
PNNL-22597

The Opto-22 SNAP PAC Server
DES-0021

Revision 2

Charlie Hubbard

July 2012

The Opto-22 SNAP PAC Server

Charlie Hubbard

DES-0021
Revision 2
July 2012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under

Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The Opto-22 SNAP PAC Server July 21, 2012

Contents

1 Introduction 1

2 Opto-22 Hardware 1

3 Brainboard Communications 2

4 The Client APIs 2

5 Client-Specific Messages 4
5.1 ANA GET NUM ANALOG IN CHANNELS 4
5.2 ANA GET NUM ANALOG OUT CHANNELS 4
5.3 ANA GET ANALOG . 4
5.4 ANA GET ANALOG ALL . 5
5.5 ANA SET ANALOG . 5
5.6 ANA SET ANALOG INPUT . 5
5.7 ANA SET GAIN OFFSET . 5
5.8 DIG GET NUM DIGITAL IN CHANNELS 6
5.9 DIG GET NUM DIGITAL OUT CHANNELS 6
5.10 DIG GET DIGITAL . 6
5.11 DIG GET DIGITAL ALL . 6
5.12 DIG SET DIGITAL . 6
5.13 DIG SET DIGITAL INPUT . 7

6 The Server Configuration File 7
6.1 Module Types . 7
6.2 Channel Addressing . 8
6.3 Configuration File Syntax . 8

6.3.1 Brainboard Definition Lines . 8
6.3.2 Analog Input Definition Lines . 9
6.3.3 Analog Output Definition Lines . 10
6.3.4 Low-density Digital Input Definition Lines 12
6.3.5 High-density Digital Input Definition Lines 13
6.3.6 Low-density Digital Output Definition Lines 14
6.3.7 High-density Digital Output Definition Lines 15
6.3.8 Example Configuration File . 16

7 Server Implementation 17
7.1 The OPTOServer Class . 17

7.1.1 Configuration File Management . 18
7.1.2 Hardware Addressing . 18
7.1.3 Hardware Configuration . 20
7.1.4 Low-Level Hardware Access . 20
7.1.5 Client Message Handlers . 21
7.1.6 State-of-Health Reporting . 21

DES-0021 i Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

7.2 Simulator Mode and the OPTOSimServer Class 22
7.3 Positive Logic vs. Negative Logic . 23

8 The Test Menu Program 24

DES-0021 ii Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

1 Introduction

This document describes the Opto-22 SNAP PAC server application. This server amounts to
a user-mode device driver capable of managing one or more Opto-22 SNAP PAC brainboards
and their associated backplanes and hardware interfacing modules. It is implemented by the
optoServer.cpp source module. The server actually implements two separate client APIs;
one for digital I/O and one for analog I/O. These two APIs are defined by analogClientLib.h
and digitalClientLib.h respectively, and are implemented by analogClientLib.cpp and digi-
talClientLib.cpp. A standard text-mode test menu client for the server is implemented by
anadigMenu.cpp. Like the server itself, the menu client supports both client APIs.

The primary documentation for the Opto-22 server source code is the Doxygen-generated
HTML documentation associated with each of the above source files. That documentation
set is automatically built based on the source code itself. It provides the most detailed, most
up-to-date descriptions of the code. The document you are reading now is supplemental, and
is intended to provide deeper background for the server and its client APIs. If contradictions
between this document and the Doxygen-generated documentation are found, the Doxygen-
generated documentation should be considered correct.

The Opto-22 server is not intended to provide an exhaustive interface to all of the Opto-22
SNAP PAC brainboard’s capabilities. Instead, only that subset of the controller’s function-
ality that we need for our current projects is supported. At present, that means the ability
to directly set and read analog and digital input and output channels. Currently there are
no provisions to take advantage of advanced features of the brainboard such as latching (of
digitial inputs), averaging (of analog inputs), on-board conversion to/from engineering units,
etc., and there is no expectation that these features will be implemented in the future.

2 Opto-22 Hardware

Opto-22’s SNAP PAC hardware interfacing product1 consists of a 4, 8, 12 or 16 slot back-
plane into which various digital and/or analog I/O modules can be installed. Also attached
to the backplane is an electronic control module that Opto-22 calls a brainboard. The brain-
board is the unit that can communicate directly with the I/O modules on the backplane.
External applications, including the Opto-22 server, interact with the digital and analog
channels indirectly by communicating with the brainboard over an Ethernet connection.

Opto-22 offers a large number of analog and digital I/O modules compatible with the SNAP
PAC system. These offer varying numbers of channels per module, and also offer a wide range
of electrical options (the ability to directly switch A/C and D/C signals of varying voltages,
in both negative and positive logic configurations, voltage input and output modules for
varying ranges, bipolar analog input and output modules, support for 4-to-20 mA current
loops, thermocouple inputs, etc.). For the most part, the details of dealing with the different

1Please see the manuals for the various Opto-22 components at Opto-22’s website at http://www.opto22.
com/site/snap_pac_system.aspx for full details on the SNAP PAC architecture.

DES-0021 1 Rev 2

http://www.opto22.com/site/snap_pac_system.aspx
http://www.opto22.com/site/snap_pac_system.aspx

The Opto-22 SNAP PAC Server July 21, 2012

module types are handled by the Opto-22 brainboard. The Opto-22 server is compatible
with most or all of the module types.

3 Brainboard Communications

As mentioned previously, the Opto-22 server communicates with the SNAP PAC hardware
via Ethernet connection to the brainboard. More specifically, each brainboard is assigned
a unique IP address using an Opto-22–provided, Windows-based configuration utility be-
fore it is installed in the system. The Opto-22 server then communicates with the brain-
boards by sending/receiving command/response message pairs bundled into UDP packets
directed at UDP port 2001 at the IP address of the specific brainboard involved. This
low-level communication between the server and the hardware is actually accomplished by
means of an Opto-22–provided software library, provided in source code form (C++). The
source files that comprise the Opto-22 communication library are as follows:O22SIOMM.cpp,
O22SIOMM.h, O22SIOST.cpp, O22SIOST.h, O22SIOUT.cpp, O22SIOUT.h, O22STRCT.h,
Opto22EthernetIO.cpp, and Opto22EthernetIO.h. All aspects of socket management, packet
building, transmission, reception and packet parsing are handled by the Opto-22 communi-
cation library.

