8124   | 0.7450   | 0.7854   | 0.7998 |

Table 3.10. Summary of PCT Model Validation Data

### 3.4 Vapor Hydration Test Response

The WTP contract requires glasses to have VHT responses below 50  $g/m^2$  (DOE 2000):

2.2.2.17.3 Vapor Hydration Test: The glass corrosion rate shall be measured using at least a seven (7)-day vapor hydration test run at 200°C as defined in the DOE-concurred upon ILAW Product Compliance Plan. The measured glass alteration rate shall be less than 50 grams/( $m^2$  day). Qualification testing shall include glass samples subjected to representative waste form cooling curves. The vapor hydration test shall be conducted on waste form samples that are representative of the production glass.

Glasses with high alkali content tend to challenge this constraint, as shown in Figure 3.12. Below a *NAlk* of roughly 16 wt%, the VHT responses of all glasses fall far below the limit. However, above a *NAlk* of 16 wt%, some glasses exceed the contract limit VHT response while others do not. In fact,

glasses with *NAlk* as high as 26 wt% (ORPLA25) still meet the contract limits. A model is needed to predict VHT responses of high *NAlk* glasses to avoid failing the contract VHT constraint while at the same time allowing for the formulation of high *NAlk* glasses.



Figure 3.12. Comparison of 200°C VHT Rates, Normalized to 24 d Test, to NAlk of LAW Glasses

A database of LAW glasses was compiled to model their VHT responses. These data include crucible-scale tests with simulants, melter tests with simulants, and crucible-scale tests with actual LAW. The data, summarized in Table 3.11, were compiled for modeling, and are listed in Appendix B. The data set was evaluated for composition coverage of the single component concentration ranges (Table 3.12) and appropriateness for use in models. The data generally cover the concentration ranges well, as shown in Figure 3.13.

|          | Number of   |                                                     |
|----------|-------------|-----------------------------------------------------|
| Data Set | Data Points | Reference                                           |
| HLP      | 72          | Vienna et al. 2001b                                 |
| ICV      | 93          | Kim et al. 2003 plus<br>previously unpublished data |
| ORP      | 203         | Muller et al. 2012                                  |
| WTP      | 177         | Piepel et al. 2007                                  |

**Table 3.11**.Summary of LAW VHT Data Sets

 Table 3.12.
 Component Concentration Ranges for VHT Model Data

| Component                      | Min   | Max   |
|--------------------------------|-------|-------|
| $Al_2O_3$                      | 3.5   | 16.79 |
| $B_2O_3$                       | 0     | 13.73 |
| CaO                            | 0     | 12.81 |
| Fe <sub>2</sub> O <sub>3</sub> | 0     | 15.77 |
| K <sub>2</sub> O               | 0     | 5.88  |
| Li <sub>2</sub> O              | 0     | 5.79  |
| MgO                            | 0     | 9.94  |
| Na <sub>2</sub> O              | 2.45  | 28.74 |
| SiO <sub>2</sub>               | 29.82 | 60.01 |
| ZrO <sub>2</sub>               | 0     | 10    |



Figure 3.13. Scatterplot Matrix of VHT Model Data

There are two primary ways of estimating the alteration rate by VHT: 1) a single time test is run and the amount of glass altered in the test is divided by the test time to give an average rate, and 2) multiple tests are run at different times and an alteration rate is determined by the slope of the linear portion of the alteration vs. time relationship (Vienna et al. 2001b). Because there is a significant positive intercept for most VHT alteration vs. time relationship lines, the two options will necessarily yield different results, with option 1 being generally higher than option 2. Further, the time at which the test is run will also influence the option 1 rate. Therefore, to make the data from the different studies compatible, an attempt was made to put the data on the same time basis. Because a vast majority of the model data was measured for a single time at 24 days, that was the basis chosen. For glasses with multiple time measurements, the amount of alteration was interpolated to 24 days, and that number was divided by 24 to put the rate in terms of grams per square meter per day ( $g/m^2/d$ ). In this report, this rate is referred to as r24. For the glasses with a different, single time measurement, we could find no basis for adjusting the rate, so we took the mass of glass altered during the test duration and divided by the test duration.

Attempts to fit partial quadratic models to the VHT data (r24) were unsuccessful; the fit  $R^2$  values were below 70% even for many-term models, and the validation statistics were well below the model-fit statistics (lower  $R^2$ s and higher RMSEs). In addition, the range residuals were very high (Figure 3.14). Glasses with measured VHT responses of roughly 50 g/m<sup>2</sup>/d were predicted to have responses ranging from 2 to 90 g/m<sup>2</sup>/d with model-fit data. Therefore, other modeling approaches were investigated.



**Figure 3.14**. Prediction vs. Measured Ln(r24) Partial Quadratic Model with 95% Confidence Interval for Individual Prediction

An NN model is ideal for predicting complex non-linear interactions between the components; this model was used to model VHT response. The final NN model consisted of two first-level nodes and six second level nodes, all using the hyperbolic tangent activation function. These nodes are classified as the hidden layers of the model. Of the possible components, Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, Li<sub>2</sub>O, MgO, Na<sub>2</sub>O, SiO<sub>2</sub>, and ZrO<sub>2</sub> were used for prediction. Analysis was performed using additional components, including F, SO<sub>3</sub>, SnO<sub>2</sub>, and TiO<sub>2</sub>, and ZnO, but these components either altered the predicted effects of other components in non-intuitive ways or did not increase the validity of the model. Additional sensitivity trials were performed using different numbers of NN nodes. The final node selection was made because it optimally fit the data based on complexity and did not result in binning of data.

A graphical representation of the NN used for this model is presented in Figure 3.15. Each of the inputs to the model is listed on the left. The values from these inputs are fed into the six nodes immediately after the input. These are considered the second level of nodes because they are the second level from the output. Each of these nodes contains an intercept and a TanH function that is dependent on each of the inputs. The output of this second level of nodes is fed into the two nodes present in the first layer. The outputs from these nodes are used in Figure 3.15 to create the final predicted values.



Figure 3.15. Block Diagram of Neural Network

An example node depicted in Figure 3.15 is detailed by the diagram in Figure 3.16. The output from the example node is fed into the first layer nodes, and then used to produce the final answer. The summation of the values input into the node are passed to the next node and then finally to the output.



Figure 3.16. Detailed Node Diagram from a Neural Network

A data set of 504 glasses was used to train and validate this NN model. When using the NN with this number of nodes, this is a limited portion of data. To create a predictive model, K-fold cross validation was used to increase the number of data points available for the model while decreasing the likelihood of

overfitting. K-fold cross validation splits the data set into k subsets. Each of these subsets uses 1/k of the data for validation and 1/(1-k) of the data for modeling. In each subset, a unique 1/k portion of the data is used for validation. All of the subsets are modeled, and the best model based on the fit of the validation data is presented. This allows maximum use of the data. In all models presented, k was set to 12. The resulting model is highly flexible, and care must be taken to avoid overfitting. In all models, a portion of the data is used as a validation set to evaluate the predictive ability of the model. Before creating the final model, the sample set was divided into five equal sets, each containing an equal amount of evenly distributed data based on the r24 value. These sets were modeled using the same procedure as the final model to determine the predictive ability of the method. The overall fit of the models with all of the data included is shown in Table 3.13. The specific performance of the model on only the validation data is shown in Table 3.14. It was noted that subset 5 had a significantly smaller predictive ability compared to the other models. This was quantitatively investigated by evaluating the relative influence from each glass on the final model. The glasses were ranked based on this influence, and it was found that subset 5 contained fewer of the "important" glasses and more of the "unimportant" glasses. The same analysis was applied to the remaining 4 subsets, and a strong correlation was found between the inclusion of the 11 most important glasses and the predictive ability of the model (listed in Table 3.15). There was no correlation between the importance level of the glass and the measured r24 value.

| All Data              | Subset 1 | Subset 2 | Subset 3 | Subset 4 | Subset 5 |
|-----------------------|----------|----------|----------|----------|----------|
| Number of Data Points | 504      | 504      | 504      | 504      | 504      |
| RMSE                  | 16.93    | 17.00    | 18.33    | 16.45    | 20.58    |
| $R^2$                 | 0.814    | 0.811    | 0.787    | 0.824    | 0.735    |

 Table 3.13.
 Subset Models Applied to All Data

|                       |          | ••       |          | •        |          |
|-----------------------|----------|----------|----------|----------|----------|
| Validation Set        | Subset 1 | Subset 2 | Subset 3 | Subset 4 | Subset 5 |
| Number of Data Points | 100      | 101      | 101      | 101      | 101      |
| RMSE                  | 23.76    | 25.37    | 29.68    | 21.68    | 34.91    |
| $R^2$                 | 0.773    | 0.733    | 0.684    | 0.805    | 0.587    |

Table 3.14. Subset Models Applied to Validation Data Only

| Influence Rank | #   | Set | Glass ID  |
|----------------|-----|-----|-----------|
| 1              | 525 | ICV | AMP2-05   |
| 2              | 311 | WTP | LAWM3     |
| 3              | 449 | HLP | HLP-37    |
| 4              | 215 | WTP | LAWM20    |
| 5              | 95  | ORP | ORPLA34   |
| 6              | 216 | WTP | LAWM22    |
| 7              | 448 | HLP | HLP-36    |
| 8              | 71  | ORP | ORPLA14S4 |
| 9              | 21  | ORP | LAWA188   |
| 10             | 176 | ORP | ORPLG20   |
| 11             | 450 | HLP | HLP-38    |
| 12             | 534 | ICV | S22-11    |
| 13             | 542 | ICV | S22-28    |
| 14             | 472 | ICV | AMP2-10   |
| 15             | 416 | HLP | HLP-39    |

Table 3.15. Most Influential Glasses for Neural Network Development

The final model had 8% of the data retained to help validate the predictive ability of the model. These glasses were selected randomly based on r24 value, and were not considered to be critical for model development. The final model used the same NN structure, and was developed with K-fold cross validation, k=12. The final predictions of the model performed well. Statistical results are presented in Table 3.16 and a plot is presented in Figure 3.17.

| Final Model           | All Data | K-Fold In Model Validation |
|-----------------------|----------|----------------------------|
| Number of Data Points | 504      | 38                         |
| RMSE                  | 13.59    | 12.00                      |
| $R^2$                 | 0.874    | 0.912                      |

Table 3.16. Final Model Results



**Figure 3.17**. Final Model Results – Actual vs. Predicted r24. The shaded band represents the region of "confidence of prediction."

To better understand compositional effects, Figure 3.18 illustrates the composition effect on r24 at five different glass compositions, with VHT responses near the 50 g/m<sup>2</sup>/d limit. It is clear that these composition effects are complex, which explains why simple polynomial models were unsuccessful in describing them. More validation of this model and this modeling approach are planned in the future.



Figure 3.18. Prediction Profiles for Specific Glasses

The model form used is:

r24=22.2368486728788+162.297620340354\*TanH(0.5\*Fn1)+146.571639705835\*TanH(0.5\*Fn2)(3.23) where Fn1 and Fn2 are defined as:

Fn1 = -2.0234500345046 +

| 3.42064364061235* | TanH | 0.5* | 19.6032022867479         + 41.763025292002 * A/2O3         + -7.2247531165788 * B2O3         + -7.1.440190399197 * CaO         + 21.4866660009179 * Fe2O3         + 5.8285856407714 * K2O         + 14.1674908254771 * Li2O         + 17.712793652953 * MgO         + 4.90653877435819 * Na2O         + 23.999070392784 * SiO2         + 89.261809766372 * ZrO2                                                                                        |   | -1.5945608677549 | * TanH | 0.5* | 9.71096479446714<br>+ .1.7854759769145 * <i>Al2O3</i><br>+ 35.9943209948772 * <i>B2O3</i><br>+ .49.874405307677 * <i>CaO</i><br>+ 23.2401360961441 * <i>Fe2O3</i><br>+ .86.620913893724 * <i>K2O</i><br>+ .9.56939724758103 * <i>Li2O</i><br>+ .238.90360119104 * <i>MgO</i><br>+ .3.2019704029069 * <i>Na2O</i><br>+ .25.27720194201 * <i>SiO2</i><br>+ 140.437932824307 * <i>ZrO2</i> |
|-------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.31555079823014* | TanH | 0.5* | 3.26429869709493         + 104.477522837661 * A/2O3         + 4.58157835900144 * B2O3         + 0.85255450354859 * CaO         + 1.1244826601591 * Fe2O3         + 60.7067527477005 * K2O         + 62.0556736612157 * Li2O         + -62.402468467866 * MgO         + 11.4599614081572 * Na2O         + -27.425799171143 * SiO2         + -49.853555611999 * ZrO2                                                                                     | + | 4.0985855697882  | TanH   | 0.5* | 54.4850934035448<br>+ 14.0759354190093 * A/2O3<br>+ -77.812329749985 * B2O3<br>+ -24.479879404922 * CaO<br>+ -15.422081646139 * Fe2O3<br>+ -64.301191862086 * K2O<br>+ -106.16853767331 * Li2O<br>+ -75.957683994829 * MgO<br>+ -103.98990411707 * Na2O<br>+ -50.469486676587 * SiO2<br>+ -29.590974146236 * ZrO2                                                                       |
| 2.42774575785518* | TanH | 0.5* | 10.7282870519699<br>+ 135.592922593436 * A/2O3<br>+ 43.364161952728 * B2O3<br>+ 94.4108021418093 * CaO<br>+ 106.198181220628 * Fe2O3<br>+ 95.8928850646 * K2O<br>+ 62.087358826133 * Li2O<br>+ 52.2713874914766 * ZrO2 | + | -3.002427812819* | TanH   | 0.5* | 1.36554171806406<br>+ 8.39190437614229 * A/2O3<br>+ 85.1968179640575 * B2O3<br>+ 54.481478008755 * CaO<br>+ 87.6692685766409 * Fe2O3<br>+ 21.332583067516 * K2O<br>+ 0.0388979586356 * Li2O<br>+ 155.446663232058 * MgO<br>+ 25.780955827028 * Na2O<br>+ 2.3634111816427 * SiO2<br>+ 165.81210510989 * ZrO2                                                                             |



# 3.5 Viscosity

Viscosity of waste glass melts should be maintained between roughly 20 and 80 P at the melting temperature (nominally  $1150^{\circ}$ C)<sup>\*</sup>. It is not appropriate to fit new viscosity models for advanced LAW glass formulations at this time, because:

• the current WTP models can be extrapolated to the new composition region quite reliably (as shown in Figure 3.19), and

<sup>&</sup>lt;sup>\*</sup> The units used for LAW viscosity are Poise (P), while the units used for HLW viscosity are Pascal Seconds (Pa·s), due only to the history of the models developed for different purposes. These units are easily converted using 1 Pa·s = 10 P.

