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Abstract 

In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic 
ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy 
memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to 
accurately estimate soil moisture content and variations in vadose zone studies.  Many studies have 
illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated 
changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that 
quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniqueness and 
nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we 
develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-
subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies 
uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations 
distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, 
MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on 
prior information obtained from a straight-ray GPR inversion.  The probability distributions are then 
sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential 
Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for 
evaluation with a curved-ray GPR forward model.  The likelihood functions are computed as a function of 
misfits, and posterior pdfs are constructed using a Gaussian kernel.  Inversion of subsequent time-lapse 
datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new 
data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of 
the state variables. We first apply the inversion framework to a static synthetic example and then to a 
time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford 
Site in Richland, WA.  We demonstrate that the MRE-Bayesian inversion enables us to merge various 
data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better 
resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of 
inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics 
more accurately. 
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1.1 

1.0  Introduction 

The ability to monitor soil moisture in the vadose zone is crucial to meeting many societal needs.  
Agriculture, for instance, relies on current soil moisture data to guide irrigation practices and to predict 
the potential yield of crops (Shaxson and Barber 2003).  Weather forecasts rely on accurate estimates of 
soil moisture as input to climate models (Ni-Meister et al. 2005).  Soil moisture information is also a key 
component in predicting natural disasters, such as flooding and slope failure (Tohari et al. 2007). Soil 
moisture is also a key parameter in determining unsaturated hydraulic conductivity, which in turn affects 
solute mobility and contaminant fate and transport within the vadose zone (Murdoch 2000). 

 Several techniques exist for monitoring soil moisture at a variety of spatial and temporal scales, 
including space-borne sensors, air-borne sensors, wireless sensor networks, and ground-based sensors 
(Vereecken et al. 2008).  Within the class of ground-based sensors, ground penetrating radar (GPR) offers 
the unique advantage over other methods like time domain reflectometry (TDR) or capacitance probes by 
having intermediate spatial support volumes (centimeters to meters) (Vereecken et al. 2008) and temporal 
resolution (e.g., sub-daily), and being minimally invasive.  Although GPR does not measure soil moisture 
directly, signal travel times recorded by GPR are dominantly regulated by variations in dielectric 
permittivity, a parameter controlled by the presence of moisture and related through a petrophysical 
model (Lunt et al. 2005).  Particularly, tomographic GPR has emerged as a solution to long-term 
monitoring of spatial distribution of soil moisture within the vadose zone (Binley et al. 2002; Hubbard et 
al. 1997) and as a means of deriving other spatially heterogeneous soil physical properties, such as 
permeability (Binley et al. 2002; Chen et al. 2001; Dubreuil-Boisclair et al. 2011; Hubbard et al. 1997; 
Hubbard et al. 2001; Kowalsky et al. 2005; Kowalsky et al. 2004) and porosity (Clement and Barrash 
2006), through time-lapse, and/or joint inversion (Binley et al. 2002; Kowalsky et al. 2005; Kowalsky et 
al. 2004). 

The inversion process converting GPR traveltime tomography data to physical properties of interest is 
an area of continued investigation.  Inverted images from tomograms are subject to great uncertainty due 
to non-uniqueness of solutions and variable spatial resolutions. Sine tomographic inversion problems tend 
to be underdetermined, and might have an infinite number of possible solutions, regularization (typically 
smoothing) can be applied to stabilize solutions, but the corresponding tomography inversion results tend 
to exaggerate the size and underestimate the magnitude of anomalies in the subsurface, and under-
represent the true correlation structure (Day-Lewis 2004).  The optimum spatial resolution achievable by 
GPR is limited by survey geometry, measurement error, measurement physics, and the parameterization 
and/or regularization employed in the inversion (Day-Lewis 2004).  The variation in resolution within a 
tomogram makes pixel-specific inference of petrophysical properties uncertain. 

