&= T\ U.S. DEPARTMENT OF

.2) ENERGY PNNL-22589

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

The System Event Logger
DES-0007

Revision 4

Charlie Hubbard
March 2013

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965




The System Event Logger

Charlie Hubbard

DES-0007
Revision 4
March 2013

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm



The System Event Logger March 11, 2013

Contents

1 Introduction 1
2 Basic Operation 1
3 File Channels 2

4 Client Request Messages
4.1 LOG.MESSAGE . . . . . .
4.2 LOG.GET_PRIORITY . . . . . . . .
4.3 LOGSET_PRIORITY . . . . . . ..
4.4 LOGSTART . . . . . e
4.5 LOGSTOP . . . . o e
4.6 LOGSTOP_ALL . . . . . .
4.7 LOG_GET_FILENAMES . . . . . . . .. ..

e s s e W W

5 Message Fields

—~

6 Message Priority Levels 6

7 Log Data File Format 7
7.1 The Header Line . . . . . . . . . . . . 7
7.2 Log Record Lines . . . . . . . . . . . e 8
7.3 Log File Example . . . . . . . . . .. 8

8 IRC Support 9
8.1 Using the IRCConnection Utility Class . . . . . .. .. ... ... ... ... 9
8.2 Text Attribute and Color Codes . . . . . . . . .. ... ... ... ...... 10
8.3 IRC Channel Output Format . . . . .. ... ... .. ... .. ....... 11

9 Starting the Server 12

10 The Test Menu Program 13

DES-0007 i Rev 4



The System Event Logger March 11, 2013

1 Introduction

The system event logger is a standard system server that provides general message logging
services to the control system. Like all system servers, the event logger is implemented as a
C++ class called LoggerServer, which is derived from the BaseServer class (see cliserv.h
and cliserv.cpp).

As is standard for system servers, there is also an accompanying client interface class, called
LoggerClient, which is derived from the BaseClient class (see cliserv.h and cliserv.cpp).
The LoggerClient class provides API functions needed by clients to communicate with the
server.

The logger server and its client interface rely heavily on the the inter-process communication
framework, and message handling mechanisms inherited from their parent classes. For that
reason, to achieve a detailed understanding of the event logger, the reader should first be
thoroughly familiar with the BaseServer and BaseClient classes. These are fully described
in design document DES-0005, The Client/Server Architecture.

In the code, the definition and implementation for the event logger can be found in the
file loggerServer.cpp. The client interface library for the server is defined and implemented
in loggerClientLib.h and loggerClientLib.cpp. Also, a simple text-based menu client for the
server exists, and it is implemented in loggerMenu.cpp.

The primary documentation for the event log server source code is the Doxygen-generated
HTML documentation associated with each of the above source files. That documentation
set is automatically built based on the source code itself. It provides the most detailed, most
up-to-date descriptions of the code. The document you are reading now is supplemental, and
is intended to provide deeper background for the server, and its client API. If contradictions
between this document and the Doxygen-generated documentation are found, the Doxygen-
generated documentation should be considered correct.

2 Basic Operation

During the course of a system run, it is desirable to maintain a file-based log of events that
occurred during the run. Such a capability provides a permanent record of how a particular
run progressed, and serves as a valuable diagnostic for determining the cause of any problems
that were encountered during the run. The system event logger provides this capability.

The event logger maintains a file on disk called the event log file'. At any time, clients can
send messages to the event logger and the event logger will add them to the log file in the
order received.

!The situation is actually slightly more complicated than this. Please see section 3 on file channels for
details.

DES-0007 1 Rev 4



The System Event Logger March 11, 2013

Optionally, the logger may also send its log messages to an IRC server for convenient, real-
time viewing. This ability is enormously useful during project development and testing, and
can also be useful during normal operation (see section 8 for details).

The event logger is a pure server, meaning it is available to respond to requests from external
clients, but it never generates requests of its own to other servers. As a pure server, the event
logger sits at the lowest level in the system server hierarchy.? All other servers in the system
(and most /all client-only applications as well) maintain client connections to the event logger.