• the viscosity of glass must be maintained in the correct range to estimate glass composition, but has little influence on the ultimate waste loading of the LAW glasses.



**Figure 3.19**. Comparison of Predicted and Measured Ln(viscosity) Data for Both WTP Baseline and ORP Advanced LAW Glasses Using the WTP Baseline Viscosity Model (Muller et al. 2012)

It is therefore recommended that the WTP baseline viscosity model be applied to estimate reasonable glass compositions. The form of this model is given by:

$$Ln[\eta_T, P] = \sum_{i=1}^{p} \left( v_i + y_i / [T \cdot 1000]^2 \right) g_i + selected \left\{ \sum_{i=1}^{p-1} \sum_{j=i}^{p} v_{ij} g_i g_j \right\}$$
(3.24)

where  $v_i$ ,  $y_i$ , and  $g_i$  are the  $i^{th}$  component temperature-independent coefficient, temperature-dependent coefficient, and mass fraction in glass, respectively; *T* is the absolute temperature (in K). The model coefficients and parameters are summarized in Table 3.17. Like the other models, composition is in mass fraction and absolute temperature (*T*) is in Kelvin. Once sufficient data become available to expand the viscosity model, less unusual functional forms will be considered.

|                                                   | Coefficient,    |                |       |
|---------------------------------------------------|-----------------|----------------|-------|
| Model Term                                        | $Ln(\eta_T, P)$ | Statistic      | Value |
| Al <sub>2</sub> O <sub>3</sub>                    | 5.5124          | $R^2$          | 0.988 |
| $B_2O_3$                                          | -42.3772        | $R_{ m Val}^2$ | 0.983 |
| CaO                                               | -10.6445        | RMSE, Ln(P)    | 0.147 |
| $Fe_2O_3$                                         | -4.6220         | # of glasses   | 171   |
| K <sub>2</sub> O                                  | -0.8689         | -              | -     |
| Li <sub>2</sub> O                                 | 10.9390         | -              | -     |
| MgO                                               | -5.6188         | -              | -     |
| Na <sub>2</sub> O                                 | 0.9073          | -              | -     |
| $P_2O_5$                                          | -0.8081         | -              | -     |
| SiO <sub>2</sub>                                  | 1.5575          | -              | -     |
| $ZrO_2$                                           | -12.0741        | -              | -     |
| Others                                            | -9.3903         | -              | -     |
| $(B_2O_3)^2$                                      | 198.7360        | -              | -     |
| $(Li_2O)^2$                                       | 133.6906        | -              | -     |
| Al <sub>2</sub> O <sub>3</sub> ×Li <sub>2</sub> O | -136.5095       | -              | -     |
| $(MgO)^2$                                         | -179.8249       | -              | -     |
| $Al_2O_3/(T/1000)^2$                              | 24.6423         | -              | -     |
| $CaO/(T/1000)^2$                                  | 13.7793         | -              | -     |
| $Fe_2O_3/(T/1000^2)$                              | 15.2036         | -              | -     |
| $Li_2O/(T/1000)^2$                                | -82.4815        | -              | -     |
| $MgO/(T/1000)^2$                                  | 22.7608         | -              | -     |
| $Na_2O/(T/1000)^2$                                | -14.5621        | -              | -     |
| $P_2O_5/(T/1000)^2$                               | 24.0339         | -              | -     |
| $SiO_2/(T/1000)^2$                                | 24.4077         | -              | -     |
| $ZrO_2/(T/1000)^2$                                | 48.2286         | -              | -     |
| $Others/(T/1000)^2$                               | 17.3800         | -              | -     |

Table 3.17. Viscosity-Composition Model Coefficients and Selected Statistical Parameters

### 3.6 Other Property Models and Component Concentration Limits

As described in Section 3.1, the method for estimating the loading of LAW in advanced glasses is to apply both the empirical loading rules in Section 3.1.2 and key waste glass property constraints of sulfur tolerance, PCT response, VHT response, and viscosity through property-composition models. To evaluate whether additional constraints are needed, we first consider the uncertainty in VHT prediction and lack of experience in the waste glass formulation field with the use of NN models. A simple tree model can be used to add additional constraints to help avoid glasses with excessive VHT responses. Figure 3.20 shows a tree model of all VHT data grouped into the glasses that pass (<50 g/m<sup>2</sup>/d) and fail ( $\geq$ 50 g/m<sup>2</sup>/d) the contract specification. The glasses with *NAlk* <17 wt% all passed, but that is not overly useful for glasses with high waste loading. Of more interest is that for those glasses with *NAlk* < 22.67 wt%, all glasses with Al<sub>2</sub>O<sub>3</sub> < 9% passed. Also, for the glasses with *NAlk*  $\geq$  22.67 wt%, all those with ZrO<sub>2</sub> < 2.54 failed. Based on these results, it is recommended that a maximum concentration of 9 wt% Al<sub>2</sub>O<sub>3</sub> and a minimum concentration of 2.6 wt% ZrO<sub>2</sub> be added as constraints.



Figure 3.20. Tree Model of VHT Pass and Fail for Different Composition Domains

Lastly, model-validity constraints should be considered when applying the property-composition models. Table 3.18 summarizes these additional constraints.

| Component         | Lower<br>Limit | Upper<br>Limit | Component        | Lower<br>Limit | Upper<br>Limit |
|-------------------|----------------|----------------|------------------|----------------|----------------|
| $Al_2O_3$         | 5.0            | 9.0            | $P_2O_5$         | 0              | 4.5            |
| $B_2O_3$          | 5.0            | 16.0           | SiO <sub>2</sub> | 30.0           | 51.0           |
| CaO               | 0              | 13.0           | SO <sub>3</sub>  | 0              | 1.6            |
| $Fe_2O_3$         | 0              | 13.0           | $SnO_2$          | 0              | 5.0            |
| K <sub>2</sub> O  | 0              | 8.0            | TiO <sub>2</sub> | 0              | 4.0            |
| Li <sub>2</sub> O | 0              | 6.0            | $V_2O_5$         | 0              | 4.5            |
| MgO               | 0              | 10.0           | ZnO              | 0              | 6.0            |
| Na <sub>2</sub> O | 5.0            | 26.0           | $ZrO_2$          | 2.6            | 7.0            |

Table 3.18. Component Concentration Constraints in wt%

An additional constraint related to the corrosion of metal melter components (e.g., electrodes, bubblers, and thermowells) may be required for advanced LAW glass formulations. However, the data have not yet been fully evaluated to determine if such a constraint is necessary, and how it would be formulated.

### 3.7 Calculation Examples

Examples are given for use in determining if the application and coding of the LAW models are correct. To create these examples, two hypothetical wastes, based loosely on real projected Hanford HLW feeds, were used in glass optimization calculations. A set of waste compositions was selected to demonstrate the calculations. The waste estimates are from the LAW and secondary LAW vitrification feed, as estimated in case one of System Plan revision 6 (Certa et al. 2011). The waste feeds were converted to mass fractions of reference oxides and halogens, and sorted by the ratios of Na<sub>2</sub>O:SO<sub>3</sub>, Na<sub>2</sub>O:K<sub>2</sub>O, and Na<sub>2</sub>O:(Cl+0.3F). The waste with the minimum for each of the ratios was selected for calculation along with a number of data points that systematically varyed the Na<sub>2</sub>O:SO<sub>3</sub> ratio. The selected waste compositions are listed in Table 3.19.

| Batch Date                         | 6/14/41  | 4/10/26 | 6/8/18 | 7/9/27   | 4/8/33   | 6/18/38  | 8/24/35 | 7/1/33   |
|------------------------------------|----------|---------|--------|----------|----------|----------|---------|----------|
| Batch #                            | SLCP-937 | LCP-391 | LCP-1  | SLCP-249 | SLCP-539 | LCP-1027 | LCP-880 | SLCP-551 |
| Na <sub>2</sub> O                  | 51.86    | 76.72   | 73.95  | 69.52    | 74.73    | 80.86    | 76.68   | 78.82    |
| SO <sub>3</sub>                    | 35.11    | 0.56    | 1.35   | 2.43     | 7.43     | 4.04     | 5.11    | 2.62     |
| K <sub>2</sub> O                   | 0.25     | 6.55    | 15.51  | 2.23     | 0.37     | 0.28     | 0.27    | 0.30     |
| Cl                                 | 2.48     | 1.48    | 0.62   | 5.32     | 1.36     | 0.59     | 0.55    | 0.50     |
| F                                  | 7.66     | 0.60    | 0.73   | 12.63    | 4.35     | 0.87     | 1.60    | 1.12     |
| $P_2O_5$                           | 0.66     | 0.44    | 0.60   | 0.82     | 2.01     | 3.35     | 5.89    | 4.50     |
| $Cr_2O_3$                          | 0.67     | 0.12    | 0.11   | 0.61     | 1.03     | 0.44     | 0.53    | 0.71     |
| $Al_2O_3$                          | 1.15     | 13.17   | 6.89   | 5.95     | 7.77     | 8.68     | 8.25    | 10.34    |
| SiO <sub>2</sub>                   | 0.05     | 0.16    | 0.12   | 0.18     | 0.64     | 0.72     | 0.85    | 0.79     |
| SUM                                | 99.89    | 99.81   | 99.86  | 99.68    | 99.70    | 99.83    | 99.73   | 99.69    |
| Na <sub>2</sub> O/SO <sub>3</sub>  | 1        | 136     | 55     | 29       | 10       | 20       | 15      | 30       |
| Na <sub>2</sub> O/K <sub>2</sub> O | 204      | 12      | 5      | 31       | 202      | 293      | 281     | 265      |
| Na <sub>2</sub> O/(Cl+0.3F)        | 11       | 46      | 89     | 8        | 28       | 95       | 74      | 94       |

Table 3.19. Selected Waste Compositions, wt%

The various constraint sets were used to maximize the loading of each one of the batch compositions; the results are summarized in Table 3.20.

|                                | SLCP-      | LCP-  |       |       | SLCP- | SLCP- | SLCP-  | SLCP-  | LCP-  | LCP-  | SLCP- |
|--------------------------------|------------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|
| Batch                          | 937        | 391   | LCP-1 | LCP-1 | 249   | 249   | 539    | 539    | 1027  | 880   | 551   |
| Al <sub>2</sub> O <sub>3</sub> | 5.00       | 5.00  | 5.00  | 5.00  | 5.44  | 5.00  | 6.75   | 5.00   | 5.43  | 5.25  | 5.18  |
| $B_2O_3$                       | 5.39       | 5.00  | 5.00  | 5.00  | 5.00  | 5.00  | 5.00   | 5.00   | 5.00  | 5.00  | 5.00  |
| CaO                            | 13.00      | 8.81  | 13.00 | 8.72  | 12.75 | 3.68  | 10.55  | 8.38   | 7.03  | 7.18  | 4.15  |
| Cl                             | 0.11       | 0.44  | 0.10  | 0.18  | 0.74  | 1.70  | 0.20   | 0.28   | 0.16  | 0.14  | 0.15  |
| $Cr_2O_3$                      | 0.03       | 0.03  | 0.02  | 0.03  | 0.08  | 0.19  | 0.16   | 0.21   | 0.12  | 0.13  | 0.21  |
| F                              | 0.33       | 0.18  | 0.12  | 0.21  | 1.76  | 4.03  | 0.65   | 0.88   | 0.23  | 0.40  | 0.34  |
| $Fe_2O_3$                      | 0.35       | 0.18  | 0.19  | 0.16  | 0.20  | 0.00  | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  |
| K <sub>2</sub> O               | 0.01       | 1.94  | 2.53  | 4.42  | 0.31  | 0.71  | 0.06   | 0.07   | 0.07  | 0.07  | 0.09  |
| Li <sub>2</sub> O              | 6.00       | 4.25  | 6.00  | 4.21  | 5.42  | 5.20  | 6.00   | 6.00   | 6.00  | 6.00  | 6.00  |
| MgO                            | 0.27       | 0.16  | 0.17  | 0.15  | 0.18  | 0.00  | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  |
| Na <sub>2</sub> O              | 5.00       | 22.72 | 12.07 | 21.08 | 9.67  | 22.19 | 11.21  | 15.09  | 21.39 | 19.06 | 23.94 |
| $P_2O_5$                       | 0.03       | 0.13  | 0.10  | 0.17  | 0.11  | 0.26  | 0.30   | 0.41   | 0.89  | 1.46  | 1.37  |
| SiO <sub>2</sub>               | 51.00      | 43.99 | 48.48 | 43.28 | 51.00 | 44.25 | 51.00  | 49.47  | 45.56 | 46.83 | 45.12 |
| $SO_3$                         | 1.50       | 0.17  | 0.22  | 0.38  | 0.34  | 0.77  | 1.11   | 1.50   | 1.07  | 1.27  | 0.80  |
| $SnO_2$                        | 2.05       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  |
| TiO <sub>2</sub>               | 1.05       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.80   | 0.73  | 0.74  | 0.65  |
| $V_2O_5$                       | 1.04       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.01   | 0.01  | 0.01  | 0.01  |
| ZnO                            | 0.86       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00  | 0.00  | 0.00  |
| $ZrO_2$                        | 7.00       | 7.00  | 7.00  | 7.00  | 7.00  | 7.00  | 7.00   | 6.91   | 6.32  | 6.46  | 7.00  |
| Loading                        | 4.27       | 29.56 | 16.29 | 28.47 | 13.86 | 31.82 | 14.96  | 20.13  | 26.41 | 24.79 | 30.28 |
| Limiting <b>F</b>              | Factor(s)  |       |       |       |       |       |        |        |       |       |       |
|                                | $SO_3$     | d=24% | ConsH | d=24% | ConsH | Many  | $SO_3$ | ConsH  | S-d   | S-d   | d=24% |
|                                | =1.5%      |       | =2.7% |       | =2.2% |       | =1.5   | =0.74% | limit | limit |       |
| Predicted                      | Properties |       |       |       |       |       |        |        |       |       |       |
| VHT                            | 6.30       | 8.44  | 5.83  | 45.49 | 6.30  | 50.00 | 6.31   | 6.24   | 11.97 | 4.83  | 50.00 |
| wSO <sub>3</sub>               | 1.65       | 1.26  | 1.66  | 1.29  | 1.23  | 0.77  | 1.45   | 1.50   | 1.68  | 1.65  | 1.58  |
| PCT                            | 0.1        | 1.1   | 0.2   | 1.0   | 0.1   | 1.3   | 0.1    | 0.3    | 1.0   | 0.6   | 1.8   |
| Visc1150                       | 80.0       | 20.0  | 40.8  | 20.0  | 80.0  | 20.0  | 80.0   | 46.4   | 20.0  | 29.0  | 20.0  |

Table 3.20. Glass Composition and Predicted Properties for Example Wastes, wt%

To demonstrate the application of these models to the Hanford mission as well as document the current expectations for increased waste loadings across the estimated LAW types, a study was performed and is documented elsewhere (Kim 2013).