Time-lapse GPR traveltime tomography datasets are a useful means for observing dynamic systems.  
Given that changes in soil moisture are hysteretic, it is sensible to capitalize on time-dependent 
correlation between time-lapse datasets.  One useful technique is difference inversion (e.g., LaBrecque 
and Yang 2001) wherein regularization is applied between time-lapse datasets.  Such an approach is 
useful for highlighting changes to a system, but requires a reliable inversion of a background dataset.  
Kim et al. (2009) and Karaoulis et al. (2011) noted that the subsurface can be treated as a space-time 
model, wherein the system is changing continuously on both space and time axes.  The objective function 
therefore penalizes for changes in space-time. 
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It is widely recognized that quantifying uncertainty is a crucial aspect of inverting geophysical data 
(Cassiani et al. 2004; Chen et al. 2001; Rubin and Hubbard 2005; Yeh and Simunek 2002), which cannot 
be done using deterministic approaches (such as least-square optimization).  It has become increasingly 
common to invert data within a stochastic framework wherein parameters are treated in a probabilistic 
manner, although the approaches still lacks the ability to combine multiple data types. One solution is the 
Bayesian updating framework, where parameters retain their probabilistic structure throughout inversion 
and can be updated quantitatively with the addition of new information (e.g., Chen and Rubin 2003; Chen 
et al. 2008; Copty et al. 1993; Dubreuil-Boisclair et al. 2011; Hou et al. 2006; Hou and Rubin 2005; 
Hubbard et al. 2001; Kowalsky et al. 2005; Kowalsky et al. 2004; Lehikoinen et al. 2010). 

Bayesian inversion approaches offer a systematic way to quantitatively describe uncertainty and 
provide parameter estimates that can be conditionally updated when new data becomes available.  
However, the flexibility of Bayesian techniques can also raise concerns.  First, there is the risk of 
subjectivity when defining prior distributions since the inversion hinge upon the choice of prior 
distributions (for an excellent discussion on subjectivity and options for choosing prior distributions, see 
(Berger 2006)).  Another critical component in Bayesian inversion is the weighting scheme.  Suppose we 
have greater confidence in our data than we do in our prior information, we would seek to bias assign 
higher weights to the new data, for the situation with better instrumentation but lack of information to 
define the priors.  Finally, the freedom of modeling within a Bayesian framework may result in excessive 
computational demand, in that increasing model complexity and number of parameters will result in more 
simulations and longer CPU time per simulation. 

Hou and Rubin (2005) employ minimum relative entropy (MRE) within a Bayesian framework as a 
means of non-subjectively selecting prior probability distribution functions (pdfs) in a study estimating 
soil moisture from transient surface GPR, meteorological measurements, and TDR data.  Briefly, MRE is 
a means of automatically updating parameter pdfs that minimizes the entropy between the existing pdfs 
and new constraints placed on that pdfs.  The MRE-derived pdfs allow maximum flexibility in the 
inversion, without sacrificing loss of prior information from the constraints  

Kowalsky et al. (2004; 2005) used a Bayesian scheme for inversion of ground penetrating radar 
(GPR) tomography data to study infiltration processes occurring within the vadose zone.  They developed 
a maximum a posteriori (MAP) Bayesian approach within a pilot point framework to infer dielectric 
permittivity and (hydraulic) permeability fields from transient borehole GPR and borehole saturation 
measurements.  The method of pilot points uses only select points in tandem with a spatial covariance 
model to simulate parameter estimates over a refined spatial grid, and is an effective way of capturing 
effects of heterogeneity using a minimum number of parameters. 

In this study, we adopt the MRE-Bayesian approach developed by Hou and Rubin (2005) and apply it 
to estimate spatial dielectric permittivity fields in the vadose zone from transient tomographic GPR data.  
Similarly to Kowalsky et al. (2004), we also incorporate the method of pilot points and sequential 
Gaussian simulation (SGSIM) to produce our dielectric permittivity fields.  However, in our work, we 
treat each pilot point as a distinct Bayesian parameter defined by a unique MRE prior pdf and subsequent 
memory functions.  Our target parameters for inversion are dielectric permittivity at several locations 
throughout the study area and the spatial correlation range. We demonstrate our method by applying it to 
a static synthetic example and a time-lapse field example, the latter collected at the Hanford nuclear site 
in Richland, WA.



