&= T\ U.S. DEPARTMENT OF

%) ENERGY PNNL-22595

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

The State Machine Library
DES-0014
Revision 2

Charlie Hubbard
May 2014

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965




The State Machine Library

Charlie Hubbard

DES-0014
Revision 2
May 2014

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm



The State Machine Library May 28, 2014

Contents

1 Introduction 1
1.1  Why State Machines? . . . . . . . . . .. 1
1.2  Our State Machine Model . . . . . . . . . . 1

2 The State Machine Library 2
2.1 The StateMachine Class . . . . . . . . . . . .. .. ... ... ... 2
2.2 State Machine Example . . . . . . . ... ... oL 4

2.2.1 Marble Sorting State Machine Definition . . . . . . .. .. ... ... )
2.2.2  Marble Sorting State Machine Implementation . . . . . . . . .. . .. 6

3 State Machine Design Considerations 9

DES-0014 i Rev 2



The State Machine Library May 28, 2014

1 Introduction

This document describes the State Machine Library, a collection of code designed to make
it easy to directly implement processes modeled as state machines in C++4 code. The
State Machine Library is defined and implemented by the two files statemachine.h and
statemachine.cpp. These two files define and implement the StateMachine class, which pro-
vides a framework for implementing state machines. The primary documentation for the
StateMachine class is its associated Doxygen-generated HTML files. The Doxygen docu-
mentation should be consulted for a detailed description of the class’ methods and attributes.
The document you are reading now is supplemental, and is intended to provide deeper back-
ground for the state machine implementation. In case of any conflict between these two
documents, the Doxygen documentation should be considered correct.

1.1 Why State Machines?

To implement automatic control of a system, the various phases of the system’s operation
are broken into a series of steps that must be performed in a specific sequence to achieve the
desired result. In the high-level design, it is useful to view these various steps as states in a
state machine.

State machines define a process as a collection of well-defined, discrete states together with
a set of well-defined transitions that indicate how the process is allowed to move from one
state to the next.

The state machine model for defining a process is very useful. It is easy for the scientists
that design the control process to describe it in terms of a state machine; it is easy for
operators of the system to understand the state machine, and, with a little help from the
State Machine Library, it is easy to convert the state machine description directly into C+-+
control software.

1.2 Our State Machine Model

State machines can be organized in different ways. The model we use puts all the emphasis
on the states rather than the transitions between them. Fach state defined in the state
machine has associated with it four things:

1. An optional list of actions that must be performed when entering the state.
2. An optional list of actions that must be performed when exiting the state.

3. A set of conditions that indicate when one state must transition to another state (this
is not optional).

4. Occasionally, a well-defined piece of work must be performed while in the state. We call
this wnternal processing to distinguish it from work that is performed while entering
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or exiting the state. Frequently, the amount of internal processing required can be
reduced or eliminated by adding additional states. In general, eliminating internal
processing is encouraged. However, for practical reasons, that is not always possible.

The State Machine Library

2.1 The StateMachine Class

The heart of the State Machine Library is the StateMachine class. This is a base class.
It provides the basic functionality to implement a state machine, but it does not define
any states or transitions itself. Users of the class are expected to derive a new class from
StateMachine to implement their specific state machine. A simplified class definition show-
ing only the public and protected members is shown below. This is intended only as a
reference for discussion. For the most up-to-date, detailed documentation for the class, see
its associated Doxygen-generated HTML documents and the source code files.

