
PNNL-22590

The RE c Utility Class
DES-0008

Revision 2

Charlie Hubbard

July 2010

The RE c Utility Class

Charlie Hubbard

DES-0008
Revision 2
July 2010

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under

Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062

ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The RE c Utility Class July 26, 2010

Contents

1 Introduction 1

2 The RE c Class 2
2.1 Public Methods . 2

2.1.1 The Class Constructor . 2
2.1.2 The Match() Method . 3
2.1.3 The NumSubstrings() Method . 4
2.1.4 The Dump() Method . 4

2.2 Private Methods . 5
2.2.1 The CompilePattern() Method . 5
2.2.2 The ConvertPercentString() Method 5

2.3 Substring Access Operators . 5
2.3.1 The [] Operator . 5
2.3.2 The () Operator . 6

DES-0008 i Rev 2

The RE c Utility Class July 26, 2010

1 Introduction

In many, many places throughout the code base, there is a need to parse strings. Quite often
the parsing is most painlessly accomplished with regular expressions. The Perl scripting
language offers a particularly powerful regular expression capability, and the Perl regular
expression syntax is popular and well known among software developers. The Perl Compat-
ible Regular Expressions (PCRE) library, is an open-source C library, widely available and
supported on many different operating systems, that implements regular expressions using
the Perl regular expression syntax. Unfortunately, as a straight C library, it is a bit awkward
to work with.

This document describes the RE c utility class, which functions as a C++ wrapper around
the PCRE C library and smooths out some of the interface kinks the bare PCRE library
has.1 The RE c class is defined in re.h and implemented in re.cpp. To work, it requires that
the PCRE C library be installed and available on the system. On Ubuntu Linux systems,
this amounts to installing the libpcre3-dev package.

The syntax for constructing Perl-type regular expressions is arcane, and regular expression
strings can be difficult to decipher even for experienced users. While the construction of Perl
type regular expressions is beyond the scope of this document, readers are referred to the Perl
documentation website at http://perldoc.perl.org/perlre.html for further information.
Information on the underlying PCRE C library can be found at http://www.pcre.org.

1In more recent versions of the PCRE library, a C++ wrapper class is included as part of the library.
However, to be compatible with our pre-existing and extensive software code base, we continue to use our
RE c wrapper class.

DES-0008 1 Rev 2

http://perldoc.perl.org/perlre.html
http://www.pcre.org

The RE c Utility Class July 26, 2010

2 The RE c Class

A slightly decluttered version of the RE c class definition appears below. The full definition
can be found in re.h.

class RE_c {

public:

explicit RE_c(std::string const & pattern, int maxSubstrings = 30);

~RE_c();

int Match(std::string const & source);

int NumSubstrings();

void Dump();

const char* operator[](int ndx);

std::string const operator()(int index);

// some useful predefined regular expression patterns

static std::string const TRIM;

static std::string const COMMENT;

static std::string const FP;

static std::string const HEX;

private:

void CompilePattern(std::string const & pattern);

static std::string ConvertPercentString(std::string const & pattern);

RE_c operator=(RE_c const & rhs);

RE_c(RE_c const & rhs);

int ssCount;

int const offsetsSize;

const char **ss;

void *re;

};

2.1 Public Methods

2.1.1 The Class Constructor

explicit RE_c(std::string const & pattern, int maxSubstrings = 30);

The constructor takes two parameters.

• pattern — This is the regular expression used when comparing strings processed with
the constructed object. The regular expression should adhere to standard Perl syntax
for regular expressions with one exception: in Perl, many special codes for identify-
ing certain groups of characters (like “\d” for any digit or “\s” for any whitespace
character) are prefixed with a backslash character (\). In C and C++, the backslash
character has special meaning inside string literals, and must itself be escaped with
another backslash if it is to be treated literally. This duplication of backslashes rapidly
becomes cumbersome. For that reason, the RE c wrapper class uses the percent sign
(%) instead of a backslash (so “%d” for any digit, “%s” for any whitespace character,

DES-0008 2 Rev 2

The RE c Utility Class July 26, 2010

and so on). If a literal percent sign is required, it can be escaped with itself (that is to
say, “%%” will be treated as a single, literal “%” in the regular expression).

• maxSubstrings — This contains the maximum number of matched substrings the
regular expression will save. This parameter defaults to 30, which is more than enough
for most situations. However, the user can override this if necessary.

The constructor simply passes the pattern string to the PCRE library to be compiled.
That is to say, the pattern string is converted to an internal state machine representation
(a nondeterministic finite automaton), which is run against the user’s comparison strings
to find matches. Once an RE c object has been instantiated, there is no way to change its
regular expression pattern.

