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Executive Summary 

An investigation of radiation detectors on crane-mounted platforms was performed to understand the 

limitations and optimal capability of these types of systems.  Crane-mounted systems are primarily 

focused on crane-mounted radiation detector systems, where the detectors are mounted on a spreader-bar 

platform.  Spreader bars are attached with cables to a crane at seaports to load and unload containers from 

cargo ships.  The bars can spread from 20 feet to 53 feet using hydraulics, allowing a single bar to move a 

variety of container lengths.  Spreader-bars are also used on straddle carriers, which move containers 

around the laydown yard in the port.   

Spreader bar radiation detection (SBRD) systems are commercially available from at least two 

companies.  These systems employ a set of spectroscopic sensors placed on the underside of a gantry 

crane and held near the top of a cargo container for detection.  These systems have been previously tested 

and some issues and limitations observed.  Radiation detectors mounted on spreader-bars are single sided 

systems (observing cargo only from the top) and it is therefore challenging to obtain the same sensitivity 

as double-sided systems (for example, portal monitors) especially when considering the possible amounts 

of intervening cargo that could be present.  The approximately exponential attenuation of gamma rays in 

intervening dense cargo presents an inherent limitation to detection.  However, SBRD systems hold 

detectors closer to the container, have a longer dwell time, and may have lower background (over the 

ship); all of these aspects help mitigate the single-sided issue.  In addition, there are operational 

considerations that make spreader-bar radiation systems attractive.  These include scanning for radiation 

during other operations (loading, unloading or container movement) which minimizes additional time for 

scanning, incorporating the radiation detection into existing equipment to minimize initial cost, and in the 

case of ship unloading, scanning the containers before reaching the laydown yard. 

This study is focused on researching optimized configurations of SBRD systems, including number of 

detectors, locations, and best use of detector data, to determine a reasonable limit on the capability of 

these types of systems.  The results will help support decisions on where and how these systems might be 

effectively deployed, and could be used for future specification development for SBRD acquisition. 

The next phase of this research and investigation into SBRD systems and quantification of the possible 

improved capability with an enhanced SBRD is the focus of this report.  Supporting this investigation, 

detailed models of an enhanced SBRD system were created using a 3D radiation transport code, and 

models were run to simulate the data from sources and background for a realistic cargo-loading port 

environment.  The enhanced SBRD had increased detector material (numbers of detectors) compared to 

the commercial systems, with a distribution providing more uniform coverage.  Measurements using 

small industrial sources were made with an enhanced SBRD system developed by Sandia National 

Laboratory to support model validation to establish credibility for the simulations of these threat and 

background scenarios.   

A significant simulation effort was undertaken to simulate sources of interest within a 40-foot cargo 

container.  In order to estimate the performance of a generalized SBRD system in scenarios including 

background and cargo, a highly enriched uranium (HEU) test source (with 310
-8

 
232

U by weight) within 

a wood cargo model was simulated for a 40-foot cargo container.  This source was placed at a variety of 

locations, and the flux from the source was multiplied as necessary to create estimated minimal detectable 

quantities (MDQ) figures for various quantities of HEU.  Simulated data sets were produced 

corresponding to a complete container offloading scenario for a large number of statistical realizations. 
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Significant work was performed on both the algorithm development and the container cargo distributions 

entering the US, and the result of this modeling, validation, and simulation effort was a set of estimates of 

the performance of a variety of radiation detection algorithms in this cargo-screening environment.  In the 

case of algorithms, a variety of contemporary radiation detection and identification approaches were 

employed, and the optimal approaches to selecting time and location subsets of detector data were 

explored.  In all cases, algorithm performance was compared, and the best approaches were suggested 

along with the best expected performance from the enhanced SBRD.  In general, template-matching 

schemes employing a limited set of regression parameters tend to provide best results.   

The improvements of an enhanced SBRD with increased detector material and improved algorithms result 

in an effective MDQ of 10 kg of HEU in ~50 percent of the imported cargo in 40-foot containers, 

assuming a random source location.  This is approximately two times the capability of the estimated 

performance of the commercial systems.  For an MDQ of the 10 kg HEU source located in the worst 

location (bottom of the 40-foot container), the volume of cargo scanned drops to 10% for the enhanced 

SBRD, again a factor of two or more larger than the commercial systems.  Enhancing the SBRD systems 

by adding more detectors, providing a more uniform coverage, and incorporating more advanced 

algorithms will result in a significant increase in capability. 

