&= T\ U.S. DEPARTMENT OF

.2) ENERGY PNNL-22603

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

“Wt” Modular GUI Framework
DES-0047
Revision 1

Charlie Hubbard
June 2012

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

“Wt” Modular GUl Framework
Charlie Hubbard

DES-0047
Revision 1
June 2012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

“Wt” Modular GUI Framework June 01, 2012

Contents

p—

1 Introduction

2 Theory of Operation
2.1 The Skeleton GUI Application (wtWebGUILcpp)
2.2 The BaseModule Class
2.2.1 The Wt WContainerWidget
2.2.2 The BaseModule: :LockModule() Method
2.2.3 The BaseModule: :TimedUpdates() Method
2.3 Application Client Interfaces

SO Ut W W N

3 Starting the GUI
3.1 HTTP Access o
3.2 HTTPS Access 8

SN

DES-0047 1 Rev 1

“Wt” Modular GUI Framework June 01, 2012

1 Introduction

The project uses a web-based GUI built using an open-source, C+-+-based web development
toolkit called Wtt. Wt provides a simple to use set of C++ classes for developing arbitrary
web-based applications. The toolkit includes an embeddable web server, as well as a rich
and ever-expanding set of GUI widget classes. Using the Wt toolkit, it is also easy to create
custom widgets to suit specific applications.

Using Wt components, PNNL staff have developed a modular framework that allows very
rapid development of web-based, system control GUIs that interact with the server applica-
tions that comprise the project process control software?.

The foundation of the PNNL GUI application framework is built on three classes:
e ClientInterface
e BaseModule
o WebGUI

The first two of these are defined in the file wtBase.h and implemented in wtBase.cpp. The
third is defined and implemented in wtWebG UL cpp.

The primary documentation for the PNNL GUI application framework is the source code
itself and the Doxygen-generated HTML documentation associated with each of the classes
and source files listed above. The Doxygen documentation set is automatically built based
on the source code itself. It provides the most detailed, most up-to-date descriptions of the
code. The document you are reading now is supplemental, and is intended to provide deeper
background into the design of the GUI framework. If contradictions between this document
and the Doxygen-generated documentation are found, the Doxygen-generated documentation
should be considered correct.

2 Theory of Operation

The project’s control software is based on our standard client/server architecture, whereby
the full software task is divided up into a series of independent, concurrently executing
processes, called servers, that coordinate their actions by exchanging messages through a
standard client message-passing mechanism. One advantage to this architecture is that
individual processes tend to be small and very focused toward a particular task (providing
the interface to a particular piece of equipment for example).

IThe Wt project is hosted by the company Emweb in Belgium. They also serve as the primary developers.
For more information and complete documentation, please see the Wt website at http://wuw.webtoolkit.
eu/wt.

2Project servers all use our standard client/server architecture. Please see design document DES-0005,
The Client/Server Architecture for a complete description of the client/server architecture used through-
out the project.

DES-0047 1 Rev 1

http://www.webtoolkit.eu/wt
http://www.webtoolkit.eu/wt

“Wt” Modular GUI Framework June 01, 2012

Because servers are so narrowly focused in scope, they are also naturally highly modular.
This means, once the initial effort has been expended to develop a new server, odds are
likely that that same server can be used again repeatedly on new projects without any code
changes at all. This is not just theoretical. On the real-world control systems we’ve imple-
mented under our client/server model, typically 80% of the servers used on a new project
are completely unaltered versions taken from our server code base. This has obvious relia-
bility ramifications, since using pre-existing servers means using tested and proven servers.
That they require no modifications also means there’s no opportunity to introduce new
bugs. This heavy code reuse from project to project also means that the control software
for new projects can be put together very quickly. Most of the development effort (writing
the individual server applications) has already been done.

In this way, a strongly modular architecture heavily promotes software reuse, reliability, and
quick development cycles. These were attributes we wanted for our GUT architecture as well.

2.1 The Skeleton GUI Application (wtWebGUI. cpp)

The file wtWebGUI. cpp is a skeleton Wt GUI application. All real-world GUIs are created by
adding to this source file (so for each project, the final GUI is implemented by an application
called wtWebGUI).

In its initial form, wtWebG Ul cpp provides a minimal web page display, and implements cer-
tain functionality required by all projects (user authentication, interface locking/unlocking,
some system status reporting, and so on). An example of the web page generated by the
skeleton version of the wtWebGUI application is shown in figure 1.

@ WebGUIl-'Mozilla Firefox HEE
File Edit View History Bookmarks Tools Help
|} WebGUI |t |
<« [localhost | hitps://localhost:11000 v @] [-‘]v Eﬁ] @
Current State Last Status Message GUI Lock
| unlock |

Tabl | Tab2 | Tab3 | Tab4 | Tab5s

Figure 1: Web page generated by the default skeleton wtWebGUI application. For the image,
five empty tabs have been inserted for demonstration purposes.