During compilation of the regular expression pattern, it is possible that an error can occur
(if the pattern is malformed, for instance). If there are problems with the compile, the
constructor throws an exception of type std:string, that contains a description of the
problem.

2.1.2 The Match() Method

int Match(std::string const &source);

The Match() method takes one STL string parameter, source, that contains a string to be
compared against the regular expression to see if it matches the regular expression’s pattern.

The Match() method returns one of the re ERR* codes defined at the top of re.h. Typi-
cally, the caller will be looking either for re ERR NO ERROR (meaning the string matched the
pattern) or re ERR NO MATCH (the string did not match the pattern). However, other error
results are possible, as defined in the table below.

DES-0008 3 Rev 2

The RE c Utility Class July 26, 2010

Error Code Meaning
re ERR NO ERROR The string was matched by the regular ex-

pression with no problems
re ERR SUBSTRINGS TRUNCATED The string was matched by the regular ex-

pression, but there was not room to store
all the extracted substrings

re ERR NO MATCH The string did not match the regular ex-
pression

re PCRE ERROR BADMAGIC The internal representation of the regular
expression is corrupted

re ERR REGEX FAILED This is a catch-all error that gets returned
when no other error code is more appropri-
ate

re ERR EXTRACT FAILED The string matched, and there was room
for the extracted substrings, but a problem
occurred when requesting the substring list

2.1.3 The NumSubstrings() Method

int NumSubstrings();

The NumSubstrings() simply returns the number of substrings that were extracted during
the most recent call to Match().

2.1.4 The Dump() Method

void Dump();

The Dump() method dumps a list of all the substrings extracted during the most recent call
to Match() to the terminal window. This method is intended to be used primarily during
development. When constructing complex regular expressions, it is often difficult to know
with certainty at which index in the substring list a particular substring will be placed.
Using Dump() to display the substring list for a test case is a quick way to find out. Calls to
Dump() don’t typically appear in production code.

DES-0008 4 Rev 2

The RE c Utility Class July 26, 2010

2.2 Private Methods

2.2.1 The CompilePattern() Method

void CompilePattern(std::string const &pattern);

CompilePattern() is a private method that serves as a helper to the class constructor.
Only the constructor calls it. It is a wrapper around the PCRE library’s pcre compile()

function. Its purpose is to convert the numeric error returned by pcre compile() (if any)
into a human-readable text message, that then gets thrown as a std:string exception.

2.2.2 The ConvertPercentString() Method

static std::string ConvertPercentString(std::string const &pattern);

ConvertPercentString() is a private method that serves as a helper to the class constructor.
Only the constructor calls it.

The PCRE library expects regular expressions to be defined using standard Perl syntax.
However, as mentioned previously, Perl syntax prefixes many character-class codes with
backslash characters. Because backslashes are inconvenient to work with in C/C++ string
literals, the RE c class uses percent signs instead. The ConvertPercentString() method
simply converts those percent signs to backslash characters to be used internally by the
PCRE library.

2.3 Substring Access Operators

Although regular expressions can quickly recognize whether or not a given string matches a
particular (sometimes extremely complex) pattern, their true power comes from the ability
to recognize and extract certain user-defined substrings (parenthesized sub-patterns within
the full regular expression) from the string under test. Two operators have been overloaded
that allow the user to access these substrings (also see the Dump() method).

2.3.1 The [] Operator

const char* operator[](int ndx);

DES-0008 5 Rev 2

The RE c Utility Class July 26, 2010

The [], or “indexing,” operator takes an index into the substring list (the list of substrings
extracted during the last call to Match()), and returns the corresponding substring.

Although internally, substrings are stored as STL strings, the [] operator returns substrings
as a pointer to a char data type (i.e. a C-style string). Typically the STL string represen-
tation is preferred, but there are many instances in the code base in which the extracted
substring is immediately passed to a system library function that is expecting a C-style string.
The [] operator performs that conversion internally and really just serves as a convenience
to the developer.

Index values that are out of range result in a pointer to a null string being returned. This is
not a NULL pointer, but rather a pointer to a character array that contains the C-style string
terminator (\0) as its only character.

2.3.2 The () Operator

std::string const operator()(int index);

The () operator takes an index into the substring list (the list of substrings extracted during
the last call to Match()), and returns the corresponding substring. The returned substring
is an STL string.

Index values that are out of range result in an empty STL string being returned.

DES-0008 6 Rev 2

The RE c Utility Class July 26, 2010

DES-0008 7 Rev 2

	Introduction
	The RE_c Class
	Public Methods
	The Class Constructor
	The Match() Method
	The NumSubstrings() Method
	The Dump() Method

	Private Methods
	The CompilePattern() Method
	The ConvertPercentString() Method

	Substring Access Operators
	The [] Operator
	The () Operator

