&= T\ U.S. DEPARTMENT OF

.2) ENERGY PNNL-22588

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

The State-of-Health Server
DES-0006

Revision 4

Charlie Hubbard
March 2013

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

The State-of-Health Server
Charlie Hubbard

DES-0006
Revision 4
March 2013

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The State-of-Health Server

March 11, 2013

Contents

1

Introduction

Basic Operation

File Channels

The Server Configuration File

SoH Data File Format

5.1 The Header Line
5.2 The Info Line
5.3 Data Lines.

Server Start-Up

The Test Menu Program

DES-0006

w

U W

Rev 4

The State-of-Health Server March 11, 2013

1 Introduction

The state-of-health (SoH) server is a standard system server that provides SoH data logging
services for the control system. Like all system servers, the SoH server is derived from
the BaseServer class (see cliserv.h and cliserv.cpp in the code base), and it inherits the
inter-process communication framework, standard server messages, etc., that BaseServer
provides. For that reason, to achieve a detailed understanding of the SoH server and its
client interface library, the reader should first be thoroughly familiar with the BaseServer
and BaseClient classes, which are described in detail in design document DES-0005, The
Client/Server Architecture.

In the code, the implementation for the SoH server can be found in the file sohServer.cpp.
The client interface library for the server is defined and implemented in sohClientLib.h and
sohClientLib.cpp. A simple text-based menu client for the server also exists, and it is imple-
mented in sohMenu.cpp.

The primary documentation for the SoH server source code is the Doxygen-generated HTML
documentation associated with each of the above source files. That documentation set is
automatically built based on the source code itself. It provides the most detailed, up-to-date
descriptions of the code. The document you are reading now is supplemental, and is intended
to provide deeper background for the server, and its client API. If contradictions between
this document and the Doxygen-generated documentation are found, the Doxygen-generated
documentation should be considered correct.

2 Basic Operation

All servers derived from the BaseServer class (which is to say all system servers), have
the ability to return state-of-health information in a standard way (although by default,
servers return empty SoH data records and must be overridden on a case-by-case basis
to provide useful SoH data — see DES-0005, The Client/Server Architecture for
complete details).

Because this is an attribute of the generic BaseServer class, the generic BaseClient class
has the ability to query the state-of-health information offered by any server derived from
BaseServer. The SoH server takes advantage of this fact by instantiating one BaseClient
client interface for each server in the system from which the state-of-health server expects to
receive SoH data'. The client interface references are stored in an STL map keyed on server
name.

At some user-definable interval (typically 60 seconds, although this is client-settable), the
SoH server wakes up, iterates through the map, and requests the latest SoH data for all
servers for which the map contains a corresponding client interface. The SoH data for all

!The names of the actual servers that will be queried for SoH data are specified in the SoH server’s
configuration file

DES-0006 1 Rev 4

The State-of-Health Server March 11, 2013

queried servers is brought together and written as one record in the current state-of-health
log file. This process continues until the server is shut down or a client instructs the server
to stop logging data.

3 File Channels

The SoH logger server supports the concept of file channels. On startup, the server allocates
one or more of these file channels (the exact number to allocate is specified on the command
line). Individual file channels are referred to by number, beginning with zero and increasing
sequentially.

The way this works is simple. When new SoH data is acquired from the other servers on
the system, copies of that data are written to every open file channel. When clients open a
new log file or close one that is currently logging, they also specify the ID of the file channel
the file is attached to. However, both the Start() and Stop() client API methods default
the file channel ID to zero, so on systems where only a single file channel is needed, clients
do not have to understand or think about the file channels, or even realize that the server
supports them.

At first glance, file channels appear to do nothing but create a lot of redundant files. After
all, when new data is available, that same data is written to all open file channels. To what
end?