In addition to the text of the log messages themselves, each record written to the event log
file carries with it several other bits of information such as the name of the client that sent
the message, the time the message was sent, the location in the code where the message was
generated, and so on (these will be discussed in detail later on). Finally, each message is
assigned a priority value by the sending client. The priority value tags a message with an
appropriate level of importance. The event logger is configured with a minimum threshold
of importance a message must meet before it is included in the event log file. Messages
that do not meet the threshold are silently discarded without being logged. This makes it
possible (for instance) to record very detailed run logs during development, but scale back to
less storage-intensive logs on deployed systems, perhaps only recording errors and warnings.
More will be said about priorities later on in section 6.

3 File Channels

The event log server supports the concept of file channels. On startup, the server allocates
one or more of these file channels (the exact number to allocate is specified on the command
line). Individual file channels are referred to by number, beginning with zero and increasing
sequentially.

The way this works is simple. When clients tell the server to begin logging to a new file,
they also specify a file channel 1D to associate with the file. Conversely, when clients tell
the logger to stop logging, they specify a particular file channel to shut down. When new
log messages are sent to the server, the server writes them to every file channel currently
associated with an open file.

At first glance, file channels appear to do nothing but create a lot of redundant files. After
all, when new data is available, that same data is written to all open file channels. To what
end?

The need for file channels springs from several past and present projects in which a sample
is processed and then moved into a nuclear counting cell, where it it sits for a very long time
being analyzed. These systems typically support multiple nuclear counting cells. As soon
as one counting cell is loaded with sample, it is possible to start processing another sample
with the intent of loading it into a different counting cell. The result is that at any given

2See design document DES-0005, The Client/Server Architecture for a description of server hier-
archy.

DES-0007 2 Rev 4



The System Event Logger March 11, 2013

time, multiple samples can be in various states of staggered but overlapping processing or
analysis. Because data is typically reported on a per-sample basis, it is convenient to have
an event log record that covers a particular sample from its initial processing to its final
analysis. File channels handle this situation. When a new sample begins processing, a
new log is opened for it on an unused file channel. When final analysis of that sample is
complete, the associated file channel can be closed. Other samples that are in other states
of processing/analysis continue to log messages on their associated file channels.

Of course, not all projects will have a situation like described above in which multiple,
simultaneous (but staggered) event logs are desirable. Initially, support for file channels
was thought to be highly project-specific and unneeded in what is supposed to be, a general-
purpose event logger. In fact, the initial implementation of file channels was a modification of
an earlier, single file event logger that was made specifically to support a staggered sample
project similar to the one described above. However, support for file channels has been
implemented in such a way as to be invisible to clients that do not require it. In particular,
the client API messages for starting and stopping a log file default their file channel fields to
channel 0. Therefore, if clients neglect to fill in the field, the logger always acts on channel 0,
the default file channel. Because the addition of file channels does not complicate the client
interface to the server in any way for clients that don’t require file channel support, it was
decided to tolerate the feature in this general-purpose server, even though it may often go
unused.

4 Client Request Messages

In addition to the standard set of client request messages that all servers support?, the logger
server implements six additional messages. Those are briefly described in this section. For
full details on the client API functions that generate these messages, please refer to the
Doxygen documentation for the LoggerClient class.

4.1 LOG_MESSAGE

This message allows clients of the logger server to record a new message to the log file.

4.2 LOG_GET_PRIORITY

This requests the current logging priority set on the server. This is the minimum priority
level a new message must have in order to be included in the log file. Messages sent to the
logger tagged with priorities lower than this value will be silently discarded.

3See design document DES-0005, The Client/Server Architecture for more details on the standard
set of client request messages.

DES-0007 3 Rev 4



The System Event Logger March 11, 2013

4.3 LOG_SET PRIORITY

This message allows the client to set the event log server’s minimum logging priority to any
valid priority level.

