&= T\ U.S. DEPARTMENT OF

.2) ENERGY PNNL-22598

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

The Paroscientific Digiquartz 6000 Server
DES-0026

Revision 1

Charlie Hubbard
July 2012

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

The Paroscientific Digiquartz 6000
Server

Charlie Hubbard

DES-0026
Revision 1
July 2012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The Paroscientific Digiquartz 6000 Server

July 31, 2012

Contents

1

Introduction
The Digiquartz Hardware
Serial Communications

The Client API

4.1 DIGI_.GET_NUM_SENSORS . .
4.2 DIGI.GET_SENSOR
4.3 DIGI_.GET_ALL_SENSORS . .

The Server Configuration File
5.1 Example Configuration File . .

Server Internals
6.1 The Need for Data Caching . .
6.2 A Layered Implementation . . .

6.2.1 The SerialProtocol Class

6.2.2 The Digi6000Unit Class

6.2.3 The Digi6000Server Class

6.2.4 Client Message Handlers
6.2.5 State-of-Health Reporting

The Test Menu Program

DES-0026

p—

W w whN

=~ W

00 00 ~J1 O UL i i i

Qo

i Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

1 Introduction

This document describes a hardware interface server application designed to manage one
or more Paroscientific Digiquart2® 6000 high-precision pressure sensors. Each managed
sensor is connected to the host computer (the computer on which the server runs) through a
separate RS-232 serial interface. Each managed sensor is assigned a short, human-readable,
text name by which the sensor is known to the server and its clients. Serial ports and sensor
names are assigned in the server’s configuration file (see section 5). Assigned sensor names
must be unique across the entire project.

The server is implemented by the digi6000Server.cpp source module. The client interface to
the server is defined and implemented by digi6000ClientLib.h and digi6000ClientLib.cpp
respectively. A standard text-mode test menu client for the server is implemented by
digi6000Menu.cpp (see section 7).

The primary documentation for the Digiquartz server source code is the Doxygen-generated
HTML documentation associated with each of the above source files. That documentation
set is automatically built based on the source code itself. It provides the most detailed, most
up-to-date descriptions of the code. The document you are reading now is supplemental, and
is intended to provide deeper background for the server and its client APIs. If contradictions
between this document and the Doxygen-generated documentation are found, the Doxygen-
generated documentation should be considered correct.

2 The Digiquartz Hardware

The Paroscientific Digiquartz® series 6000 pressure sensor is a high-precision, temperature
compensated, intelligent pressure transducer available in a variety of absolute and gauge
pressure ranges. Measurement accuracy is typically better than 0.01% full-scale, with a
1 ppm measurement precision at one-second sampling intervals. The sensor features an
integrated microcontroller with RS-232 and RS-485 serial communication interfaces that a
control application (in this case, the Digi-6000 server this document describes) can use to
configure and read the sensor.

3 Serial Communications

The pressure sensor can communicate using either RS-232 or RS-485 using a variety of baud
rates and data formats. From the factory, sensors are configured for RS-232, with an 8-bit
data word, 1 stop bit, no parity, operating at 9600 baud. Because RS-485 can support
multiple devices on the same serial bus, each pressure sensor must be assigned an address so
that individual devices on the same bus can be accessed independently of the others. The
factory default address is 01. Although RS-232 does not support multiple sensors sharing
the same serial lines, devices still require an address, if for no other reason than to make the

DES-0026 1 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

messaging protocol consistent between the two serial protocols. In the messaging protocol,
the host computer always has address 00.

Sensors communicate via a simple, ASCII protocol with the following format!:

*SSDDcc<data>CRLF

where...

* is the string literal “*” (all messages begin with an asterisk character)
e SS is the two-digit address of the sender of the message
e DD is the two-digit address of the intended receiver

e ccisatwo letter command tag. These are case sensitive and must always be capitalized.
In reply messages returned from a sensor, the cc characters may be replaced with
response data.

e data is any additional data associated with the command

e CRLF is a carriage-return / line-feed pair. All messages are terminated with this se-
quence.

Message generation and reply handling will be discussed in greater detail in section 6.

4 The Client API

The Digi-6000 server, like all servers written for our client/server architecture?, relies on a
client API class for its client interface. Client API classes provide one public method for
each message supported by the corresponding server. These methods handle the details of
formatting and sending the request message to the server and receiving, parsing and returning
the server’s response. This hides all the messy details of client /server message passing from
the client. The client API class for the Digi-6000 server is called Digi6000Client and it is
defined and implemented in digi6000ClientLib.h and digi6000ClientLib.cpp respectively.

