PNNL-22620

S

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Batielle Since 1965

Efficient Memory Access
with NumPy Global Arrays
using Local Memory
Access

August 2013

JA Daily
DC Berghofer

EEEEEEEEEEEE

u.s.
EN ERGY Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memoria Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memoria
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Availableto DOE and DOE contractorsfrom the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Availableto the public from the National Technical Information Service,
U.S. Department of Commer ce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
onlineordering: http://mww.ntis.gov/ordering.htm

Oy

%@ This document was printed on recycled paper.
(9/2003)

Efficient Memory Access with NumPy Global Arrays using Local Memory Access

Dan Berghoferand Jeff Daily
PacificNorthwest National Laboratory, Washington 99352

The Global Arrays library was developed at the Pacific Northwest National Laboratory and provides an interface
for easily creating arrays that exist in multi-computer systems. Part of this library includes Global Arrays in NumPy
(GAiIN) which allows NumPy Arrays to existin distributed systems. Currently, whenever many binary operations
are executed ontwo GAiN arrays, array elements from each array on several computers are copied and then
operated on. Improvements were made to binary operations on GAiN arrays that reduce data copyingandresults
in faster computation. If sections of arrays to be added are on the same computerthen data copyingis
unnecessary fordataaccess. Binary operationalgorithms wereimproved so that data copying only occurs when
array sections of operands exist on separate computers. While this requires more dataaccesses, large
performance improvements were seen. Thisalgorithmalso works with array slicesincluding stepped slices and
negative slices.

I INTRODUCTION

Today scientificdatais often collected and processed by computers. This datawill likely be alarge set of
scientificobservations or data points. Thisdata is often heldinarrays andin many cases these datasets
can be solarge that they have to be processed by distributed networks of computers or distributed
supercomputers. One problem with thesedistributed arrays of data is that even the simplest
computations onthemisvery difficult becausealarge amount of computationis requiredtodo
operationson arrays pieces that are spread on several different computers. This computation will
requires some sort of messaging routines like Message Passing Interface (MPI). The Global Arrays library
solves this problem by doing this multi-computer computation with MPl automatically and allows
programmersto create and manipulate arrays as if they were on a single computer [2].

Global Arraysin NumPy (GAiN) isaversion of the Global Arrays library that emulates the NumPy Python
library indistributed systems [2]. The work done duringthisinternshipimproved the speed of GAIN
when executing binary operations. When any operationinvolvingtwo GAiN arrays that requiresitem by
item computation occurs, this memory access algorithm can be used.

One concept, node overlap refers to the fact that oftenitemsin differentarraysto be operated on are
often onthe same node. When many of these elements are on the same computer, there isa high

amount of node overlap. Currently these operations are done by copyingthese arrays and the ndoing
operationsonthem. Ifthereisa large degree of node overlap, then much copying can be avoided and
array sectionstobe added togethercan be accessed with pointers. Others will have to be accessed by
copyingthem fromdifferent nodes. The algorithm discussed determines which regions have to be
copiedand which onesdon’tand then executes operations on these regions. Itisalsodesignedtowork
on sliced (partial) arrays.

Il. BACKGROUND
Distributed Global Arrays

The research completed resulted in the creation of code that enhancesthe speed of Global Arraysin
NumPy (GAiN) functions that exist as part of the Global Arrays (GA) library. The GA library allows
programmers to build distributed (multi-computer) arrays as if they were local arrays [3]. GA and GAIN
coderun in parallel onall the computersona computer network. A programmer can specify thatonlya
few computers run bits of GA code butfor the most part, all the computers will be running GA code in
parallel. One cancreate an array with a GA Create command. Global Arrays can access elements using
the GA Get and GA Access commands. Arrayscan have elements stored tothemusingthe GA Put
command [3]. Thislibrary certainly makesdistributed functions seem as if they are occurring on local
machines evenif the syntax is more complex. Global Arraysin NumPy (GAiN) actually makes the look
and feel of these arrays almost exactly like local NumPy arrays.

