
PNNL-22604

Ordinal Date Library
DES-0066

Revision 1

Charlie Hubbard

May 2013

Ordinal Date Library

Charlie Hubbard

DES-0066
Revision 1
May 2013

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under

Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Ordinal Date Library May 07, 2013

Contents

1 Introduction 1
1.1 time t Time Stamps . 1
1.2 Ordinal Date Time Stamps . 1
1.3 Local Time vs. UTC . 2

2 Implementation 2
2.1 struct tm Normalization . 3
2.2 Daylight Saving Time . 4

DES-0066 i Rev 1

Ordinal Date Library May 07, 2013

1 Introduction

On Linux and other Unix-like (POSIX) operating systems, it is often most convenient to
store absolute time stamps as time t values (see below). In the project code base, time t

time stamps are used everywhere. However, at least one customer prefers to use time stamps
formatted as ordinal dates in reports, data files and some file names. To ease conversions
between these two time stamp formats, we have created the Ordinal Date library.

The Ordinal Date library is defined and implemented by the two files ordinalDate.h and
ordinalDate.cpp. The primary documentation for the library is its source code and its as-
sociated Doxygen-generated HTML files. The Doxygen documentation should be consulted
for a detailed description of the library’s API. The document you are reading now is supple-
mental, and is intended to provide deeper background for the library’s implementation. In
cases where the Doxygen documentation disagrees with this document, the Doxygen docu-
mentation should be considered correct.

1.1 time t Time Stamps

time t values are 32-bit signed integer values that simply contain the number of seconds
that have elapsed since midnight on the moring of January 1st, 1970 UTC1. This date is
sometimes referred to as the Unix Epoch. It corresponds to a time t value of zero. Dates
before the Unix Epoch can be handled by negative time t values.

1.2 Ordinal Date Time Stamps

Ordinal dates, at least in the context of this library, consist of at least a 4-digit year field
indicating the year and a 3-digit year-day field indicating the number of days since the
beginning of the year (where ’1’ means January 1st). Note that specific calendar dates do
not always correspond to the same specific year-day number because the year-day number
is affected by leap years. As an example, May 29th, 2012 (a leap year) matches the ordinal
date

2012-150

but the same calendar day (May 29th) in 2013 (not a leap year) matches the ordinal date

2013-149

instead.

Note that the above two ordinal date time stamps only have day resolution, but time t

time stamps have second resolution. If higher resolution is required in an ordinal date, it is
implemented as a decimal fraction attached to the year-day. For example, 6:00am represents

1Coordinated Universal Time, or UTC, is a closely related successor to Greenwich Mean Time (GMT).
For the purposes of this document, the two can be considered synonymous.

DES-0066 1 Rev 1

Ordinal Date Library May 07, 2013

a time that is one quarter through the day, so it is encoded by appending 0.25 to the year-day.
So, for May 29th 2013, that looks like this

2013-149.25

Obviously the decimal fraction can be extended to as many digits as needed to achieve the
necessary time resolution. For instance, 11:24:36am On May 29th, 2013 encodes as

2013-149.47542

with 1 second resolution.

1.3 Local Time vs. UTC

time t time stamps are always relative to UTC because the Unix Epoch is based on UTC.
Ordinal dates, however, can be with respect to UTC or to any other time zone (most typically
to the local time zone). This needs to be considered when converting from one format to
the other. The library handles this with a local time flag, which, when set to true, treats
the ordinal date as if it were relative to the local time zone. Otherwise, it is assumed to be
relative to UTC.

2 Implementation

The library implements four functions, the prototypes of which are shown below.

time_t OrdinalDateToUnixTime(const int year,

const int yday,

const int hour,

const int min,

const int sec,

const bool localTime = false);

time_t OrdinalDateToUnixTime(const int year, const double yday, const bool localTime = false);

void UnixTimeToOrdinalDate(const time_t t,

int &year,

int &yday,

int &hour,

int &min,

int &sec,

const bool localTime = false);

void UnixTimeToOrdinalDate(time_t const t, int &year, double &yday, const bool localTime = false);

The first two functions convert an ordinal date value to a time t value. The second two
perform the opposite function. Note that there are versions of each function that expect
the ordinal date to specify the time portion explicity as hours, minutes and seconds, and
versions that expect the time component to be expressed as a decimal fraction appended to
the year-day value.

DES-0066 2 Rev 1

Ordinal Date Library May 07, 2013

As previously mentioned, all functions take a boolean flag called localTime, which, when
set to true means the ordinal date will be considered to be relative to the local time zone.
Otherwise, they are taken as relative to UTC. UTC is the default for all of the functions, so
the parameter doesn’t need to be specified at all if UTC is the desired format.