The need for file channels springs from several past and present projects in which a sample
is processed and then moved into a nuclear counting cell, where it it sits for a very long time
being analyzed. These systems typically support multiple nuclear counting cells. As soon
as one counting cell is loaded with sample, it is possible to start processing another sample
with the intent of loading it into a different counting cell. The result is that at any given
time, multiple samples can be in various states of staggered but overlapping processing
or analysis. Because data is typically reported on a per-sample basis, it is convenient to
have a state-of-health record that covers a particular sample from initial processing to final
analysis. File channels handle this situation. When a new sample begins processing, a new
SoH log is opened for it on an unused file channel. When final analysis of that sample is
complete, the associated file channel can be closed. Other samples that are in other states
of processing/analysis continue to log SoH data on their associated file channels.

Of course, not all projects will have a situation like described above in which multiple,
simultaneous (but staggered) SoH logging is desirable. Initially, support for file channels
was thought to be highly project-specific, and unneeded in what is supposed to be a general-
purpose SoH logger. In fact, the initial implementation of file channels was a modification
of an earlier, single file SoH logger that was performed specifically to support a staggered
sample project similar to the one described above. However, because support for file channels
has been implemented in such a way as to be invisible to clients that do not require it, it
was decided to fold the capability into the general purpose server.

DES-0006 2 Rev 4

The State-of-Health Server March 11, 2013

4 The Server Configuration File

As mentioned previously, the server maintains an internal STL map that holds a set of client
interfaces to servers. This map is keyed on server name. The names of the servers that the
SoH server should query come from a text-based configuration file.

The format of the configuration file is simple. Blank lines and lines beginning with a pound
sign (#) are ignored. All other lines are relevant. The remaining lines are expected to contain
the names of the servers to be queried (one name per line). The server names must be the
same names the servers use when they register themselves with the server name resolver (see
design document DES-0004, The Server Name Resolver for details). In most of the
code base, these names are specified by symbolic constants. These constants are defined in
the file servers.h. Refer to that file to determine the actual text names the various servers

go by.
The server reads through its configuration file on startup, creates one BaseClient client

interface for every server listed, and inserts the interfaces into its server map. An example
configuration file appears below.

#

This file is simply a list of the servers from which the SoH server will
request SoH information. The names in the list must be the names the

respective servers register with the name resolver when they start.

#

anadig
dps
pid

5 SoH Data File Format

In this section we describe the format of the SoH log files the server writes.

The server’s log files are text format files, organized into three sections. The first section,
consisting of exactly one line, is the header. This is immediately followed by a sensor
information record, also consisting of exactly one line. All lines following the information
record are data records. Individual records take up exactly one line, and a new data record
is written each time the server writes a new set of SoH data. All lines in the SoH file are
encoded as Data Serialization Protocol strings, which makes them easy to parse using the
MessageParser class®.

2For a complete description of the Data Serialization Protocol and the MessageParser class, see design
document DES-0002, Data Serialization Protocol.

DES-0006 3 Rev 4

The State-of-Health Server March 11, 2013

5.1 The Header Line

Every SoH log file begins with a header line that describes something about the system that
created the file. The header line format is shown below. As can be seen, this is a DSP format
string, therefore it is most easily parsed with the MessageParser utility class.

format

(header,<version>, (<projectID>,<systemID>,<location>))

e header — This is the string literal “header.” The sole purpose of this field is to identify
the line as the header line, which may be useful to some parsers. Mostly this field is
fluff.

e <version> — This field contains the file format version. As of this writing, version 2
is the most current. No changes are anticipated, but, if changes are made, this field
provides a simple way for a viewer program to recognize different versions and parse
them accordingly.

e <projectID> — This field identifies the type of system that generated the file (i.e., a
DAS system, a MRVL system, etc.).

e <systemID> — This field identifies the specific system that generated the file (this
could be something like a site identifier, USX01 say).

e <location> — This identifies the system’s location. During development, this is typ-
ically a room number.

The last three items in the above list are populated from environment variables that are as-
sumed to already be defined on the control computer at the time a new log file is started. The
<projectID> field corresponds to the LOG_PROJECT_ID environment variable, <systemID>
corresponds to LOG_SYSTEM_ID, and <location> corresponds to LOG_LOCATION. If one or
more of these environment variables is not defined when the log file is started, the string
“Unknown” is used instead.

