
PNNL-22594

The Raw Transfer Library
DES-0012

Revision 2

Charlie Hubbard

July 2010

The Raw Transfer Library

Charlie Hubbard

DES-0012
Revision 2
July 2010

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under

Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The Raw Transfer Library July 26, 2010

Contents

1 Introduction 1

2 Theory of Operation 1

3 Limitations 2

4 Alternatives 2
4.1 Existing TCP Connection . 2

4.1.1 The Threading Problem . 3
4.1.2 The Unidirectional Problem . 3

4.2 Pure Binary Message-Passing Model . 4

5 Implementation 5
5.1 Connection Handle . 5
5.2 The Send-Side Interface . 6

5.2.1 The SendRaw() Function . 6
5.2.2 The RawTransmissionThread() Function 7

5.3 The Receive-Side Interface: The ReceiveRaw() Function 7

DES-0012 i Rev 2

The Raw Transfer Library July 26, 2010

1 Introduction

Our system control projects are all based on a client/server model, in which full control
functionality is implemented as a series of concurrently running processes that coordinate
actions by passing request and response messsages back and forth.1

Overwhelmingly, message-passing is carried out through services provided by the BaseClient
and BaseServer classes (from which all real clients and servers are derived), using a simple
text-based encoding called Data Serialization Protocol (DSP).2

The DSP encoding scheme works well for client/server messages of up to a few tens of kilo-
bytes in size (this encompasses virtually all messages). Beyond that, the task of converting
message parameters into and out of a text format starts to be cumbersome. Rarely, there
is a need to move very large blocks of binary data between two processes (2D detector his-
tograms, which can be a quarter megabyte or bigger and contain thousands of fields, are
a prime example3). For this, it is much quicker and more efficient to send the binary data
directly rather than using a DSP encoding. The Raw Transfer Library (RTL) provides this
capability.

2 Theory of Operation

The RTL provides two functions that, when used together, provide a means for one process
to transfer large blocks of contiguous binary data to another process quickly and efficiently.

The library works by opening a TCP connection between the two processes and then trans-
ferring the binary data over the TCP connection. TCP is used because it allows the two
processes to exist on separate, possibly widely separated, computers (an attribute shared by
clients and servers that use the standard DSP-based message passing mechanism as well).

How the library works is probably best described by example. Say there are two processes,
A and B. Process A sends a request to Process B for the contents of a very large data
structure, and that data structure will be transferred using the RTL. The sequence of events
is as follows:

1. Process A sends a message to Process B requesting the large data structure. This
initial message goes as a normal, DSP-encoded client request message and does not
use the services of the RTL.

2. Process B creates a TCP listen socket and spawns a separate thread to manage it.

1The project client/server model is fully described in design document DES-0005, The Client/Server
Architecture .

2See design document DES-0002, Data Serialization Protocol for details of the encoding format, and
design document DES-0005, The Client/Server Architecture for a description of the specific format
of the DSP-encoded messages used by real clients and servers.

3See design document DES-0013, The Nuclear Data Acquisition Server for details.

DES-0012 1 Rev 2

The Raw Transfer Library July 26, 2010

3. Process B sends a reply to process A containing at least the IP address and port
number of the listening socket. Other pieces of information, like number of bytes to be
sent in the upcoming binary transfer, may be included in the reply as well, depending
on the specific circumstances. This reply goes out as a normal, DSP-encoded server
response message, and does not use the services of the Raw Transfer Library.

4. Process A establishes a new TCP connection to Process B’s listening socket.

5. Process B’s temporary binary transfer thread writes data to the connection as rapidly
as possible (TCP is self-metering), and Process A reads data off the connection as
rapidly as possible. This continues until all data has been transferred.