 

2.1 

2.0 GPR Background 

Tomographic GPR is a borehole-based geophysical technique.  It involves transmitting an 
electromagnetic (EM) pulse from a source in one borehole and recording the arrival of EM energy at a 
receiver position in a separate borehole. The source and receiver vertical locations are varied to collect a 
suite of data of signal arrival times and magnitude for various source-receiver pairs.   

Inversion of the first arrival times of the EM energy is used to estimate the velocity and the dielectric 
permittivity (𝜖) distribution between the boreholes.  For convenience, the relative dielectric permittivity 
(𝜖𝑟) is used, which is simply the dielectric permittivity normalized by the speed of light in a vacuum 
(𝑐 = 0.3 m/ns).  At the high frequencies typically used for GPR (~50-1000MHz) and in low-loss 
environments (non-magnetic, low electrical conductivity), the dielectric constant (𝜖𝑟) of a soil matrix can 
be related to EM velocity (v) by: 

𝜖𝑟 ≈ �𝑐
𝑣
�
2
,     (1) 

(Davis and Annan 1989).  It is clear that to estimate dielectric permittivity, information regarding the EM 
velocity structure between the boreholes is needed.  Since we are interested in the spatial variation in EM 
velocity, we discretize the study area into n grid blocks with velocities v1 … vn, and relate these velocities 
to travel time data through a forward model (G) that describes the propagation path (distance) travelled by 
the EM energy.  The solution takes the form of an inversion problem: 

𝐆(𝐯) = 𝐭,     (2) 

where 𝐯 is a vector of the velocities of the grid blocks, and 𝐭 represents the vector of measured travel 
times.   

GPR forward models generally fall into two categories: (1) full-waveform methods (e.g., Casper and 
Kung 1996; Kowalsky et al. 2001; Vasco et al. 1997) and (2) ray-based methods (e.g., Cai and Mcmechan 
1995; Peterson 2001; Zhang et al. 2005).  Full waveform methods compute solutions to Maxwell’s 
equations, and offer thorough information on EM energy propagation.  In a ray-based inversion approach, 
the total travel time from a source to a receiver is discretely represented as: 

𝑡 = ∑ 𝑙𝑖
𝑣𝑖

,𝑛
𝑖=1      (3) 

where li is the distance travelled by the ray through the ith grid block.  If straight-ray paths are assumed, 
the forward model matrix G is a ray-path matrix containing the lengths of the rays through each grid 
block for each measurement and the inversion problem becomes linear.  Typically, solutions to model 
parameters (the grid blocks) are in terms of slowness, and can be computed via iterative reconstruction 
techniques (i.e., the algebraic reconstruction techniques (ART) (Peterson et al. 1985; Peterson 2001) or 
the simultaneous iterative reconstruction technique (SIRT) (Dines and Lytle 1979).  The straight ray 
approach is limited to situations with little variation in EM velocity, for example, less than 10% EM 
velocity variation (Day-Lewis 2005); thus curved-ray methods that account for ray-bending phenomena 
may be used in situations where significant heterogeneity is expected. The curved-ray method allows a 
GPR ray to follow physically realistic trajectories; the traveltimes along direct, reflected, refracted, and 
transmitted raypaths are computed and compared until the first arrival is found (Zhang et al. 2005).
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3.0 Methodology 

The complete inversion process consists of a pre-inversion step, an initial ‘static’ inversion, and 
subsequent time-lapse inversions when time-lapse data is available (Figure 1).  The process is described 
in the following sections. 

3.1 Pre-inversion 

The pre-inversion process is designed to provide initial estimates for expected values (i.e., prior 
means) of the model parameters.  This is achieved through a linear inversion of the data. 

A ray-path matrix (G) is constructed analytically assuming straight ray paths, and the SIRT method is 
used to produce an initial estimate of the dielectric permittivity distribution within the study area.  These 
estimates of dielectric permittivity represent weighted averages of the true permittivity (Day-Lewis 2005). 

Given initial estimates of the dielectric permittivity parameters, we are able to construct a variogram, 
from which we can estimate the correlation range, the distance beyond which dielectric permittivity is no 
longer correlated (Hengl 2009).  Due to the smearing effects of the SIRT inversion, we observe that this 
range likely overestimates the true value (Day-Lewis 2004; Hubbard et al. 1999).  In our inversion study, 
we include the correlation range as an unknown and assign an upper bound corresponding to the diagonal 
length of the field, and a lower bound of 0, indicative of no correlation between the points. We do not 
assign a standard deviation to the range parameter. 