};

};

#define ADD_STATE(name, entryFunc, exitFunc, selectorFunc) \

struct StateID {

typedef vector<StateID> StateIDVector;

class StateMachine {
protected:

public:

AddState(name, static_cast<EntryFunc>(entryFunc), \
static_cast<ExitFunc>(exitFunc), \
static_cast<SelectorFunc>(selectorFunc))

string name;
int number;

StateID();
string Serialize() const;
void Deserialize(const string &s);

typedef void (StateMachine::*EntryFunc) ();
typedef void (StateMachine::*ExitFunc) ();
typedef string (StateMachine::*SelectorFunc) ();

void AddState(string name, EntryFunc entry, ExitFunc exit, SelectorFunc selector);
virtual void StateChanged();

StateMachine(string startState, bool enableJumps = false);
virtual ~“StateMachine();

bool Step(Q);

void JumpToState(string name);

StatelID GetCurrentStateID() const;

StatelID GetPreviousStateID() const;

int GetNumStates();

StateIDVector GetAllStateIDs();

Within StateMachine derived classes, individual states are identified by unique text names
that are assigned by the designer as appropriate. In addition to an identifying name, each
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state is associated with a mandatory selector function, and optional entry and exit functions.
These functions are defined as member functions in the derived class, and they must follow
the “typedef’ed” prototypes shown above. That is to say, entry and exit functions return
void and take no parameters. Selector functions return type std: :string and also take no
parameters.

The string returned by a selector function is the name of the state that should be run on the
next iteration of the state machine. It is via this mechanism that the designer implements
state transitions. Note that transitions are never declared explicitly (that is to say, there is
nothing like a Transition class, for example); instead transitions are established by which
state names a particular state’s selector function is allowed to return. Terminal states are
defined by providing selectors that, at least on occasion, return the empty string (7”). If
any state returns an empty string as the next state to be transitioned to, that is the signal
that a terminal condition has been met, and the state machine terminates. Here this just
means the call to Step() that resulted in the terminal condition will return true (see the
description of the Step() method below). It is up to the application to decide how to react.

Each state added to the state machine is automatically assigned a unique integer identifier.
These are assigned sequentially starting with a value of zero. These numeric state identifiers
are assigned and tracked by the base StateMachine class, but they are not actually used by
the base class for anything. They exist because many real-world applications benefit from a
numeric state identifier in addition to the unique text names that are assigned to each state.
Most typically they're used for state-of-health logging®.

New states are added to the state machine by calling the ADD_STATE() macro. As you can
see from its definition, the macro simply associates a state name with the entry, exit and
selector functions the state uses. It is often the case that a state does not use an entry or
exit function. In that case, the user can simply pass NULL in their place. Typically, all states
are added to the state machine in the derived class’ constructor.

The StateMachine class provides several methods for operating the state machine, the most
important of which is the Step() method. Each call to Step() performs one state machine
iteration. Specifically, it calls the selector function of the current state and examines its
return value. Recall that the return value is the name of the state the state machine will
be in on the next iteration. If the returned name is the same as the current state, then no
other actions are performed, and the Step() method exits. However, if the returned name
is different than the current state (indicating a state transition from the current state to the
state returned by current state’s selector function), then the following sequence of events
occurs:

1. The current state state now becomes the previous state. The state returned by the
selector function becomes the new current state.

2. The exit function of the previous state is run. This function should perform any actions

!The ability to log the current state ID as a state-of-health parameter using the PNNL state-of-health
server was the primary and original motivation for assigning numeric state IDs. See design documents
DES-0006, The State-of-Health Server and DES-0072, The Number Server for more details on
this specific application of the numeric state IDs.
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the designer wants to occur every time the state is exited.

3. The StateChanged () method is called. StateChanged() is a virtual method that can
be overridden to provide any actions a designer may want to occur when control is
transferred from one state to another. This is different than a state’s exit function, be-
cause an exit function is specific to the state it is associated with. The StateChanged ()
method runs the same code for any state change. In practice, this is typically used as
a convenient place to record the state change event to a log file.

4. The entry function of the current state is run. This function should perform any actions
the designer wants to occur every time the state is entered.

Other methods available to the state machine designer include JumpToState(), GetCurrent-
State(), GetPreviousState(), GetNumStates(), and GetAllStateIDs(). Most of these
are self-explanatory, but the JumpToState() deserves some more explanation.