6. Process A and Process B each close their side of the TCP connection that was used
for the bulk data transfer.

7. Process B’s transfer thread exits. This completes the transfer.

3 Limitations

The RTL has some limitations, the primary one being that the raw data to be moved between
processes needs to be contiguous in memory. This makes it difficult to move things like STL
lists or maps, or any other data structure in which one or more fields are stored in separate,
dynamically allocated blocks of memory. Depending on the situation, this shortcoming can
often be worked around by sending the small pieces of a structure using traditional, DSP-
encoded messages, and only send the very large field(s) using the RTL. Alternatively, a single
transfer could be broken into a few rounds, using the RTL to move a different piece with
each round. One can imagine situations for which no amount of RTL trickery will yield a
suitable transfer scenario, but, in practice, we have yet to encounter such a situation.

4 Alternatives

One the face of it, the RTL implements an overly complex transfer scheme. For each binary
transfer, a new TCP connection is created and torn down, and the sending process spawns
a new thread that exists only long enough to complete the transfer. The truth is, the RTL
is an ugly hack. It does not fit in well with the project client/server message passing model.
Because it does not stand on its own merits without some justification, it’s important that
we take some time to look at other alternatives that were considered and rejected.

4.1 Existing TCP Connection

The client and server already share a TCP connection, so one possibility is to use the existing
connection to transfer the binary data, but there are problems with this as we’ll see.

DES-0012 2 Rev 2

The Raw Transfer Library July 26, 2010

One plausible sequence of events might be:

1. The client sends a normal, DSP-encoded request to the server.4

2. The server sends a normal, DSP-encoded response to the client.5

3. The client receives the DSP-encoded initial response.

4. Server uses the same connection to send the binary segment of the reply back to the
client.

5. Client reads the binary segment off the connection.

4.1.1 The Threading Problem

For a client application consisting of just a single thread, this technique actually works just
fine, but it fails for multi-threaded clients. Clients perform their request/reply transac-
tion using the SendMessage() method of the client base class.6 Because any given client
application may have multiple threads using the same client interface at the same time,
SendMessage() needs to protect the TCP connection from simultaneous access. It does this
by mutex-protecting the entire request/reply transaction (steps 1, 2, & 3 above). But steps
4 and 5 are beyond what SendMessage() is designed to provide. They would be handled by
other class methods. The trouble is, when SendMessage() returns, the mutex is no longer
locked. If another thread grabs the mutex at that point and sends a request message, it will
incorrectly interpret the binary segment being sent by the server to the original thread as
the DSP-encoded reply intended for it.

There is no easy work-around for this problem within the current message-passing model. A
system could be put in place to send a flag to SendMessage() instructing it not to release the
mutex on exit. Then, whatever method is responsible for receiving the binary segment from
the server, as in step 5, would unlock the mutex when it finished. Alternatively, a special
version of SendMessage() — SendBinMessage() perhaps — could be developed to handle
all 5 steps outlined above internally. However, both of these solutions are kludgy patches
wedged into a design where they really do not fit. Granted, the same can be said for the
RTL itself, and at least these proposed schemes do not require a separate TCP connection
and a temporary transfer thread. It might be worth choosing the “modified SendMessage()”
kludge over the “raw transfer library” kludge, except for one problem...

4.1.2 The Unidirectional Problem

Binary data transfer using the existing client/server TCP connection only works from the
server to the client. Client-to-server binary transfers cannot be done this way using the

4Beginning the sequence with a standard, DSP-encoded request is necessary, because the server expects
all incoming messages to be DSP-encoded and parses them as if that were true.

5An initial DSP-encoded reply is also necessary, because the requesting client application is expecting at
least a success/failure indication from the server in the standard DSP format.

6SendMessage() is fully described in design document DES-0005, The Client/Server Architecture .

DES-0012 3 Rev 2

The Raw Transfer Library July 26, 2010

existing message-passing scheme.

When a server sends a reply to a client application under the current model, the client
API function that initiated the request receives the reply directly (using the SendMessage()

method). For that reason, server-to-client binary transfers work. If server client message
handlers (the server-side counterpart to the client class’ API methods) could receive data
directly from the client, client-to-server binary transfers would work as well, but servers
receive all messages via their client connection thread.7 The thread, as implemented, expects
all messages to be DSP-encoded. The thread performs an initial parse of the message, and
places the relevant information on the server’s message queue to be processed in the order
in which the message was received. For this reason, client applications cannot just tag
a binary component onto the end of a message and expect the server’s relevant message
handler to receive it. This is not an issue for the RTL, because the RTL uses a separate
TCP connection that is not managed by the server’s client connection thread. It can be used
for binary transfers in both directions.