3.2 Inversion: static case 

In order to reduce the number of unknowns and make the inverse problem less ill-posed, we choose to 
invert dielectric permittivity at selected point locations and the associated spatial correlation range.   

The prior pdfs for these parameters are derived using MRE method with given prior information, 
which includes physical lower and upper bounds, and statistical moments (mean, standard deviation). We 
use the SIRT inverted values as the prior mean values, and assign loose upper and lower bounds (e.g., ±4 
from the mean values).  These are loose bounds, considering that in general they represent a minimum 
0.17 range in moisture content, according to Topp’s petrophysical model (Topp et al. 1980).  Given that 
we have a reasonable confidence in the SIRT inversion, we opt to also impose a standard deviation of 2.   

To construct the initial pdfs of dielectric constant values, we use the MRE algorithm originally 
developed by Woodbury (2004).  Given a mean (μ), standard deviation (σ), and upper (U) and lower 
bounds (L), MRE selects a truncated normal distribution to represent the pilot point parameter pdfs: 

𝑝(𝑥) = �  1
𝐶
𝑒−𝛾(𝑥+ 𝛽

2𝛾)2  if 𝐿 ≤ 𝑥 ≤ 𝑈

  0 otherwise
,  (4) 

where p(x) represents the probability of any given value of x occurring. The coefficient β,  γ, and C are 
determined by the constraints μ, σ, L and U. For a complete derivation of these solutions, see Hou and 
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Rubin (2005). Lacking a standard deviation, MRE selects a truncated exponential distribution for the 
parameter of correlation range: 

𝑝(𝑥) = �
  𝛽𝑒−𝛽𝑥

𝑒−𝛽𝐿−𝑒−𝛽𝑈
 if 0 ≤ 𝐿 ≤ 𝑥 ≤ 𝑈

  0 otherwise
, (5) 

Similarly, the coefficient β is determined by the constraints μ, L and U. 

Now that each parameter is represented by a pdf, we are able to sample values from these 
distributions for numerical evaluations.  Sampling technique is an important choice in our inversion, as 
the success of a numerical approach hinges upon evaluating all possibilities defined by the model space.  
Given a large number of dimensions (npar = 49 in our case), systematic sampling techniques such as by 
Simpson’s rule are not sufficient (Tarantola 2005).  Therefore, we turn to quasi-Monte Carlo (QMC) 
techniques, which incorporate deterministic sequences to guarantee good dispersion between sample 
points (Caflisch 2008). 

QMC requires a choice regarding input of a low-discrepancy sequence.  It is widely acknowledged 
that Sobol sequences (Sobol 1967) perform well for problems of greater than six dimensions, and avoid 
degradation effects observed in many other low-discrepancy sequences (Atanassov et al. 2010; Sobol and 
Shukhman 2007; Wang and Sloan 2008). 

Therefore, we use a Sobol sequence to initialize our QMC sampling procedure, and produce adequate 
number of sample sets (q ~ 106) for numerical evaluation.  Each sample set (m) contains discrete values 
for each of the dielectric constant pilot points, and a value for the range parameter.  For each of the q 
sample sets, we estimate the prior mean, standard deviation, and correlation range.  To generate a 
dielectric permittivity field, we discretize the study field into elements of equal area.  Using the GSLIB 
sequential Gaussian simulation package SGSIM (Deutsch and Journel 1997), we simulate spatially 
correlated dielectric permittivity values throughout the study region.  These values are converted to EM 
velocity at each pixel through Equation (1). 

Modeling of GPR first arrival times is accomplished through the method developed by (Zhang et al. 
2005), which uses a curved-ray (eikonal solver) to compute EM first-arrival travel times (Tcal) from the 
modeled dielectric permittivity field. 

The modeled first arrival times are compared to the observational data (Tobs) to compute residuals for 
each source-receiver pair.  As each parameter set is processed, the standard deviation associated with each 
source-receiver pair (rstd) is updated by Welford’s method (Welford 1962). 