Like all servers that use our standard client/server architecture, the Digi-6000 server can
receive and respond to a number of standard messages. These are fully described in de-
sign document DES-0005, The Client/Server Architecture, and will not be further
discussed here except to say that the server does fully support the standard state-of-health
reporting mechanism implemented by the BaseServer class®.

'Much more information on the messaging protocol can be found in the Paroscientific Digiquartz Pro-
gramming and Operation manual.

2See design document DES-0005, The Client/Server Architecture for details on our client/server
architecture.

3Also see design document DES-0006, The State-of-Health Server for more information on the
standard state-of-health reporting mechanism.

DES-0026 2 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

In addition to these standard messages, the server can accept and respond to three additional
client-specific messages defined by the server’s associated client API. These are described in
detail in this section®.

4.1 DIGI.GET_NUM SENSORS

This message is implemented by the GetNumSensors() client API class method. It simply
returns the number of Digiquartz series 6000 pressure sensors the server is managing.

4.2 DIGI_.GET _SENSOR

This message is implemented by the GetSensor () client API class method. It returns a
structure of type DigiStatusRecord (defined in digi6000ClientLib.h), that contains current
information about the specified sensor. This information includes the sensor’s most recently
measured temperature and pressure values.

4.3 DIGI.GET_ALL _SENSORS

This message is implemented by the GetAllSensors() client API class method. It returns
an STL map of DigiStatusRecord structures containing one entry for each sensor managed
by the server. The map is keyed on sensor name.

5 The Server Configuration File

The Digi-6000 server uses a configuration file to assign human-readable text labels to indi-
vidual sensor units and assign them to specific RS-232 serial ports. The configuration file
is a simple text file. Blank lines and lines that begin with a '#’ character are ignored. All
other lines are sensor definition lines. Sensor definition lines have the following format.

name port

where

e name is a short, human-readable text name the server and its clients use when referring
to this specific sensor. This may be something like “PS101,” “INLET,” etc.

e port is the name of the RS-232 serial port the sensor is attached to. This may be
something like “/dev/ttyS0.”

4The symbolic constants that comprise the following subsection headers come from the file
digi6000ClientLib.h. Please review the Doxygen documentation for that file for more information.

DES-0026 3 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

5.1 Example Configuration File

This section contains a complete example of a typical Digi-6000 server configuration file for
a system with two Digiquartz series 6000 pressure sensors.

This is and example configuration file for the Digi-6000 server. The

server can manage one or more Digi-6000 precision pressure sensors, each
connected to a separate serial port.

#

INLET /dev/ttyS1
PS600 /dev/ttyMXUSB3

6 Server Internals

In this section we’ll briefly look at the implementation of the Digi-6000 server code. For a
more complete description, the reader is urged to consult the Doxygen-generated documen-
tation for the Digi6000Server class, its helper classes, and the server’s source code in the
file digi6000Server.cpp.

6.1 The Need for Data Caching

Data exchange on the sensor’s serial interface is comparatively slow. When many clients are
requesting current pressure data from a particular sensor at one time (as can be the case
if many GUIs are active along with external status reporters, SoH loggers, etc.), the serial
interface can become a bottleneck that can slow down the operation of the entire system.

To prevent that from happening, a data-caching mechanism is employed. Specifically, each
sensor has a data update thread associated with it that reads the sensor’s current values
once per second and stores them in an internal cache structure. Clients requests are then
satisfied with data from this cache rather than querying the sensor directly. In this way,
clients never have to wait for data to arrive on a slow serial connection, and each sensor’s
serial connection is burdened with a traffic load it can easily handle regardless of the number
of requesting clients.

6.2 A Layered Implementation

As with most of our servers that control hardware via serial links, the Digi-6000 server is
implemented in layers based on three primary classes. At the lowest layer, there is the

DES-0026 4 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

SerialProtocol class. This class handles the details of low-level serial communication with
the pressure sensors. Next there is the Digi6000Unit class. This class provides all the
functionality to configure and operate a single Digiquartz series 6000 pressure sensor. Each
Digi6000Unit class maintains a dedicated instance of the SerialProtocol class, which it
uses to communicate with its associated pressure sensor. Finally there is the Digi6000Server
class. This class is responsible for client/server message handling and high level interaction
with the pressure sensors. It maintains one instance of the Digi6000Unit class for each
sensor the server manages. These are used to query and manipulate the individual sensors.
In this section, we’ll look at each of these three components in detail. The reader is also
urged to consult the Doxygen-generated documentation for these three classes.

6.2.1 The SerialProtocol Class

The purpose of the SerialProtocol class is to handle the low-level details involved in sending
and receiving messages to/from individual Digiquartz series 6000 pressure sensors over an
RS-232 serial connection. The primary documentation for this class is its Doxygen-generated
HTML pages. The reader should look there for an in-depth look at the class’ capabilities.