Unfortunately, Opto-22 has not updated their comm library since 2003. In the intervening
years, new, higher-channel-count digital and analog modules have been introduced that the
library is not equipped to communicate with. For this reason, a number of small enhance-
ments have been made to the existing library source code by PNNL staff to support these
newer modules. Changes are limited to the files O22SIOMM.h and O22SIOMM.cpp, and
they are thoroughly described in the source code comments. Most of these comm library
changes have to do with new channel-addressing modes that have been added by Opto-22 to
handle the higher-channel-count modules. Much more will be said about channel-addressing
modes during the discussion of the server’s configuration file (see section 6) and server design
internals (see section 7.1.2).

4 The Client APIs

The Opto-22 server, like all servers written for our client/server architecture2, relies on
client API classes for its client interface. Client API classes provide one public method for
each message supported by the corresponding server. These methods handle the details
of formatting and sending the request message to the server and receiving, parsing and
returning the server’s response. This hides all the messy details of client/server message
passing from the client.

2See design document DES-0005, The Client/Server Architecture for details on our client/server
architecture.

DES-0021 2 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

Typically, client API classes are written specifically for the servers they support. However,
for the Opto-22 server, exactly the opposite is true. The server has been specifically written
to support two pre-existing client API classes – one that deals with digital signals and one
that deals with analog signals.

Perhaps the most important design attribute of these two APIs is that they are generic.
That is, they make no assumptions about the underlying hardware technology (in this case,
Opto-22 SNAP PAC electronics). Because no details of the underlying hardware are visi-
ble through the client interface, client writers do not need to concern themselves with the
complexities of communicating with Opto-22 electronics, or indeed, even know that Opto-22
electronics are being used. This has important ramifications to the project code, because
it means the underlying A/D I/O technology can easily be changed at a later date without
affecting any of the clients that require A/D I/O. If the underlying technology changes, all
that changes is the server with which the clients interact.

Other important attributes of the client APIs include

• Individual analog and digital signals are referenced by short, human-readable text
names. For example, a digital output that controls a valve may be called “V203” or
“vent,” whereas an analog input signal that reads the output of a pressure sensor may
be assigned a name like “PS101” or “vacuum.” This mapping between text labels
to physical channels in the underlying electronics is made in the Opto-22 server’s
configuration file (see section 6).

• Digital channels are logic neutral. That is to say, clients have no way of knowing, nor
any reason to care whether an underlying digital signal uses negative logic (low voltage
means “on”) or positive logic (low voltage means “off”). This detail is also handled by
the server’s configuration file.

• Analog channels take and report values specified in engineering units appropriate to
the hardware to which those analog channels are attached. As an example, consider
a hardware pressure transducer that outputs a current in the range of 4 to 20 mA,
representing a pressure range of 0 to 100 PSIA. A reading of 12 mA then corresponds
to a pressure of 50 PSIA. When the client requests the value of this analog channel, the
value returned is 50.0 PSIA, not 12 mA. Not only does the client not need to perform
the electrical-to-engineering conversion, the client doesn’t even need to know or care
that the underlying sensor is a 4-20 mA sensor (as opposed to a 0-10V or 0-100mV
sensor say). Again, the details for this feature (various conversion coefficients) exist in
the server’s configuration file.

• And of course, clients have no way of knowing (and no reason to care) which Opto-22
brainboard is actually responsible for what specific analog or digital channel, or what
Opto-22 module the channel exists on. This is important because it means that from a
wiring perspective, signals can later be moved to different channels if necessary without
affecting existing clients in any way. Here is one example of how this might occur during
development: say a system initially has 12 valves controlled by three 4-channel Opto-22
digital output modules. Later, a modification to the system requires the addition of
two more valves, but there is no room on the backplane to support another digital

DES-0021 3 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

module. Instead, the existing three 4-channel modules are removed and replaced with
one 16-channel module, and the existing 12 valves are then wired to the new module,
and the two new valves are as well. These changes are absolutely invisible to client
applications, meaning no code changes to the clients are required; therefore no new
bugs are inadvertently introduced.

5 Client-Specific Messages

Like all servers that use our standard client/server architecture, the Opto-22 server can
receive and respond to a number of standard messages. These are fully described in de-
sign document DES-0005, The Client/Server Architecture , and will not be further
discussed here, except to say that the Opto-22 server does fully support the standard state-
of-health reporting mechanism implemented by the BaseServer class3.

In addition to these standard messages, the server can accept and respond to a number
of client-specific messages that are defined by the client APIs the server supports. The
Opto-22 server supports two client APIs (implemented by the AnalogClient and Digital·
Client classes respectively) that together define 13 additional client messages. These are
described in detail in this section4.

5.1 ANA GET NUM ANALOG IN CHANNELS

This message, implemented by the AnalogClient::GetNumInChannels() method, returns
the total number of analog input channels being managed by the server.

5.2 ANA GET NUM ANALOG OUT CHANNELS

This message, implemented by the AnalogClient::GetNumOutChannels() method, returns
the total number of analog output channels being managed by the server.

5.3 ANA GET ANALOG

This message, implemented by the AnalogClient::Get() method, returns a data record5

containing the current value of the specified analog input or output channel, along with

3Also see design document DES-0006, The State-of-Health Server for more information on the
standard state-of-health reporting mechanism.

4The symbolic constants that comprise the following subsection headers come from the files analog-
ClientLib.h and digitalClientLib.h respectively. Please review the Doxygen documentation for those files for
more information.

5See the Doxygen documentation for the AnalogChannelRecord struct for more details on the returned
data record.

DES-0021 4 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

many other details about the channel. Keep in mind that the returned value is specified in
engineering units appropriate to the sensor or control to which the channel is attached and
not in the native electrical units (volts or mA, say) of the underlying hardware.

5.4 ANA GET ANALOG ALL

This message, implemented by the AnalogClient::GetAll() method, returns an STL map
containing data records fore every analog input and output channel being managed by the
server.

5.5 ANA SET ANALOG

This message, implemented by the AnalogClient::Set() method, tells the server to set the
specified analog output channel to the specified value. As always, the value is specified in
engineering units appropriate to the device the channel is controlling.

5.6 ANA SET ANALOG INPUT

This message, implemented by the AnalogClient::SetInput() method, tells the server to
report back the specified value when clients query the specified analog input channel. This
message is only valid if the server is in simulator mode. Otherwise an appropriate error
message is returned. See sections 7.1.4 and 7.2 for more details.