Python and GA in NumPy

GA has separate versionsthatare writtenin C, Fortran, and Python. GAiN, the module thatis being
improvedinthisinternship, is writtenin Pythonandis based on the Python version of GA. Pythonis
easyto use becauseitisveryterse and there are many built-in operations that are helpful tothe
programmer. Pythonisusedin systems programming, web design, distributed programming, GUI
programming, and game programming. One problem with Pythonisthatitisslow relative to other
languages like CandJava. There are several reasons forthis problem. First, lists ofitemsin Python are
allocated dynamically, and are not continuous, second Python’s loops are slow, third Pythonis un-typed,
orin otherwordsitsvariables do not have to be given types by programmers. Operations on un-typed
variables are slowerthanthose ontypedvariables [1].

There are several solutions to Python’s speed problem. First, atyped version of Python called Cython
exists that does many of its operationsinthe much faster C language [1]. A Pythonlibrary called NumPy
builds arrays of contiguous items that are much fasterthan ordinary listsin Python. Inorderto avoid
the slowdown that ‘forloops’ cause in Python, NumPy has many of its operations done in predefined
functions writteninthe Clanguage. Forexample, NumPy arrays can be transposed, added, compared,
multiplied, and much more usingthe NumPy library [4]. One disadvantagewith NumPyisthatitis not
distributed. GAisusedto make a version of NumPy thatis distributed called GAin NumPy (GAiN).

Numpy and GAiN Slicing

Our algorithm forimproving GAiN works with NumPyslicing. Like genericarrays, NumPy arrays can be
sliced to obtainindividual elements, but unlikethem it can obtain sets of individual elements that may
or may not be contiguous. NumPy can access sets of elements using colon syntax [4]. Forexample,
thisArray[4:6] will retrieve elementsfromindex4 up to but not includingthe elementforindex 6. One
can alsoretrieve elements thatare non-contiguous by addinganumbertoindicate the step of the slice.
For example, thisArray[4:8:2] will retrieve elementsforindexes 4,and 6. The stepistwo andthisis why
the slicing skips overelement5and wentto element6.

NumPy can also execute negative slicing so thisArray[5:1:-1] will start atelement#5and go backwards
by steps of one until itreaches the index #1 which will not be includedinthe array slice. The negative
signat the end of a step indicates anegative step. NumPyisalso capable of larger negative steps such
as -2 or -3. NumPy can also slice multidimensional arrays using the comma syntax. Anexample of thisis
thisArray[3,5] which accesses an element at coordinate (3,5). Anexample of very complex
multidimensional syntaxis thisArray[5:2:-5, 2:9:4, 9:2:-1].

In both NumPy and GAiN, slices of arrays can be taken and assigned to otherarrays [4]. For example, we
can say: newArray = oldArray[1:3,6:12]. An array slice canalso be thought of as a pointerto a section of
an array in NumPy. GAiN implements slicestooandin GAiN, slices point to the exact same memory the
arrays they are sliced from point. Soif oldArray and newArray were GAiN arrays, newArray could access
all the elements oldArray could beyondits slicing bounds. However newArray does have avariable
called global_slicesthattells what elements of the entire array newArray is pointing to.

GA Distribution Syntax

If a programmer wishes to execute an operation ononly asection of a GAiN array, then she can specify
this section asa coordinate distribution with alow coordinate and a high coordinate.

Figure 1

0 12 3 45 6 7

7 i

The array here is having a section of itself selected using low, high syntax. The coordinates are shown in black and are (2,2),
and (6,6) respectively.

o 01 b W N, O

In the Figure 1, we want to retrieve an array sectioninthe shaded area. To do thiswe have to specifya
low coordinate and a high coordinate. The low coordinate will be the coordinate onthe upperleft hand
side of the sectionandin the example itis(2,2). The high coordinate is the coordinate thatis to the

lowerright hand side of the matrix but is right outside of this matrix itself by one unitinevery
dimension. Inthisexample, thatcoordinateis(6,6). Low, High coordinates are called Distribution
Coordinates and are used inthe functions discussed inthe next section.