5.2 The Info Line

The line immediately following the header line is called the info line. It contains information
about each of the sensors that report values to the SoH file. The info line format is shown
below. As can be seen, this is a DSP format string, therefore it is most easily parsed with
the MessageParser utility class.

format

(info, (<name>,<unit>,<analog>), (<name>,<unit>,<analog>),..., (<name>,<unit>,<analog>))

The first field in the info line is always the string literal “info.” This identifies the line as
the information line. Following the “info” field are a series of one or more DSP sub-records

DES-0006 4 Rev 4

The State-of-Health Server March 11, 2013

that each contain information about one sensor that reports data to the file. There is one of
these sub-records for every reporting sensor.

e <name> — This is the name of the specific sensor being described. These names are
short, human-readable names (a pressure sensor named “PS101” for example) unique
across a project.

e <unit> — In the case of analog sensors, this field contains the name of the engineering
units the sensor reports in (for example, “ml/min”, “PSI”, “C”, etc.). For digital
sensors (such as valves, limit switches, etc.), the value of this field is unimportant, but
typically contains something like “none,” “bool,” “digital,” etc..

e <analog> — If this field is “1,” the sensor is an analog sensor (so the <unit> field is
meaningful). If the field is “0,” the sensor is a digital sensor. The primary reason for
this field is so viewer programs can optionally plot digital sensor values (valve states
and so on) on a secondary Y axis so that their display is unaffected by vertical zooming
of the primary Y axis.

5.3 Data Lines

All subsequent lines in the file are data lines. The format for a data line appears below.
As can be seen, these are DSP format strings, so they are most easily parsed using the
MessageParser utility class.

format

(data,<timestamp>,<value>,<value>,..., <value>)

The first field in the data line is always the string literal “data.” This identifies the line as
a data line.

Following the “data” field is a 10-digit timestamp that indicates the real-world time at
which this entry was written to the file. This field is a standard POSIX time_t timestamp.
It corresponds to the number of seconds that have elapsed since midnight, January 1, 1970
GMT. All POSIX compliant operating systems (Linux, QNX, etc.) have library functions
that can convert this value to various human-readable forms.

Finally, there appears a series of values. These correspond to the values of the corresponding
sensors in the “info” record, and they appear in the same order, and at the same index, as
their “info” record counterparts.

The decision to provide only values in the “data” records, as opposed to sensor-name/value
pairs,® has certain ramifications. Most importantly, it enormously reduces the total size of
the file (perhaps by a factor of three or more, depending on the size of the sensor names
and the types of data they return). But it also introduces a weakness. If one or more of the

3Version 1 of the file format did use name/value pairs in the “data” records, but that was reduced to just
values in version 2 as a space-saving measure.

DES-0006) Rev 4

The State-of-Health Server March 11, 2013

servers that are providing SoH data go off line, the SoH server will no longer receive SoH
data from them. Placeholders for the missing sensors still need to be added to the output
“data” record, otherwise the reported values will no longer appear in the same indices, and
there will be no way to relate the values to a specific sensor in the “info” line. However, the
SoH server does handle this properly. Missing sensors are replaced with empty fields (that
is zero-byte fields) still separated by commas. An example may make this more clear.

Consider the following “data” record as the aggregate SoH data from three servers: A, B
and C. Server A provides the values 1, 2, and 3, server B provides the values 10, 20, and 30,
and Server C provides the values 100, 200, and 300.

(data, 1320854963,1,2,3,10,20,30,100,200,300)

Now assume that Server B crashes or otherwise goes offline. During the period that Server
B is unavailable to provide SoH data, the data records will look like so. ..

(data,1320864873,1,2,3,,,,100,200,300)

With empty fields used to ensure the values that are reported from working servers stay in
the same columns they were in to begin with. Later, if server B restarts, SoH data from
Server B will again appear in its proper place.

6 Server Start-Up

The server is started from the command line using the following syntax. ..

sohServer configFile interval [numChannels]

where. ..

e configFile is the path/filename of the server’s configuration file (remember, this is
the file that contains the names of the servers the SoH server will query for new SoH
data).

e interval is the startup logging interval specified in seconds. This specifies the rate at
which new “data” records will be written to the output SoH data files. For example,
a value of 60 means that a new “data” record will be written to each open file channel
every 60 seconds. The value of the interval parameter can be no smaller than 4. If
a value less than 4 is entered, 4 will be the actual value used. The logging interval can
also be modified at run-time via the server’s client interface.