4.4 LOG_START

This message instructs the event log server to open a new log file with the specified name
and associate it with the specified file channel ID. Keep in mind that the API function that
implements this message defaults the file channel ID to zero. In this way, clients that do
not care about multi-file support (file channels), do not even need to know that the server
supports the feature.

4.5 LOG_STOP

This message instructs the event log server to close the log file associated with the specified
file channel ID. Keep in mind that the API function that implements this message defaults
the file channel ID to zero. In this way, clients that do not care about multi-file support (file
channels), don’t even need to know that the server supports the feature.

4.6 LOG_STOP_ALL

This message instructs the event log server to close the log files associated with every file
channel. It is not an error if some or all file channels are not currently logging.

4.7 LOG_GET_FILE NAMES

This message returns a list of files that are currently open for logging. On systems that are
not taking advantage of multi-file support, the list will never contain more than one entry.

5 Message Fields

As mentioned briefly in section 2, in addition to a free-format text message, each record
sent to the event logger and written to file contains several additional fields. There are eight

fields in all.

o timestamp — This is a ten-digit time stamp representing the real-world time when
the record was written to the log file. The time stamp is in standard POSIX time_t
format, which is to say it represents the number of seconds since midnight January
1st, 1970 GMT. POSIX compliant operating systems, like Linux and QNX, provide

DES-0007 4 Rev 4



The System Event Logger March 11, 2013

many utility functions for manipulating time_t style timestamps and rendering them
in various, more human-readable, forms.

e priority — This is the priority level the client set on the message when he sent it to
the log server. Much more is said about log priority levels in section 6 below.

e process name — In our standard client/server architecture, all clients and all servers are
identified by short text names that are unique across the project. This field contains
the name of the client that sent the message to the event log server.

e client name — Many messages sent to the log server are sent by other system servers,
and many of those log messages are generated as the sending server works to fulfill a
request from one of its clients. This field contains the name of that server’s client. The
intention is to record not just what the server is doing, but also what client asked it
to do it. Do not confuse this field with the process name field!

The client name field is confusing. Perhaps an example will help to make this point
more clear.

Assume a system has two servers called valves and control. The valves server
maintains a list of valves on the system and allows its clients to open or close them.
The control server is a higher level server that is responsible for sequencing valves in
a particular order to perform a specific task. The control server accomplishes this by
sending messages to the valves server. Any time the valves server changes the state
of a valve, it also sends a message to the event log server to note the change. In those
log messages, the process name field will contain the string “valves”. That is, it is the
valves server that has sent the message to the logger. The client name field, on the
other hand, will contain the string “control”. That is, the change to the valve that the
valves server made, was at the request of the control server.

e [ine number — This is the line number of the line in the source code where this message
was sent to the logger. Now normally, no programmer sending a message to the logger
server is going to know the line number of the line from which he makes that call, and,
even if he did, the line number is likely to change as code is added or deleted above
that line. Fortunately, the compiler provides a special macro, called __LINE__, that
automatically computes the line number at compile-time, so the programmer doesn’t
have to worry about it. Also, the client API to the event log server provides its own
macro, called LOG_MSG(), that automatically inserts the current line number value into
the message. Programmers that use the LOG_MSG() macro, never have to worry about
this field at all.

e file name — This is the name of the source code file that generated this particular
message to the log. Like the line number field, this field is automatically filled in when
the programmer generates the log message using the LOG_MSG() macro, so he doesn’t
need to worry about keeping this field explicitly up to date.

e function name — This is the name of the function that generated this particular
message to the log. Like the line number and file name fields, this field is automatically

DES-0007 5 Rev 4



The System Event Logger March 11, 2013

6

filled in when the programmer generates the log message using the LOG_MSG() macro,
so he doesn’t need to worry about keeping this field explicitly up to date.

message — This is the actual free-form text message the client wants added to the
event log.