GA Functions Used

Major GA functions used forarray manipulation are GA Create, GA Distribution, GA Get, GA Access,
and GA Put. While they can be used on an entire global array, they can also be used on only a part of
this array by specifying the distribution coordinates of this part of the array. The GA Create function
createsa new GA array. The GADistribution function returns the distribution of the part of the total
array the node that called this function contains.

GA Getretrievessome orall of a global array by going to each node and copyingthe memory of the
sections of the array each node containsand createsa NumPy array that consists of each of these
copies. Thisoperationisslow because of all the copying necessary. GA Access returnsa pointerto
some or all of the elements of the Global Array to the node that called this function. Itisunable to
return parts of a global array thatare not inthe local node. Since returningapointeriseasierthan
copyingmemory like GA Getdoes, the access functionis faster.

1. The EFFICIENT MEMORY ACCESS ALGORITHM (EMAA)
GAiN Addition

The GAIN Addition function accepts two GAiN arrays, adds them, and then stores the resulteitherin one
of the arrays orina different GAiN array. This operationisvery inefficient because both arrays are
copied fromtheiroriginal locations and then added. The work done duringthe internship involved
reducing the amount of copying done by only copying when subsections of arrays to be added existon
differentnodes. These improvementsalsowork with array slices which will be described later.

Problem with the Current Adder

Figure 2

Arrayl Array2

01 23 &% &6 7 89 0 1 2 3 45 6 7 8 9
0 0
1 1
2 2 0 1
3 0 1 3
3 4
5 5
6 6
7 7 2 3
8 2 3 8
9 9

The above arrays shows which sections of them are contained in which nodes. Nodes are numbered from zero to three. Any
number of nodes can be specified by GAIN. These two arrays will be added together and will be used as an example of how
the EMAA algorithm works. The parts of Arrayl in grey will be added to parts of Array2 in the same node.

The arrays in Figure 2 are shown with different distributions overfour nodes. Notice that many of the
elementsinArraylandArray2 to be added togetherexistinthe same node. Forexample, all elements
inArrayl nodelwill be added toelementsin Array2 that also existinnodel. The elementsinthese
arrays that will be added to elementsinthe same node are showningreyin ArraylinFigure 2.

Our solution
Figure 3

01 2 3 456 7

0

1 Access

2

3 Get2
4

5

6 Getl

7

The above figure shows the memory of process 0 in Arrayl, and the different regions of Array2 overlaid on this process. The
Access area in grey is the area of Array2 that is also held in process 0 and this area will be retrieved using GA Access. The
areas in white are areas of Array2 that are not in process 0and will be retried using GA Access.

Our solution takesinto consideration that sometimes elements of two arrays to be added or operated
on are inthe same node, and at others they are not. Ratherthan executingalarge GA Get function for
two array addendsandthen addingthemtogether, we start by making every node access local elements

inArrayl and Array2. Local elements are the set of elementsinanarray that are ina specificnode. For
each node, the local elements of Array2 that are to be addedto Arrayl are determined in Figure 4in
grey. These Arrayl elements are retrieved usingthe GA Access function. These local elements are then
addedto theirequivalentsin Array2 which were retrieved using the GA Access Function. The
equivalents of a set of elementsin this contextis the set of elements they are goingto be added to.

Parts of Array1 will not have local equivalentsin Array2 or in other words the parts of Array2 to be
addedto themwill notbe inthe same nodes as the elementsin Arrayl. Foreach node, those parts of
arrayl without local equivalents will be retrieved using the GA Access function and theirnon-local
equivalents will be retried using the GA Get function. They will then be added together.

Retrieval of Elements

Figure 4

This figure shows the distribution of all elements in node Xin Arrayl. The elements in Array2 they are going to be added to
are overlaid on top of them. The area in grey shows the elements in Array2 that are not in the same node as their
equivalents in Arrayl. The area in white shows the elements in Array2 that are in the same node as their equivalents in
Arrayl.

In Figure 4, the entire array represents the range of elements owned by Arraylin node X. The elements
inArray2 to be added to them are overlaid ontop of theirequivalentsin Arrayl. The greyelementsare
called the overlapping elements and represent the elementsin Arrayl with local equivalentsin Array2.
The white elements are called non-overlapping elements and are the elements of Arrayl withoutlocal
equivalentsin Array2. Theirequivalents are non-local.