Although this investigation provided some indication of the performance capabilities of an enhanced 

SBRD system, additional work is needed to estimate the capability for other container configurations, 

such as the 20 and 45 foot containers.  Since the 20-foot container weight limit is similar to the 40-foot, 

more dense cargo is typically shipped in 20-foot containers.  This will result in a smaller percentage of 

cargo scanned for the 20-foot containers (for a particular source quantity) compared to the 40-foot 

containers.  In addition to other configuration, other source material needs to be investigated to 

understand the capabilities for the entire threat space, where only HEU is considered in this work. 
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CBP U.S. Customs and Border Protection 

cps counts per second 

DOE U.S. Department of Energy 

ED 

GC 

GADRAS 

HEU 

IMCC 

energy distance  

gross count 

Gamma Detector Response and Analysis Software  

Highly enriched uranium 

inter modal cargo container 

LANL Los Alamos National Laboratory 

MCNP Monte Carlo N-Particle Transport Code 

MDA minimum detectable activity 

MDQ minimum detectable quantity 

NaI(Tl) thallium-doped sodium iodide 

NFAR muisance/false alarm rate 

NORM naturally occurring radioactive material 

PIERS Port Import Export Reporting Service 

PNNL Pacific Northwest National Laboratory 

POE port of entry 

PVT Polyvinyl toluene 

QuID 

RPM 

Quick ID 

radiation portal monitor 

RPMP Radiation Portal Monitor Project 

RSP radiation sensor panel 

SAIC Science Applications International Corporation 

SBRD spreader-bar radiation detection system 

SLD Second Line of Defense 

SNL Sandia National Laboratory 

SNM special nuclear material 

SNR 

SWF 

TEU 

signal-to-noise ratio 

square wave filter 

twelve-foot equivalent units 
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1 Introduction 

Radiation detectors are being deployed to scan containers coming into the US to interdict illicit trafficking of 

nuclear material [1].  Most of the containers from foreign countries are arriving by ship into the US, and 

detectors are being installed overseas at the ports of departure, as well as the US port of entry (POE).  The 

typical container detector system is a radiation portal monitor (RPM), a two-sided system that the container 

passes through when arriving at, or leaving the port on a chassis pulled by a truck.  Depending on the 

specific port workflow, some containers are scanned in the port itself, where yard haulers pull the container 

through the RPM.  Other detectors systems are also being used to scan containers for radiation (rail portal 

monitors that scan loaded trains) or are in development (straddle carrier portal monitor systems).   

An alternative scheme to scan for radiation is at the loading or unloading of the ship, or while the container 

is being moved in the port area by straddle carriers.  These types of systems scan the container during the 

entire move and have longer times to detect the radiation than the typical pass-through RPM.  Such systems 

typically consist of detectors mounted on a spreader-bar, which is the device that attaches to the top of the 

container and provides the interface between the port cranes or straddle carriers as shown in Figure 1.  The 

radiation detectors studied here are mounted onto the spreader-bar, and come into close proximity (~1 foot or 

less) to the container.  In order to monitor the entire container, multiple detectors are required to be mounted 

along the spreader-bar.  The spreader-bars are designed to load various container lengths, from 20-foot to 53-

foot containers (although overseas containers are typically limited to 45 feet), by using hydraulic cylinders to 

‘spread’ the bar out or pull it back to a shorter length.  The radiation detectors must be mounted to 

accommodate this movement, and provide good coverage in various length positions.  Since the spreader bar 

only comes into contact with the top of the container, the detection system is a single sided system, 

measuring radiation at the roof of the container. 

 

Figure 1.  Picture of a spreader-bar (white bar) above the container, and attached to the crane block used for 

loading and unloading ships.  Similar spreader-bars are used on straddle carriers. 