2.1 struct tm Normalization

For the most part, the conversion functions in the Ordinal Date library are completely
straightforward; but there are a couple of tricks that probably deserve a closer look. The
first of these is struct tm normalization.

Internally, the Ordinal Date library functions rely heavily on the Unix struct tm data
structure (defined in the standard header file /usr/include/time.h), a copy of which is shown
below.

struct tm {

int tm_sec; // seconds [0,61]

int tm_min; // minutes [0,59]

int tm_hour; // hour [0,23]

int tm_mday; // day of month [1,31]

int tm_mon; // month of year [0,11]

int tm_year; // years since 1900

int tm_wday; // day of week [0,6] (Sunday = 0)

int tm_yday; // day of year [0,365]

int tm_isdst; // daylight savings flag

};

In the above code block, the comments specify the ostensibly valid range for each field, but it
turns out that the system time functions that take a tm struct as input (including mktime()

and timegm(), which we use internally) do not expect these ranges to be strictly adhered
to. Instead, these functions take the structure field values however they are provided by the
user, and then normalize them such that, afterward, the structure’s fields have been adjusted
to move them all within their legal range. As an example, if you set up the structure to
say it is the 27th hour of July 1st, the structure will automatically be normalized such that
afterward it properly indicates this same time as the 3rd hour of July 2nd.

We exploit this behavior for easy conversion of ordinal dates. The trick is to initialize the tm

struct such that the month (tm mon) is always set to January (0), and the day of the month
(tm mday) is always set to the user-provided year-day. From our “May 29th” example above,
we’d initially set up the structure so that it was saying that it was January 149th, 2013.
Then timegm() (or mktime()) normalizes the struct tm fields so afterward the appropriate
fields indicate year=2013, month=4 (May), and day-of-month=29. This normal form is then
converted to to a time t.

This is great! Because the system library time functions handle this normalization of the tm

structure automatically, we don’t have to compute month and day-of-month values from the
year-day value ourselves and, as a part of the normalization, leap years are also automatically
accounted for, so we don’t have to worry about that either.

DES-0066 3 Rev 1

Ordinal Date Library May 07, 2013

2.2 Daylight Saving Time

The only other tricky part of the Ordinal Date library (to the extent that there is anything
tricky to it at all) has to do with Daylight Saving Time (DST). When the localTime flag is
set to false (the default condition), all conversions are to/from UTC. There are no seasonal
changes for UTC, so daylight saving time doesn’t come into play. However, dealing with
local times, the code may or may not have to adjust for DST depending on whether or not
it is in effect for the local time zone for the ordinal date specified (or being returned).

Fortunately, the struct tm structure has a field called tm isdst that we can use to tell the
system time functions how to proceed. tm isdst can be set to one of three values – 0, 1 or
-1. These are interpreted as follows by the system time functions.

• 0 — Daylight Saving Time is not in effect

• 1 — Daylight saving Time is in effect.

• -1 — Let the system try to decide whether or not DST is in effect for the local time
zone based on the date configured in the tm structure.

For conversions to/from UTC, DST is never in effect so we always set tm isdst to zero in
that case. For local time conversions, we first set this field to -1 before calling the appropriate
system time function, and the system function automatically adjusts for DST as necessary.

Unfortunately, the system can not make this determination completely unambiguously. In
particular, consider the case when we’re switching from DST back to standard time. At the
appointed hour (typically 2:00am on a Sunday morning), we set our clocks back an hour.
That is, it was 2:00am, and then, in an instant, it is 1:00am again. On that night, clocks
actually go through the time interval between 1:00am and 2:00am twice – once under DST
and once again under standard time. So, for instance, if you were to configure the tm struct
for 1:37am on that day, the system time library has no way of knowing if you are referring
to the first 1:00am to 2:00am interval (DST) or the second one (standard time). The results
are unpredictable and may be different on different operating systems or different versions
of the same operating system. The reverse situation, switching from standard time to DST,
creates a similar, albeit somewhat less dire, situation.

The Ordinal Date library makes no attempt to fix this problem. For that reason, unless
there is a compelling reason to do otherwise, users should stick to UTC-only conversions
(this is exactly the reason the library functions’ localTime flag defaults to false), or at
least be aware that there can be unexpected behavior at the switch from/to DST.

DES-0066 4 Rev 1

Ordinal Date Library May 07, 2013

DES-0066 5 Rev 1

	Introduction
	time_t Time Stamps
	Ordinal Date Time Stamps
	Local Time vs. UTC

	Implementation
	struct tm Normalization
	Daylight Saving Time