Message Priority Levels

The event logger supports seven priority levels. These are defined by an anonymous enum
located in loggerClientLib.h. The enum definition is reproduced below with descriptions to
follow.

enum { // logger priority levels

LOG_PRI_HIGHEST,

LOG_PRI_FATAL,

LOG_PRI_ERROR,

LOG_PRI
LOG_PRI_MESSAGE,
LOG_PRI_CHANGE,
LOG_PRI_STATUS

WARNING,

Ultimately, authors of event logger client applications are free to use any priority they want
for any message. However, when the event logger was written, each priority was intended to
have a specific meaning. Consider the following list as set of suggested guidelines.

LOG_PRI _HIGHEST — This is the highest level priority defined. It is unique in that mes-
sages of this priority can not be blocked by the event logger. They are always logged.
By convention, in the code base, LOG_PRI_HIGHEST is used to report all application
startups and shutdowns.

LOG_PRI_FATAL — This priority level is reserved for reporting error conditions that are
so severe that the reporting application could not recover and had to exit.

LOG_PRI _ERROR — This priority level is reserved for reporting error conditions that,
although serious, are not fatal.

LOG_PRI WARNING — This priority level is used to report unusual circumstances that
are not necessarily errors, but should still be brought to the attention of the system
operator.

LOG_PRI_MESSAGE — This priority level is used for arbitrary messages that report events
without an error connotation.

LOG_PRI_CHANGE — This priority level is used to report changes to an application’s
state. For instance, a server that manages valves may report changes of valve state
at this priority level. By convention, real projects typically run their event loggers set
such that LOG_PRI_CHANGE messages are the lowest priority messages to actually get
saved. Of course this can be set to whatever makes sense for a particular project.

DES-0007 6 Rev 4



The System Event Logger March 11, 2013

e LOG_PRI_STATUS — This seldom used priority level was intended to be used to report
client requests for information that would not result in a change of state on the server.
For example, asking whether or not a specific valve is open or closed is a request for
status. A command to open or close a valve represents a change of state.

7 Log Data File Format

In this section we describe the format of the event log files the server writes.

The server’s log files are text format files, organized such that each new log record takes one
new line in the file. The first line is always a header line. All additional lines are log records.
All lines, including the header line, are ASCII strings encoded in DSP format*. All lines are
terminated with a line-feed character.

7.1 The Header Line

Every event log file begins with a header line that describes something about the system
that created the file. The header line format is shown below. As can be seen, this is a DSP
format string, therefore it is most easily parsed with the MessageParser utility class.

format

(header,<version>, (<projectID>,<systemID>,<location>))

e header — This is the string literal “header”. The sole purpose of this field is to identify
the line as the header line.

e <version> — This field contains the file format version. As of this writing, version
1 is the most current. There are no changes anticipated, but if changes are made,
this field provides a way for a viewer program to recognize different file versions and
parse/display them accordingly.

e <projectID> — This field identifies the type of system that generated the log file (i.e.
a DAS system, a MRVL system, and so on).

e <systemID> — This field identifies the specific system that generated the log file (this
could be something like a site identifier, USX01 say).

e <location> — This identifies the system’s location. During development, this is typ-
ically a room number.

The last three items in the above list are populated from environment variables that are as-
sumed to already be defined on the control computer at the time a new log file is started. The
<projectID> field corresponds to the LOG_PROJECT_ID environment variable, <systemID>

4See design document DES-0002, Data Serialization Protocol fore complete details on DSP encod-
ing.

DES-0007 7 Rev 4



The System Event Logger March 11, 2013

corresponds to LOG_SYSTEM_ID, and <location> corresponds to LOG_LOCATION. If one or
more of these environment variables is not defined when the log file is started, the string
“Unknown” is used instead.

7.2 Log Record Lines

All remaining lines in the file are log records. The format for a log record line is shown
below.