5.7 ANA SET GAIN OFFSET

As has been mentioned before, the analog client API always deals in engineering units
appropriate to the device a specific analog channel is connected to. It does not deal in the
native units of the underlying electrical signal (volts say, for an analog input module with
0-10VDC inputs). The conversion between native units and engineering units is performed
automatically by the server using a gain and offset value6 (see sections 6.3.2 and 6.3.3 for a
more detailed discussion of converting between native and engineering units).

The conversion is straightforward. When converting from a native value N (in volts say) to
engineering units E (say in kilograms), the following equation is used:

E = N * gain + offset.

The gain and offset values to be used for each analog channel are stored in the server’s
configuration file (see section 6). Normally these values do not need to be changed. However,
there are certain times (calibrating sensors for example) when it is convenient to change these
values directly through the client interface.

6The reader may be more familiar with these terms referred to as a slope and an intercept value.

DES-0021 5 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

This client message, implemented by the AnalogClient::SetGainOffset() method, pro-
vides a means to do just that. When changes are made to an analog channel’s gain and
offset values, the changes take effect immediately. However, the server’s configuration file is
also automatically updated with the changes, so that the next time the server is started, the
most recent values will be used.

The reader may notice that there is no explicit client message for retrieving the current gain
and offset values set on a channel. These values are returned as part of the AnalogChannel·
Record structure returned by the client’s Get() and GetAll() methods.

5.8 DIG GET NUM DIGITAL IN CHANNELS

This message, implemented by the DigitalClient::GetNumInChannels() method, returns
the total number of digital input channels being managed by the server.

5.9 DIG GET NUM DIGITAL OUT CHANNELS

This message, implemented by the DigitalClient::GetNumOutChannels() method, returns
the total number of digital output channels being managed by the server.

5.10 DIG GET DIGITAL

This message, implemented by the DigitalClient::Get() method, returns a data record7

containing the current state (asserted or not asserted) of the specified digital input or output
channel.

5.11 DIG GET DIGITAL ALL

This message, implemented by the DigitalClient::GetAll() method, returns an STL map
containing data records fore every digital input and output channel being managed by the
server.

5.12 DIG SET DIGITAL

This message, implemented by the DigitalClient::Set() method, tells the server to set
the specified digital output channel to the specified state (asserted or not asserted).

7See the Doxygen documentation for the DigitalChannelRecord struct for more details on the returned
data record.

DES-0021 6 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

5.13 DIG SET DIGITAL INPUT

This message, implemented by the DigitalClient::SetInput() method, tells the server to
report back the specified value when clients query the specified digital input channel. This
message is only valid if the server is in simulator mode. Otherwise an appropriate error
message is returned. See sections 7.1.4 and 7.2 for more details.

6 The Server Configuration File

The Opto-22 server uses a configuration file to map individual digital and analog channels to
a specific Opto-22 brainboard, to assign human-readable text labels to individual channels,
to set logic sense (negative or positive) on digital channels, to define native to engineering
unit-conversion coefficients on analog channels, and so on. When the server initially starts,
it parses its configuration file, establishes communication links to the brainboards defined
therein, and configures individual I/O channels as necessary.

6.1 Module Types

The Opto-22 server application supports six different kinds of Opto-22 SNAP PAC hardware
interfacing modules. They are:

1. Low-density digital input modules – These are modules that contain between one and
four digital input channels.

2. High-density digital input modules – These are modules that contain more than four
digital input channels. The distinction between these and their low-density counter-
parts has to do with the way the brainboard manages the modules. High-density
modules are newer technology. They are internally addressed differently by the server
and, unlike low-density modules, they do not need to be manually configured. The
brainboard automatically detects and configures high-density modules.

3. Low-density digital output modules – These are modules that contain between one and
four digital output channels.

4. High-density digital output modules – These are modules that contain more than
four digital output channels. The distinction between these and their low-density
counterparts has to do with the way the brainboard manages the modules. High-
density modules are newer technology. They are internally addressed differently by the
server and, unlike low-density modules, they do not need to be manually configured.
The brainboard automatically detects and configures high-density modules.

5. Analog input modules

6. Analog output modules

DES-0021 7 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

6.2 Channel Addressing

The actual physical channel addressing used by the Opto-22 brainboard for the various
digital and analog channels on the modules attached to an Opto-22 SNAP PAC backplane
is, for historical reasons, somewhat complicated. To the extent possible, these nuances
have been hidden from the writers and maintainers of the server’s configuration file. In
the configuration file, each channel is specified by the module number (that is to say, the
backplane slot number) of the module that hosts the channel, and the channel number of
the channel relative to its module.

As an example, if a particular digital channel is channel 11 of a 16-channel digital output
module installed into backplane slot 5, then that channel’s address is fully specified in the
configuration file with two parameters: 5 and 11.

This addressing scheme (module number/channel number) is used for all channels defined
in the configuration file, regardless of how these channels are actually addressed when the
server communicates with an Opto-22 brainboard. Hiding the details of the actual addressing
modes makes the configuration file much easier to write and maintain. More will be said
about the underlying, module-specific addressing modes used internally by the server in
section 7.1.2.

6.3 Configuration File Syntax

The server’s configuration file is an ASCII text file meant to be hand-edited with a text
editor like gedit, emacs or vim8. In the text file, blank lines and lines that begin with a “#”
character are ignored. All other lines are relevant. There are seven valid line types, which
are described below.

6.3.1 Brainboard Definition Lines

Brainboard definition lines have the following syntax.

@<dotted-decmial-ip>

As an example...

@192.168.1.100

8As mentioned previously, the server itself will also update the current configuration file any time a client
requests changes to the coefficients an analog channel uses to convert between native units (like volts) to
engineering units (like Torr).

DES-0021 8 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

The “@” character at the beginning of the line denotes this as a brainboard definition line.
The IP address that follows means that all subsequent lines in the file, up to but not including
the next brainboard definition line, pertain to signals that are managed by the Opto-22 SNAP
PAC brainboard located at this IP address. There will be as many brainboard definition
lines in the file as there are brainboards in the system (frequently there is just one).

6.3.2 Analog Input Definition Lines

There is one analog input definition line for every analog input channel in the system that
is actually wired to hardware. That is to say, unused analog input channels (extra channels
on a module that aren’t currently being used) do not have to be specified in the server’s
configuration file (although doing so is not harmful). Analog input definition lines have the
following syntax:

<name> ai <modnum> <channum> <pointtype> <lower> <upper> <gain> <offset> <units> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• ai – This is the string literal “ai.” This is merely a tag that indicates what type of
channel is being described by this line (an analog input). It is mostly a convenience to
the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number that the module hosting this
channel is installed into. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the chan-
nel. For example, a 16-channel analog input module has channels that are numbered 0
through 15. This is the other of two fields that implement the module number/channel
number addressing scheme described in section 6.2.