# 4.0 References

DOE. 2011. Quality Assurance, DOE O 414.1D. U.S. Department of Energy, Washington, D.C.

DOE. 2013. Nuclear Safety Management, 10CFR830. U.S. Department of Energy, Washington, D.C.

Annamalai S, H Gan, M Chaudhuri, WK Kot, and IL Pegg. 2004. "Spinel Crystallization in HLW Glass Melts: Cation Exchange Systematics and the Role of Rh<sub>2</sub>O<sub>3</sub> in Spinel Formation." *Ceramic Transactions* 279–288, American Ceramic Society, Westerville, Ohio.

ASME. 2000. "Quality Assurance Requirements for Nuclear Facility Applications." ASME NQA-1-2000, American Society of Mechanical Engineers, New York.

Barnes SM and DE Larson. 1981. *Materials and Design Experience in a Slurry-Fed Electric Glass Melter*. PNL-3959, Pacific Northwest Laboratory, Richland, Washington.

Baron MR and ME Smith. 1988. *Summary of the Drain and Restart of the DWPF Scale Glass Melter*. DPST-88-481, Savannah River Laboratory, Aiken, South Carolina.

Belsher JD and FL Meinert. 2009. *High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model*. RPP-RPT-42649, Rev. 0, Washington River Protection Solutions, Richland, Washington.

Bergmann LM. 2010. Hanford Tank Waste Operations Simulator (HTWOS) Version 6.0 Model Design Document. RPP-17152, Rev. 4, Washington River Protection Solutions, Richland, Washington.

Bjorklund WJ. 1980. *Defense Waste-Vitrification Studies During FY 1980*. PNL-3818, Pacific Northwest Laboratory, Richland, Washington.

Certa PJ, RD Adams, GK Allen, JD Belsher, PA Empey, JH Foster, TM Hohl, RT Jasper, RA Kirkbride, RL Lytle, FL Meinert, JS Ritari, RM Russell, KR Seniow, EB West, MN Wells, and LM Bergmann. 2011. *River Protection Project System Plan.* ORP-11242, Rev. 6, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Cooper MF, ML Elliott, LL Eyler, CJ Freeman, JJ Higginson, LA Mahoney, and MR Powell. 1994. *Research-Scale Melter Test Report*. PNL-9428, Pacific Northwest Laboratory, Richland, Washington.

Crum JV, JD Vienna, DK Peeler, IA Reamer, and DJ Pittman. 2002. "The Effect of Glass Composition on Crystallinity and Durability for INEEL Run 78 Calcine Waste Simulant." *Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VII*, 132:267–275, American Ceramic Society, Westerville, Ohio.

Deng YN. 2011. *Dynamic (G2) Model Design Document: 24590-WTP-MDD-PR-01-002, Rev. 12,* ORP-56503, River Protection Project, Waste Treatment Plant, Richland, Washington.

Dierks RD. 1980. *The Design and Performance of A 100-Kg/H, Direct Calcine-Fed Electric-Melter System for Nuclear-Waste Vitrification*. PNL-3387, Pacific Northwest Laboratory, Richland, Washington.

DOE. 2000. Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. U.S. Department of Energy, Office of River Protection, Richland, Washington.

DOE. 2008. *Quality Assurance Requirements and Description*. DOE/RW-0333P, Rev. 21, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, D.C.

DOE. 1996. Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (Waps). DOE/EM-0093, U.S. Department of Energy, Office of Environmental Management, Washington, D.C.

Feng XD, PR Hrma, JH Westsik, Jr., NR Brown, MJ Schweiger, H Li, JD Vienna, G Chen, GF Piepel, DE Smith, BP Mcgrail, SE Palmer, DS Kim, Y Peng, WK Hahn, AJ Bakel, WL Ebert, DK Peeler, and CY Chang. 1996. *Glass Optimization for Vitrification of Hanford Site Low-Level Tank Waste*. PNNL-10918, Pacific Northwest Laboratory, Richland, Washington.

Fox KM and TB Edwards. 2009. *Experimental Results of the Nepheline Phase III Study*. SRNL-STI-2009-00608, Savannah River National Laboratory, Aiken, South Carolina.

Fox KM and TB Edwards. 2008. *Refinement of the Nepheline Discriminator: Results of a Phase II Study*. SRNS-STI-2008-00099, Savannah River National Laboratory, Aiken, South Carolina.

Fox KM, TB Edwards, DK Peeler, DR Best, IA Reamer, and RJ Workman. 2006. *Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 3 Experimental Results*. WSRC-TR-2006-00093, Savannah River National Laboratory, Aiken, South Carolina.

Fox KM, JD Newell, TB Edwards, DR Best, IA Reamer, and RJ Workman. 2007. *Refinement of the Nepheline Discriminator: Results of a Phase I Study*. WSRC-STI-2007-00659, Westinghouse Savannah River Company, Aiken, South Carolina.

Fox KM, DK Peeler, TB Edwards, DR Best, IA Reamer, RJ Workman, JC Marra, BJ Riley, JD Vienna, JV Crum, J Matyas, AB Edmondson, JB Lang, NM Ibarra, A Fluegel, A Aloy, AV Trofimenko, and R Soshnikov. 2008. *International Study of Aluminum Impacts on Crystallization in U.S. High Level Waste Glass.* SRNL-STI-2008-00057, Savannah River National Laboratory, Aiken, South Carolina.

Gimpel RF. 2010. Halide, Chromate, and Phosphate Impacts on LAW Glass for Dynamic Flowsheet: 24590-WTP-MCR-PET-09-0037, Rev. 1, ORP-56504, River Protection Project, Waste Treatment Plant, Richland, Washington.

Gimpel RF. 2009. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009, ORP-56505, River Protection Project, Waste Treatment Plant, Richland, Washington.

Gimpel RF. 2002. WTP Calculation Sheet: Determining the LAW Glass Former Constituents and Amounts for G2 and Acm Models: 24590-LAW-M4C-LFP-00002, Rev. B, ORP-56511, River Protection Project, Waste Treatment Plant, Richland, Washington.

Goles RW, WC Buchmiller, CR Hymas, and BD Macisaac. 2002. *Test Summary Report Vitrification Demonstration of an Optimized Hanford C-106/Ay-102 Waste-Glass Formulation*. PNNL-14063, Pacific Northwest National Laboratory, Richland, Washington.

Hrma P. 2002. "Crystallization in High-Level Waste Glasses." *Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VII* 132:243–256, American Ceramic Society, Westerville, Ohio.

Hrma P. 2010. "Crystallization During Processing of Nuclear Waste Glass," *Journal of Non-Crystalline Solids*, **356**(52-54):3019-3025. DOI 10.1016/j.jnoncryso1.2010.03.039.

Hrma P, J Matyas, and DS Kim. 2003. "Evaluation of Crystallinity Constraint for HLW Glass Processing." *Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VIII* 143:133–140, American Ceramic Society, Westerville, Ohio.

Hrma P, GF Piepel, MJ Schweiger, DE Smith, DS Kim, PE Redgate, JD Vienna, CA Lopresti, DB Simpson, DK Peeler, and MH Langowski. 1994. *Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150*°C. PNL-10359, Pacific Northwest Laboratory, Richland, Washington.

Hrma, P., JD Vienna, BK Wilson, TJ Plaisted, and SM Heald. 2006. "Chromium Phase Behavior in a Multi-Component Borosilicate Glass Melt," *Journal of Non-Crystalline Solids*, **352**:2114-2122. DOI: 10.1016/j.jnoncrysol.2006.02.051.

Hrma P., BM Arrigoni, and MJ Schweiger. 2009. "Viscosity of Many-Component Glasses," *Journal of Non-Crystalline Solids*, **355**(14-15):891-902. 10.1016/j.jnoncrysol.2009.03.005.

Hrma P, MJ Schweiger, CJ Humrickhouse, JA Moody, RM Tate, TT Rainsdon, NE Tegrotenhuis, BM Arrigoni, J Marcial, CP Rodriguez, and BH Tincher. 2010. "Effect of Glass-Batch Makeup on the Melting Process." *Ceramics-Silikaty*, **54**(3):193–211.

Hrma P., BJ Riley, JV Crum, and J Matyas. 2014. "The Effect of High-Level Waste Glass Composition on Spinel Liquidus Temperature," *Journal of Non-Crystalline Solids*, **384**:32-40. DOI 10.1016/j.jnonaysol.2013.02.014.

Hrma P and JD Vienna. 2003. "Relationship between Liquidus Temperature and Solubility." *Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VIII* 143:159–167, American Ceramic Society, Westerville, Ohio.

Hutson ND. 1993. Integrated DWPF Melter System (Idms) Campaign Report, Hanford Waste Vitrification Plant (HWVP) Process Demonstration (U). WSRC-TR-92-0403, Rev. 1, Westinghouse Savannah River Company, Aiken, South Carolina.

Jain V and SM Barnes. 1991. "Effect of Glass Pour Cycle on the Crystallization Behavior in the Canistered Product at the West Valley Demonstration Project." *Nuclear Waste Management* IV 23.

Jain V, RA Palmer, and SM Barnes. 1992. "Glass Composition Development and Nuclear Waste Vitrification System Testing – the West Valley Experience." In *Physics of Non-Crystalline Solids*, edited by LD Pye and HJ Stevens, Taylor & Francis, New York.

Jantzen CM. 1986. *Devitrification of Scale Melter Glass in Riser Heater*. DPST-86-461, Savannah River Laboratory, Aiken, South Carolina.

Jantzen CM. 1991a. "Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature, and Durability: First-Principle Process Product Models for Vitrification of Nuclear Waste." *Ceramics Transactions* 23:37–51, American Ceramic Society, Westerville, Ohio.

Jantzen CM. 1991b. *Characterization of Off-Gas System Pluggages, Significance for DWPF and Suggested Remediation*, WSRC-TR-90-205, Westinghouse Savannah River Company, Aiken, South Carolina.

Jantzen CM, NE Bibler, DC Beam, CL Crawford, and MA Pickett. 1993. *Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material (U)*. WSRC-TR-92-346, Rev. 1, Westinghouse Savannah River Company, Aiken, South Carolina.

Jantzen CM and D Lambert. 1999. Inspection and Analysis of the Integrated DWPF Melter System (Idms) after Seven Years of Continuous Operation. WSRC-MS-99-00336, Westinghouse Savannah River Company, Aiken, South Carolina.

Jantzen CM, AD Cozzi, and NE Bibler. 2004. "High Level Waste Processing Experience with Increased Waste Loadings." *Ceramic Transactions* 168:31–49, American Ceramic Society, Westerville, Ohio.

Jantzen CM and KG Brown. 2007a. "Predicting the Spinel-Nepheline Liquidus for Application to Nuclear Waste Glass Processing: Part I. Primary Phase Analysis, Liquidus Measurement, and Quasicrystalline Approach." *Journal of the American Ceramic Society*, **90**(6):1866-1879.

Jantzen CM and KG Brown. 2007b. "Predicting the Spinel-Nepheline Liquidus for Application to Nuclear Waste Glass Processing. Part II: Quasicrystalline Freezing Point Depression Model." *Journal of the American Ceramic Society*, **90**(6):1880-1891.

Johnson FC and TB Edwards. 2009. *Results of the FY09 Enhanced DOE High-Level Waste Melter Throughput Studies at SRNL*. SRNL-STI-2009-00778, Savannah River National Laboratory, Aiken, South Carolina.

Kim DS, DK Peeler, and P Hrma. 1995. "Effect of Crystallization on the Chemical Durability of Simulated Nuclear Waste Glasses." *Ceramic Transactions* 61:177–185, American Ceramic Society, Westerville, Ohio.

Kim D, JD Vienna, P Hrma, MJ Schweiger, J Matyas, JV Crum, DE Smith, WC Buchmiller, JS Tixier, Jr., JD Yeager, and KB Belew. 2003. *Development and Testing of ICV Glasses for Hanford LAW*. PNNL-14351, Pacific Northwest National Laboratory, Richland, Washington.

Kim D, JD Vienna, DK Peeler, KM Fox, A Aloy, AV Trofimenko, and KD Gerdes. 2008. "Improved Alumina Loading in High Level Waste Glasses." *Waste Management 2008*, p. 10382.

Kim DS, MJ Schweiger, CP Rodriguez, WC Lepry, JB Lang, JV Crum, JD Vienna, FC Johnson, JC Marra, and DK Peeler. 2011. *Formulation and Characterization of Waste Glasses with Varying Processing Temperature*. PNNL-20774, Pacific Northwest National Laboratory, Richland, Washington.

Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description*: 24590-LAW-RPT-RT-04-0003, Rev. 1, ORP-56321, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Kim DS. 2013. Letter, "Estimation of Low-Activity Waste Glass Mass," to AA Kruger, PNNL-SA-92798, January 8, 2013, Pacific Northwest National Laboratory, Richland, Washington.

Li H, JD Vienna, P Hrma, DE Smith, and MJ Schweiger. 1997. "Nepheline Precipitation in High-Level Waste Glasses: Compositional Effects and Impact on the Waste Form Acceptability." *Scientific Basis for Nuclear Waste Management XX* 465:261–268, Materials Research Society, Pittsburgh, Pennsylvania.