 

There are several companies building such spreader-bar radiation detection (SBRD) systems.  These 

companies have developed systems with gamma ray and neutron detectors, two types of radiation that are 
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useful for national security applications.  The companies typically use gamma ray detector material that can 

both detect gamma radiation and identify the radionuclides present.  This can be very useful to discriminate 

threat material from naturally occurring radioactive material (NORM), and only trigger alarms and response 

from threat material.  There are many NORM materials that are imported into the US, which are easily 

detected when in container-size volumes.  Examples of typical NORM detected in containers at ports are 

ceramic tiles, granite sheets, and fertilizer. 

1.1 Prior Assessments 

A few commercial companies conducted field tests of initial designs for SBRDs almost a decade ago, 

primarily to investigate SBRD mounting and reliability issues [2]. Results of these tests suggested that 

detectors could be installed and operated in the challenging environment, and several companies developed 

full systems.  Pacific Northwest National Laboratory (PNNL) also conducted a number of feasibility studies 

using modeling and simulation to access the viability of SBRD systems for radiation screening in US ports 

as part of the Radiation Portal Monitor Project (RPMP) [3-5]. 

 

Two commercial companies, VeriTainer and Bromma (in collaboration with Innovative American 

Technologies), provided SBRDs that were tested by U.S. Customs and Border Protection (CBP) in an 

operational environment at the Port of Tacoma in the summer of 2008 [6-7]. This test used a variety of 

containers with industrial sources inserted into a 7.5 x 7.5 x 8 foot cubed wood block simulating cargo loads.  

The results of the testing indicated that both SBRDs possessed adequate neutron detection capabilities to 

meet CBPs requirements, but the gamma-ray detection capabilities of both were limited to a potential of 

detecting appropriate sources through only three to five feet of cargo, whereas a source could be located at 

the container bottom and necessitate detection through eight or nine feet of cargo.  This depth limitation of 

the SBRDs is similar to a single side of an RPM, but the RPM has two sides that can provide the full eight 

feet of coverage.  Both systems use thallium-doped sodium iodide [NaI(Tl)] as the gamma ray detector 

material, which is the appropriate material that can provide gamma ray identification and is both robust and 

available in large volumes.  Additional detector material could likely be included in both systems to improve 

detection capability. 

 

The U.S. Department of Energy (DOE) further tested these two systems in the fall of 2008 at Los Alamos 

National Laboratory (LANL) under the Second Line of Defense (SLD) program. Measurements were 

performed with special nuclear material (SNM) and NORM to quantify nuisance/false alarm rates (NFAR) 

as well as detection probabilities and investigate masking scenarios. The LANL and Tacoma test results were 

consistent in terms of the neutron and gamma-ray detection capabilities of these commercial SBRD systems. 

In addition, the LANL tests observed high nuisance/false alarm probabilities as well as a number of 

development challenges such as detector summing and gain stabilization that were not mature in the tested 

systems [8]. 

 

All of the assessments and testing indicates that the single-sided nature of the SBRD system limits the 

radiation detection capability, and cannot meet the same requirements as a two sides system such as a RPM, 

even if accounting for the long dwell and lower background.  However, the SBRD system can provide 

radiation detection at a lower capability, which would provide some coverage for applications where RPM 

systems would not be feasible.  For these possible scenarios, the SBRD system should be optimized to 

provide maximum capability.  The testing also indicted that the commercial systems could be further 

optimized to provide a more capable system.  This current work investigates the limits of radiation detection 

with SBRD systems, if properly optimized, which could provide a basis for the requirements that such a 

system would need to meet. 
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The tests of the commercial systems in 2008 indicated possible improvements in a number of areas, 

including gamma ray detection and identification, and system robustness.  Detection and identification 

capability could be increased by increasing the amount of detector material, as well as implementing more 

optimal alarm algorithms.  Both systems use NaI(Tl) as the gamma ray detector material, which is the 

appropriate material that can provide gamma ray identification and is both robust and available in large 

volumes. 

 

To help quantify the potential advantages of possible optimizations of the SBRD systems a collaborative 

effort between Sandia National Laboratory (SNL) and PNNL was initiated.  PNNL managed the Tacoma test 

as well as conducted a number of assessments for the RPMP, and therefore had established expertise in 

gamma ray detection and identification.  SNL was investigating detector robustness in the Extreme 

Environment Radiation Identification System project, which fit well with the robustness issue identified in 

the testing. 