(<timestamp>,<priority>,<processName>,<clientName>,<lineNumber>,<fileName>,<functionName>,<message>)

7.3 Log File Example

The following is a short example of a log file

(header, 1, (Unknown,Unknown,Unknown) )

(1271721811,5,logger, ,554,loggerServer.cpp,_Start,Started new log file ~(event.log™))
(1271721811,0,logger, ,249,loggerServer.cpp,LoggerServer,Server startup complete)
(1271721816,0,anadig, ,242,optoServer.cpp,0PT0Server,Server startup complete)
(1271721817 ,4,pid, ,4360,pidServer.cpp,Initialize,Configuration complete)
(1271721817,0,pid, ,2745,pidServer.cpp,PIDServer,Server startup complete)
(1271721818,0,control, ,716,controlServer.cpp,ControlServer,Server startup complete)
(1271721819,0,mks, ,803,mks910Server. cpp,MKS910Server,Server startup complete)

(1271721866 ,5,anadig,WebGUI,689,optoServer.cpp,SetDigital,Output ’v503’ changed to ON)
(1271721961,0,WebGUI, ,266,wtWebGUI.cpp,main,Application shutting down)
(1271721964,0,sohMenu, ,154,sohMenu. cpp,main,Application startup)
(1271721987,5,soh, sohMenu, 512, sohServer. cpp,Stop,Closing SOH log file ~(7))

(1271958667,0,logger, ,261,loggerServer.cpp, “LoggerServer,Server shutting down)
(1271958667,5,logger, ,573,loggerServer.cpp,_Stop,Closing log file ~(event.log™))

Note that most of these lines have blank values for the <client> field (the fourth field).
That means that the application that wrote these lines was not performing an action on
behalf of a client when the message was submitted to the event logger. The line with time
stamp 1271721866 is an exception. Here the “anadig” server reported that it turned on
digital output channel “v503”. The forth field (“WebGUI” in this case) indicates that this
change was requested by a client calling itself “WebGUI”. Another example of this is the line
with time stamp 1271721987. Here a client calling itself “sohMenu” told the “soh” server
to close the state-of-health log file. The “soh” server is the one that wrote this line into the
event log.

DES-0007 8 Rev 4



The System Event Logger March 11, 2013

8 IRC Support

The event logger has the optional capability of reporting its messages to a chat channel on
an IRC server, in addition to sending them to the current log file(s). This capability is
enabled or disabled at compile time, by setting the preprocessor macro IRC to either a one
(IRC capability enabled) or a zero (IRC capability disabled).?

Sprinkled throughout the loggerServer.cpp source code, you will find code snippets that are
conditionally compiled into the final executable based on the value of IRC. One such code
snippet is shown below.

#if IRC > O
if (argec !'=7) {
// all IRC command-line parameters are REQUIRED if IRC support is
// compiled in. Otherwise, they are allowed to be present on the
// command line, but they are ignored.

Usage();

exit(1); //
}
ircServer = argv[3];
ircPort = atoi(argv[4]);
ircChannel = argv[5];
ircBotName = argv([6];

#endif

8.1 Using the IRCConnection Utility Class

The event logger uses the IRCConnection utility class (defined in rcLib.h and implemented
in ircLib.cpp) for its IRC support. The class allows the event logger to connect to a user-
specified IRC server, join a user-specified chat channel, and send log messages to that channel
as they become available. The class transparently manages the connection to the IRC server,
responding to those IRC server messages it needs to respond to, and automatically recon-
necting to the IRC server if the connection is lost for some reason. The IRCConnection class
is completely described in design document DES-0009, The IRCConnection Utility
Class.

Like all users of the IRCConnection class, the event logger derives a custom class from it
to implement the specific capability it needs. The event logger’s class definition is shown
below.

#if IRC > 0O
class LoggerIRC: public IRCConnection {

5The project makefile is set up to expect a value for the IRC preprocessor macro to be passed in on the
command line to the make utility. Compiling the project using “make IRC=1" will automatically define
IRC as one and pass the definition along to all source modules that require it. By default, IRC support is
enabled (i.e. if the value for IRC is not explicitly given to make, then a value of one will be used). Users
need to explicitly disable it (“make IRC=0") to remove IRC support from the compiled version.