Matlack KS, M Chaudhuri, H Gan, IS Muller, WK Kot, W Gong, and IL Pegg. 2005. *Glass Formulation Testing to Increase Sulfate Incorporation: VSL-04R4960-1*, ORP-51808, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, H Gan, M Chaudhuri, WK Kot, W Gong, T Bardakci, IL Pegg, and I Joseph. 2010a. *DM100 and Dm1200 Melter Testing with High Waste Loading Glass Formulations for Hanford High-Aluminum HLW Streams: VSL-10R1690-1*, ORP-44198, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, H Gan, M Chaudhuri, WK Kot, W Gong, T Bardakci, IL Pegg, and I Joseph. 2008. *Melt Rate Enhancement for High Aluminum HLW Glass Formulations: VSL-08R1360-1*, ORP-44236, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, H Gan, W Gong, IL Pegg, CC Chapman, and I Joseph. 2007a. *High Level Waste Vitrification System Improvements: VSL-07R1010-1*, ORP-56297, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006a. *LAW Envelope A and B Glass Formulations Testing to Increase Waste Loading: VSL-06R6900-1*, ORP-56322, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006b. *LAW Envelope C Glass Formulation Testing to Increase Waste Loading: VSL-05R5900-1*, ORP-56323, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, I Joseph, W Gong, IS Muller, and IL Pegg. 2007b. *Enhanced LAW Glass Formulation Testing: VSL-07R1130-1*, ORP-56293, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, I Joseph, W Gong, IS Muller, and IL Pegg. 2009a. *Glass Formulation Development and Dm10 Melter Testing with ORP LAW Glasses: VSL-09R1510-2*, ORP-56296, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, WK Kot, H Gan, and IL Pegg. 2010b. *Glass Formulation Development and Testing for DWPF High-Al*<sub>2</sub>O<sub>3</sub> *HLW Sludges: VSL-10R1670-1*, ORP-56290, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, WK Kot, W Gong, W Lutze, IL Pegg, and I Joseph. 2009b. *Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests: VSL-09R1520-1*, ORP-56327, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matyas J, AR Huckleberry, CP Rodriguez, JB Lang, AT Owen, and AA Kruger. 2013. "Crystal-Tolerant Glass Approach for Mitigation of Crystal Accumulation in Continuous Melters Processing Radioactive Waste." *Journal of the American Ceramic Society* (Submitted).

Matyas J, M Schaible, and JD Vienna. 2011. "Determination of Stokes Shape Factor for Single Particles and Agglomerates." *Advances in Materials Science for Environmental and Nuclear Technology II* 227:195–202.

Matyas J, JD Vienna, A Kimura, M Schaible, and RM Tate. 2010a. "Development of Crystal-Tolerant Waste Glasses." *Advances in Materials Science for Environmental and Nuclear Technology* 222:41–50.

Matyas J, JD Vienna, M Schaible, C Rodriguez, JV Crum, A Kimura, and RM Tate. 2010b. *Development of Crystal-Tolerant High-Level Waste Glasses*. PNNL-20072, Pacific Northwest National Laboratory, Richland, Washington.

McCloy JS, C Rodriguez, C Windisch, C Leslie, MJ Schweiger, BJ Riley, and JD Vienna. 2010. "Alkali/Alkaline-Earth Content Effects of Properties of High-Alumina Nuclear Waste Glasses." *Ceramic Transactions* 222:63–76, American Ceramic Society, Westerville, Ohio.

McCloy JS, MJ Schweiger, CP Rodriguez, and JD Vienna. 2011. "Nepheline Crystallization in Nuclear Waste Glasses: Progress toward Acceptance of High-Alumina Formulations." *International Journal of Applied Glass Science* 2(3):201–214. DOI 10.1111/j.2041-1294.2011.00055.x.

McCloy JS and JD Vienna. 2010. *Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling*. PNNL-19372, Pacific Northwest National Laboratory, Richland, Washington.

McElroy JL. 1976. *Quarterly Progress Report Research and Development Activities Waste Fixation Program, January through March 1976.* BNWL-2070, Pacific Northwest Laboratory, Richland, Washington.

McElroy JL, JE Mendel, WF Bonner, and MH Henry. 1979a. *Quarterly Progress Report – Research and Development Activities – High-Level Waste Immobilization Program: January through March 1979*. PNL-3050-1, Pacific Northwest Laboratory, Richland, Washington.

McElroy JL, JE Mendel, WF Bonner, and MH Henry. 1979b. *Quarterly Progress Reports Research and Development Activities – High-Level Waste Immobilization Program: January through December 1978.* PNL-2999, Pacific Northwest Laboratory, Richland, Washington.

Mendel JE, WA Ross, FP Roberts, YB Katayama, J Westsik, JH, RP Turcotte, JW Wald, and DJ Bradley. 1977. *Annual Report on the Characteristics of High-Level Waste Glasses*. BNWL-2252, Pacific Northwest Laboratory, Richland, Washington.

Muller IS, AC Buechele, and IL Pegg. 2001. *Glass Formulation and Testing with Rpp-WTP LAW Simulants: VSL-01R3560-2,* ORP-56327, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, G Diener, I Joseph, and IL Pegg. 2004. *Proposed Approach for Development of LAW Glass Formulation Correlation: VSL-04L4460-1, Rev. 2,* ORP-56326, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, WK Kot, HK Pasieka, K Gilbo, FC Perez-Cardenas, I Joseph, and IL Pegg. 2012. *Compilation and Management of ORP Glass Formulation Database: VSL-12R2470-1*, ORP-53934, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, H Gan, I Joseph, and IL Pegg. 2010. *Waste Loading Enhancements for Hanford LAW Glasses: VSL-10R1790-1*, ORP-48578, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS and IL Pegg. 2003. *Baseline LAW Glass Formulation Testing: VSL-03R3460-1*, ORP-55237, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, IL Pegg, AC Buechele, H Gan, C Kim, ST Lai, G Del Rosario, and Q Yan. 1998. *Glass Formulation and Testing with TWRS LAW Simulants*. ORP-56328, The Catholic University of America, Washington, D.C.

OCRWM. 2008. *Civilian Radioactive Waste Management System Waste Acceptance System Requirements Document (WASRD.* DOEIRW-0351, Rev. 5, ICN 01, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, D.C.

Peeler DK, TB Edwards, DR Best, IA Reamer, and RJ Workman. 2006. *Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 2 Experimental Results*. WSRC-TR-2006-00006, Savannah River National Laboratory, Aiken, South Carolina.

Peeler DK, TB Edwards, IA Reamer, and RJ Workman. 2005. *Nepheline Formation Study for Sludge Batch 4 (SB4): Phase 1 Experimental Results*. WSRC-TR-2005-00371, Savannah River National Laboratory, Aiken, South Carolina.

Piepel GF, SK Cooley, A Heredia-Langner, SM Landmesser, WK Kot, H Gan, and IL Pegg. 2008. *IHLW PCT, Spinel*  $T_{1\%}$  *Electrical Conductivity, and Viscosity Model Development: VSL-07R1240-4, Rev.* 0, ORP-56320, Vitreous State Laboratory, The Catholic University of America, Washington, D.C. Piepel GF, SK Cooley, IS Muller, H Gan, I Joseph, and IL Pegg. 2007. *ILAW PCT, VHT, Viscosity, and Electrical Conductivity Model Development: VSL-07R1240-4, Rev. 0,* ORP-56502, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Rankin WN, PE O'rourke, PD Soper, MB Cosper, and BC Osgood. 1982. *Evaluation of Corrosion and Deposition in the 1941 Melter*. DPST-82-231, Savannah River Laboratory, Aiken, South Carolina.

Riley BJ, JA Rosaria, and P Hrma. 2001. *Impact of HLW Glass Crystallinity on PCT Response*. PNNL-13491, Pacific Northwest National Laboratory, Richland, Washington.

Rodriguez CP, J McCloy, MJ Schweiger, JV Crum, and A Winschell. 2011. *Optical Basicity and Nepheline Crystallization in High Alumina Glasses*. PNNL-20184, Pacific Northwest National Laboratory, Richland, Washington.

Ross WA and JE Mendel. 1979. Annual Report on the Development and Characterization of Solidified Forms for High-Level Wastes: 1978. PNL-3060, Pacific Northwest Laboratory, Richland, Washington.

Vienna JD, A Fluegel, DS Kim, and P Hrma. 2009. *Glass Property Data and Models for Estimating High-Level Waste Glass Volume*. PNNL-18501, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, P Hrma, A Jiricka, DE Smith, TH Lorier, IA Reamer, and RL Schulz. 2001a. *Hanford Immobilized LAW Product Acceptance Testing: Tanks Focus Area Results*. PNNL-13744, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, P Hrma, MJ Schweiger, and MH Langowski. 1996a. "Compositional Dependence of Elemental Release from HLW Glasses by the Product Consistency Test: A One Component-at-a-Time Study." *Ceramic Transactions* 72:307–316, American Ceramic Society, Westerville, Ohio.

Vienna JD, P Hrma, MJ Schweiger, MH Langowski, PE Redgate, DS Kim, GF Peipel, DE Smith, CY Chang, DE Rinehart, SE Palmer, and H Li. 1996b. *Effect of Composition and Temperature on the Properties of High-Level Waste (HLW) Glass Melting above 1200°C*. PNNL-10987, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, A Jiřička, PR Hrma, DE Smith, TH Lorier, RL Schulz, and IA Reamer. 2001b. *Hanford Immobilized LAW Product Acceptance Testing: Tanks Focus Area Results*. PNNL-13744, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD and DS Kim. 2008. *Preliminary IHLW Formulation Algorithm Description*. 24590-HLW-RPT-RT-05-001, Rev 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Vienna JD, DS Kim, MJ Schweiger, JS McCloy, J Matyas, GF Piepel, and SK Cooley. 2013. *Test Plan: Enhanced Hanford Waste Glass Models*. TP-EWG-00001, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

# Appendix A

High-Level Waste Glass Volume Estimates

## **Appendix A**

## **High-Level Waste Glass Volume Estimates**

### Abstract

The glass property-composition models, property constraints, and component concentration constraints described in Section 2.0 of this report were applied to estimates of the HLW to be treated in the WTP HLW vitrification facility during the life of the mission. The resulting maximum waste loadings and glass masses were determined. The calculation was also performed using the constraints currently applied in the HTWOS model runs in support of system planning as verification of the method as well as a point of comparison. It was found that the HLW glass mass for the whole mission was roughly 23,000 MT, which translates to roughly 7,600 canisters of glass. These results show a significant glass mass reduction compared to either the System Plan Rev. 6 base case (31,500 MT) or the current fully qualified WTP formulation algorithm (55,000 MT).

#### Waste Composition Estimates

It has long been recognized that the waste composition estimates change to some extent with assumptions on retrieval sequence, retrieval efficiency, leaching efficiency, system recycles, inclusion of transuranic tank wastes, and other system variables. Therefore, two waste composition estimates or feed vectors were used to evaluate the impacts of advanced glass formulation constraints on glass volumes. The first feed vector was generated in May of 2008 using RPP system plan revision 3 baseline assumptions (Certa et al. 2008). This "2008" feed vector was used to generate the 2010 WTP tank utilization assessment (TUA-2010) (Jenkins et al. 2010). The HLW feed compositions generated by the WTP Dynamic Flowsheet Model (G2) run (MRQ 10-0063 Scenario 6.0.1a) in support of the TUA-2010 base case were used as the "2008" waste in this study. Specifically, the compositions of HLW at a node between the high-level waste blend vessel (HLP, HLP-VSL-0028) and the melter feed preparation vessel (MFPV, HFP-VSL-00001 and 5) were used (G2 node HLP-4).

The second waste composition estimate (feed vector) was based on the RPP system plan revision 6 baseline assumptions (Certa et al. 2011). This "2011" feed vector was used to generate the 2012 WTP tank utilization assessment (TUA-2012) (Jenkins et al. 2012). The HLW feed compositions generated by the G2 run (MRQ 11-0056) in support of the TUA-2012 Case 3 were used as the "2011" waste in this study. Similar to the "2008" waste, the compositions of HLW at a node between HBV and MFPV were used (HLP-4).

Cluster analyses were performed to reduce the roughly 380 ("2008" waste) and 580 ("2011" waste) waste batches to a manageable number for calculation. These analyses were performed using the *K*-Means Cluster method in JMP® Version 10.0 (SAS Institute, Inc., Cary, NC) based on the 15 components, Al<sub>2</sub>O<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub>, CaO, CdO, Cr<sub>2</sub>O<sub>3</sub>, F, Fe<sub>2</sub>O<sub>3</sub>, MnO, Na<sub>2</sub>O, NiO, P<sub>2</sub>O<sub>5</sub>, SO<sub>3</sub>, ThO<sub>2</sub>, UO<sub>3</sub>, and ZrO<sub>2</sub>, which represent the components that are present in large concentrations or have a strong effect on waste loading in glass. In cluster analysis, as the number of clusters increases, the average distance (a measure of closeness of data points or waste compositions to the centroid of each cluster used by JMP® software) over all clusters analyzed decreases, (i.e., the higher the number of clusters, the more accurate

the partitioning of composition becomes). However, it is desirable to keep the number of clusters small so that the glass formulation is manageable. The 20 clusters were found reasonable in a previous study (Kim et al. 2011) and were used in this study without additional evaluation.