The main feature of the skeleton version is the inclusion of a W¢ WTabWidget on the main
page. It is this widget that provides for the framework’s modularity. Real-world GUI

DES-0047 2 Rev 1

“Wt” Modular GUI Framework June 01, 2012

applications are comprised of a number of separate modules. These modules are written
in such a way that they can easily be installed into the individual tabs the WTabWidget
provides. A number of different modules that perform various common tasks (event log
viewer, process flow schematic, real-time sensor data plotter, and so on) have already been
developed. By-and-large, developing a new GUI consists of grabbing that subset of pre-
existing modules that make sense for the current project and installing them into the tabs
provided by wtWebGUI. cpp.

2.2 The BaseModule Class

The specific modules that are installed into the wtWebGUI’s WTabWidget are all derived
from a common parent class called BaseModule. This base class is defined in wtBase.h and
implemented by wtBase.cpp. The class definition is shown below.

class BaseModule : public Wt::WContainerWidget
{
public:
BaseModule() ;
virtual ~“BaseModule();
virtual void LockModule(const bool lock);
virtual void TimedUpdates() ;

As you can see, there is not much to this class. The primary points of interest are the fact
that the BaseModule class is derived from a Wt widget call WContainerWidget, and there
are two virtual functions defined that module authors are expected to override with their
own implementations.

2.2.1 The Wt WContainerWidget

Wt’s WContainerWidget is, as the name implies, a container widget. A container widget
added to a GUI doesn’t display anything on the web page itself. What makes it useful is
that any arbitrary set of Wt display widgets (buttons, list boxes, labels, check boxes, radio
buttons, images, etc., etc.) can be installed into a container widget and organized in any
way that makes sense for the module being developed®. The individual tabs provided by the
wtWebGUI WTabWidget are themselves container widgets. wtWebGUI installs BaseModule
derived modules (which of course are also container widgets) into its tabs. In the code, this
is accomplished using an STL [list structure called ModuleList, defined as follows.

typedef list< pair<string, BaseModule*> > ModuleList;

3 Actually, it’s even a little more versatile than this. In addition to displayable widgets, container wid-
gets can even include other container widgets. Nesting containers inside of containers is one method Wit
programmers use for organizing their displays or creating their own custom display widgets.

DES-0047 3 Rev 1

“Wt” Modular GUI Framework June 01, 2012

The WebGUT class, instantiates one private member of this type called moduleList.

The reader will note that the ModuleList structure contains individual elements that are
boost library* style pairs. The first item in the pair is an STL string that contains the
text label that should be placed on the tab, and the second item contains a pointer to
the BaseModule-derived module class that’s being added to the tab. Once this list is fully
populated, the GUI application traverses the list, and creates one new top-level tab for each
entry.

The use of a boost pair here is unusual and deserves some further explanation. In earlier
implementations of the GUI framework, an STL map was used to keep track of the modules
that were to be installed into top-level tab widget. The map was keyed on a string that
contained the tab text, and the payload was simply a pointer to the appropriate module
class. This method works fine, but, when traversing an STL map, the entries come back
sorted by their key entries. That means the maintainer of the wtWebGUI application has no
real control over the order in which modules are inserted into the tabs. This is too restrictive.
Quite often it is useful to order modules into specific tabs. For example, it might be nice to
have the application splash screen module (typically called “About...”) installed into the very
last tab. Along the same lines, it’s useful to put the module that implements the primary user
interface into the very first tab (on our projects, this is typically called “Flow Schematic”)
to make it immediately visible to the user once they’ve successfully authenticated.

In order to give the application maintainer control over the order in which modules appear
in the tabs, an STL list is a better structure. With a list, the tabs are populated in the
same order modules were inserted into the list. However, when switching to a list, we lose
the map’s key field. In the map implementation, the key field held the string that contained
the text to be displayed on the tab. That’s where the boost pair comes in. A pair groups
two arbitrary items into a single structure that can later be accessed individually using the
first and second operator of the pair class.

In the wtWebGUI.cpp code, one can find modules being added to the moduleList list in the
LayoutSuccessPage () method. A representative snippet from a real-world version of the
GUI code is reproduced below.