Even this problem could be overcome (for example) by modifying the ReadStream class’
Read() method8 (which the server’s client connection thread uses to read data off the TCP
connection) to recognize a special character in the data stream that indicated that the
following data segment was binary and should not be pre-parsed. Presumably the number of
bytes of binary data would have to follow the special flag character in the data stream so the
ReadStream class would know how many bytes to read to complete the transfer. Then some
mechanism would be needed to get the binary portion of the received message back to the
proper message handler. If this mechanism involves the standard server message queue, then
the queue code would have to be modified to accommodate binary data. As you can see,
although possible, this “solution” gets very ugly very fast and, in the end, the result is just
bidirectional binary data transfer capability, which the RTL already provides. Significantly
complicating the ReadStream class, the server’s client connection thread and, potentially, the
server’s message queue in order to provide a capability needed by exactly one application
(the XIA nuclear detector’s data acquisition server9), which is only ever used on a subset of
our client/server based projects, seems like a poor idea.

4.2 Pure Binary Message-Passing Model

The fundamental problem that the RTL is trying to solve, is that there are cases in which the
DSP-encoded message-passing scheme is too slow to deal with the required amounts of data
in a timely fashion. One solution would be to dump the text-based, DSP-encoded message
model altogether. The underlying message-handling code could very feasibly be rewritten
such that all client/server messages are sent as raw binary.

Actually, this is probably the right approach, and it would be worthy of serious consideration

7See design document DES-0005, The Client/Server Architecture for complete details on server
client connection threads.

8See design document DES-0003, The ReadStream Utility Class for details.
9See design document DES-0013, The Nuclear Data Acquisition Server for details.

DES-0012 4 Rev 2

The Raw Transfer Library July 26, 2010

if large data transfers were common, but they are not. Overwhelmingly, client/server request
and reply messages are small. To date, the DSP-encoded messages have worked exception-
ally well for all cases but one (the XIA nuclear detector data acquisition server mentioned
previously).

Switching to a pure binary solution, although feasible, would throw away all the advantages
of a text-based protocol (human readability, generic parsing, compatible between different
compilers/CPU architectures, and so on), but it would provide a great increase in speed and
efficiency. This is a trade-off that may well be worth making at some point in the future
if the need to move large data streams between clients and servers becomes more common.
However, we feel we have not yet reached that point. Switching to a pure binary messaging
scheme would involve a great deal of effort. Keep in mind that client class API methods
and server class message handlers build and parse messages directly. Switching to a binary
protocol means major changes to every client and server in the code base. Surely this is
not an impossible task — similar sweeping changes have been made to the code base in the
past — but now is not the time for that. So long as large block binary transfers remain a
requirement of just a single server, we are better off retaining the advantages of DSP-encoded
messages and using the RTL for the rare instance in which DSP-encoding fails.

5 Implementation

The RTL provides two functions — SendRaw() and ReceiveRaw() — which are defined in
rawTransferLib.h and implemented in rawTransferLib.cpp. These two functions are the focus
of this section.

5.1 Connection Handle

Both of the library functions take a connection handle as one of their parameters. A connec-
tion handle is a bit of information that tells the receiving process how to create the network
connection necessary to complete the data transfer. Connection handles are instances of a
small data structure, called RawHandle, defined in rawTransferLib.h. A slightly abbreviated
version of the definition appars below.

struct RawHandle {

string ipAddr;

WORD port;

};

• ipAddr — The IP address the receiving process should connect to in order to receive
the data to be transferred.

• port — The TCP port the receiving process should connect to in order to receive the
data.

DES-0012 5 Rev 2

The Raw Transfer Library July 26, 2010

These fields are bundled in a connection handle structure rather than made available directly
because the underlying details of the data transfer are supposed to be hidden from the user.
Currently the library uses TCP to do its data transfer, so IP address and TCP port are
appropriate. However, we might decide to change this to some other connection type in the
future, in which case some different set of fields would be appropriate. By bundling the
specific connection details into a generic connection handle concept, the underlying details
can easily be changed in the future without affecting existing user code.