For overlapping elementsin Arraylthe GA Access functionis used, and for theirlocal equivalentsin
Array2. Thisis true because ouralgorithm works from the perspective of eachlocal node and not the
array as a whole. If parts of Array1 existin each node thenretrievingthem with GA Access makesthe
most sense because GA Accessisfast. If they have local equivalents, then each node is able to access
these equivalents with GA Access. Ifthey have non-local equivalents, then these equivalents willbe
outside of each node doingthe retrievingand so they will have to be retrieved using GA Get.

Grabbingevery elementinthe non-overlappingregionsinone GA Getcall is not possible because Access
can only grab rectangularareas. The solutionto this problemis that multiple GA Gets should be
executed on non-overlapping (white) element. Thatis why the non-overlappingregioninthe previous
imagineisdividedinto four parts for separate accesses.

The algorithm foraccessing non-overlapping regionsinvolves finding the largest possible non-
overlappingregions above and below the overlapping region for each dimension and doing computation
on these coordinates. Once these elements have been added together, the region forthese elementsis
then excluded fromthe algorithm and the algorithm then continues with the other dimensions. This
algorithmis called the Efficient Memory Access Algorithm (EMAA).

Storing Elements

Once the elements have been added together, they will need to be stored. Currently theyarein NumPy
format afterthey have beenadded. If one of the addendsisalsothe targetarray, then the algorithm
ensuresthatthisarray is stored to because itis the array that is accessed using the GA Access Function.
The results of addition are stored in thisarray by updating the local memory. If the targetarray is not
one of the addends, then the results of the addition is stored into the otherarray usingthe GA Put
function.

Dealing with Slices

A sliced GAIN array as mentioned before pointsto only apart of an array it isa slice of. Itdoes have a
variable called global_slicesthatindicates what parts of that array is part of the slice.

Figure 5

01 2 3 456 7 8 9

0
1
2 1 2
3
4
5
6
7 3 4
8
9

Two Global Array slices to be added together. The light array is sliced as [2:5:1,3:8:2]. The dark array is sliced at

[4:7:1,4:9:4].

Addingsliced arrays is challenging because EMAA works with distribution coordinates thatassume
arrays start at zero and their steps are one. There are two ways to deal with this problem. The firstisto
make these algorithms work with arrays with any step or any origin. This method is not practical
because working with slices adds another layer of complexity on top of the complexity EMAA already
has. A betteralgorithmistotake the distribution coordinates of sliced arrays and translate themintoa
compressed form with each of theiroriginsat0 and step equal to 1 as showninFigure 6. The precise
regionsto GA Get or GA Accessis then determined, and when these operations are goingto be executed
on these arrays, these distribution coordinates are converted back to theiroriginal form.

Figure 6

0|1 2|0
1 1(1(2
2 34| 2

A compressed version view of the arrays in figure 5. The coordinates of each array is compressed to this version. Once this
compression is complete, then the EMAA algorithm is executed.

We can seeinFigure 6 the nodes the sections of each array belongsto. We then carry on our usual
addition operation fromthe perspective of the processesinthe firstarray detailed before this section.
We use this computation to determine the distribution coordinates of each array piece to add together.
These distributions are then translated back to theiroriginal formasin Figure 5, and the additionis
completed.

Results
Figure 7
1000x1000 Array
0.01
0.008
0.006
0.004 B 1000x1000
0.002 Array
0 T
EMAA Old
Algorithm

Array addition on 1000x1000 Arrays.

The results of this analysis show that EMAA algorithm surpasses the original algorithm. This analysis
conducted array addition on arrays where there was over90% array overlap. 32 array additions were
completed on 1000x1000 arrays and the standard deviation onthese trials was found to be marginal.
The average time taken for the EMAA algorithm was .0052 seconds while forthe average forthe old
algorithm was .009 seconds. The EMAA algorithminthis case is twice as fast.