The SerialProtocol class is responsible for providing access to the serial port associated
with a specific pressure sensor. It maintains an internal file descriptor to the serial port
through which it communicates. When the class is instantiated, the serial port is opened and
configured with appropriate baud rate, word size, start bit, stop bit and parity settings. Con-
versely, when a SerialProtocol object is destroyed, the serial port is automatically closed.
All communication with the server’s pressure sensors is done through the SerialProtocol
class.

Because the serial port is one of those resources that can potentially be accessed both by the
sensor’s data update thread and the main server application at the same time, it requires
mutex protection®. The SerialProtocol class contains an internal mutex member variable
(cleverly named ‘mutex’) that is used to protect the serial port. Locking and unlocking of
the mutex is handled automatically by methods of the class, so users of the class don’t have
to worry about it.

The class really only provides one public method — SendReceiveCommand(). This is the
method that all users of the class use to send commands or queries to the associated sen-
sor and read back the sensor responses. It is important that each thread talking through
the serial port have exclusive access to the serial port throughout the entire send/receive
transaction. This method guarantees that by locking the class mutex just before sending
the command (or query) and not unlocking it again until the response has been completely
received.

5Actually, as of this writing, the main line server thread only communicates directly with the sensors
during initialization. That always takes place before the data update thread is started and then never again.
So technically, the serial port doesn’t currently require mutex protection. However, it was thought better to
provide mutex protection in the initial implementation anyway. That way future modifications that do allow
the main line thread to communicate with the sensors after initialization won’t inadvertently introduce a
highly intermittent, and very difficult to track down thread contention bug.

DES-0026 5 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

As input, the SendReceiveCommand () method takes a string consisting of a valid two-letter
command code along with any associated data, and returns (through the parameter list) a
stripped down response string. As mentioned in section 3, messages always begin with an
asterisk character followed by a four-character addressing prefix, and messages are always
terminated with a carriage-return/line-feed pair. These elements are automatically added
to the command string by the SendReceiveCommand () method and they are automatically
stripped off the sensor’s returned response. Callers should not include these themselves, nor
should they expect them to appear in the response string.

The SendReceiveCommand () method also implements a retry-on-fail scheme, whereby a com-
mand or query sent to a sensor will automatically be resent (multiple times if necessary) if
the sensor fails to respond or responds with an error.

6.2.2 The Digi6000Unit Class

The Digi6000Unit class provides the high-level interface to a single Digiquartz series 6000
pressure sensor. This class is responsible for initializing its associated pressure sensor on
initial start up, and it provides methods for carrying out all queries and manipulations on
the sensor that are needed by the server or the server’s clients. This class also provides
storage for the sensor’s associated data cache (see section 6.1) and the thread function (a
static class method called CommThread ()) that implements the thread that keeps the sensor’s
local cache up-to-date.

Each instance of the Digi6000Unit class...

e has its own internal SerialProtocol object which it uses to communicate with its
associated pressure sensor

e provides the storage for the local data cache associated with this sensor

e starts a new copy of the CommThread() method in its own, detached thread. At
approximately one-second intervals, this thread queries the attached sensor for its
various data and uses the results to update the sensor’s local data cache.

e provides an internal mutex that is used to prevent the data update thread and the
main server application code from accessing the local data cache at the same time

Finally, the Digi-6000 server’s simulator mode is also implemented at the Digi6000Unit class
level. In this way, even in simulator mode, all client/server message handling code remains
the same and runs the same way as it would if the server were managing real hardware.
Also, to the extent possible, calls to Digi6000Unit methods also run the same code as they
would if not in simulator mode, and the data update thread is created and destroyed in the
same way in both cases.

Simulator mode is implemented via conditional compilation based on the compiler’s pre-
processor and a #defined symbol called SIMULATOR that is passed in from the compiler
command line at compile time. When the code is to be compiled in standard mode, the

DES-0026 6 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

value of SIMULATOR is set to zero. When the code is to be compiled in simulator mode, the
value of SIMULATOR is set to one®.

In several places in the source code implementing the Digi6000Unit class, one will find the
following pattern:

#if SIMULATOR == O
// we are in real mode

do real stuff

#else

// we are in simulator mode

do simulated stuff

#endif

While in simulator mode, the Digi6000Unit class’ data query method is unaffected. It
continues to return values out of the class’ local cache structure as it would in real mode.
The data update thread continues to get created in simulator mode in the usual way, so that
portion of the code can be tested, but it doesn’t actually send any queries to real hardware.

6.2.3 The Digi6000Server Class

The Digi6000Server class, derived from our standard BaseServer class’, is what makes
the Digi-6000 server application an actual server.