• pointtype – This is a small (typically two- or three-digit) numerical code defined by
Opto-22 that indicates how this channel should be interpreted. Typically all analog
input channels on a given module use the same point-type number, but that doesn’t
have to be the case. One example of where individual channels on a given module might
use different point-type numbers is in the case of thermocouple modules. Opto-22
thermocouple modules are capable of supporting a wide variety of thermocouple types.
In this case, the exact point-type code specifies what type of thermocouple is connected
to a specific channel. Point-type codes can be found in Opto-22 document 1465,
OptoMMP Protocol Guide, starting on page 21.

• lower – This defines the lower limit the channel can report specified in native units.
For example, for an analog input module that supports bipolar inputs with an input
range of between -10.0 and 10.0 volts, this field would be -10.0.

DES-0021 9 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• upper – This defines the upper limit the channel can report specified in native units.
For example, for an analog input module that supports bipolar inputs with an input
range of between -10.0 and 10.0 volts, this field would be 10.0.

• gain – This is one of two parameters used to convert between a module’s native units
and appropriate engineering units for the channel (the other parameter being the offset
parameter defined below). The conversion equation is simple.

Engineering = Native * gain + offset.

As an example, consider a 4-20 mA analog input channel that is connected to a pressure
sensor that provides a 4-20 mA current output corresponding to a pressure range of 0 to
160 PSI. The gain and offset values are found by solving the following two simultaneous
equations:

0 PSI = 4 mA * gain + offset
160 PSI = 20 mA * gain + offset.

This yields the following values:

gain = 10 PSI/mA
offset = -40 PSI.

Let’s test these out. Assume that the pressure sensor is reading 12 mA. That’s the
midway point of the range 4-20 mA, so it should correspond to the midway point of
the sensor’s pressure range as well (80 PSI). Does it?

Engineering = 12 * 10 - 40 = 80 PSI.

• offset – This is the other of the two parameters used to convert between a module’s
native units and appropriate engineering units for the channel. See the gain field
described above for details.

• units – This is a short text string that names the engineering units in which the sensor
connected to this input channel reports. For the example described above, this field
would contain the string “PSI” (without the quotes).

• description – This is a free-form text description of the sensor. In our running example,
this might be something like “Primary pump outlet pressure” (without the quotes).

6.3.3 Analog Output Definition Lines

There is one analog output definition line for every analog output channel in the system
that is actually wired to hardware. That is to say, unused analog output channels (extra
channels on a module that aren’t currently being used) do not have to be specified in the
server’s configuration file (although doing so is not harmful). Analog output definition lines
have the following syntax.

DES-0021 10 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

<name> ao <modnum> <channum> <pointtype> <lower> <upper> <gain> <offset> <units> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• ao – This is the string literal “ao.” This is merely a tag that indicates what type of
channel is being described by this line (an analog output). It is mostly a convenience
to the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number into which the module hosting
this channel is installed. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the
channel. For example, a 16 channel analog output module has channels that are
numbered 0 through 15. This is the other of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• pointtype – This is a small (typically two- or three-digit) numerical code defined by
Opto-22 that indicates how this channel should be interpreted. Typically all analog
output channels on a given module use the same point-type number. Point-type codes
can be found in Opto-22 document 1465, OptoMMP Protocol Guide, starting on
page 21.

• lower – This defines the lower limit the channel can output specified in native units.
For example, for an analog output module that supports unipolar outputs with a range
of between 0.0 and 10.0 volts, this field would be 0.0.

• upper – This defines the upper limit the channel can output specified in native units.
For example, for an analog output module that supports unipolar outputs with a range
of between 0.0 and 10.0 volts, this field would be 10.0.

• gain – This is one of two parameters used to convert between a module’s native units
and the appropriate engineering units for the channel (the other parameter being the
offset parameter defined below). The conversion equation is simple.

Engineering = Native * gain + offset.

As an example, consider a mass flow controller with a range of 0 to 100 ml/min whose
set point is programmed with a voltage in the range of 0 to 5 volts (that is, outputting
0 V will result in zero flow, and output 5 V will result in a flow rate of 100 ml/min) The
gain and offset values are found by solving the following two simultaneous equations...

0 ml/min = 0 V * gain + offset
100 ml/min = 5 V * gain + offset

This yields the following values:

DES-0021 11 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

gain = 20 ml/min/V
offset = 0 ml/min

• offset – This is the other of the two parameters used to convert between a module’s
native units and appropriate engineering units for the channel. See the gain field
described above for details.

• units – This is a short text string that names the engineering units in which the device
connected to this output channel reports. For the example described above, this field
would contain the string “ml/min” (without the quotes).

• description – This is a free-form text description of the sensor. In our running example,
this might be something like “Sample inlet flow rate” (without the quotes).

6.3.4 Low-density Digital Input Definition Lines

Opto-22 makes low-density digital input modules (simply, modules with four or fewer chan-
nels) and high-density digital input modules (modules with more than four channels). The
difference between the two has to do with how channels are addressed and whether or not
modules have to be explicitly configured with a point-type code (low-density modules only).
The following describes the format of definition lines for low-density digital inputs.

There is one digital input definition line for every digital input channel in the system that
is actually wired to hardware. That is to say, unused channels (extra channels on a module
that aren’t currently being used) do not have to be specified in the server’s configuration
file (although doing so is not harmful). Low-density digital input definition lines have the
following syntax.

<name> di <modnum> <channum> <pointtype> <logic> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• di – This is the string literal “di.” This is merely a tag that indicates what type of
channel is being described by this line (a low-density digital input). It is mostly a
convenience to the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number that the module hosting this
channel is installed into. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the
channel. For example, a 4-channel low-density digital input module has channels num-
bered 0 through 3. This is the other of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

DES-0021 12 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• pointtype – This is a small (typically two- or three-digit) numerical code defined by
Opto-22 that indicates how this channel should be interpreted. Typically, all digital
input channels on a given module use the same point-type number. Point-type codes
can be found in Opto-22 document 1465, OptoMMP Protocol Guide, starting on
page 21.

• logic – This field contains either a “-” character (indicating this is a negative logic
channel) or a “+” character (indicating this is a positive logic channel).

