
PNNL-22611

The Parameter Manager Library
DES-0016

Revision 3

Charlie Hubbard

August 2012

The Parameter Manager Library

Charlie Hubbard

DES-0016
Revision 3

August 2012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under

Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The Parameter Manager Library August 09, 2012

Contents

1 Introduction 1

2 Library Classes 2
2.1 The ParameterFields Class . 2
2.2 The Parameter Class . 3
2.3 The ParameterSet Class . 4

3 The ParameterSet Configuration File 5

4 A Parameter Set Example 6

DES-0016 i Rev 3

The Parameter Manager Library August 09, 2012

1 Introduction

This document describes the Parameter Manager Library, a collection of code designed to
manipulate what amounts to fancy tag/value pairs. The library was developed specifically
to provide run-time parameter support to the system’s control server 1, but has since been
adopted by other servers and utilities as well. The library offers the following features:

• Tag/value pairs (actually parameters since each parameter contains more information
than just a value) are maintained in a collection called a parameter set

• The data associated with a specific tag is actually much more than just a value. Besides
the value, there is a default value for the parameter, the engineering units the value
is reported in, a time stamp indicating when the parameter’s value was last modified,
and a text description of the parameter.

• Internally, parameter names, their values and most of their associated data are main-
tained as strings. The one exception to this is the last modified time stamp, which is
stored and returned as a Unix time t type.

• Individual parameters are referenced by name (the tag), and their corresponding values
can be rendered as a variety of different data types including bools, ints, doubles and
strings.

• Parameter sets can only be initialized from text-based configuration files. Changes
made to a set can be written back to the same configuration file as required by the
application.

• Tag names are not case-sensitive, but they are stored internally in all uppercase, and
that is how they are returned to the user or written back to the configuration file.
Values (and their associated attributes like engineering units) are case sensitive, and
are maintained exactly as they were provided.

• Internally, parameters are maintained in an Standard Template Library (STL) map,
making access to them very fast.

The Parameter Manager Library is defined and implemented by the two files paramsMan-
ager.h and paramsManager.cpp. The primary documentation for the library is its source
code and its associated Doxygen-generated HTML files. The Doxygen documentation should
be consulted for a detailed description of the library’s Application Programming Interface
(API). The document you are reading now is supplemental, and is intended to provide deeper
background for the library’s implementation. In cases where the Doxygen documentation
disagrees with this document, the Doxygen documentation should be considered correct.

1See design document DES-0015, The Control Server for details on the control server application.

DES-0016 1 Rev 3

The Parameter Manager Library August 09, 2012

2 Library Classes

The library implements parameter-set support with three classes called ParameterFields,
Parameter and ParameterSet respectively.

2.1 The ParameterFields Class

The ParameterFields class defines the data fields associated with a single parameter as well
as a constructor and certain utility methods. The class definition appears below.

struct ParameterFields {

ParameterFields();

string name;

string value;

string defval;

string units;

time_t lastModified;

string description;

void Dump() const;

string Serialize() const;

void Deserialize(const string s);

};

Parameter fields are sequestered away in their own structure like this, rather than being
placed directly in the Parameter class (see the following section), mostly as a matter of
style, with the following justifications.

• Of a parameter’s various fields, only the value field can be manipulated directly by the
user. Other fields can only be populated at the time the ParameterSet configuration
file is processed. That is to say, other than the value field, a parameter’s fields are
in effect read-only. If the fields were direct attributes of the Parameter class, they
could not be read-only if they were made public so they’d have to be private or at least
protected. But if the fields were not public, then a series of accessor methods (one for
each field) would be needed to make them retrievable by the user, but not settable.
Instead, in the actual implementation, each Parameter contains one private instance
of ParameterFields and a single accessor method that returns the entire structure.

• The field data for a parameter in a parameter set are associated with the parameter only
when the parameter set is first initialized (that is, when the parameter set configuration
file is processed). During this process, the field data are passed into the Parameter

class constructor. In the author’s opinion, it is cleaner to pass the constructor a single
structure containing the fields instead of a list of individual field values (this becomes
more and more of an issue as the number of fields increases).

• Over time, the number of fields associated with a single parameter has grown from two
(name and value) to the list that exists today. There is every reason to believe that

DES-0016 2 Rev 3

The Parameter Manager Library August 09, 2012

some future enhancement of the library will result in even more fields. If this happens,
the above two points remain the same—each Parameter class will still only require one
accessor method to allow users to get at the field data, and the Parameter constructor
parameter list will not have to expand to accommodate additional fields.