 

1.2 Research Approach 

The initial study was a short-term investigation to determine if there was enough potential optimization to 

warrant further research and investigation.  The first investigation was therefore constrained to primarily a 

modeling and simulation effort, where a model using additional detector material (compared to the 

commercial systems) was developed.  This model was used to determine the radiation that deposited energy 

in the detectors for a variety of cargo loadings and threat source masses.  Highly enriched uranium (HEU) 

was used as the threat source since it typically detected by the gamma ray signature only, and can be 

challenging to detect in cargo scenarios.  The HEU was assumed to have 
232

U present (taken to be 310
-8

 
232

U by weight [9]), which makes it somewhat easier to detect due to an additional high energy gamma-ray, 

and is a reasonable approach.  

 

The approach of the initial study was to model an average of the SBRD systems (as tested in 2008) and an 

enhanced model of an SBRD.  This effort resulted in several presentations [10-11] that will be summarized 

here for the SBRD systems, and are described in more detail in Appendix B.  The SBRD model used to 

represent the commercial systems was an average of the two commercial systems, and did not represent 

either system exactly.  However, since the test results indicated similar performance, the average provided a 

representative model of the current (2008) commercially available capability.  The enhanced SBRD, which 

will be referred to as ‘enhanced SBRD (2010)’, included additional detectors that could reasonably fit on a 

spreader-bar, leaving room for neutron detectors as well.   

 

The HEU was modeled as 1-kg right circular cylinders, and up to 25 were simulated.  The cylinders were 

assumed to be non-interfering (i.e., did not shield each other) with allowed for a simple linear scaling of 

signal with mass.  The HEU source was located at the 20-foot plane (center) of a 40-foot container, which 

also included wood cargo.  The wood was modeled with a density of 0.46 g/cm
3
, which corresponds to the 

density of cargo that met the maximum cargo loading weight when filling the entire container volume.  The 

wood was modeled as five layers, without any gaps or streaming paths. 

 

For each thickness of wood cargo, a grid of 25 source locations (five vertical by five horizontal locations) 

was simulated at the 20-foot plane (center) of the 40-foot container.  The detector response was simulated for 

each of the 125 simulations (25 source location in the 5 cargo thicknesses).  To determine the minimal 

detectable quantity (MDQ) at each source location and cargo thickness, the results from the LANL test were 

incorporated.  The energy deposited in the detectors is related to the minimal detectable quantity, but is 

convoluted by the data analysis, which is system dependent.  Therefore, to provide the initial estimates, the 
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LANL test results were used to convert detector responses into MDQ values.  These results were used to 

provide the detector response required for minimal detectable quantities. 

 

The conversion was also used with the enhanced SBRD (2010) simulation, with some additional capability 

given to the enhanced SBRD to account for some deficiencies in the commercial SBRD system’s algorithms.  

The data from the Tacoma test was reviewed, and in many cases, the sources were visible in the energy 

spectra at cargo depths that did not trigger detection in the analysis software of the system.  It was estimated 

that an improved algorithm would be able to detect sources that were visibly present in the spectra, with an 

estimated additional foot of cargo through which a source could be detected.  Therefore, the enhanced SBRD 

(2010) incorporated more detector material and a lower threshold for the MDQ value.      

 

Using the LANL test results, the simulated detector responses were converted into MDQs for each source 

location within the five cargo configurations.  The MDQs were then grouped by the volume of cargo scanned 

for each HEU quantity (MDQ value) and cargo loading.  For the volume calculated, the source was required 

to be within the cargo volume, that is, it couldn’t be in the space above the cargo in a non-full configuration.  

The volume calculation allowed for an estimate of the percentage of cargo scanned for a particular quantity 

of HEU.  These volumes and MDQs as a function of cargo loading were then convoluted with the actual 

distribution of US-bound containerized cargo.  The containerized cargo distributions were obtained from a 

study performed by Lawrence Livermore National Laboratory (LLNL) [12]. These LLNL data are an 

average over 14 days at a limited number of ports, but were used to provide an estimate of the volume of the 

cargo container scanned as a function of the MDQ of HEU.  This result can then be used to compare the 

capability of the SBRD and the enhanced SBRD (2010).   