After all parameter sets have been compared with the data, the residuals are normalized by their 
standard deviations.  The normalized residuals are assumed to following standard normal distribution; 
therefore, the likelihood functions take the form of normal distributions. The likelihood function for each 
parameter set mj is given by: 

𝐿�𝒎𝑗� = exp

⎣
⎢
⎢
⎢
⎡

∑ −
�
�𝑇𝑜𝑏𝑠𝑖−𝑇𝑐𝑎𝑙𝑖�𝒎𝑗��

𝑟𝑠𝑡𝑑𝑖
�

2

2
𝑛𝑚𝑒𝑎𝑠
𝑖=1

⎦
⎥
⎥
⎥
⎤

, (6) 
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The posterior pdf is the product of the likelihood function in Equation 6 and the prior pdfs in 
Equations 4 or 5, expressed as weights (w) for each parameter set. Given the weights, the posterior mean 
(μpost) and standard deviation (σpost) of each parameter set are updated. We divide the full range for each 
parameter into 100 bins (nbins = 100) and the posterior probability at each bin is calculated using the 
Gaussian kernel: 

𝑝(𝑥𝑏𝑖𝑛)𝑝𝑜𝑠𝑡~ ∑ 𝑤𝑖
1

2𝜋𝜎𝑝𝑜𝑠𝑡2
𝑒
−(𝑥𝑏𝑖𝑛−𝑥𝑖)

2

2𝜎𝑝𝑜𝑠𝑡2𝑞
𝑖=1 . (7) 

3.3 Inversion: time-lapse data 

Our purpose now is to monitor temporal variations in the dielectric permittivity field, but in order to 
take the advantage of temporal continuity,  it is desired to use inversion results from previous stages as 
the new prior pdfs (actually intermediate estimates),  which can be called ‘memory functions’ (Equation 
7).  To be able to capture temporal variation, it is reasonable to reset the bounds according to the updated 
means and standard deviations. We choose to reset the new bounds to the mean values ±2 standard 
deviations, the latter being a measure of spread of the distribution.  Further, we limit the extension of 
these bounds beyond a global maximum and minimum, ranging from 3 to 25 for the pilot point dielectric 
constant values and 0.25 m to 15 m for the range parameter.  This approach allows distributions to shift 
with time, which is reasonable given the time-lapse nature of the experiment; the distributions also serve 
as memory functions to honor spatial-temporal correlations of the state variables.  

We also have updated SIRT inversion results available.  To combine these two input data on the 
model parameters, we transform the SIRT estimates into MRE pdfs but assign bounds corresponding to 
their global maxima and minima to guarantee compatibility with the Bayesian estimates.  The SIRT-
derived pdfs are considered to be independent from the corresponding Bayesian posterior pdfs, and are 
combined following the multiplicative law of joint probability.  The joint probabilities of the SIRT-
derived pdfs and the Bayesian estimates provide intermediate pdfs (memory functions) that act as the 
starting point (new prior probability) for the subsequent inversion.  
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Figure 1: Flowchart showing the major steps in the MRE-Bayesian inversion process used in this report. 

 



 

4.1 

4.0 Synthetic Experiment 

4.1 Forward modeling 

The study area is 4 m width by 15 m depth (see figure 2).  We consider 30 equally spaced source 
locations, and for each source location, data is collected at 30 evenly spaced receiver locations for a total 
of 900 observations (nobs = 900), stored in a matrix Tobs. We added two percent random noise to the 
traveltime observations as measurement errors. 

 
Figure 2: Geometry for the synthetic experiment.  A tomographic GPR survey takes place between two 

parallel borehole with a separation of 4 m and depth of 15 m (a).  For a given source 
location, each receiver location records the first arrival of EM energy (b).  Tomography 

provides 2-dimensional coverage of the study area (c). 
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4.2 Results of the synthetic study 

The prior MRE pdfs and Bayesian posterior pdfs for dielectric permittivity pilot points are plotted in 
Figures 3a and b, respectively, in correspondence to their relative location within the tomogram.  When 
compared to their prior pdfs, most of the distributions have shifted more or less away from the prior 
values.  This is not surprising since the SIRT-derived means are averaged representations of the true 
values of dielectric constant at the pilot point locations.  Thus, our inversion approach provides improved 
resolution of extreme values and local anomalies, and thus makes the best use of available data.   