Typically any process defined by a state machine is only valid if the state machine is al-
lowed to proceed from its start state to a terminal state following only defined transitions
between the states. Allowing a user to force arbitrary transitions from any state to any
state is usually a recipe for disaster. However, during development and testing, this can
also be an extremely useful ability so long as the state machine application is designed to
handle arbitrary transitions or at least the operator understands the consequences. For that
reason, the base class provides the JumpToState() method. Calling JumpToState() will
immediately force a transition from the current state to the target state (including calling
the appropriate entry and exit functions). However, because this action is risky, by default
the JumpToState () method is disabled. It can be enabled at the user’s discretion by passing
a flag to the StateMachine class constructor.

2.2 State Machine Example

To better understand how states with the above attributes can be used to implement control
processes, we'll look at an (admittedly contrived) example. Assume we need a state machine
to control a device that can sort a mixture of black and white marbles into two buckets, one
containing only black marbles and the other containing only white marbles. One possible
state machine that can handle that control task is shown below.
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2.2.1 Marble Sorting State Machine Definition
white

y
Initial entry .
start ——® examine done
-

black

Figure 1: An example state machine for sorting marbles

Look at the action lists and the transition logic for each state to understand how it works.

Table 1: State machine control actions for the marble sorting state machine

Entry Exit Internal
State | Actions Actions Processing| Transition Logic
start Turn on the “system is | None None If there are more mar-
running” light bles to be processed,
jump to examine, oth-
erwise jump to done.
examine | Get a new marble None None If the marble is white,
jump to white, else
jump to black.
white | Put the marble in the | None None If there are more mar-
white bucket bles to be processed,
jump to examine, oth-
erwise jump to done.
black Put the marble in the | None None If there are more mar-
black bucket bles to be processed,
jump to examine, oth-
erwise jump to done.
done Turn off the “system is | None None If the operator presses
running” light. the start button, jump
to start.
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Notice that in the above description, we never specify any exit actions for any of the states.
Whether or not to use entry actions, exit actions or both is a design decision. The marble
sorting process could be represented with a state machine that used only exit actions (al-
though it may not have the same number of states, transitions or transition logic). For this
example, we just chose to do everything on the entry actions. Other, equally valid, solutions
are possible. A state machine could be developed for this process that used entry actions for
some states and exit actions for other states or provided states that had both entry and exit
actions. The important point is that work only happens when entering or leaving a state.
How that work is divided between these two options is left up to the designer.

Also notice that none of the states defined incorporate any internal processing logic. In
general, that is good design. When possible, internal processing should not be used. However,
incorporating internal logic can substantially reduce the total number of states in a state
machine. Whether or not that is a good idea is a decision that needs to be made by the
designer.

2.2.2 Marble Sorting State Machine Implementation

In this section, we’ll look at a quick implementation of the marble-sorting state machine
using C++-like pseudocode just to see how the StateMachine class could be employed to
create this state machine.

To begin, we need to derive a new class from the StateMachine class. Among other things,
we need to add methods to this class to act as the entry, exit and selector functions for all the
states our state machine will use. One possible derived class might look like the following.

class MarbleMachine : public StateMachine {
public:
MarbleMachine();

protected:
void  StartEntry();
string StartSelector();

void ExamineEntry();
string ExamineSelector();

void WhiteEntry();
string WhiteSelector();

void  BlackEntry();
string BlackSelector();

void DoneEntry();
string DoneSelector();

virtual void StateChanged(string from, string to);

Marble marble;

As you can see, the derived class is pretty simple. It contains a simplified constructor, and
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entry and selector functions for the marble-sorting state machine’s five states. We've also
overridden the StateChanged() method, just to provide an example of how that might be
used.

We've defined one class variable, called marble (an instance of the fictitious Marble class),
that we’ll use to store information on the current marble under examination. In this case, it is
necessary to use a class variable for marble, because the data in marble needs to remain valid
across calls to ExamineEntry() and ExamineSelector(). When designing state machines,
you’ll find that it is frequently the case that certain bits of information need to be retained
across multiple function calls.