The resulting clusters of like compositions are given in Table A.1 for the 2008 waste and Table A.2 for the 2011 waste.

| Cluster # | 08-C01 | 08-C02 | 08-C03 | 08-C04 | 08-C05 | 08-C06 | 08-C07 | 08-C08 | 08-C09 | 08-C10 | 08-C11 | 08-C12 | 08-C13 | 08-C14 | 08-C15 | 08-C16 | 08-C17 | 08-C18 | 08-C19 | 08-C20 |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Ag2O      | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0003 | 0.0002 | 0.0011 | 0.0002 | 0.0011 | 0.0002 | 0.0010 | 0.0002 | 0.0004 | 0.0014 | 0.0006 | 0.0002 | 0.0001 | 0.0001 | 0.0003 | 0.0003 |
| Al2O3     | 0.1948 | 0.1698 | 0.2274 | 0.4105 | 0.2274 | 0.2659 | 0.1646 | 0.2844 | 0.1839 | 0.4166 | 0.1494 | 0.1505 | 0.0869 | 0.1252 | 0.2057 | 0.3090 | 0.5627 | 0.1572 | 0.1197 | 0.3817 |
| As2O5     | 0.0005 | 0.0006 | 0.0002 | 0.0005 | 0.0005 | 0.0003 | 0.0002 | 0.0006 | 0.0003 | 0.0003 | 0.0006 | 0.0002 | 0.0009 | 0.0005 | 0.0007 | 0.0002 | 0.0003 | 0.0005 | 0.0002 | 0.0011 |
| B2O3      | 0.0020 | 0.0038 | 0.0011 | 0.0029 | 0.0032 | 0.0019 | 0.0026 | 0.0028 | 0.0025 | 0.0021 | 0.0029 | 0.0020 | 0.0050 | 0.0076 | 0.0041 | 0.0010 | 0.0019 | 0.0012 | 0.0018 | 0.0047 |
| BaO       | 0.0004 | 0.0004 | 0.0005 | 0.0007 | 0.0009 | 0.0006 | 0.0027 | 0.0003 | 0.0013 | 0.0002 | 0.0029 | 0.0004 | 0.0006 | 0.0006 | 0.0014 | 0.0007 | 0.0002 | 0.0005 | 0.0005 | 0.0009 |
| BeO       | 0.0004 | 0.0002 | 0.0002 | 0.0001 | 0.0001 | 0.0010 | 0.0001 | 0.0008 | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0008 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 |
| Bi2O3     | 0.0691 | 0.0246 | 0.0160 | 0.0378 | 0.0488 | 0.0514 | 0.0117 | 0.0156 | 0.0031 | 0.0183 | 0.0178 | 0.0313 | 0.0122 | 0.0226 | 0.0328 | 0.0081 | 0.0142 | 0.0105 | 0.0529 | 0.0140 |
| CaO       | 0.0535 | 0.0332 | 0.0195 | 0.0217 | 0.0367 | 0.0225 | 0.0228 | 0.0191 | 0.0203 | 0.0144 | 0.0245 | 0.0277 | 0.0240 | 0.0354 | 0.0169 | 0.0309 | 0.0076 | 0.0762 | 0.0491 | 0.0154 |
| CdO       | 0.0005 | 0.0004 | 0.0005 | 0.0001 | 0.0003 | 0.0003 | 0.0008 | 0.0007 | 0.0295 | 0.0002 | 0.0006 | 0.0002 | 0.0004 | 0.0043 | 0.0006 | 0.0036 | 0.0000 | 0.0031 | 0.0002 | 0.0001 |
| Ce2O3     | 0.0008 | 0.0003 | 0.0003 | 0.0004 | 0.0005 | 0.0004 | 0.0019 | 0.0007 | 0.0021 | 0.0002 | 0.0015 | 0.0002 | 0.0007 | 0.0006 | 0.0010 | 0.0008 | 0.0003 | 0.0013 | 0.0009 | 0.0009 |
| Cl        | 0.0016 | 0.0018 | 0.0026 | 0.0014 | 0.0013 | 0.0021 | 0.0019 | 0.0021 | 0.0021 | 0.0018 | 0.0024 | 0.0018 | 0.0016 | 0.0018 | 0.0015 | 0.0020 | 0.0014 | 0.0021 | 0.0022 | 0.0009 |
| CoO       | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0002 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0002 |
| Cr2O3     | 0.0132 | 0.0201 | 0.0319 | 0.0164 | 0.0172 | 0.0201 | 0.0060 | 0.0653 | 0.0056 | 0.0201 | 0.0128 | 0.0708 | 0.0255 | 0.0113 | 0.0276 | 0.0120 | 0.0203 | 0.0125 | 0.0035 | 0.0218 |
| Cs2O      | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0004 | 0.0001 | 0.0002 | 0.0002 | 0.0002 | 0.0003 | 0.0001 | 0.0003 | 0.0003 | 0.0001 |
| CuO       | 0.0002 | 0.0003 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0007 | 0.0001 | 0.0004 | 0.0002 | 0.0007 | 0.0001 | 0.0002 | 0.0003 | 0.0003 | 0.0002 | 0.0002 | 0.0003 | 0.0004 | 0.0002 |
| Eu2O3     | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F         | 0.0269 | 0.0305 | 0.0157 | 0.0059 | 0.0187 | 0.0541 | 0.0020 | 0.0039 | 0.0011 | 0.0122 | 0.0124 | 0.0460 | 0.0065 | 0.0015 | 0.0041 | 0.0012 | 0.0028 | 0.0022 | 0.0113 | 0.0062 |
| Fe2O3     | 0.1086 | 0.1176 | 0.0936 | 0.0991 | 0.1340 | 0.0865 | 0.2936 | 0.0749 | 0.3188 | 0.0528 | 0.2309 | 0.1124 | 0.0622 | 0.1719 | 0.1472 | 0.1355 | 0.0432 | 0.1184 | 0.2167 | 0.0819 |
| Ι         | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| K2O       | 0.0047 | 0.0041 | 0.0042 | 0.0039 | 0.0038 | 0.0050 | 0.0059 | 0.0064 | 0.0088 | 0.0049 | 0.0107 | 0.0096 | 0.0236 | 0.0095 | 0.0077 | 0.0047 | 0.0015 | 0.0085 | 0.0196 | 0.0042 |
| La2O3     | 0.0004 | 0.0006 | 0.0024 | 0.0008 | 0.0030 | 0.0003 | 0.0019 | 0.0007 | 0.0077 | 0.0026 | 0.0039 | 0.0044 | 0.0002 | 0.0061 | 0.0083 | 0.0021 | 0.0010 | 0.0019 | 0.0003 | 0.0003 |
| Li2O      | 0.0004 | 0.0004 | 0.0002 | 0.0002 | 0.0003 | 0.0008 | 0.0003 | 0.0008 | 0.0004 | 0.0003 | 0.0004 | 0.0003 | 0.0006 | 0.0002 | 0.0008 | 0.0003 | 0.0002 | 0.0005 | 0.0002 | 0.0004 |
| MgO       | 0.0016 | 0.0036 | 0.0014 | 0.0016 | 0.0051 | 0.0013 | 0.0056 | 0.0010 | 0.0024 | 0.0019 | 0.0082 | 0.0019 | 0.0036 | 0.0037 | 0.0055 | 0.0014 | 0.0018 | 0.0010 | 0.0018 | 0.0033 |
| MnO       | 0.0094 | 0.0080 | 0.0179 | 0.0301 | 0.0244 | 0.0050 | 0.0288 | 0.0401 | 0.0113 | 0.0291 | 0.0239 | 0.0118 | 0.0203 | 0.0315 | 0.0881 | 0.0125 | 0.0189 | 0.0370 | 0.0222 | 0.1407 |
| MoO3      | 0.0004 | 0.0007 | 0.0002 | 0.0004 | 0.0006 | 0.0005 | 0.0002 | 0.0005 | 0.0002 | 0.0002 | 0.0005 | 0.0004 | 0.0012 | 0.0003 | 0.0005 | 0.0002 | 0.0003 | 0.0005 | 0.0002 | 0.0007 |
| Na2O      | 0.2791 | 0.2416 | 0.3051 | 0.1758 | 0.1820 | 0.1981 | 0.2174 | 0.2658 | 0.1727 | 0.2175 | 0.2241 | 0.2112 | 0.5558 | 0.1968 | 0.2320 | 0.2310 | 0.2116 | 0.4378 | 0.1993 | 0.1364 |
| Nd2O3     | 0.0007 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0003 | 0.0023 | 0.0009 | 0.0059 | 0.0003 | 0.0018 | 0.0002 | 0.0007 | 0.0010 | 0.0012 | 0.0018 | 0.0007 | 0.0028 | 0.0003 | 0.0011 |
| NiO       | 0.0074 | 0.0126 | 0.0174 | 0.0062 | 0.0133 | 0.0069 | 0.0176 | 0.0034 | 0.0250 | 0.0133 | 0.0193 | 0.0288 | 0.0045 | 0.0382 | 0.0260 | 0.0202 | 0.0035 | 0.0049 | 0.0282 | 0.0039 |
| P2O5      | 0.0643 | 0.0739 | 0.0987 | 0.0275 | 0.0295 | 0.0402 | 0.0158 | 0.0984 | 0.0089 | 0.0399 | 0.0141 | 0.1031 | 0.0232 | 0.0391 | 0.0406 | 0.0113 | 0.0117 | 0.0275 | 0.0518 | 0.0179 |
| PbO       | 0.0060 | 0.0057 | 0.0036 | 0.0050 | 0.0079 | 0.0026 | 0.0137 | 0.0037 | 0.0062 | 0.0022 | 0.0124 | 0.0036 | 0.0054 | 0.0058 | 0.0075 | 0.0053 | 0.0017 | 0.0027 | 0.0113 | 0.0060 |
| PdO       | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0002 | 0.0000 | 0.0000 |
| Rb2O      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0003 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 |
| Re2O7     | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Rh2O3     | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0001 | 0.0000 | 0.0002 | 0.0000 | 0.0000 |
| RuO2      | 0.0001 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0014 | 0.0001 | 0.0001 | 0.0000 | 0.0013 | 0.0000 | 0.0000 | 0.0001 | 0.0005 | 0.0007 | 0.0000 | 0.0004 | 0.0003 | 0.0000 |

Table A.1. 2008 Waste Cluster Mean Compositions in Mass Fractions and Total Oxide Mass (M) in MT

| Cluster #     | 08-C01 | 08-C02 | 08-C03 | 08-C04 | 08-C05 | 08-C06 | 08-C07 | 08-C08 | 08-C09 | 08-C10 | 08-C11 | 08-C12 | 08-C13 | 08-C14 | 08-C15 | 08-C16 | 08-C17 | 08-C18 | 08-C19 | 08-C20 |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Sb2O3         | 0.0003 | 0.0001 | 0.0002 | 0.0002 | 0.0002 | 0.0003 | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0002 | 0.0003 | 0.0001 | 0.0002 | 0.0002 | 0.0002 | 0.0004 |
| SeO2          | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| SiO2          | 0.0891 | 0.0969 | 0.0534 | 0.0801 | 0.1327 | 0.1659 | 0.0620 | 0.0381 | 0.0289 | 0.0301 | 0.0578 | 0.0538 | 0.0792 | 0.0376 | 0.0490 | 0.0865 | 0.0412 | 0.0206 | 0.1290 | 0.1005 |
| Sm2O3         | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| SnO2          | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| SO3           | 0.0086 | 0.0112 | 0.0089 | 0.0078 | 0.0089 | 0.0193 | 0.0033 | 0.0175 | 0.0017 | 0.0108 | 0.0097 | 0.0201 | 0.0033 | 0.0061 | 0.0130 | 0.0024 | 0.0041 | 0.0038 | 0.0014 | 0.0067 |
| SrO           | 0.0093 | 0.0128 | 0.0167 | 0.0022 | 0.0081 | 0.0048 | 0.0016 | 0.0046 | 0.0006 | 0.0066 | 0.0008 | 0.0224 | 0.0038 | 0.0012 | 0.0023 | 0.0105 | 0.0017 | 0.0255 | 0.0014 | 0.0019 |
| TeO2          | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 |
| ThO2          | 0.0036 | 0.0023 | 0.0055 | 0.0008 | 0.0028 | 0.0020 | 0.0176 | 0.0003 | 0.0156 | 0.0005 | 0.0150 | 0.0035 | 0.0059 | 0.0461 | 0.0088 | 0.0253 | 0.0005 | 0.0012 | 0.0027 | 0.0014 |
| TiO2          | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0005 | 0.0001 | 0.0003 | 0.0002 | 0.0005 | 0.0002 | 0.0001 | 0.0003 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0003 |
| Tl2O          | 0.0003 | 0.0006 | 0.0003 | 0.0003 | 0.0008 | 0.0004 | 0.0003 | 0.0007 | 0.0000 | 0.0003 | 0.0001 | 0.0001 | 0.0012 | 0.0002 | 0.0005 | 0.0002 | 0.0019 | 0.0006 | 0.0004 | 0.0001 |
| UO3           | 0.0374 | 0.1171 | 0.0446 | 0.0558 | 0.0817 | 0.0317 | 0.0523 | 0.0316 | 0.0684 | 0.0499 | 0.0880 | 0.0670 | 0.0327 | 0.0865 | 0.0417 | 0.0479 | 0.0395 | 0.0220 | 0.0461 | 0.0408 |
| V2O5          | 0.0003 | 0.0004 | 0.0002 | 0.0003 | 0.0003 | 0.0005 | 0.0001 | 0.0004 | 0.0001 | 0.0002 | 0.0004 | 0.0003 | 0.0006 | 0.0002 | 0.0004 | 0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0007 |
| WO3           | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.0002 | 0.0000 | 0.0000 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0002 | 0.0000 | 0.0003 | 0.0001 | 0.0000 |
| Y2O3          | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0002 | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0002 | 0.0000 | 0.0000 |
| ZnO           | 0.0003 | 0.0008 | 0.0003 | 0.0003 | 0.0006 | 0.0005 | 0.0008 | 0.0005 | 0.0012 | 0.0009 | 0.0009 | 0.0006 | 0.0010 | 0.0013 | 0.0006 | 0.0003 | 0.0004 | 0.0006 | 0.0008 | 0.0006 |
| ZrO2          | 0.0032 | 0.0019 | 0.0075 | 0.0018 | 0.0026 | 0.0056 | 0.0362 | 0.0120 | 0.0603 | 0.0474 | 0.0436 | 0.0119 | 0.0049 | 0.1017 | 0.0181 | 0.0284 | 0.0018 | 0.0119 | 0.0220 | 0.0013 |
| <i>M</i> , MT | 355.67 | 274.54 | 138.15 | 3045.4 | 1416.5 | 618.44 | 1148.2 | 196.37 | 135.43 | 891.44 | 139.37 | 299.63 | 154.28 | 291.41 | 331.00 | 449.01 | 1300.5 | 192.30 | 356.33 | 312.49 |