DES-0007 9 Rev 4



The System Event Logger March 11, 2013

public:
LoggerIRC(string botName, string uname, string rname, string chan);
string channel;

protected:

void Msg376Handler (PrefixPart &prefix, CommandPart &command, ParamsPart &params);
};
#endif

The class is simple, doing nothing other than defining one new IRC server message handler
for message type “376” (end of the “message of the day” message). This message gets sent
by the IRC server as the last line of its message-of-the day paragraph. The event logger uses
receipt of this message to know when it has successfully connected to the server. All the
message handler does in response is to send a “JOIN” message back to the server asking to
join the chat channel specified by the user when the event logger was started (see section 9).

Once the connection to the IRC server has been established and the appropriate chat channel
joined, the event logger uses the base class’ Message () method to post new log messages to
the channel.

8.2 Text Attribute and Color Codes

In the TRC world, there is an unofficial, but very popular and widely adopted, standard
for setting the foreground and background colors of the characters that make up channel
messages. This is the mIRC' color scheme, named after the Windows IRC client application
that first implemented it.

The mIRC standard defines attribute codes and color codes. Attribute codes always appear
in pairs, and they surround the text they affect. The attribute codes are unusual in that,
although they are added to text strings, the actual numeric representation of the code value
is used rather than its text representation. For example, the attribute code for color is 03.
When added to the text string, rather than using the text string “03” for the code, its actual
one-byte numeric representation (hexadecimal 0x03) is used instead. Color codes, on the
other hand, are represented using their text string representation (so the code for “red”,
which is 04, is actually represented by the text string “04”).

The mIRC attribute codes are listed in the following table (code values are in decimal).

Table 1: mIRC Attribute Codes

Code | Affect Comments
02 bold The enclosed text will be displayed in bold.
03 color The enclosed text will be displayed using the specified
foreground and background colors.
22 | italics The enclosed text will be italicized (some clients respond

to this code by swapping the current foreground and
background colors instead; so called “reverse video”).
31 underlined | The enclosed text will be underlined.

DES-0007 10 Rev 4



The System Event Logger March 11, 2013

Foreground and background color codes range from 00 to 15 and are defined in the following
table.

Table 2: mIRC Color Codes
Code | Color | Code | Color

“00” | white | 708" | yellow
“01”7 | black 709”7 | light green

“02” | blue 710”7 | teal
“03” | green 7117 | light cyan
“04” | red 7127 | light blue

“05” | brown | 713" | pink
“06” | purple | 714”7 | grey
“07" | orange | 715”7 | light grey

Most of the attribute codes take no additional parameters. For example, the following string
would display the word “bold” in boldface (items in angle brackets denote non-printable
ASCII code characters, which is what all mIRC attribute codes are).

This is a <0x02>bo1d<0x02> example!

The attribute code for color is slightly different. For the color attribute, a foreground color
code and a background color code, separated by a comma, must immediately follow the first
color attribute code of the pair. In the following example, the text “red on yellow” would
be displayed with red letters on a yellow background.

This example contains some <0x03>04,08red on yellow<0x03> text.

The event logger uses these mIRC codes to color code the message priority tag of the
messages it reports to the IRC channel. The code to do this can be found in the _LogMsg()
method.

8.3 IRC Channel Output Format

Not all of the fields of a log record are sent to the IRC channel, but most of them are. The
IRC output consists of one record per line, and each line displays the message priority, the
name of the client that is responsible for the request that caused the message to get logged,
the name of the server that logged the message, the file, function and line number of the
piece of source code that generated the message and the message itself. The priority string
is color coded based on priority level. An example snippet of the event logger’s IRC output
appears below (without the color coding).