// Add whatever modules we want for this GUI

moduleList.push_back(make_pair("Flow Schematic", new FlowModule()));
moduleList.push_back(make_pair("Control Page", new ControlModule()));
moduleList.push_back(make_pair("Realtime Plotter", new RealtimeModule()));
moduleList.push_back(make_pair("Status", new StatusModule()));
moduleList.push_back(make_pair("SoH Viewer", new SOHViewerModule()));
moduleList.push_back(make_pair("Event Viewer", new EventViewerModule()));
moduleList.push_back(make_pair("About...", new AboutModule()));

This snippet shows how boost pairs are created and populated. The code that traverses the
list and populates the top-level tab widget with the modules contained therein also exists in

4The Wt library uses features from the well-known boost library extensively throughout its code base, so
any system running a Wt-based GUI already has boost installed. For more information on the boost library,
please see the boost home page at www.boost.org.

DES-0047 4 Rev 1

www.boost.org

“Wt” Modular GUI Framework June 01, 2012

the LayoutSuccessPage () method. The relevant snippet is shown below.

// Now add the module contents (one module per tab) to the page

tab = new WTabWidget(root());

for (mlItr = modulelList.begin(); mlItr != modulelist.end(); mlItr++) {
tab->addTab(mlItr->second, mlItr->first);
tab->setStyleClass("font") ;

¥

This code demonstrates how the individual components of a boost pair are accessed and
utilized.

2.2.2 The BaseModule: :LockModule () Method

Because the project GUI is web-based, it automatically supports multiple users connecting
to, displaying and working with the GUI at the same time. Some project GUI modules
have the ability to directly manipulate system hardware (opening/closing valves, turning on
heaters, etc.). Unfortunately, depending on which tab is currently visible, it is far too easy
for a user to accidentally make changes to the system’s hardware state with a careless mouse
click. To avoid this problem, the PNNL GUI framework implements the concept of interface
locking. This is controlled by the “Unlock” button shown in Figure 1. It works as follows.

When the GUI application first starts up, all modules are locked, which simply means their
controls are disabled. Accidentally clicking on a disabled control does nothing. If a user
actually does want to make changes to the system hardware, clicking on the “Unlock” button
enables the controls for a small interval (typically five minutes), during which time users can
make control changes. Once the interval expires, the GUI automatically disables all controls
again®. Conscientious users can relock the GUI before the automatic relock timer expires
simply by clicking on the button again.

There is a complication with this scheme. In its most naive form, the wtWebGUI application
could lock the GUI simply by disabling its top-level tab widget. In Wt applications, the
enable/disable state of a widget trickles down through all of that widget’s child widgets,
so disabling the top-level tab widget will also automatically disable all of the container and
display widgets contained within the tab widget (so, the entire GUI). The trouble is, interface
locking is a safety measure designed to prevent accidental changes to the state of the system
hardware. Most modules have at least some controls that are not associated with hardware
state (a button to open a data file browser for example). It doesn’t make sense to lock these
controls. Only the author of a module knows specifically what controls should be locked
and which should be left enabled for his module. This is where the LockModule () method
comes into play. When a user clicks on the “Unlock” button, the wtWebGUI application
iterates through moduleList, and calls the LockModule () method associated with each tab’s

5Sometimes, especially during initial system development, the automatic relocking feature becomes an-
noying. If a user control clicks (click while holding the CTRL key down) on the button instead of just
clicking, then the GUI will be unlocked and the automatic relocking feature disabled. Of course, the user
can manually relock the GUI at any time simply by clicking the button again.

DES-0047 5 Rev 1

“Wt” Modular GUI Framework June 01, 2012

module, passing to it either true (lock the module) or false (unlock the module). Every
module derived from the BaseModule class (which is to say all modules) should reimplement
its LockModule () method so that it only locks or unlocks those module controls that affect
hardware state. Other controls should always remain unlocked.

2.2.3 The BaseModule: :TimedUpdates() Method

Many or most GUI modules need to update certain display elements—for instance, the re-
porting values for various sensors at regular intervals. To provide for this, the Wt library
provides the WTimer class. In principle, each module could instantiate its own instance of
WTimer and use it as it sees fit. However, on a big system, with a lot of modules, this
could result in a large number of timer instances running (one timer instance per module
multiplied by the number of instances of the GUI that are open in web browsers). Instead,
the wtWebGUI application instantiates one WTimer object set to expire at one-second inter-
vals. With each expiration, the application traverses moduleList, and calls each module’s
TimedUpdate () method.

The default version of this method, as provided by the BaseModule() class, performs no
action. If a module has no need for timed display updates, then there is no reason to
overload the base class version of this method. Other modules are free to provide their
own versions of the method to update their displays as appropriate. Quite often a module
doesn’t require updates as frequently as once per second. In this case, it is standard practice
to maintain an interval counter, and only act on the call to TimedUpdates() once every N
number of calls.

2.3 Application Client Interfaces

One additional piece to the GUI framework needs to be considered, and that is the mecha-
nism by which the main wtWebGUI application and the modules that are installed into it
communicate with the various project servers running on the system.