DES-0006 6 Rev 4

The State-of-Health Server March 11, 2013

e numChannels The final parameter is optional. If present, it represents the number of
file channels the server should make available for use. If this parameter is left off, only
a single file channel will be supported.

If the server is started with no command line parameters specified, it exits with the following
usage message.

This is the SoH logger server. It uses the server-side SoH mechanism
whereby servers from which the SoH data is obtained, decide themselves
which values to report as SoH and which not to report. They also
maintain and provide full parameter descriptions of each parameter they
are willing to report (name, type, and units).

This server implements a ’file channel’ concept. The server supports
some number (specified on the command line) of ’file channels’. Each
file channel can be separately opened (associated with an independent
file on disk) and closed. SoH data records are written to all file
channels that are open when the data is queried. This obviously leads
to a lot of duplication of data. The intent here is to support projects
which perform staggered, overlapping runs. That is, they can start a
new run before the current run completes (this is common in projects
that use multiple nuclear detectors for example). With the file channel
concept, complete, contiguous SoH files can be maintained for each run,
eliminating the need to piece together complete SoH coverage from a
series of smaller SoH files.

Multiple file channels does not however make the server more difficult
to use for projects in which a single SoH file open at any given time is
sufficient. If no ’max file channels’ value is given on the command
line, then the server will only support one. Also, the client interface
to this server (see sohClientLib.h/.cpp) defaults to using the first
file channel (channel 0) unless explicitly specified otherwise by the
user, so simple projects that use this server never need know that
multiple file channels are even an option.

Note that this server DOES NOT immediately begin logging upon startup.
Clients must explicitly issue SOH_START commands to begin logging.

Once every user-defined interval, this server queries the various
servers for SoH information and writes the returned information to all
open file channels.
Usage: sohServer configFile interval [numChannels]
configFile - The path/name of the server’s configuration file
interval - The initial logging interval specified in seconds.
numChannels - The maximum number of file channels the server will

support (i.e. the maximum number of simultaneously
recording SoH files that can exist).

7 The Test Menu Program

For development and testing purposes, a small text-mode menu client application called
sohMenu (see sohMenu.cpp), has been developed for the SoH server. The program uses the

DES-0006 7 Rev 4

The State-of-Health Server March 11, 2013

SOHClient class as its interface to the server, and it also maintains a client interface to the
system event logger, so it can record when it starts up and when it shuts down.

The menu program is meant to be started from within a terminal window. It requires no
command line arguments. When the program runs, it presents the user with the following
text menu.

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get server message response interval histogram
-99 - shutdown server

Server Specific Items:
1 - Get current logging interval
2 - Set a new logging interval
- Start logging
- Stop logging
Stop logging on ALL channels
- Force a record
- Get file names

N o oW
|

0 - Exit Program

Enter Selection >

The first three menu items correspond to standard server messages that all servers can
support?. The six options under the “Server Specific Items” heading correspond to the six
server-specific messages implemented by the SoH server. Users choose the number of the
message they want to send, and they are prompted for additional parameters as needed.

The menu program is a full client, supporting every client request message the SoH server is
able to process. It allows testers to send each of those messages to the server and view the
server’s responses. It is intended primarily as a development, testing and debugging tool;
however, experience has shown that it is also useful as a bare-bones user interface to the
SoH server running on real-world systems as well.

4See design document DES-0005, The Client/Server Architecture for more information on these
and other standard server messages.

DES-0006 8 Rev 4

U.S. DEPARTMENT OF

ENERGY

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352

1-888-375-PNNL (7665)
www.pnnl.gov

	Introduction
	Basic Operation
	File Channels
	The Server Configuration File
	SoH Data File Format
	The Header Line
	The Info Line
	Data Lines

	Server Start-Up
	The Test Menu Program