The next step is to implement the constructor. It is here where we’ll actually add new states
to the state machine.

MarbleMachine: :MarbleMachine() : StateMachine("done")

{
// state name entry function exit func selector function
//
ADD_STATE("start", &MarbleMachine: :StartEntry, NULL, &MarbleMachine: :StartSelector);
ADD_STATE("examine", &MarbleMachine: :ExamineEntry, NULL, &MarbleMachine: :ExamineSelector) ;
ADD_STATE("white", &MarbleMachine: :WhiteEntry, NULL, &MarbleMachine: :WhiteSelector);
ADD_STATE("black", &MarbleMachine: :BlackEntry, NULL, &MarbleMachine: :BlackSelector) ;
ADD_STATE("done", &MarbleMachine: :DoneEntry, NULL, &MarbleMachine: :DoneSelector) ;

¥

The constructor is simple. We call the base constructor with one parameter, "done, " which
means that the state machine will begin in the done state. The second parameter to the
base constructor we omitted, which means the base class JumpToState() method will be
disabled. In the body of the constructor we do nothing but use the ADD_STATE() macro to
create five new states. Each state is assigned a name and associated with whatever entry,
exit and selector functions it uses. In this example, no states use exit functions, so NULL is
passed instead. Note that it is also here in these calls to ADD_STATE() where the state integer
IDs are automatically assigned. These are assigned in the order that states are added, so, in
this case, “start” will be given an ID of zero, “examine” will be given an ID of one, and so
on.

Next we need to implement the entry, exit and selector functions defined for each of the
states. For brevity, we won’t show the implementations for all of them. They are all similar.
Refer back to Table 1 on page 5 to compare the actions and the transition logic listed there
with the following state functions.

void MarbleMachine: :DoneEntry ()

{
SetRunningLight(false); // turn the "system is running" light off

}

string MarbleMachine: :DoneSelector ()
{
if (StartButtonPressed()) {
return("start");

}
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return("done");

}

void MarbleMachine: :ExamineEntry()

1{
marble = GetNewMarble();
¥

string MarbleMachine::ExamineSelector()
{
if (marble.IsWhite()) {
return("white");
}
return("black");

}

Hopefully, it is clear from examining the two selector functions above how transitions are
implemented in our state machine model. Allowed transitions out of a particular state
are completely determined by the possible return values of the state’s associated selector
function.

Finally, we’ll show one possible (admittedly trivial) use of the base class’ StateChanged ()
method. Here we just redefine it to print out the state transition information to the terminal.

void MarbleMachine::StateChanged()
{

StateID current;

StateID previous;

current
previous

GetCurrentStateID();
GetPreviousStateID();

cout << "State " << previous.name << " has transitioned to the " << current.name << " state." << endl;

With our derived state machine class now complete, the final question is, “How is the state
machine actually run?” The state machine is run by making calls to the class’ Step()
method until Step() returns true, indicating it has reached a terminal state’?. Each call
to Step() runs the current state’s selector function, and if a transition to a new state is
initiated, it runs the appropriate entry and exit functions. There is no provision in the base
class to automatically step the state machine. It is up to the user to decide how this is done.
In practice, we typically set up a timer to step the state machine at regular intervals.

2In practice, the terminal state feature has not proven to be particularly useful. In all real-world appli-
cations we’ve implemented using this library, we define no true terminal states at all (that is, no selector
functions ever return the empty string). Instead, we may have one or more idle states, whose selector
functions always return to themselves. In this way, the state machine stays alive and the application can
begin new process sequences by using JumpToState () to jump to the appropriate start state of the desired
sequence.
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3 State Machine Design Considerations

This section discusses some of the issues involved when translating a real-world control
process into a suitable state machine, and provides some guidelines for creating workable
state machine designs.

The purpose of the state machine is to represent the system’s process flow as a series of well-
defined, discreet states and to provide a logical path through those states via well-defined
transitions. So the first problem is how to split the system processing steps into discreet
states. Let’s start by taking a look at the types of processing steps that might need to be
performed. The following is a snippet of a hypothetical processing sequence.