Table A.2. 2011 Waste Cluster Mean Compositions in Mass Fractions and Total Oxide Mass (M) in MT

|       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | · · · · · · · · · · · · · · · · · · · | . /    |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------------------|--------|--------|--------|--------|
| #     | 11-C1  | 11-C2  | 11-C3  | 11-C4  | 11-C5  | 11-C6  | 11-C7  | 11-C8  | 11-C9  | 11-C10 | 11-C11 | 11-C12 | 11-C13 | 11-C14 | 11-C15 | 11-C16                                | 11-C17 | 11-C18 | 11-C19 | 11-C20 |
| Ag2O  | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0010 | 0.0003 | 0.0005 | 0.0002 | 0.0010 | 0.0009 | 0.0001 | 0.0002 | 0.0004 | 0.0003 | 0.0006 | 0.0002                                | 0.0001 | 0.0010 | 0.0005 | 0.0003 |
| Al2O3 | 0.3564 | 0.5086 | 0.2738 | 0.0844 | 0.1494 | 0.2367 | 0.2737 | 0.2559 | 0.1657 | 0.1852 | 0.1823 | 0.2262 | 0.1775 | 0.3532 | 0.1412 | 0.3508                                | 0.3129 | 0.1693 | 0.2853 | 0.1746 |
| As2O5 | 0.0004 | 0.0004 | 0.0003 | 0.0006 | 0.0003 | 0.0005 | 0.0002 | 0.0007 | 0.0001 | 0.0003 | 0.0007 | 0.0003 | 0.0001 | 0.0008 | 0.0003 | 0.0006                                | 0.0003 | 0.0007 | 0.0006 | 0.0008 |
| B2O3  | 0.0032 | 0.0028 | 0.0025 | 0.0015 | 0.0045 | 0.0029 | 0.0013 | 0.0035 | 0.0006 | 0.0032 | 0.0028 | 0.0020 | 0.0005 | 0.0051 | 0.0028 | 0.0038                                | 0.0024 | 0.0026 | 0.0047 | 0.0045 |
| BaO   | 0.0005 | 0.0003 | 0.0006 | 0.0002 | 0.0010 | 0.0015 | 0.0008 | 0.0004 | 0.0025 | 0.0021 | 0.0005 | 0.0003 | 0.0017 | 0.0005 | 0.0014 | 0.0004                                | 0.0002 | 0.0016 | 0.0005 | 0.0003 |
| BeO   | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0002 | 0.0001 | 0.0000 | 0.0003 | 0.0001 | 0.0004                                | 0.0000 | 0.0001 | 0.0002 | 0.0001 |
| Bi2O3 | 0.0428 | 0.0119 | 0.0755 | 0.0784 | 0.0069 | 0.0088 | 0.0071 | 0.0534 | 0.0133 | 0.0115 | 0.0169 | 0.0472 | 0.0366 | 0.0221 | 0.0115 | 0.0092                                | 0.0472 | 0.0016 | 0.0039 | 0.0580 |
| CaO   | 0.0170 | 0.0182 | 0.0268 | 0.0181 | 0.0198 | 0.0237 | 0.0217 | 0.0153 | 0.0199 | 0.0233 | 0.0781 | 0.1407 | 0.0351 | 0.0124 | 0.0385 | 0.0172                                | 0.0669 | 0.0196 | 0.0151 | 0.0189 |
| CdO   | 0.0001 | 0.0002 | 0.0001 | 0.0001 | 0.0005 | 0.0003 | 0.0040 | 0.0004 | 0.0009 | 0.0014 | 0.0004 | 0.0001 | 0.0029 | 0.0004 | 0.0008 | 0.0002                                | 0.0000 | 0.0238 | 0.0003 | 0.0003 |
| Ce2O3 | 0.0005 | 0.0004 | 0.0004 | 0.0005 | 0.0003 | 0.0002 | 0.0011 | 0.0006 | 0.0021 | 0.0009 | 0.0006 | 0.0003 | 0.0011 | 0.0007 | 0.0003 | 0.0005                                | 0.0002 | 0.0027 | 0.0005 | 0.0006 |
| Cl    | 0.0007 | 0.0010 | 0.0008 | 0.0011 | 0.0015 | 0.0015 | 0.0017 | 0.0010 | 0.0010 | 0.0015 | 0.0008 | 0.0014 | 0.0016 | 0.0007 | 0.0015 | 0.0011                                | 0.0011 | 0.0011 | 0.0011 | 0.0014 |
| CoO   | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002                                | 0.0000 | 0.0002 | 0.0001 | 0.0002 |
| Cr2O3 | 0.0134 | 0.0239 | 0.0217 | 0.0123 | 0.0152 | 0.0195 | 0.0091 | 0.0245 | 0.0061 | 0.0081 | 0.0192 | 0.0083 | 0.0072 | 0.0210 | 0.0098 | 0.0298                                | 0.0146 | 0.0087 | 0.0094 | 0.0193 |
| Cs2O  | 0.0001 | 0.0001 | 0.0000 | 0.0002 | 0.0004 | 0.0002 | 0.0005 | 0.0001 | 0.0002 | 0.0004 | 0.0001 | 0.0001 | 0.0004 | 0.0001 | 0.0003 | 0.0001                                | 0.0000 | 0.0006 | 0.0004 | 0.0002 |
| #     | 11-C1  | 11-C2  | 11-C3  | 11-C4  | 11-C5  | 11-C6  | 11-C7  | 11-C8  | 11-C9  | 11-C10 | 11-C11 | 11-C12 | 11-C13 | 11-C14 | 11-C15 | 11-C16 | 11-C17 | 11-C18 | 11-C19 | 11-C20 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CuO   | 0.0003 | 0.0001 | 0.0002 | 0.0001 | 0.0002 | 0.0003 | 0.0003 | 0.0003 | 0.0007 | 0.0004 | 0.0001 | 0.0002 | 0.0004 | 0.0003 | 0.0002 | 0.0001 | 0.0002 | 0.0006 | 0.0002 | 0.0002 |
| Eu2O3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| F     | 0.0084 | 0.0101 | 0.0199 | 0.0689 | 0.0309 | 0.0050 | 0.0037 | 0.0083 | 0.0035 | 0.0191 | 0.0259 | 0.0040 | 0.0059 | 0.0060 | 0.0148 | 0.0148 | 0.0038 | 0.0039 | 0.0185 | 0.0256 |
| Fe2O3 | 0.1116 | 0.0517 | 0.1387 | 0.0759 | 0.0865 | 0.0936 | 0.2071 | 0.0872 | 0.3627 | 0.1894 | 0.0758 | 0.0681 | 0.2792 | 0.0780 | 0.1356 | 0.0619 | 0.0665 | 0.3484 | 0.0679 | 0.0811 |
| Ι     | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| K2O   | 0.0032 | 0.0028 | 0.0013 | 0.0257 | 0.0076 | 0.0064 | 0.0097 | 0.0132 | 0.0041 | 0.0090 | 0.0040 | 0.0116 | 0.0063 | 0.0096 | 0.0091 | 0.0058 | 0.0053 | 0.0283 | 0.0068 | 0.0392 |
| La2O3 | 0.0015 | 0.0009 | 0.0005 | 0.0222 | 0.0014 | 0.0007 | 0.0024 | 0.0109 | 0.0022 | 0.0021 | 0.0003 | 0.0121 | 0.0024 | 0.0024 | 0.0014 | 0.0012 | 0.0054 | 0.0070 | 0.0009 | 0.0147 |
| Li2O  | 0.0003 | 0.0004 | 0.0002 | 0.0004 | 0.0002 | 0.0003 | 0.0002 | 0.0004 | 0.0005 | 0.0003 | 0.0004 | 0.0002 | 0.0003 | 0.0004 | 0.0001 | 0.0005 | 0.0002 | 0.0006 | 0.0004 | 0.0005 |
| MgO   | 0.0028 | 0.0015 | 0.0014 | 0.0082 | 0.0044 | 0.0040 | 0.0019 | 0.0053 | 0.0063 | 0.0065 | 0.0018 | 0.0053 | 0.0036 | 0.0028 | 0.0046 | 0.0019 | 0.0036 | 0.0030 | 0.0025 | 0.0066 |
| MnO   | 0.0366 | 0.0197 | 0.0112 | 0.0413 | 0.0191 | 0.0279 | 0.0259 | 0.1477 | 0.0423 | 0.0295 | 0.0715 | 0.0321 | 0.0233 | 0.1229 | 0.0193 | 0.0242 | 0.0195 | 0.0478 | 0.0512 | 0.0438 |
| MoO3  | 0.0004 | 0.0004 | 0.0003 | 0.0005 | 0.0002 | 0.0004 | 0.0002 | 0.0007 | 0.0002 | 0.0003 | 0.0005 | 0.0003 | 0.0001 | 0.0007 | 0.0003 | 0.0007 | 0.0002 | 0.0006 | 0.0005 | 0.0007 |
| Na2O  | 0.1869 | 0.2008 | 0.2046 | 0.2630 | 0.1883 | 0.2589 | 0.1958 | 0.1780 | 0.1559 | 0.1742 | 0.2788 | 0.2298 | 0.1713 | 0.1861 | 0.1539 | 0.2762 | 0.2169 | 0.1066 | 0.2447 | 0.2423 |
| Nd2O3 | 0.0010 | 0.0004 | 0.0004 | 0.0003 | 0.0005 | 0.0003 | 0.0016 | 0.0011 | 0.0023 | 0.0013 | 0.0006 | 0.0005 | 0.0014 | 0.0013 | 0.0004 | 0.0006 | 0.0008 | 0.0059 | 0.0009 | 0.0006 |
| NiO   | 0.0067 | 0.0058 | 0.0053 | 0.0530 | 0.0120 | 0.0146 | 0.0186 | 0.0287 | 0.0154 | 0.0160 | 0.0118 | 0.0295 | 0.0262 | 0.0094 | 0.0235 | 0.0090 | 0.0132 | 0.0214 | 0.0095 | 0.0363 |
| P2O5  | 0.0347 | 0.0166 | 0.0300 | 0.0913 | 0.0103 | 0.0212 | 0.0085 | 0.0334 | 0.0109 | 0.0141 | 0.0213 | 0.0889 | 0.0315 | 0.0216 | 0.0174 | 0.0370 | 0.0504 | 0.0144 | 0.0111 | 0.0631 |
| PbO   | 0.0052 | 0.0017 | 0.0062 | 0.0036 | 0.0044 | 0.0060 | 0.0076 | 0.0044 | 0.0180 | 0.0083 | 0.0026 | 0.0025 | 0.0151 | 0.0041 | 0.0066 | 0.0028 | 0.0034 | 0.0087 | 0.0037 | 0.0063 |
| PdO   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
| Rb2O  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Re2O7 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| Rh2O3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| RuO2  | 0.0002 | 0.0000 | 0.0001 | 0.0002 | 0.0001 | 0.0000 | 0.0006 | 0.0006 | 0.0021 | 0.0008 | 0.0000 | 0.0002 | 0.0014 | 0.0005 | 0.0001 | 0.0000 | 0.0001 | 0.0002 | 0.0000 | 0.0002 |
| Sb2O3 | 0.0002 | 0.0002 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0004 | 0.0001 | 0.0001 | 0.0004 | 0.0001 | 0.0000 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0003 | 0.0002 | 0.0003 |
| SeO2  | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 |
| SiO2  | 0.0900 | 0.0600 | 0.1047 | 0.0641 | 0.0522 | 0.0599 | 0.0863 | 0.0634 | 0.0943 | 0.0885 | 0.1078 | 0.0502 | 0.0954 | 0.0521 | 0.0717 | 0.0648 | 0.1025 | 0.0390 | 0.0275 | 0.0795 |
| Sm2O3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| SnO2  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| SO3   | 0.0111 | 0.0050 | 0.0101 | 0.0462 | 0.0019 | 0.0024 | 0.0029 | 0.0101 | 0.0026 | 0.0022 | 0.0127 | 0.0085 | 0.0026 | 0.0068 | 0.0044 | 0.0061 | 0.0128 | 0.0070 | 0.0023 | 0.0199 |
| SrO   | 0.0034 | 0.0058 | 0.0040 | 0.0016 | 0.0009 | 0.0029 | 0.0007 | 0.0041 | 0.0008 | 0.0007 | 0.0142 | 0.0035 | 0.0013 | 0.0082 | 0.0009 | 0.0114 | 0.0017 | 0.0009 | 0.0234 | 0.0044 |
| TeO2  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0004 | 0.0004 | 0.0001 | 0.0000 | 0.0000 | 0.0002 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| ThO2  | 0.0011 | 0.0016 | 0.0016 | 0.0008 | 0.0217 | 0.0260 | 0.0191 | 0.0008 | 0.0045 | 0.0066 | 0.0018 | 0.0005 | 0.0036 | 0.0013 | 0.0449 | 0.0036 | 0.0006 | 0.0058 | 0.0084 | 0.0007 |
| TiO2  | 0.0002 | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0002 | 0.0002 | 0.0001 | 0.0002 | 0.0001 | 0.0004 | 0.0002 | 0.0002 |
| Tl2O  | 0.0016 | 0.0003 | 0.0004 | 0.0004 | 0.0001 | 0.0002 | 0.0001 | 0.0021 | 0.0003 | 0.0001 | 0.0001 | 0.0008 | 0.0000 | 0.0015 | 0.0000 | 0.0005 | 0.0020 | 0.0001 | 0.0003 | 0.0012 |
| UO3   | 0.0536 | 0.0365 | 0.0533 | 0.0300 | 0.0866 | 0.1047 | 0.0396 | 0.0369 | 0.0255 | 0.0463 | 0.0620 | 0.0211 | 0.0428 | 0.0403 | 0.1169 | 0.0446 | 0.0430 | 0.0541 | 0.0646 | 0.0484 |
| V2O5  | 0.0003 | 0.0003 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0001 | 0.0003 | 0.0001 | 0.0002 | 0.0005 | 0.0002 | 0.0001 | 0.0004 | 0.0002 | 0.0004 | 0.0002 | 0.0004 | 0.0004 | 0.0003 |
| WO3   | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0009 | 0.0008 | 0.0002 | 0.0000 | 0.0000 | 0.0006 | 0.0007 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0001 |
| Y2O3  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0001 | 0.0000 |

| #             | 11-C1  | 11-C2  | 11-C3  | 11-C4  | 11-C5  | 11-C6  | 11-C7  | 11-C8  | 11-C9  | 11-C10 | 11-C11 | 11-C12 | 11-C13 | 11-C14 | 11-C15 | 11-C16 | 11-C17 | 11-C18 | 11-C19 | 11-C20 |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ZnO           | 0.0004 | 0.0004 | 0.0005 | 0.0002 | 0.0005 | 0.0007 | 0.0003 | 0.0007 | 0.0005 | 0.0004 | 0.0004 | 0.0003 | 0.0004 | 0.0008 | 0.0004 | 0.0006 | 0.0004 | 0.0013 | 0.0008 | 0.0006 |
| ZrO2          | 0.0027 | 0.0083 | 0.0018 | 0.0037 | 0.2681 | 0.0666 | 0.0443 | 0.0025 | 0.0286 | 0.1437 | 0.0012 | 0.0019 | 0.0190 | 0.0226 | 0.1633 | 0.0158 | 0.0009 | 0.0592 | 0.1300 | 0.0033 |
| <i>М</i> , МТ | 1539.0 | 1616.0 | 3164.0 | 155.54 | 829.19 | 249.72 | 181.42 | 193.08 | 565.20 | 507.96 | 131.59 | 92.925 | 433.61 | 175.65 | 208.10 | 1420.6 | 106.79 | 157.25 | 689.81 | 138.10 |

## Waste Loading Calculations and Results

The maximum waste loadings were estimated for each of the forty clusters using the sets of constraints in Table 2.24 and Table 2.25 for the qualified WTP algorithm constraints (Vienna and Kim 2008), the HTWOS 2009 constraints (Vienna et al. 2009), and the HTWOS 2010 constraints (McCloy and Vienna 2010). These calculations were performed using an iterative solution method in Excel 2010 (Microsoft Corp., Redmond, WA).