Figure 8

2000x2000 Array

0.03

0.02 -
& 2000x2000
0.01 - . Array
0 !

EMAA Old Algorithm

Array addition on 2000x2000 Arrays.

Figure 9
4000x4000 Array
0.15
- I
W 4000x4000 Array
0.05 - .
0 :
EMAA Old Algorithm

Array addition on 4000x4000 Arrays.

When this analysis was done with 2000x2000 arrays, the EMAA algorithm completed its computationin
.014 seconds on average while the old algorithm completed its computation in an average of .026
seconds as shown figure 8. This analysis was also completed on 4000X4000 arrays as showninfigure 9.
The EMAA algorithm completed its computation in .063 seconds while the old algorithm completeditin
.138 seconds. Asarrays get bigger, the EMAA algorithm compares betterand betteragainstthe old
algorithm.

Figure 10

1000x1000 .25 overlap Array
0.015
0.01
W 4000x4000 .25
0.005 overlap Array
0 4
EMAA Old Algorithm
Array addition on 1000x1000 Arrays with 25% overlap.
Figure 11
1000x1000 no overlap Array
0.015 +
0.01 -
B 4000x4000 no
0.005 - overlap Array
0
EMAA Old Algorithm

Array addition on 1000x1000 Arrays with 0% overlap.

So far the EMAA algorithm works well whenthereis a high degree of overlap. But what happenswhen
thisoverlapisreduced? InFigure 11, two array slices with 25% node overlap are added together. Even
inthis situation the EMAA algorithmisfasterand took.0091 secondsto complete whilethe old
algorithmtook .011 seconds as shownin figure 10. Aninterestingexercise wastoadd arrays withno
node overlap. Asshownin Figure 11, EMAA took .0116 seconds while the old algorithmtook .133
seconds peraddition.

IV. CONCLUSION AND FUTURE WORK

These trials have shown that the EMAA algorithm works well in situations with agreatamount of node
overlap and can also function quickly in situations with no node overlap. Thiscan speedupa large
number of binary operationsin GAiN. These results make quite abitof sense. Evenwhenthereisno
node overlap, one array is being accessed usingthe GA Access function, and the otheris beingaccessed
usingthe GA Get function. The biggestdisadvantage of thisfunctionisthat more itemaccessesare
occurring which can slow it down. However this slowdownis outweighed by EMAA’s benefits. Itis
foundthat largerarrays work better with EMAA than smallerones. The more array overlap, the better

the EMAA algorithm did. Thereforeitisrecommended that more binary operations have theirmemory
access use the EMAA algorithm.

One potential source forimprovementisto minimize the use of the GA Put function by only usingitfor
savingto memory outside of anode that calling the function. Also, thisalgorithm doesn’twork when
the same memorythatisbeingsavedtois also being called from and these memories are beingsliced
differently.

References:

1. Behnel,S.;Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.S.; Smith, K., "Cython: The Best of Both
Worlds," Computingin Science & Engineering, vol.13, no.2, pp.31,39, March-April 2011
doi: 10.1109/MCSE.2010.118

2. DailyJA, and RR Lewis. 2011. "Automatic Parallelization of Numerical Python Applications using
the Global Arrays Toolkit." In Proceedings of the 2011 Companion on High Performance
Computing, Networking, Storage and Analysis, (SC 2011 Companion), November 12-18, Seattle,
Washington, pp. 43-44. Association for Computing Machinery, New York, NY.
do0i:10.1145/2148600.2148623.

3. ManojkumarKrishnan, Bruce Palmer, Abhinav Vishnu, Sriram Krishnamoorthy, Jeff Daily, and
Daniel Chavarria. 2012. “The Global Arrays User Manual.” PacificNorthwest National
Laboratory, Richland, WA:.—URL http://hpc.pnl.gov/globalarrays/papers/GA-UserManual-
Main.pdf.

4. VanDer Walt, Stefan, S. Chris Colbert, and Gael Varoquaux. "The NumPy array: a structure for
efficient numerical computation." Computingin Science & Engineering 13, no. 2 (2011): 22-30.