Some further explanation is probably warranted for the Serialize() and Deserialize()

methods. These two methods exist to support passing ParameterField classes between
clients and servers using our standard client/server message-passing mechanism2. As you’ll
recall, under our architecture, all messages exchanged between clients and servers are text
strings encoded using our Data Serialization Protocol3 (DSP). The Serialize() method
returns a DSP compatible string containing the field data. Similarly, the Deserialize()

method, takes a DSP string as returned by Serialize() and uses the data encoded within
to populate the structure’s field members.

2.2 The Parameter Class

The Parameter class defines a single parameter. Its definition appears below.

class Parameter {

public:

Parameter();

Parameter(const ParameterFields &fields);

string GetName() const;

bool AsBool() const;

int AsInt() const;

double AsDouble() const;

char AsChar() const;

string AsString() const;

ParameterFields GetFields() const;

void Dump() const;

void RevertValueToDefault();

void SetValue(const string v);

string Serialize() const;

void Deserialize(const string s);

private:

ParameterFields fields;

};

As mentioned previously, a parameter’s value (its value field) is stored internally as an STL
std::string, but of course it may be interpreted by the user in any way that makes sense
to the application. As a convenience, a series of methods exist to render the internal string
in a variety of common data types including std::string, bool, int and double. These
are the As...() methods shown above.

GetName() is a convenience method, the functionality of which is somewhat redundant since
the user can also get the parameter’s name by retrieving all of the parameter’s field data

2See design document DES-0005, The Client/Server Architecture for a complete description of
client/server message-passing as implemented in our architecture.

3See design document DES-0002, The Data Serialization Protocol for a complete description.

DES-0016 3 Rev 3

The Parameter Manager Library August 09, 2012

using the GetFields() method. However, experience has shown that access to a parameter’s
name by itself is required commonly enough to warrant the redundancy.

The GetFields() method is the primary field data accessor method described in the previous
section. It simply returns the private ParameterFields element fields.

The Serialize() and Deserialize() methods perform the same function as the methods
by the same name described in the previous section.

2.3 The ParameterSet Class

Individual parameters are stored together in a parameter set implemented by the ParameterSet
class. A copy of its definition appears below.

class ParameterSet {

public:

ParameterSet();

void Clear();

void Dump();

bool Exists(const string n);

int GetNumParams();

void RevertValuesToDefaults();

Parameter& operator[](const string n);

void Reset();

Parameter GetNext();

string Serialize() const;

void Deserialize(const string s);

string InitializeFromConfigFile(const string fname);

string RewriteConfigFile();

private:

typedef map<string, Parameter> ParameterMap;

string configFileName;

ParameterMap parameterMap;

ParameterMap::iterator pmItr;

Parameter emptyParam;

};

The class provides methods for

• initializing the parameter set with parameter data read from a configuration file (this
is done using the InitializeFromConfigFile() method)

• removing all parameters from a parameter set (Clear())

• testing for the existence of a specific parameter by name (Exists())

• modifying the values of individual parameters in the set (this is actually done indirectly
through the [] operator and the Parameter class’ SetValue() method)

• accessing individual parameter values by parameter name (the [] operator)

DES-0016 4 Rev 3

The Parameter Manager Library August 09, 2012

• iterating through all parameters in the set (Reset() and GetNext)

• writing parameter values back to the configuration file that was used to originally
populate the set (RewriteConfigFile())

• and, of course, serializing and deserializing the contents of the parameter set into and
out of DSP format as described previously (Serialize() and Deserialize())

The [] operator is particularly important, because it is the primary means by which a user
will access individual parameters in a parameter set. It takes the name of a parameter as
its input, and it returns a reference to the correspending Parameter class. It is important
to note however, that the [] operator does not error or throw an exception if the requested
parameter is not part of the set. Instead it silently returns a reference to an internal empty
parameter (its string value is an empty string, its boolean value is false, and its numerical
value is zero). It is also through the [] operator that users modify a parameter’s value. This
is done indirectly via the Parameter class’ SetValue() method. This is demonstrated by
example in the following code snippet.

set["MY_PARAM_NAME"].SetValue("1.234");

The Reset() and GetNext() methods together provide the mechanism for traversing the
parameters in the set. Calling Reset() resets the internal traversal pointer back to the
beginning of the set4. Afterward, each successive call to GetNext() returns a copy of the
next parameter in the set until all parameters have been returned. Parameters are returned in
alphabetical order by name. The user should use the GetNumParams() method to determine
how many times GetNext() needs to be called to traverse the entire set. If GetNext() is
called more than this many times, empty parameters will be returned.