On initial server start up, one instance of the Digi6000Server class is instantiated. It’s con-
structor processes the server’s configuration file (see section 5) and instantiates Digi6000Unit
objects for each sensor defined therein.

The Digi6000Server class maintains an STL map, called nameUnitMap, that maps the short
text labels by which individual sensors are known to the specific Digi6000Unit objects that
interface with those sensors. This map is populated as the server’s configuration file is
processed, and it is referenced again and again by the various client message handlers to
locate a specific sensor’s associated Digi6000Unit object.

6Setting the value of the SIMULATOR variable is typically handled indirectly via the project Makefile in
response to values set on the command line to the GNU make utility. See the comments at the top of the
project Makefile for more information.

"See design document DES-0005, The Client/Server Architecture for complete details on the
BaseServer class and our standard client/server implementation.

DES-0026 7 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

6.2.4 Client Message Handlers

The server implements a series of client message handling methods — one for each server-
specific client message the server can handle (see section 4).

There is not much to be said about these message handlers other than that they exist.
They all provide client/server communication in the standard way, as described in design
document DES-0005, The Client/Server Architecture.

6.2.5 State-of-Health Reporting

All servers written to our client/server architecture specification have at least the poten-
tial to respond to state-of-health requests. By default, such client requests are handled
automatically by the underlying BaseServer class, which results in an empty list of SoH
parameters being returned to the client. However, the Digi-6000 server has legitimate SoH
data to return for each pressure sensor it manages. This is handled by overriding the three
default BaseServer SoH message handlers (GetNumSohParams (), GetSohParamInfo (), and
GetSohParams ()), with versions of our own.

For each sensor managed by the server, we return two pieces of SoH information infor-
mation: the sensor’s current reported temperature and its current reported pressure. So
reimplementing GetNumSohParams () is easy. We simply return the total number of sensors
being maintained by the server multiplied by two. For the next two functions, we just call
the _GetAllSensors() method® to receive an STL map of DigiStatusRecord structures
containing the current reported information for all sensors managed by the server. We then
traverse this map and build appropriate responses based on what values it contains. The
exact fields and format of the response messages are beyond the scope of this document,
but they are covered in section 5 of DES-0005, The Client/Server Architecture, and
in design document DES-0006, The State-of-Health Server. Please refer to those
documents and the source code for further details.

7 The Test Menu Program

For development and testing purposes, a small text-mode menu client application called
digi6000Menu, (see digi6000Menu.cpp) has been developed for the Digi-6000 server. The
program uses the Digi6000Client class to provide the client API the server supports. It
also maintains a client interface to the system event logger?, so it can record when it starts
up and when it shuts down.

8This is the server equivalent of the client message handler by the same name. Like the client version,
it returns an STL map of DigiStatusRecord structures. The only difference is, the server version doesn’t
have any of the client/server messaging code.

9See design document DES-0007, The System Event Logger for more information.

DES-0026 8 Rev 1

The Paroscientific Digiquartz 6000 Server July 31, 2012

The menu program is meant to be started from within a terminal window. It requires no
command line arguments. When the program runs, it presents the user with the following
text menu:

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get server message response interval histogram
-4 - get number of SOH parameters

-5 - get SOH parameter information

-6 - get SOH parameters

-99 - shutdown server

Digi-6000 Server Specific Items:
1 - Get Number of Sensors
2 - Get Data for One Sensor
3 - Get Data for All Sensors

0 - Exit Program

Enter Selection >

The first seven menu items correspond to standard messages that all servers can support!’.
Following this are three items that correspond to the three client messages provided by the
Digi6000Client client API class. Users choose the number of the message they want to
send, and are prompted for additional parameters as needed.

The menu program is a full client, supporting every client request message the server is able
to process. It allows testers to send each of those messages to the server and view the server’s
responses. It is intended primarily as a development, testing and debugging tool; however,
experience has shown that it is also useful as a bare-bones user interface to the server when
running on real-world systems.

10See design document DES-0005, The Client/Server Architecture for more information on the
standard client messages.

DES-0026 9 Rev 1

U.S. DEPARTMENT OF

ENERGY

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352

1-888-375-PNNL (7665)
www.pnnl.gov

	Introduction
	The Digiquartz Hardware
	Serial Communications
	The Client API
	DIGI_GET_NUM_SENSORS
	DIGI_GET_SENSOR
	DIGI_GET_ALL_SENSORS

	The Server Configuration File
	Example Configuration File

	Server Internals
	The Need for Data Caching
	A Layered Implementation
	The SerialProtocol Class
	The Digi6000Unit Class
	The Digi6000Server Class
	Client Message Handlers
	State-of-Health Reporting

	The Test Menu Program