 To demonstrate this, Figure 4 shows the true dielectric constant values side by side with SIRT-
derived estimates and a Gaussian simulation of the posterior mean values.  We observe that the SIRT 
inversion provides a ‘smeared’ image of the study area, and that although higher and lower zones are 
generally captured, their values consistently under- or over-estimate the corresponding true values. Thus, 
these zones are not well resolved, and the range of values gives a false impression of the true field 
variations.  The Gaussian simulated image, on the other hand, mimics the heterogeneity of the true image 
quite well, and the range of observed values more closely reflects reality than the SIRT image.  However, 
we note that the edges of the field are much less reliable.  This is consistent with the sparse sampling 
domain of tomographic GPR near the edges of the field. 
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Figure 3: (a-b) are the MRE defined prior pdfs, and (c-d) are the Bayesian updated pdfs.  Note 
particularly the update of the range parameter, which now displays a clear mode of about 6. 
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Figure 4: (a) The true relative dielectric permittivity values used in the synthetic study.  (b) The SIRT 
estimated values, and (c) A sequential Gaussian simulation of the posterior Bayesian estimates. Although 
the SIRT inversion reproduces smeared, general features, it lacks to focus of the simulated values at right.  
Additionally, the simulated values depict a range of dielectric constant values close to reality. 

Another advantage we observe is the quantitative handling of non-uniqueness, or the notion that many 
velocity fields that could produce similar data.  Although the inversion will produce one particular set of 
parameters that most closely matches the data, this set may still deviate from the true values.  Instead of 
seeking a single best parameter set, which in fact does not usually exist due to non-uniqueness issue and 
noise in the observations, we use likelihood functions as a weighting system to assign proper weights to 
each parameter set to allow for all possibilities in a reasonable way.
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5.0 Field Experiment   

5.1 Site description 

Our data comes from a time-lapse desiccation monitoring experiment at the BC Cribs site, located 
south of the Hanford 200 area in the Columbia River Basin in Richland, Washington.  The site lies above 
a thick (~ 100 m) vadose zone dominated by sands and gravels, but interspersed with thin, fine-grained 
layers (Rucker and Fink 2007).  Tomographic GPR and neutron probe data are collected from several of 
these wells over 4 campaigns dating October 2010 to February 2011, consisting of 1013 measurements 
each.  Beginning at date November 22, 2010 a well in the vicinity of the radar boreholes was used to 
inject dry nitrogen gas into the soil and a down gradient well was used to extract fluids. The injection-
extraction was performed in an effort to test the efficacy of relying on desiccation procedures to remove 
moisture from the soil, which can potentially decrease the downward mobility of contaminants of concern 
at the site toward the groundwater (Oostrom et al. 2009). 

5.2 Inversion 

Inversion of the first BC Cribs dataset (October 19, 2010) utilizes the same process as the synthetic 
experiment (static case).  Inversion of the second (December 2, 2010), third (December 16, 2010), and 
fourth (February 3, 2011) dataset utilize the time-lapse framework outlined in section 3.4. 

5.3 Results of the field study 

Figure 5 depicts the MRE-derived prior pdfs and the Bayesian posterior pdfs from the October 19, 
2011 dataset.  Again, we observe a shift in the posterior pdfs toward extreme values, suggesting that the 
numerical modeling is compensating for the averaging effect produced by the SIRT inversion.  The pdf of 
the parameter correlation range shifts toward higher values, indicating an extended correlation range is 
more likely compared to the initial image from SIRT inversion.  

Turning to the subsequent December 2, 2010 dataset, we see that the SIRT inversion again favors 
relatively low values for the range pdf (Figure 6).  The joint probability of the previous Bayesian posterior 
and the current MRE-derived prior (Figure 6, center bottom) represents the combined probability of both 
inversion results.  The updated pdfs of the dielectric permittivity pilot points are all shifted more or less 
toward extreme values, in reflection of these two sources of information (Figure 6, center top).   