DES-0007 11 Rev 4



The System Event Logger March 11, 2013

<logger> CHANGE (WebGUI ==> anadig) (optoServer.cpp/SetDigital 711) Digital output
channel ’v502’ changed to OFF

<logger> CHANGE (WebGUI ==> anadig) (optoServer.cpp/SetDigital 711) Digital output
channel ’v302’ changed to ON

<logger> CHANGE (WebGUI ==> anadig) (optoServer.cpp/SetDigital 711) Digital output
channel ’v302’ changed to OFF

<logger> HIGHEST ( ==> controlMenu) (controlMenu.cpp/main 412) Application startup

<logger> ERROR  ( ==> mks) (mks910Server.cpp/DataUpdateThread 688) Error reading
response from ’dps101’ while trying to read pirani pressure (Read timed out
with no data received)

<logger> HIGHEST ( ==> controlMenu) (controlMenu.cpp/main 647) Application shutdown

9 Starting the Server

The event log server can be started from the command line directly, but, most often, it is
started from the project’s start.sh script. The server takes either two or six command line
parameters, depending on whether or not IRC support has been compiled into the server.
Even when IRC support is not enabled, the long version of the command line is still allowed,
but the IRC specific parameters are ignored.

loggerServer priority numChannels [irc-server irc-port irc-channel irc-name]

e priority — The initial minimum logging priority (can be changed on the fly by
clients). Valid numbers are O=highest, 1=fatal, 2=error, 3=warning, 4=message,
5=change, and 6=status. Any other value will default to priority 5=change.

e numChannels — The number of file channels the server should support. On projects
where multi-file support is not needed (see section 3), this should be set to one.

e irc-server — Tells the server which IRC server to connect to. This parameter is
optional and then only meaningful if IRC support has been compiled into the server.

e irc-port — Tells the server which port to connect on when connecting to the IRC
server. This parameter is optional and then only meaningful if IRC support has been
compiled into the server.

e irc-channel — Tells the server which IRC channel to join. This parameter is optional
and then only meaningful if IRC support has been compiled into the server.

e irc-name — This is the nickname the logger server will use on the IRC server. This
parameter is optional and then only meaningful if IRC support has been compiled into
the server.

DES-0007 12 Rev 4



The System Event Logger March 11, 2013

10 The Test Menu Program

For development and testing purposes, a small text-mode menu client application called
loggerMenu (see loggerMenu.cpp), has been developed for the event logger. As expected, the
program uses the LoggerClient class as its interface to the server.

The menu program is meant to be started from within a terminal window. It requires no
command line arguments. When the program runs, it presents the user with the following
text menu.

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get server message response interval histogram
-99 - shutdown server

Logger Server Specific Items:

1 - Send message to log

2 - Get current logging priority
- Set current logging priority
- Start new log file
- Stop logging
- Stop logging on ALL file channels
- Get file names

~N oo W

0 - Exit Program

Enter Selection >

The first three menu items correspond to standard server messages all servers can respond
to (see the file cliserv.h and design document DES-0005, The Client/Server Architec-
ture). The six options under the “Logger Server Specific Items” heading correspond to the
six server-specific messages implemented by the event logger. Users choose the number of
the message they want to send, and they are prompted for additional parameters as needed.
The selected message is sent to the server and the response is formatted and displayed to
the terminal.

DES-0007 13 Rev 4



U.S. DEPARTMENT OF

ENERGY

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352

1-888-375-PNNL (7665)
www.pnnl.gov




	Introduction
	Basic Operation
	File Channels
	Client Request Messages
	LOG_MESSAGE
	LOG_GET_PRIORITY
	LOG_SET_PRIORITY
	LOG_START
	LOG_STOP
	LOG_STOP_ALL
	LOG_GET_FILE_NAMES

	Message Fields
	Message Priority Levels
	Log Data File Format
	The Header Line
	Log Record Lines
	Log File Example

	IRC Support
	Using the IRCConnection Utility Class
	Text Attribute and Color Codes
	IRC Channel Output Format

	Starting the Server
	The Test Menu Program