• description – This is a free-form text description of the sensor. For a digital input
channel, this might be something like “Over-temperature trip indication” (without the
quotes).

6.3.5 High-density Digital Input Definition Lines

Opto-22 makes low-density digital input modules (simply, modules with four or fewer chan-
nels) and high-density digital input modules (modules with more than four channels). The
difference between the two has to do with how channels are addressed and whether modules
have to be explicitly configured with a point-type code (low-density modules only). The
following describes the format of definition lines for high-density digital inputs.

There is one digital input definition line for every digital input channel in the system that
is actually wired to hardware. That is to say, unused channels (extra channels on a module
that aren’t currently being used) do not have to be specified in the server’s configuration
file (although doing so is not harmful). High-density digital input definition lines have the
following syntax:

<name> hdi <modnum> <channum> <logic> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• hdi – This is the string literal “hdi.” This is merely a tag that indicates what type
of channel is being described by this line (a high-density digital input). It is mostly a
convenience to the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number that the module hosting this
channel is installed into. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the
channel. For example, a 32-channel high-density digital input module has channels
that are numbered 0 through 31. This is the other of the two fields that implement
the module number/channel number addressing scheme described in section 6.2.

DES-0021 13 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• logic – This field contains either a “-” character (indicating this is a negative logic
channel) or a “+” character (indicating this is a positive logic channel).

• description – This is a free-form text description of the sensor. For a digital input
channel, this might be something like “Over-temperature trip indication” (without the
quotes).

6.3.6 Low-density Digital Output Definition Lines

Opto-22 makes low-density digital output modules (simply, modules with four or fewer chan-
nels) and high-density digital output modules (modules with more than four channels). The
difference between the two has to do with how channels are addressed and whether or not
modules have to be explicitly configured with a point-type code (low density modules only).
The following describes the format of definition lines for low-density digital outputs.

There is one digital output definition line for every digital output channel in the system that
is actually wired to hardware. That is to say, unused channels (extra channels on a module
that aren’t currently being used) do not have to be specified in the server’s configuration
file (although doing so is not harmful). Low-density digital output definition lines have the
following syntax:

<name> do <modnum> <channum> <pointtype> <logic> <initialstate> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• do – This is the string literal “do.” This is merely a tag that indicates what type of
channel is being described by this line (a low-density digital output). It is mostly a
convenience to the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number in which the module hosting
this channel is installed. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the
channel. For example, a 4-channel low-density digital output module has channels
numbered 0 through 3. This is the other of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• pointtype – This is a small (typically two- or three-digit) numerical code defined by
Opto-22 that indicates how this channel should be interpreted. Typically all digital
output channels on a given module use the same point-type number. Point-type codes
can be found in Opto-22 document 1465, OptoMMP Protocol Guide, starting on
page 21.

DES-0021 14 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• logic – This field contains either a “-” character (indicating this is a negative logic
channel) or a “+” character (indicating this is a positive logic channel).

• initialstate – This is the state the digital output will be placed into when the server
is first started. Valid values for this field are the character “0” (not asserted) or “1”
(asserted). The initial state field honors the logic field described above.

• description – This is a free-form text description of the control connected to this
channel. For a digital output, this might be something like “Sample inlet bypass
valve” (without the quotes).

6.3.7 High-density Digital Output Definition Lines

Opto-22 makes low-density digital output modules (simply, modules with four or fewer chan-
nels) and high-density digital output modules (modules with more than four channels). The
difference between the two has to do with how channels are addressed and whether or not
modules have to be explicitly configured with a point-type code (low density modules only).
The following describes the format of definition lines for high-density digital outputs.

There is one digital output definition line for every digital output channel in the system that
is actually wired to hardware. That is to say, unused channels (extra channels on a module
that aren’t currently being used) do not have to be specified in the server’s configuration
file (although doing so is not harmful). High-density digital output definition lines have the
following syntax.

<name> hdo <modnum> <channum> <logic> <initialstate> <description>

• name – This is a short, human-readable text name that clients will use to reference
this channel. This name should be globally unique across all servers running on the
system.

• hdo – This is the string literal “hdo.” This is merely a tag that indicates what type of
channel is being described by this line (a high-density digital output). It is mostly a
convenience to the parser. The string is case-sensitive and must be all lowercase.

• modnum – This field contains the backplane slot number that the module hosting this
channel is installed into. This is one of the two fields that implement the module
number/channel number addressing scheme described in section 6.2.

• channum – This is the number of the channel relative to the module that hosts the
channel. For example, a 32-channel high-density digital output module has channels
that are numbered 0 through 31. This is the other of the two fields that implement
the module number/channel number addressing scheme described in section 6.2.

• logic – This field contains either a “-” character (indicating this is a negative logic
channel) or a “+” character (indicating this is a positive logic channel).

DES-0021 15 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• initialstate – This is the state the digital output will be placed in when the server is
first started. Valid values for this field are the character “0” (not asserted) or “1”
(asserted). The initial state field honors the logic field described above.

• description – This is a free-form text description of the sensor. For a digital output,
this might be something like “Sample inlet bypass valve” (without the quotes).

6.3.8 Example Configuration File

This section contains a complete example of a typical Opto-22 server configuration file.

###

#

This is the configuration file for the optoServer (the server that

controls the Opto-22 SNAP PAC I/O electronics). See optoServer.cpp

for details.

#

###

@192.168.1.100

Slot 0

#--

Analog output module, SNAP-AOV-25 is type 165

<name> ao <modnum> <channum> <pointtype> <lower> <upper> <gain> <offset> <units> <description>

#--

mfc0 ao 0 0 165 0.0 10.0 100.0 0.0 cc/min Carrier back pressure controller setpoint

mfc1 ao 0 1 165 0.0 10.0 100.0 0.0 cc/min Sample back pressure controller setpoint

Slot 1

#--

Analog input module, SNAP-AIV-4 is type 12

<name> ai <modnum> <channum> <pointtype> <lower> <upper> <gain> <offset> <units> <description>

#--

ps101 ai 1 0 12 -10.0 10.0 517.1493 0.0 Torr Sample bottle manifold pressure

ps102 ai 1 1 12 -10.0 10.0 517.1493 0.0 Torr Vacuum manifold pressure

bpr ai 1 2 12 -10.0 10.0 159.7000 -3.0 Torr System back pressure controller readback