The results for the WTP qualified algorithm constraint set are summarized in Table A.3. Each cluster was limited by model validity constraints for waste components. Although the fraction of glass limited by each component constraint differs between the two feed vectors, the total estimated glass mass is surprisingly similar at  $55,500 \pm 600$  MT, translating to just over 18,000 canisters of HLW glass (assuming an average of 3.02 MT of glass per canister).

|         |                 | 1         | U         |         |                 |           |           |
|---------|-----------------|-----------|-----------|---------|-----------------|-----------|-----------|
| Cluster | WL, % Limits(a) | waste, MT | glass, MT | Cluster | WL, % Limits(a) | waste, MT | Glass, MT |
| 08-C01  | 16.35 mv(F)     | 355.67    | 2175.3    | 11-C01  | 36.50 mv(Al)    | 1539.0    | 4216.6    |
| 08-C02  | 14.43 mv(F)     | 274.54    | 1902.7    | 11-C02  | 25.09 mv(Cr)    | 1616.0    | 6441.9    |
| 08-C03  | 18.80 mv(Cr)    | 138.15    | 734.80    | 11-C03  | 22.11 mv(F)     | 3164.0    | 14307     |
| 08-C04  | 31.67 mv(Al)    | 3045.5    | 9615.8    | 11-C04  | 6.39 mv(F)      | 155.5     | 2435.6    |
| 08-C05  | 23.58 mv(F)     | 1416.5    | 6007.3    | 11-C05  | 14.26 mv(F)     | 829.2     | 5816.3    |
| 08-C06  | 8.13 mv(F)      | 618.44    | 7602.8    | 11-C06  | 30.81 mv(Cr)    | 249.72    | 810.44    |
| 08-C07  | 43.87 mv(Ca)    | 1148.2    | 2617.2    | 11-C07  | 31.10 mv(Al)    | 181.4     | 583.26    |
| 08-C08  | 9.19 mv(Cr)     | 196.37    | 2136.1    | 11-C11  | 24.56 mv(Cr)    | 193.08    | 786.22    |
| 08-C09  | 40.00 mv(Ni)    | 135.43    | 338.59    | 11-C09  | 41.44 mv(Fe)    | 565.20    | 1363.9    |
| 08-C10  | 29.80 mv(Cr)    | 891.44    | 2991.4    | 11-C10  | 23.01 mv(F)     | 507.96    | 2207.2    |
| 08-C11  | 35.56 mv(F)     | 139.37    | 391.88    | 11-C11  | 12.81 mv(Ca)    | 131.59    | 1027.1    |
| 08-C12  | 8.48 mv(Cr)     | 299.63    | 3534.9    | 11-C12  | 7.11 mv(Ca)     | 92.925    | 1306.3    |
| 08-C13  | 23.55 mv(Cr)    | 154.28    | 655.15    | 11-C13  | 28.50 mv(Ca)    | 433.61    | 1521.5    |
| 08-C14  | 26.21 mv(Ni)    | 291.41    | 1111.9    | 11-C14  | 28.62 mv(Cr)    | 175.65    | 613.74    |
| 08-C15  | 21.78 mv(Cr)    | 331.00    | 1519.9    | 11-C15  | 26.03 mv(Ca)    | 208.10    | 799.45    |
| 08-C16  | 27.76 mv(Al)    | 449.02    | 1617.6    | 11-C16  | 20.16 mv(Cr)    | 1420.6    | 7045.1    |
| 08-C17  | 23.10 mv(Al)    | 1300.5    | 5628.7    | 11-C17  | 14.96 mv(Ca)    | 106.8     | 713.59    |
| 08-C18  | 13.14 mv(Ca)    | 192.30    | 1464.0    | 11-C18  | 39.88 mv(SoM)   | 157.25    | 394.35    |
| 08-C19  | 20.36 mv(Ca)    | 356.33    | 1750.0    | 11-C19  | 23.74 mv(F)     | 689.81    | 2905.8    |
| 08-C20  | 27.53 mv(Cr)    | 312.49    | 1134.9    | 11-C20  | 17.22 mv(F)     | 138.10    | 802.16    |
| Average | 21.93 Total     | 12,047    | 54,931    | Average | 22.38 Total     | 12,555    | 56,098    |

Table A.3. Summary of Waste Loading Estimates for the WTP Baseline Set of Constraints

(a) mv – is model validity single component constraint with the constraining component listed after, SoM is the sum of minor components

The results for the HTWOS 2009 constraint set are summarized in Table A.4. Unlike the WTP constraint set, a majority of clusters were limited by glass properties (70% for the 2008 feed and 44% for the 2011 feed). Under the optimization process used, when the composition is limited by properties, there must be as many limiting factors as there are additives (i.e., all degrees of freedom are used). Although the fraction of glass limited by each component constraint differs between the two feed vectors, the total estimated glass mass is surprisingly similar at  $31,350 \pm 100$  MT, translating to roughly 10,400 canisters of HLW glass (assuming an average of 3.02 MT of glass per canister).

|         | WL,                                      | waste, | glass, |         | WL,                                            | waste, | glass, |
|---------|------------------------------------------|--------|--------|---------|------------------------------------------------|--------|--------|
| Cluster | % Limits                                 | MT     | MT     | Cluster | % Limits                                       | MT     | MT     |
| 08-C01  | 38.85 mv(P)                              | 355.67 | 915.41 | 11-C01  | 45.23 SO3                                      | 1539.0 | 3402.7 |
|         | mv(P)                                    |        |        |         | mv(Fe), mv(Li), UV,                            |        |        |
| 08-C02  | 33.84                                    | 274.54 | 811.38 | 11-C02  | 35.43 ND                                       | 1616.0 | 4561.4 |
| 08-C03  | 25.32 mv(P)                              | 138.15 | 545.60 | 11-C03  | 42.39 mv(Bi)                                   | 3164.0 | 7463.8 |
| 08-C04  | 42.86 mv(Li), UV, ND                     | 3045.5 | 7105.4 | 11-C04  | 10.82 SO3                                      | 155.5  | 1438.0 |
| 08-C05  | 52.89 LV, T1%, ND                        | 1416.5 | 2678.4 | 11-C05  | 49.37 mv(B), LV, TL, ND                        | 829.2  | 1679.4 |
| 08-C06  | 25.97 SO3                                | 618.44 | 2381.7 | 11-C06  | 51.75 mv(B), T1%, ND                           | 249.72 | 482.5  |
| 08-C07  | 45.78 LV, T1%, ND                        | 1148.2 | 2508.0 | 11-C07  | 44.96 mv(B), LV, T1%, ND<br>mv(B), mv(Fe), LV, | 181.4  | 403.5  |
| 08-C08  | 18.38 mv(Cr)                             | 196.37 | 1068.4 | 11-C08  | 40.87 T1%, ND                                  | 193.08 | 472.4  |
| 08-C09  | 41.84 LV, T1%, ND                        | 135.43 | 323.69 | 11-C09  | 41.53 mv(B), LV, T1%, ND                       | 565.20 | 1361.0 |
|         | mv(Fe), mv(Li),                          |        |        |         |                                                |        |        |
| 08-C10  | 39.73 UV, ND                             | 891.44 | 2243.9 | 11-C10  | 48.05 mv(B), LV, T1%, ND                       | 507.96 | 1057.2 |
|         | mv(B), LV, T1%,                          |        |        |         |                                                |        |        |
| 08-C11  | 48.06 ND                                 | 139.37 | 289.96 | 11-C11  | 39.41 SO3                                      | 131.59 | 333.88 |
| 08-C12  | 16.95 mv(Cr)                             | 299.63 | 1767.7 | 11-C12  | 22.79 CaP                                      | 92.925 | 407.7  |
| 08-C13  | 38.50 mv(Na)                             | 154.28 | 400.70 | 11-C13  | 44.21 mv(B), LV, T1%, ND                       | 433.61 | 980.83 |
|         | mv(B), LV, T1%,                          |        |        |         |                                                |        |        |
| 08-C14  | 46.58 ND                                 | 291.41 | 625.64 | 11-C14  | 42.06 mv(Fe), T1%, LV, ND                      | 175.65 | 417.60 |
| 08-C15  | 38.46 SO3                                | 331.00 | 860.57 | 11-C15  | 50.95 LV, T1%, TL, ND                          | 208.10 | 408.41 |
| 08-C16  | 47.16 mv(Li), T1%, ND<br>mv(Fe), mv(Li), | 449.02 | 952.01 | 11-C16  | 40.30 mv(Cr)                                   | 1420.6 | 3524.8 |
| 08-C17  | 32.16 UV, ND                             | 1300.5 | 4043.5 | 11-C17  | 38.94 SO3                                      | 106.8  | 274.2  |
| 08-C18  | 48.33 mv(B), UV, ND                      | 192.30 | 397.88 | 11-C18  | 39.41 mv(B), LV, T1%, ND                       | 157.25 | 398.96 |
|         |                                          |        |        |         | mv(B), mv(Fe),                                 |        |        |
| 08-C19  | 48.27 mv(P)                              | 356.33 | 738.15 | 11-C19  | 41.82 mv(Li), TL, ND                           | 689.81 | 1649.7 |
|         | mv(B), mv(Fe), LV,                       |        |        |         |                                                |        |        |
| 08-C20  | 41.67 T1%, ND                            | 312.49 | 750.00 | 11-C20  | 25.13 SO3                                      | 138.10 | 549.55 |
| Average | 38.36 Total                              | 12,047 | 31,408 | Average | 40.16 Total                                    | 12,555 | 31,268 |

Table A.4. Summary of Waste Loading Estimates for the HTWOS 2009 Set of Constraints

(a) mv – is model validity single component constraint with the constraining element listed after, UV and LV - the upper and lower viscosity limits, ND – nepheline discriminator, T1% - spinel  $T_{1\%}$ , SO3 – sulfate salt limit, CaP – CaO×P<sub>2</sub>O<sub>5</sub> limit, TL – zirconia-containing phase  $T_L$ 

This set of assumptions is the most appropriate to compare with mission estimates. Table A.5 compares the estimates generated here with those reported in literature. The calculations performed in this study are 2.2% lower than those reported by Certa et al. (2011). This compares quite closely to the 2.5% relative differences (RPD) identified by Perez et al. (2001) between glass volumes estimated by formulation of waste clusters to those for every batch using HTWOS for four well controlled cases. This difference is directly attributed to the slight increase in waste loadings for the clusters over the individual batches within the cluster due to the effective blending of those batches to generate a cluster average composition (Perez et al. 2001). Larger differences are seen (6.6 to 8.5% RPD) between these calculations and those from the G2 model estimates of Jenkins et al. (2010 and 2012). In addition to the roughly 2.5% difference caused by blending of waste into cluster averages, there is an unexplained 4-6% relative difference.

| Source of estimate    | glass, cans | RPD  | Reference           |
|-----------------------|-------------|------|---------------------|
| 2008 feed, this study | 10,400 -    |      | -                   |
| 2008 feed, TUA-2010   | 11,365      | -8.5 | Jenkins et al. 2010 |
| 2011 feed, this study | 10,353 -    |      | -                   |
| 2011 feed, SP-6       | 10,586      | -2.2 | Certa et al. 2011   |
| 2011 feed, TUA-2012   | 11,079      | -6.6 | Jenkins et al. 2012 |

Table A.5.Comparison of Glass Canister Estimates Between This Study and Literature Values for the<br/>HTWOS 2009 Constraint Set

The results for the HTWOS 2010 constraint set are summarized in Table A.6. Although the fraction of glass limited by each component constraint differs between the two feed vectors, the total estimated glass mass is surprisingly similar at  $28,450 \pm 200$  MT, translating to roughly 9,400 canisters of HLW glass.