In the same way that most modules require some sort of timer facility to drive periodic
display updates (see the above section), most modules also need to communicate with at
least some of the various server applications that comprise the system’s control software.
As in the timer case, it is certainly possible for the wtWebGUI application and each of
its display modules to instantiate their own set of client API objects®. However, as in the
timer case, this could potentially result in a large number of client interfaces being created,
creating a lot of duplication.

Instead, the file wtBase.h defines a special class that contains one client API object for every
server on the system. A global instance of this class, called clients, is then created in

SFor more information on client API classes, see design document DES-0005, The Client/Server
Architecture.

DES-0047 6 Rev 1

“Wt” Modular GUI Framework June 01, 2012

wtBase.cpp. The wtWebGUI application along with all modules installed into it share this
one global instance of the client APIs. An example definition for the class is shown below.

class ClientInterface {

public:
ClientInterface();
AnalogClient analog;

ControlClient control;
DigitalClient digital;
LoggerClient logger;
PIDClient pid;

};

extern ClientInterface clients;

Real-world GUIs will need to add or remove client interfaces from this class as necessary to
match their specific project.

3 Starting the GUI

When the GUI application (wtWebGUI) is compiled, it is linked against the Wt-provided
libwthttp library. This provides it with an embedded web server capable of communicating
with multiple clients (web browsers) at the same time using either standard http or hitps
connections (the latter being encrypted). The application is started from the command line
(or, more typically, from a shell script). Various command line parameters exist for setting
options on the web server. In this section, we’ll look at typical command line options. A
complete list of options supported by the embedded server can be found on the Wt website
at http://www.webtoolkit.eu/wt/doc/reference/html/InstallationUnix.html.

3.1 HTTP Access

The GUI application is most easily configured to be accessed via regular HT'TP. The following
command line will do the trick:

./wtWebGUI --http-address 0.0.0.0 --http-port 80 --docroot .

The specified command line options tell the embedded web server to allow connections on
TCP port 80 of any of the computer’s network interfaces (address 0.0.0.0). The docroot
parameter specifies the directory the embedded server should consider its “root” directory
when accessing static files.

DES-0047 7 Rev 1

http://www.webtoolkit.eu/wt/doc/reference/html/InstallationUnix.html

“Wt” Modular GUI Framework June 01, 2012

3.2 HTTPS Access

The GUI application can also be configured to accept and communicate over HI'TPS connec-
tions. This is advantageous for security reasons, because HT'TPS connections are encrypted
from end to end.

Setting up for HT'TPS access is somewhat more difficult. It has a more complex command
line, but the real complication is the need to generate a private server key file signed by a
certificate authority and a file containing random Diffie-Hellman parameters used for per-
forming the link encryption.

For internal use, you can create your own signed private server key file using the openssi
package for your particular Linux distribution. To create the Diffie-Hellman parameters
file...

openssl dhparam -check -text -5 512 -out dh512.pem

This generates a file called dh512.pem. This file should exist in the directory from which
the GUI application is started. Creating the signed server key file is somewhat more com-
plicated...

openssl genrsa -des3 -out server.key 1024

openssl req -new -key server.key -out server.csr

cp server.key server.key.org

openssl rsa -in server.key.org -out server.key # removes the passphrase
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt
cat server.crt server.key server.crt > server.pem

This results in a file called server.pem. Like the dh512.pem file, this file should exist in the
directory from which the GUI application is started. Also, the access permissions on the
server.pem file need to be such that the owner of the GUI application has read access to it,
and no other users can access it at all. This is typically done as follows.

chmod 400 server.pem

These two files (dh512.pem and server.pem) only need to be generated one time. After that,
the GUI application will use these same two files every time it is started. To configure
the application’s embedded web server to communicate using HTTPS only, the following
command line is appropriate (shown here split into multiple lines simply to fit well on the

page).

./wtWebGUI --https-port 11000 --https-address 0.0.0.0 --ssl-certificate=server.pem \
--ssl-private-key=server.pem --ssl-tmp-dh=dh512.pem --docroot . &

DES-0047 8 Rev 1

“Wt” Modular GUI Framework June 01, 2012

If you want the embedded web server to support both types of connections, you can add in
the “http” command line parameters from the previous section as well.

DES-0047 9 Rev 1

U.S. DEPARTMENT OF

ENERGY

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352

1-888-375-PNNL (7665)
www.pnnl.gov

	Introduction
	Theory of Operation
	The Skeleton GUI Application (wtWebGUI.cpp)
	The BaseModule Class
	The Wt WContainerWidget
	The BaseModule::LockModule() Method
	The BaseModule::TimedUpdates() Method

	Application Client Interfaces

	Starting the GUI
	HTTP Access
	HTTPS Access