Slot 2

#--

Digital output module (low-density) SNAP-ODC5SNK is type 384

#<name> do <modnum> <channum> <pointtype> <logic> <initialstate> <description>

#--

V101 do 2 0 384 + 0 Carrier isolation valve

V102 do 2 1 384 + 0 Sample isolation valve

V103 do 2 2 384 + 0 System vacuum valve

V104 do 2 3 384 + 0 Pressure near DPS sensors

Slot 3

#--

Digital output module (high-density)

#<name> hdo <modnum> <channum> <logic> <initialstate> <description>

#--

V201 hdo 3 0 + 0 N2 purge isolation valve

V202 hdo 3 1 + 0 Archive access valve

V203 hdo 3 2 + 0 Turbo pump isolation valve

V204 hdo 3 3 + 0 Sample bypass valve

Slot 4

#--

Digital input module (low-density)

DES-0021 16 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

#<name> di <modnum> <channum> <pointtype> <logic> <description>

#--

OT1 di 4 0 256 + Large heater overtemp trip indicator

OT2 di 4 1 256 + Small heater overtemp trip indicator

Slot 5

#--

Digital input module (high-density)

#<name> hdi <modnum> <channum> <logic> <description>

#--

UPLIMIT hdi 5 0 - Slide upper limit indicator

LOWLIMIT hdi 5 1 - Slide lower limit indicator

###

7 Server Implementation

In this section we’ll briefly look at the implementation of the Opto-22 server code. For a
more complete description, the reader is urged to consult the Doxygen-generated documen-
tation for the OPTOServer class, its helper classes, and the server’s source code in the file
optoServer.cpp.

7.1 The OPTOServer Class

The Opto-22 server is implemented by the OPTOServer class and various other support classes
that will be described later. Because the server needs to fit into our standard client/server
architecture, it is necessarily derived from the BaseServer class9. This OPTOServer class
performs many functions.

• It reads and processes the server’s configuration file, and it re-writes the configuration
file any time a client makes changes to the coefficients used to convert between native
units and engineering units (see sections 6.3.2 and 6.3.3 for more details on unit-
conversion).

• It establishes communication links (via UDP over Ethernet) to every Opto-22 brain-
board defined in the server’s configuration file, and configures each analog or digital
channel associated with the brainboards.

• It receives and responds to all incoming client request messages. This is done with a
series of client message handler methods. There is one client message handler for each
message the client API class can generate.

9The BaseServer class provides methods to handle the low-level details of client message receipt and
response generation, implements the server’s message queue, provides support for software signals, and
implements a number of standard message handlers. For full details, please see design document DES-
0005, The Client/Server Architecture .

DES-0021 17 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

• It provides custom message handler replacements for the client/server standard SoH
message handlers. These handlers know how to properly format and report state-of-
health information to any requesting clients.

7.1.1 Configuration File Management

At the heart of configuration file management are five STL maps which are members of the
OPTOServer class – aoMap, aiMap, doMap, diMap, and optoMap. The first four of these are
referred to in this document as I/O maps. They maintain all the information specified in
the configuration file for analog outputs, analog inputs, digital outputs and digital inputs
respectively. These maps are keyed on channel name (the small human-readable text labels
assigned to each channel in the configuration file).

The remaining map, optoMap, we will refer to as the device map. It is keyed on IP address
(as a dotted decimal string). Each entry in the map contains a pointer to the communication
class that is responsible for communicating with the Opto-22 brainboard that lives at the
corresponding IP address.

When the server application is first started, the OPTOServer class constructor calls the Read·
ConfigFile() method to process the configuration file10. The main purpose of this method is
to populate these five maps. As brainboard definition lines are encountered, communication
classes to communicate with the corresponding brainboards are immediately instantiated,
thereby establishing communications with the brainboards. Pointers to these classes are
stored in the device map (optoMap). For other line types, the information is simply copied
into the appropriate I/O map for later use.

Besides initial server start-up, the only other time the server deals with the configuration
file is if a client makes changes to the unit-conversion coefficients associated with an analog
input or output channel. Client changes to the coefficients take effect immediately, but they
are also immediately written to the server’s configuration file so that they will continue to
be used the next time the server is restarted.

7.1.2 Hardware Addressing

The following two subsections (7.1.3 and 7.1.4) discuss the class methods that directly com-
municate with the Opto-22 hardware (using UDP over Ethernet via an Opto-22 provided,
PNNL modified communication library). Now would be an appropriate time to discuss
Opto-22 channel addressing.

As mentioned in section 6.2, for historical reasons, addressing individual I/O channels on the
Opto-22 backplane is somewhat complicated. In short, three different addressing modes are
employed. Which of these is used depends on the type of module that hosts a given channel.

10The ReadConfigFile() method makes extensive use of the RE c regular expression utility class to parse
the configuration file. See design document DES-0008, The RE c Utility Class for details.

DES-0021 18 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

In general, these addressing peculiarities are well described by comments in the source code,
but they’ll be covered here as well for the sake of completeness.

• All Low-density Digital I/O Channels
All low-density digital I/O channels (that is, I/O channels hosted on digital modules
with four or fewer I/O channels) are addressed using a single address value, called
a point-number. Point-numbers are computed from the module number and relative
channel number like so:

pointNumber = moduleNumber * 4 + channelNumber.

In the calls made through the Opto-22 communication library to read or set low-density
digital channels, the module number/channel number addressing scheme used by the
configuration file is first converted to a point-number using this equation.

• All High-density Digital I/O Channels
All high-density digital I/O channels (that is, I/O channels hosted on digital modules
with more than four I/O channels) actually use the same module number/channel
number scheme as used by the configuration file. In the calls made through the Opto-22
communication library to read or set high-density digital channels, the module number
and channel number values are used directly.

• All Analog I/O Channels
All analog I/O channels, regardless of whether they are hosted on old two- or four-
channel modules or on new high-capacity modules, are addressed using a single address
value, also called a point number. These point-numbers are computed from the module
number and relative channel number like so:

pointNumber = moduleNumber * 64 + channelNumber.

(Note that the multiplier is “64” instead of “4” as it is in the low density digital channel
case).

In the calls made through the Opto-22 communication library to read or set analog
channels, the module number/channel number addressing scheme used by the config-
uration file is first converted to a point-number using this equation.

• Low-density Digital Channel CONFIGURATION
Unfortunately, there is one exception to the above addressing scheme for low-density
digital channels. It only applies to initial channel configuration. During configuration, a
point-number address is still computed, but the multiplier used is 64 instead of 4 (same
as analog channels). Again, this scheme is only used for initial channel configuration
(not to get or set channel values). The reason behind it is described more fully in
comments in the server’s source code.