Table A.6. Summary of Waste Loading Estimates for the HTWOS 2010 Set of Constraints

|         | WL,                 | waste,  | glass,           |         | WL,                       | waste, | glass, |
|---------|---------------------|---------|------------------|---------|---------------------------|--------|--------|
| Cluster | % Limits            | MT      | MT               | Cluster | % Limits                  | MT     | MT     |
| 08-C01  | 43.45 CaP           | 355.67  | 818.65           | 11-C01  | 51.68 mv(Si), LV, T1%, OB | 1539.0 | 2978.0 |
| 08-C02  | 51.48 CaP           | 274.54  | 533.29           | 11-C02  | 39.33 mv(Al)              | 1616.0 | 4109.3 |
| 08-C03  | 37.59 mv(Cr)        | 138.15  | 367.49           | 11-C03  | 54.25 mv(Si), LV, T1%, OB | 3164.0 | 5831.7 |
| 08-C04  | 48.72 mv(Al)        | 3045.5  | 6251.6           | 11-C04  | 12.98 SO3                 | 155.5  | 1198.3 |
| 08-C05  | 54.67 LV, T1%, OB   | 1416.5  | 2590.9           | 11-C05  | 49.37 mv(B), LV, TL, ND   | 829.2  | 1679.4 |
| 08-C06  | 31.16 SO3           | 618.44  | 1984.8           | 11-C06  | 54.24 mv(Si), T1%, OB     | 249.72 | 460.4  |
| 08-C07  | 45.73 LV, T1%, ND   | 1148.2  | 2510.9           | 11-C07  | 46.82 LV, T1%, OB         | 181.4  | 387.5  |
|         |                     |         |                  |         | mv(B), mv(Fe), LV,        |        |        |
| 08-C08  | 18.38 mv(Cr)        | 196.37  | 1068.4           | 11-C08  | 41.17 T1%                 | 193.08 | 468.9  |
| 08-C09  | 41.89 LV, T1%, OB   | 135.43  | 323.32           | 11-C09  | 41.53 mv(B), LV, T1%, ND  | 565.20 | 1361.0 |
|         | mv(Fe), mv(Si),     |         |                  |         |                           |        |        |
| 08-C10  | 45.03 LV, T1%, OB   | 891.44  | 1979.7           | 11-C10  | 48.26 LV, TL, OB          | 507.96 | 1052.5 |
| 08-C11  | 47.99 LV, T1%, ND   | 139.37  | 290.44           | 11-C11  | 47.30 SO3                 | 131.59 | 278.24 |
| 08-C12  | 16.95 mv(Cr)        | 299.63  | 1767.7           | 11-C12  | 22.79 CaP                 | 92.925 | 407.7  |
| 08-C13  | 38.50 mv(Na)        | 154.28  | 400.70           | 11-C13  | 44.21 mv(B), LV, T1%, ND  | 433.61 | 980.83 |
|         | mv(B), LV, T1%,     |         |                  |         |                           |        |        |
| 08-C14  | 46.58 ND            | 291.41  | 625.64           | 11-C14  | 45.13 mv(Fe), LV, T1%, OB | 175.65 | 389.17 |
| 08-C15  | 43.39 LV, T1%, OB   | 331.00  | 762.90           | 11-C15  | 50.95 LV, T1%, TL, ND     | 208.10 | 408.41 |
|         | mv(Si), LV, T1%,    |         |                  |         |                           |        |        |
| 08-C16  | 50.42 OB            | 449.02  | 890.59           | 11-C16  | 40.30 mv(Cr)              | 1420.6 | 3524.8 |
| 08-C17  | 35.54 mv(Al)        | 1300.5  | 3659.1           | 11-C17  | 43.90 CaP                 | 106.8  | 243.2  |
| 08-C18  | 48.33 mv(B), UV, ND | 192.30  | 397.88           | 11-C18  | 39.41 mv(B), LV, T1%, ND  | 157.25 | 398.96 |
|         |                     |         |                  |         | mv(B), mv(Fe),            |        |        |
| 08-C19  | 50.54 CaP           | 356.33  | 704.98           | 11-C19  | 41.82 mv(Li), TL, ND      | 689.81 | 1649.7 |
|         | mv(Fe), LV, T1%,    | <b></b> | <0.4 0. <b>7</b> |         | 20.14.002                 | 100.10 |        |
| 08-C20  | 44.97 OB            | 312.49  | 694.95           | 11-C20  | 30.16 SO3                 | 138.10 | 457.96 |
| Average | 42.09 Total         | 12,047  | 28,624           | Average | 44.42 Total               | 12,555 | 28,266 |

(a) mv – is model validity single component constraint with the constraining element listed after, UV and LV - the upper and lower viscosity limits, ND – nepheline discriminator, OB – optical basicity, T1% - spinel  $T_{1\%}$ , SO3 – sulfate salt limit, CaP – CaO×P<sub>2</sub>O<sub>5</sub> limit, TL – zirconia-containing phase  $T_L$ 

The results for the advanced constraint sets are summarized in Table A.7. Although the fraction of glass limited by each component constraint differs between the two feed vectors, the total estimated glass mass is surprisingly similar at  $23,000 \pm 120$  MT, translating to roughly 7,650 canisters of HLW glass.

|         | WL,   |                    | waste, | glass, |         | WL,   |                      | waste, | glass, |
|---------|-------|--------------------|--------|--------|---------|-------|----------------------|--------|--------|
| Cluster | %     | Limits             | MT     | MT     | Cluster | %     | Limits               | MT     | MT     |
| 08-C01  | 43.45 | CaP                | 355.67 | 818.65 | 11-C01  | 56.74 | mv(Si), UV, C2, NP   | 1539.0 | 2712.4 |
| 08-C02  | 51.48 | CaP                | 274.54 | 533.29 | 11-C02  | 51.50 | mv(Si), UV, NP       | 1616.0 | 3138.1 |
| 08-C03  | 45.58 | mv(P)              | 138.15 | 303.11 | 11-C03  | 61.84 | mv(Si), SO3, C2, NP  | 3164.0 | 5116.4 |
|         |       |                    |        |        |         |       | mv(Li), SO3, mv(Zn), |        |        |
| 08-C04  | 54.92 | mv(Si), UV, C2, NP | 3045.5 | 5545.0 | 11-C04  | 28.51 | LV, C2               | 155.5  | 545.62 |
| 08-C05  | 61.68 | mv(Si), C2, NP     | 1416.5 | 2296.4 | 11-C05  | 50.35 | mv(Zr)               | 829.2  | 1647.0 |
| 08-C06  | 46.21 | mv(F)              | 618.44 | 1338.2 | 11-C06  | 60.18 | mv(U)                | 249.72 | 414.99 |
| 08-C07  | 55.02 | LV, C2, NP         | 1148.2 | 2087.0 | 11-C07  | 56.35 | mv(Si), UV, C2, NP   | 181.4  | 321.93 |
| 08-C08  | 45.74 | mv(P)              | 196.37 | 429.3  | 11-C08  | 46.10 | LV, C2, NP           | 193.08 | 418.78 |
| 08-C09  | 50.84 | mv(Cd)             | 135.43 | 266.38 | 11-C09  | 49.88 | LV, C2, NP           | 565.20 | 1133.2 |
| 08-C10  | 52.42 | mv(Si), UV, C2, NP | 891.44 | 1700.7 | 11-C10  | 57.16 | mv(Si), C2, NP       | 507.96 | 888.65 |
| 08-C11  | 54.90 | SO3                | 139.37 | 253.86 | 11-C11  | 61.70 | SO3, LV, NP          | 131.59 | 213.29 |
| 08-C12  | 42.37 | Cr2O3              | 299.63 | 707.1  | 11-C12  | 22.79 | CaP                  | 92.925 | 407.69 |
| 08-C13  | 41.38 | mv(Na)             | 154.28 | 372.83 | 11-C13  | 53.14 | LV, C2, NP           | 433.61 | 815.95 |
| 08-C14  | 54.39 | LV, C2, NP         | 291.41 | 535.82 | 11-C14  | 51.10 | mv(Si), C2, NP       | 175.65 | 343.74 |
| 08-C15  | 48.97 | LV, C2, NP         | 331.00 | 675.92 | 11-C15  | 53.88 | mv(U)                | 208.10 | 386.22 |
| 08-C16  | 59.26 | mv(Si), UV, C2, NP | 449.02 | 757.69 | 11-C16  | 57.61 | mv(Si), UV, NP       | 1420.6 | 2465.8 |
| 08-C17  | 48.86 | mv(Si), UV, NP     | 1300.5 | 2661.6 | 11-C17  | 43.90 | CaP                  | 106.8  | 243.25 |
| 08-C18  | 52.53 | mv(Na)             | 192.30 | 366.06 | 11-C18  | 46.88 | LV, C2, NP           | 157.25 | 335.43 |
| 08-C19  | 50.54 | CaP                | 356.33 | 704.98 | 11-C19  | 50.83 | mv(Si), LV, TL, NP   | 689.81 | 1357.2 |
| 08-C20  | 49.77 | mv(Mn)             | 312.49 | 627.90 | 11-C20  | 46.30 | SO3, mv(Zn), LV, C2  | 138.10 | 298.29 |
| Average | 52.42 | Total              | 12,047 | 22,982 | Average | 54.11 | Total                | 12,555 | 23,204 |

Table A.7. Summary of Waste Loading Estimates for the Advanced Set of Constraints

(a) mv – is model validity single component constraint with the constraining element listed after, UV and LV - the upper and lower viscosity limits, NP – nepheline constraint, C2 – 2 vol% spinel at 950°C, SO3 – sulfate salt limit, CaP – CaO×P<sub>2</sub>O<sub>5</sub> limit, TL – zirconia-containing phase  $T_L$ 

## **Summary and Conclusions**

Table A.8 summarizes the glass mass (MT) by constraint for each of the constraint sets and feed vectors. The constraint sets evolve in time with the addition of more glass formulation and property data. In 2008 (WTP algorithm) 100% of the glass was limited by model validity constraints. As time progressed, less and less of the glass was limited by model validity, and more and more glass was limited by property constraints. Ultimately, it is the properties that should limit the loading of waste in glass as model validity constraints represent only the bounds of current data or the bounds over which the current models are predictive. Additional data and improved models should eventually remove those constraints until all wastes are limited by property constraints. Although the table suggests that 70 to 90% of all the glasses in the advanced constraint set are limited by properties, it needs to be recognized that among the property constraints there do exist model validity constraints. This is because when optimizing glass formulations for a given waste, the additive mix is continually changed until as many limits are reached as there are additives in the glass (to use up all remaining degrees of freedom). The nominal "property-limited" glasses therefore have between three and five limits which include model validity constraints.

| Constraint | W      | ГР     | HTWO   | 5 2009 | HTWO   | 5 2010 | Advan  | ced    |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Feed       | 2008   | 2011   | 2008   | 2011   | 2008   | 2011   | 2008   | 2011   |
| Properties | 0      | 0      | 21,918 | 13,873 | 11,067 | 18,047 | 16,260 | 20,105 |
| mv(F)      | 18,080 | 28,474 | 0      | 0      | 0      | 0      | 1,338  | 0      |
| mv(Al)     | 16,862 | 4,800  | 0      | 0      | 9,911  | 4,109  | 0      | 0      |
| mv(Cr)     | 12,707 | 15,697 | 2,836  | 3,525  | 3,204  | 3,525  | 707    | 0      |
| mv(Bi)     | 0      | 0      | 0      | 7,464  | 0      | 0      | 0      | 0      |
| SO3        | 0      | 0      | 3,242  | 5,998  | 1,985  | 1,935  | 254    | 0      |
| CaP        | 5,831  | 5,368  | 3,011  | 408    | 2,057  | 651    | 2,789  | 651    |
| mv(Zr)     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1,647  |
| mv(Ni)     | 1,451  | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| mv(Fe)     | 0      | 1,364  | 0      | 0      | 0      | 0      | 0      | 0      |
| mv(U)      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 801    |
| mv(Na)     | 0      | 0      | 401    | 0      | 401    | 0      | 739    | 0      |
| mv(Mn)     | 0      | 0      | 0      | 0      | 0      | 0      | 628    | 0      |
| mv(Cd)     | 0      | 0      | 0      | 0      | 0      | 0      | 266    | 0      |
| SoM        | 0      | 394    | 0      | 0      | 0      | 0      | 0      | 0      |
| Total      | 54,931 | 56,098 | 31,408 | 31,268 | 28,624 | 28,266 | 22,982 | 23,204 |

Table A.8. Summary of Glass Mass (MT) by Constraint for Each of the Constraint Sets

The results of these calculations can best be summarized in a single figure showing the amount of glass estimated for each of the constraints (Figure A.1). If we were to process HLW today, we would need to use the WTP baseline constraint set, as that is the only fully qualified set of constraints and models. This would yield roughly  $2.5 \times$  the amount of glass that is possible by applying the advanced glass formulation results. We conclude and recommend that the efforts necessary to develop the advanced glass formulation and to qualify those compositions for production in the WTP be completed.



Figure A.1. Comparison of Glass Mass Estimates for Each Constraint Set and Feed Vector

Developing and applying the advanced glass formulations will certainly reduce the cost of Hanford tank waste management, if only by reducing the cost of fabrication, storage, transportation, and disposal

of the HLW glass. More significant benefits may also be realized. These advanced formulations are far more tolerable to key components in the waste, such as  $Al_2O_3$  (with concentrations of up to 28 wt%),  $Cr_2O_3$  (with concentrations up to 3 wt%),  $SO_3$  (with concentrations up to nearly 1 wt%), and  $Na_2O$  (with concentrations up to 23 wt%). Tolerating these higher concentrations of key glass limiters may reduce the burden on waste pretreatment, which currently strives to effectively leach Cr and Al and wash S and Na from the HLW fraction. This may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also glass production rate. All of the advanced glass formulations are processable at or above the current nominal processing rate estimates (1000 kg/m<sup>2</sup>/d) and well above the current contract (807 kg/m<sup>2</sup>/d) processing rate limit. Therefore, if waste can be delivered to the HLW vitrification facility fast enough to match the enhanced waste throughput rates (waste throughput = waste loading times glass production rate), then the mission life may be significantly reduced.

## References

Certa PJ, GK Allen, TW Crawford, TM Hohl, KN Jordan, RA Kirkbride, and RL Lytle. 2008. *River Protection Project System Plan*, ORP-11242, Rev. 3A, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Certa PJ, RD Adams, GK Allen, JD Belsher, PA Empey, JH Foster, TM Hohl, RT Jasper, RA Kirkbride, RL Lytle, FL Meinert, JS Ritari, RM Russell, KR Seniow, EB West, MN Wells, and LM Bergmann. 2011. *River Protection Project System Plan*, ORP-11242, Rev. 6, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Jenkins KD, RF Gimpel, YN Deng, VS Arakali, SL Orcutt, and IZ Stone. 2010. 2010 WTP Tank Utilization Assessment. 24590-WTP-RPT-PET-10-020, Rev. 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Jenkins KD, YN Deng, and SL Orcutt. 2012. 2012 WTP Tank Utilization Assessment. 24590-WTP-RPT-PE-12-001, Rev 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Kim DS, MJ Schweiger, CP Rodriguez, WC Lepry, JB Lang, JV Crum, JD Vienna, FC Johnson, JC Marra, and DK Peeler. 2011. *Formulation and Characterization of Waste Glasses with Varying Processing Temperature*. PNNL-20774, Pacific Northwest National Laboratory, Richland, Washington.

McCloy JS and JD Vienna. 2010. *Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling*. PNNL-19372, Pacific Northwest National Laboratory, Richland, Washington.

Perez JM, DF Bickford, DE Day, D-S Kim, SL Lambert, SL Marra, DK Peeler, DM Strachan, MB Triplett, JD Vienna, and RS Wittman. 2001. *High-Level Waste Melter Study Report*. PNNL-13582, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD and DS Kim. 2008. *Preliminary IHLW Formulation Algorithm Description*. 24590-HLW-RPT-RT-05-001, Rev 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Vienna JD, A Fluegel, DS Kim, and P Hrma. 2009. *Glass Property Data and Models for Estimating High-Level Waste Glass Volume*. PNNL-18501, Pacific Northwest National Laboratory, Richland, Washington.



Proudly Operated by Battelle Since 1965



902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 **1-888-375-PNNL** (7665)

## www.pnnl.gov