5.2 The Send-Side Interface

5.2.1 The SendRaw() Function

void SendRaw(void *data,

int size,

RawHandle &handle,

const string hostname = "localhost");

• data — This is a pointer to the buffer that needs to be transmitted to the receiving
process.

• size — This is the number of bytes that should be transferred from the data buffer to
the receiving process (it is assumed that the buffer pointed to by data is large enough
to hold at least this many bytes).

• handle — On successful return, this field will contain the details the receive-side
process will need in order to connect to the sending process.

• hostname — This field contains the host name of the local computer (i.e., the computer
hosting the sending process). If there is a simple, reliable way to get the IP address
of a local socket before someone has connected to it, this author does not know what
it is. Unfortunately, we need to send that IP address to the receiving process so it
can establish a transfer connection. The cheesy method we have come up with, is to
take a host name (this field) and then look it up using the gethostbyname() system
call to find a corresponding IP address. The field defaults to “localhost,” so for those
cases in which both the sender and receiver process are running on the same computer
(we anticipate this to be the most common case by far), the user should never need
to actually fill in this field. However, if the receiver is on a different computer, then a
real host name will need to be given.

The SendRaw() function creates and binds a TCP listen socket for the receiving process to
connect to, and then it starts a separate thread to handle accepting the receiving process’
connection. On return, the data in the handle field will be valid and the caller can then
get this information to the receiving process in any convenient way (typically the standard,
DSP-encoded message-passing mechanism is used to transfer the handle to the receiver).

DES-0012 6 Rev 2

The Raw Transfer Library July 26, 2010

5.2.2 The RawTransmissionThread() Function

static void* RawTransmissionThread(void *data);

This is a pthread thread start function for the thread that gets spawned by the SendRaw()

function. Like all pthread start functions, it takes a single, void pointer parameter. In this
specific application, SendRaw() spawns the thread with this pointer pointing to an instance
of a DataDefinition structure (defined near the top of rawTransferLib.cpp). This data
structure is filled in by SendRaw(), but used by RawTransmissionThread() to complete the
TCP connection and perform the data transfer.

struct DataDefinition {

int sock; // The socket the thread will do the accept on

int size; // The size of the data block to be transferred

void *buff; // A pointer to the data buffer to be transferred

};

The thread waits for a TCP connection request from the receiving process. It then completes
the connection and begins transferring data. Once all data has been transferred, the thread
closes the sending side of the connection and exits.

5.3 The Receive-Side Interface: The ReceiveRaw() Function

void ReceiveRaw(const RawHandle &handle, void* buff, const int size);

• handle — This field contains the connection handle supplied by the sending process.
The sending and receiving processes are free to exchange this handle in any way that
is convenient, but it is typically transferred from the sender to the receiver using the
standard, DSP-encoded message-passing mechanism.

• buff — A pointer to the buffer into which the receiving process wants the received
data to be copied (it is assumed this buffer is big enough to hold all the data).

• size — The size of the buffer in bytes.

In a typical implementation of the receiving process, the receiver will begin by using the
normal client/server message-passing mechanism to send a message to the sending process
requesting data that will be returned via the RTL mechanism. The sending process will
initially reply, also using the normal client/server message-passing mechanism. As part of
this initial reply, the sending process will include the connection handle information the
receiver needs. Finally, the receiver will call ReceiveRaw(). When the call returns, the
receiver’s buffer will contain the data transferred from the sender using the Raw Transfer
Library.

DES-0012 7 Rev 2

The Raw Transfer Library July 26, 2010

DES-0012 8 Rev 2

	Introduction
	Theory of Operation
	Limitations
	Alternatives
	Existing TCP Connection
	The Threading Problem
	The Unidirectional Problem

	Pure Binary Message-Passing Model

	Implementation
	Connection Handle
	The Send-Side Interface
	The SendRaw() Function
	The RawTransmissionThread() Function

	The Receive-Side Interface: The ReceiveRaw() Function