DES-0021 19 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

7.1.3 Hardware Configuration

Tied closely to parsing the server’s configuration file is actually configuring the Opto-22
hardware as appropriate for the specific modules installed on the backplane(s). Like the
parsing of the configuration file itself, Opto-22 hardware configuration is a one-time operation
that occurs during server initialization only. There is currently no mechanism in place to
re-initialize the hardware once it has been configured, and no such mechanism is planned.
If changes are made to the configuration file (beyond client requested changes to the unit-
conversion coefficients), the server needs to be stopped and restarted in order to re-initialize
the hardware.

Digital input and output channels hosted by Opto-22 high-density modules do not need to be
explicitly configured. They are automatically detected and configured by the Opto-22 brain-
board on power-up. All other modules require explicit configuration. This is accomplished in
the OPTOServer class constructor by calling the ConfigurePoints() helper method. This
method traverses each of the I/O maps in turn. For each analog channel, and each low-
density digital channel, the code first looks up the IP address for the brainboard responsible
for the channel in the device map. The result of this look-up provides the pointer to the
communication object that is used to communicate with that specific brainboard. That
pointer is then used to write the channel’s point-type value (specified in the configuration
file) to the brainboard.

With that done, one other operation is performed if the channel happens to be a digital
output channel (either high- or low-density), and that is to set the output of the channel to
the initial state value specified for that channel in the configuration file.

7.1.4 Low-Level Hardware Access

The OPTOServer class provides four methods for directly reading or setting analog and
digital I/O channels. These are the GetDigital(), SetDigital(), GetAnalog(), and
SetAnalog() methods. Other than ConfigurePoints(), which is called only once during

initial server start-up, these are the only four methods that communicate directly with the
Opto-22 hardware. They all work in the same way.

1. The name of the channel to be manipulated is looked up in the appropriate I/O map.
One of the bits of information that is returned from this look-up is the IP address of
the brainboard responsible for the channel.

2. That IP address is now looked up in the device map. From that look-up, a pointer
to the communication object responsible for communicating with the brainboard is
obtained.

3. That pointer is used to call the appropriate Opto-22 comm library functions to read
or set the channel.

4. Read results (in the case of GetAnalog() and GetDigital()) are returned to the
caller.

DES-0021 20 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

These four low-level hardware access functions hide the details of the underlying hardware
from the rest of the server. It is here that the various addressing modes discussed in section
7.1.2 are implemented. It is also here that native-to-engineering unit-conversion takes place
(analog channels), and negative vs. positive logic is dealt with (digital channels).

In addition to these four methods, two others become important when the server is operat-
ing in simulator mode (see section 7.2). These are SetDigitalInput() and SetDigital·
Output(). These methods don’t actually talk to the Opto-22 hardware (after all, in simulator
mode, it is expected that no actual hardware is present); however, they do appear to clients
as if they do. The purpose of these two methods is to allow clients to tell the server what
values it should report for its various input channels. Versions of these methods exist for
both the OPTOServer class and the OPTOSimServer class. When called through the former
(that is, when the server is not in simulator mode), the methods simply return an error.
When called through the latter, they appropriately update the internal caches the server
uses in simulator mode to remember what values to report back to requesting clients.

7.1.5 Client Message Handlers

The server implements a series of client message handling methods – one for each server-
specific client message the server can handle (see section 5).

There is not much to be said about these message handlers other than that they exist. They
all provide client/server communication in the standard way as described in design document
DES-0005, The Client/Server Architecture . Those message handlers that need to
communicate with the Opto-22 hardware, do so using the low-level hardware interfacing
functions defined in section 7.1.4 above.

7.1.6 State-of-Health Reporting

All servers written to our client/server architecture specification have at least the potential
to respond to state-of-health (SoH) requests. By default, such client requests are handled
automatically by the underlying BaseServer class, which results in an empty list of SoH
parameters being returned to the client. However, the Opto-22 server has legitimate SoH
data to return for each I/O channel it manages. This is handled by overriding the three
default BaseServer SoH message handlers (GetNumSohParams(), GetSohParamInfo(), and
GetSohParams()), with versions of our own.

For each digital channel managed by the server, we return a single piece of information:
whether the channel is asserted (on) or not asserted (off). For each analog channel we also
return a single piece of information: the value (in engineering units) currently on the channel.
So reimplementing GetNumSohParams() is easy. We simply return the total number of I/O
channels being maintained by the server. For the next two functions, we simply traverse the
I/O maps, and build appropriate responses based on what values are currently set on the
I/O channels. The exact fields and format of the response messages are beyond the scope of

DES-0021 21 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

this document, but they are covered in section 5 of DES-0005, The Client/Server Ar-
chitecture , and in design document DES-0006, The State-of-Health Server . Please
refer to those documents and the source code for further details.

7.2 Simulator Mode and the OPTOSimServer Class

Like all other hardware interfacing servers on the system, the Opto-22 server supports a sim-
ulator mode. When in simulator mode, the server is able to run without any actual Opto-22
hardware attached. Simulator mode is enormously useful during project development and
server testing, because it allows the server software and the clients that use it to be developed
and tested long before the actual system hardware is ready.

In the Opto-22 server, simulator mode is implemented as a separate class called OPTOSim·
Server. This class is derived from the normal OPTOServer class. Almost all of the function-
ality of the original class is left alone. That means, when operating in simulator mode, the
code to parse and re-write the configuration file, and all of the client/server communication
code is exactly the same code that runs normally. This is important, because it means that
tests performed on the simulator version of the class are exercising exactly the same software
that runs when the server is not simulator mode, and are therefore legitimate tests of the
non-simulator version of the server as well.

The main difference between the OPTOServer class and the OPTOSimServer class is that the
latter overrides the six low-level hardware interfacing methods discussed in section 7.1.4. The
simulator version of these methods still query the same I/O maps used by the non-simulator
version to verify that specified I/O channels actually exist, and they still return the same
set of error messages. The difference is, they never pass hardware requests on to actual
Opto-22 brainboards. Instead they maintain internal caches in the form of STL maps11 that
remember the values that the server’s various D/A I/O channels are supposed to be set at,
and return those values to requsting clients. Client changes to output channels are written
to the cache maps so the new values will be returned when requested. In addition, while in
simulator mode, two new client messages become active (see section 5) that allow clients to
tell the server what values to report on its input channels as well. This feature is useful for
testing the server itself and the various client applications that rely on it.