The December 16, 2010 and February 3, 2011 inversion results are shown in (Figures 7 and 8).  We 
note similar trends in the pdf updating procedure for these datasets as with for the October 19, 2010 and 
December 2, 2010 datasets, although the shifts in the distributions from the intermediate joint pdfs to the 
Bayesian posteriors appears less pronounced.  This may result from the greater peakedness of the later 
distributions.  Although the distributions still, for the most part, have reasonable ranges from which to 
draw samples for numerical simulation, the associated probabilities for values near the bounds are 
extremely small.  Although this approach allows for quantification of uncertainty, it cannot, at least at 
present, fully quantify the full relevance of a previous time-lapse inversion result to the current dataset.  
Therefore, concurrent with (Hou and Rubin 2005), we stress the value in maintaining relatively relaxed 
constraints on parameter pdfs. 



 

5.2 

 

Figure 5: Prior (red, a-b) and posterior (blue, c-d) pdfs from the October 19, 2010 dataset.  Note the shift 
in distributions toward more extreme values. 



 

5.3 

 

Figure 6: Prior (red, a-b), intermediate (orange, c-d)), and posterior (blue, e-f) pdfs from the December 2, 
2010 dataset.  The intermediate pdfs represent information from the previous Bayesian inversion, as well 
as updated information from a SIRT inversion of the current dataset. 



 

5.4 

 

Figure 7: Inversion results for the December 16, 2010 dataset.  (a) and (b) (red) are the MRE-derived 
prior pdfs, (c) and (d) (orange) are the intermediate pdfs reflecting the joint probability of the prior pdfs 
and the posterior pdfs from the previous time-lapse Bayesian inversion. 
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Figure 8: Inversion results for the February 3, 2011 tomography dataset. 



 

5.6 

 

Figure 9: Sequential Gaussian simulations of dielectric constant produced from the Bayesian posterior 
modes from each time-lapse inversion.  Image (a) (October 19, 2010) is the baseline image.  (b) and (c) 
are difference images, representing the change in dielectric constant from the baseline values. 

We choose realizations of the dielectric permittivity field from posterior estimates and plot the 
difference images from the Oct 19 baseline, as shown in Figure 9.  The mean values for each image are -
0.62, -0.29, and -1.2 respectively, the decreases in dielectric permittivity indicates an overall drying of the 
soil from baseline, in agreement with the desiccation experiment goal. More significantly, these images 
depict high-resolution heterogeneity and anomalous structure in dielectric permittivity field. 



 

6.1 

6.0 Conclusions 

In this report, we demonstrate a novel approach to invert tomographic GPR data for dielectric 
permittivity estimation. It integrates the concepts of entropy, Bayesian updating, efficient sampling, pilot 
point, and geostatistics. There are several advanced features in the inversion approach:  1) it enables 
quantification of input and output uncertainty in the form of pdfs; 2) it permits fusion of multiple data 
types or data collected at different times and assigns proper weights using likelihood functions; 3) it takes 
advantage of potential spatial correlation in the subsurface state variables by introducing the concept of 
pilot points, thus reducing the number of parameters to be estimated; 4) it allows us to benefit from 
temporal correlation/continuity through a memory function, by updating pdfs with observations while 
quantitatively conditioning on the inverse results using dataset from previous stage. The approach can be 
easily adapted to a variety of inversion problems, providing a physically-based forward model exists. 

The approach also has some limitations. For example, we adopt MRE to avoid the subjectivity in 
defining parameter priors; there is nevertheless no completely objective approach in assessing the relative 
value of various data with different quality, different resolution, and/or different amount of observations. 
Inevitably we also face the challenge of obtaining reliable natural normalization of the observations, and 
dealing with the prior incompatibility issues. The accuracy of inverse results can also be affected if strong 
side reflectors exist outside the 2D inversion domain. 

A number of possibilities exist to further refine our inversion process.  For example, a future effort 
could involve inverting for changes in dielectric permittivity field instead of estimating the permittivity 
image directly. Such an approach would require that the baseline estimates were well characterized with 
adequate resolution, but would enhance our ability to observe small-scale changes in dielectric 
permittivity. Another consideration is to introduce additional geostatistical parameters. This is particularly 
true for the Hanford datasets, where we expect relative strong spatial anisotropy (e.g., layering). 
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