3 The ParameterSet Configuration File

The configuration file read and written by the ParameterSet class, has a very simple format
defined by two simple rules:

• Blank lines and lines beginning with a ’#’ character are ignored. All other lines are
parameter definition lines.

• Parameter definition lines have five or six fields separated by one or more whitespace
characters. The fields are: 1) parameter name, 2) parameter value, 3) parameter
default value, 4) engineering units the parameter is reported in, 5) the value’s last-
modified time stamp, and 6) an optional free-form text description of the parameter.

4Currently sets are implemented as STL maps, so this amounts to setting a private map iterator to
map.begin(), but the map is hidden from the user, and could easily be replaced by a different data structure
in the future if warranted.

DES-0016 5 Rev 3

The Parameter Manager Library August 09, 2012

New configuration files are expected to be created by using any suitable text editor like gedit,
emacs or vim.

When manually creating a new configuration file, the last-modified timestamp field is nor-
mally set to zero. This field actually contains a Unix time t type integer5. These values
are cumbersome to generate manually and are not human-readable. By convention, we use
a value of zero to mean “has never been modified.” However, users are certainly welcome to
enter legitimate time t values if they prefer.

Configuration files, by convention, typically begin with a comment header block that de-
scribes the file, but comment lines and blank lines can be used internally in any way the
author chooses to help organize the file’s contents. If the current contents of a parameter set
are later pushed back to the set’s configuration file (via the RewriteConfigFile() method),
the content and order of the comments and blank lines will be preserved.

A sample configuration file is shown below

##

#

This configuration file is compatible with the Parameter Manager Library

(see paramsManager.h/.cpp and design document DES-0016 for details).

The following parameters constitute the run-time parameters used by the

project X control server.

#

##

NUM_SAMPLES_PER_POINT 5 25 none 0 Record this many samples to the output file

CARRIER_CODE 0 0 none 0 Carrier gas code

GAS_CODE 23 23 none 0 Sample gas code

POST_LOAD_DELAY 5 20 s 0 Delay this much time to reach equilibrium

POST_PUMP_DOWN_DELAY 5 300 s 0 After system pump-down, delay this many additional seconds

PUMP_BETWEEN_SAMPLES 0 0 bool 0 If 1, then pump down between samples

PUMP_DOWN_PRESSURE 1.5 1.5 Torr 0 Sensors pumped down to this pressure between samples

SET_SPANS 0 1 bool 0 If 1, then the sensors will have their zeros and spans set

SPAN_PRESSURE 760 760 Torr 0 This is the pressure that will be used to set the gauge spans

##

4 A Parameter Set Example

Here we show a very simple example of the Parameter Manager Library in action. In this
example, we’ll initialize our parameter set from a configuration file, and we’ll assume the
configuration file is the same as the one shown above. In this example we first print out
the values for a few specific fields to demonstrate how parameters are accessed with the []

operator and how the type converters work. Then we use the set traversal mechanism to
print out the values of every parameter in the set.

5These record the number of seconds that have elapsed since midnight of January 1st, 1970 GMT.

DES-0016 6 Rev 3

The Parameter Manager Library August 09, 2012

#include <iostream>

using namespace std;

#include "paramsManager.h"

int main()

{

ParameterFields pfields;

ParameterSet ps;

ps.InitializeFromConfigFile("ourfile.cfg");

cout << "Current post-load delay = " \

<< ps["POST_LOAD_DELAY"].AsInt() \

<< " seconds." \

<< endl;

cout << "Current pump-down pressure ’" \

<< ps["PUMP_DOWN_PRESSURE"].AsDouble() \

<< endl;

ps.Reset();

for (int i=0; i< ps.GetNumParams(); i++) {

pfields = ps.GetNext().GetFields();

cout << "Name=" << pfields.name \

<< ", Value=" << pfields.value \

<< ", Default=" << pfields.defval \

<< ", Units=" << pfields.units \

<< ", LastModified=" << pfields.lastModified \

<< ", Description=’" << pfields.description<< "’" \

<< endl;

}

return(0);

}

DES-0016 7 Rev 3

The Parameter Manager Library August 09, 2012

DES-0016 8 Rev 3

	Introduction
	Library Classes
	The ParameterFields Class
	The Parameter Class
	The ParameterSet Class

	The ParameterSet Configuration File
	A Parameter Set Example