Add liquid nitrogen to the main trap dewar.

Wait for trap temperature to drop to a certain value

Open a flow path from the sample source, to the main trap and out the exhaust
Set the sample flow rate to a certain value

As a first attempt, we could continue to list all the steps for the full processing sequence
and then decide to make each step a separate state. That may be a workable solution,
but there are hundreds of steps involved, and taking this approach quickly generates a very
large, difficult-to-manage state machine. Also, state-machine purists might point out that
even breaking down the processing steps to this level of detail is not enough, because we’ve
actually hidden a huge number of discreet sub-steps within each of our states. For instance,
the step that begins ”Open a flow path...” actually breaks down more like this. ..

Open valve V101A
Open valve V101B
Open valve V101C
Open valve V101D
Open valve V201A
Open valve V201B
Open valve V201C
Open valve V201D
Open valve V791A
Open valve V791B
Open valve V791C
Open valve V791D

When represented at this extreme level of detail, the entire control process consists of thou-
sands of separate events. Representing each of these events as a separate state in our state
machine, although technically possible, is not particularly useful. It results in an enormous
number of states, and saying something like, ”The system is in the ’Open Valve V791C’
state” really gives no indication of what phase of the overall process the system is currently
in.

So we reject a state machine that describes the system operation at this level of detail. We
want something simpler. The following proposed state machine goes to the other extreme.
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Initial entry system
—> y

start —p . —— done
running

Figure 2: An example of a state machine solution with far too little detail.

Again, this isn’t particularly useful. Saying, “The system is running” doesn’t really tell the
operator very much about what the system is actually doing at any particular moment.

Assume the purpose of our hypothetical control system is to take a sample of material,
extract various products of interest from it, analyze those products, and then archive the
products. This description breaks the process into a few separate phases, and we could build
a state machine that captures those phases as follows.

Initial ent i i
nitial entry start extracting analyzing
products products

archiving
products

done |E—

Figure 3: An example of an improved state machine solution with somewhat more detail.

This is somewhat better. By looking at the current state, the operator can now get some
idea of what the system is currently doing. But the process view is still pretty coarse-grained
at this point. A little more information would be useful. As can be seen, it is possible to
create any number of viable state machines to describe the control process. How do we pick
the right one? There are no hard-and-fast rules for this. Deciding how to split the processing
steps into states is a decision that has to be made by the designer. However, we can develop
certain guidelines to assist. Specifically. ..

1. In our state machine model, ideally all actions occur when entering a new state or exit-
ing the current state (or both). Other than checking to see if the transition conditions
have been met, we would prefer that there be no internal processing performed inside
a state. We should design our states with this in mind. However, internal processing
(that is processing performed by the selector function that is not related to checking
transition conditions) is not forbidden. Using some small amount of internal processing
in some states can greatly reduce the total number of states required to implement a
process.

2. The state machine should provide enough detail that the operator can get a good idea
of what phase of operation the system is currently in just by glancing at the current
state, but it should not be overly detailed. Too much detail is one reason the designer
might decide to reduce the total number of states by using internal processing.
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3. Transitions from one state to the next should be governed by a small number of simple
conditions. Fewer conditions are better. One way this can be accomplished is to make
each state perform only a few actions, all of which are related to a particular phase of
operation (regeneration, collection, purification, analysis, archiving, etc.).

4. More states provide a finer-grained look at what part of the process the system is
currently performing, but we’ve already seen that too much detail is not helpful. As a
rule of thumb, try to limit the total number of states to 20 or 30. Of course the exact
number will depend on the nature of the process.

Even with these goals in mind, how the control process is split into separate states is largely
a judgment call, but it does give us some guidelines to help us reject poor solutions. We
conclude with the following diagram, which is provided as an example of an appropriately
detailed state-machine process for a simple sample-processing and analysis system.
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Figure 4: A process state machine with a reasonable amount of detail
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