In the server source code, which version of the server gets built (simulator or non-simulator)
depends on the value of a preprocessor macro called SIMULATOR. If this macro is set to zero,
then the fully functional version of the server is compiled. If set to one, then the simulator
version is compiled. How this works is easily seen by examining the server source code itself.
In several places you’ll find coding constructs similar to the following:

#if SIMULATOR == 0

...

non-simulator code here

...

11These are the maps diSimMap, doSimMap, aiSimMap, and aoSimMap defined in the OPTOSimServer class.

DES-0021 22 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

#else

...

equivalent simulator code here

...

#endif

Setting the SIMULATOR macro is done by passing its value to the GNU make utility used to
build the full set of project software. Specifically, if make is executed with no command-line
parameters, thusly:

make

then the non-simulator version of the server (and all other hardware interfacing servers) will
be built. To build the simulator version, execute make as follows.

make SIMULATOR=1

7.3 Positive Logic vs. Negative Logic

In many places previously in this document, mention has been made of positive and negative
logic as they pertain to digital channels; but we haven’t talked about what that means or
why it is important. Now we’ll take a closer look.

Electrically, a positive logic digital signal is one in which a high voltage on the digital channel
indicates that the channel is on or true, and a low voltage indicates the channel is off or false.
Negative logic channels are exactly opposite, with a high voltage indicating the channel is
off (false) and a low voltage indicating that the channel is on (true).

It is quite common for real-world systems to be mixed logic, meaning some digital channels
use negative logic and others use positive logic. In general, which way a channel operates is
a detail that should be hidden from client applications. First, having some signals behave
one way, and others behave the other way is confusing. As a client author, do I set a channel
true or false in order to turn on a pump? More importantly, during the development of a
system, the logic sense for a specific channel may change. If that happens, ALL clients that
use the signal would need to be modified so that places where the channel was previously set
true would now be set false and vice versa. That can potentially mean a lot of code changes
in a lot of clients, and it opens the door to introducing bugs easily.

As an example of where this might happen, consider an example in which a heater is wired
to a mechanical relay such that a low voltage applied to the relay turns the heater on and
a high voltage turns the heater off (negative logic). Later, the developers decide to replace
the mechanical relay with a more reliable solid-state relay. Unfortunately, the solid-state
relay turns the heater on when a high voltage is applied to its control pin, and off when a
low voltage is applied (positive logic). If the server didn’t make provisions to conveniently

DES-0021 23 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

handle this, the only choice would be to modify all clients that manipulate the heater to
use the reverse logic sense. But clients don’t (and shouldn’t) care how the heater is wired
electrically. Clients just want to know if the heater is on or off.

The Opto-22 server solves this problem with the logic field specified in the server configu-
ration file for all digital I/O channels. For the example above, the relevant channel would
initially have been tagged as a negative logic channel. When the relay technology was
changed, all that would be needed is to change the field from negative to positive logic. All
clients would continue to operate normally with no need to make any code changes. The
Opto-22 server handles the change internally. Because of this ability, all clients view the all
digital I/O channel logic such that true means on, asserted or active and false means off
regardless of the actual situation from an electrical standpoint.

8 The Test Menu Program

For development and testing purposes, a small text-mode menu client application, called
anadigMenu, (see anadigMenu.cpp) has been developed for the Opto-22 server. The program
uses the AnalogClient and DigitalClient classes to provide the two client APIs the server
supports. It also maintains a client interface to the system event logger12 so it can record
when it starts up and when it shuts down.

The menu program is meant to be started from within a terminal window. It requires no
command line arguments. When the program runs, it presents the user with the following
text menu:

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get server message response interval histogram

-4 - get number of SOH parameters

-5 - get SOH parameter information

-6 - get SOH parameters

-99 - shutdown server

Server Digital Control Items:

1 - Get num digital input channels

2 - Get num digital output channels

3 - Get digital

4 - Get ALL digital

5 - Set digital

6 - Set digital input

Server Analog Control Items:

7 - Get num analog input channels

8 - Get num analog output channels

9 - Get analog

10 - Get ALL analog

11 - Set analog

12 - Set analog input

13 - Set gain and offset

12See design document DES-0007, The System Event Logger , for more information.

DES-0021 24 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

0 - Exit Program

Enter Selection >

The first seven menu items correspond to standard messages that all servers can support13.
Following this are six items that correspond to the six client messages that are provided
by the digital client API, and then the seven client messages provided by the analog client
API. Users choose the number of the message they want to send, and they are prompted for
additional parameters as needed.

The menu program is a full client, supporting every client request message the Opto-22
server is able to process. It allows testers to send each of those messages to the server and
view the server’s responses. It is intended primarily as a development, testing and debugging
tool; however experience has shown that it is also useful as a bare-bones user interface to
the server when running on real-world systems.

13See design document DES-0005, The Client/Server Architecture , for more information on the
standard client messages.

DES-0021 25 Rev 2

The Opto-22 SNAP PAC Server July 21, 2012

DES-0021 26 Rev 2

	Introduction
	Opto-22 Hardware
	Brainboard Communications
	The Client APIs
	Client-Specific Messages
	ANA_GET_NUM_ANALOG_IN_CHANNELS
	ANA_GET_NUM_ANALOG_OUT_CHANNELS
	ANA_GET_ANALOG
	ANA_GET_ANALOG_ALL
	ANA_SET_ANALOG
	ANA_SET_ANALOG_INPUT
	ANA_SET_GAIN_OFFSET
	DIG_GET_NUM_DIGITAL_IN_CHANNELS
	DIG_GET_NUM_DIGITAL_OUT_CHANNELS
	DIG_GET_DIGITAL
	DIG_GET_DIGITAL_ALL
	DIG_SET_DIGITAL
	DIG_SET_DIGITAL_INPUT

	The Server Configuration File
	Module Types
	Channel Addressing
	Configuration File Syntax
	Brainboard Definition Lines
	Analog Input Definition Lines
	Analog Output Definition Lines
	Low-density Digital Input Definition Lines
	High-density Digital Input Definition Lines
	Low-density Digital Output Definition Lines
	High-density Digital Output Definition Lines
	Example Configuration File

	Server Implementation
	The OPTOServer Class
	Configuration File Management
	Hardware Addressing
	Hardware Configuration
	Low-Level Hardware Access
	Client Message Handlers
	State-of-Health Reporting

	Simulator Mode and the OPTOSimServer Class
	Positive Logic vs. Negative Logic

	The Test Menu Program