 

Figure 2 shows the results of the simulation and analysis for the estimated percentage of cargo scanned as a 

function of the MDQ.  For example, if the target MDQ was 10 kg of HEU, the commercial systems (as of 

2008) could detect this amount in about 30% of the incoming cargo volume.  An enhanced SBRD (2010) is 

estimated to be able to detect the same 10 kg amount in about 65% of the cargo volume.  The simulation 

indicated there were significant gains in capability that could be obtained by further optimization of the 

SBRD system. 
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Figure 2.  Total percentage of cargo scanned as a function of the targeted MDQ for the estimated commercial 

capability (2008) and enhanced SBRD (2010) for a random source location. 

 

The limiting case was also evaluated, where the source was located on the bottom of the container for all 

cargo thicknesses as shown in Figure 3.  As to be expected, the SBRD systems are less sensitive to the 

source in this location, since the detectors are above the container.  As with the random source location 

results shown in Figure 2, the enhanced SBRD (2010) system has a significantly better performance. 

 

With the promising results of this first investigation, a more involved research effort was undertaken.  This 

effort was focused on resolving some of the ambiguities associated with the initial effort.  The limitations 

were primarily associated with using the detection algorithms of the commercial systems (with an added 

estimated improvement factor).  A more accurate representation of an enhanced SBRD capability could be 

obtained by building an actual system with enhanced capability and either direct measurements or, by 

validation of models, determine the detector response.  Instead of relying on the commercial system 

detection capability as measured in the LANL testing, the analysis should use improved algorithms to 

provide actual detection limits.  Therefore, as part of this investigation, research was performed on some 

promising algorithms for applications where a source is attenuated by significant amounts of cargo (deep 

shielding scenarios).  A final limitation that was addressed was the distribution of cargo weight and density 

from the LLNL report.  The report did not categorize the data by container length, and there is a significant 

difference between 20- and 40-foot containers in terms of weight distributions.  The 20-foot container has a 

loading capacity that is almost as large as a 40-foot container.  Therefore, a 20 -foot container can handle 

cargo with a higher density, and by being smaller, is a more efficient method to ship dense cargo that is 

weight limited.  Having the distribution categorized into the container lengths would provide a more accurate 

representation of the cargo volume that is screened at a specific MDQ. 
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Figure 3. Total percentage of cargo scanned as a function of the targeted MDQ for the estimated commercial 

capability (2008) and enhanced SBRD (2010) for a source location on the container bottom. 

 

The next phase of this research and investigation into the SBRD system and quantification of the possible 

improved capability with an enhanced SBRD is the focus of this report.  The research was again a 

collaborative effort between PNNL and SNL, with PNNL taking the lead on the modeling and simulation 

and algorithm development, and SNL developing an enhanced SBRD system that could make actual 

measurements to validate the model and provide baseline capability.  Originally the plan was to make 

measurements of most of the scenarios, and use simulations as needed, however, priorities have shifted and 

to date the measurements have served primarily to support model validation and to establish credibility for 

the simulations of the threat scenarios.  Therefore, a significant simulation effort was undertaken to simulate 

HEU and additional sources including plutonium and depleted uranium, and to complete the analysis for 

both 20- and 40-foot containers.  This report presents the results for HEU in a 40-foot container.  Significant 

work was performed on both the algorithm development and the container cargo distributions entering the 

US, and that work will be presented along with the modeling, simulations, and validation effort.
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2 Modeling and Simulation 

The modeling and simulation effort used the LANL developed Monte Carlo N-Particle (MCNP) 

radiation transport code to simulate the radiation transport and energy deposition in the detector 

material [13].  The physics engine in the simulation code has been well validated; however, it is very 

important that any specific model be validated against experimental measurements to ensure enough 

representation of the real system has been put into the model.  For this effort, it was important to 

validate the model of the enhanced SBRD system against real measurements to verify the simulations 

were providing adequate consistency.  A spreader-bar is a complex piece of machinery, and 

challenging to develop a model with enough details to simulate radiation transport representative of 

experimental measurements. 

For this effort, the model was validated against measurements using the enhanced SBRD system 

developed and assembled by SNL.  The model was then used to perform simulations of HEU in wood 

cargo to provide data that could be used as input into the algorithm development activity.  The 

algorithms provided MDQ values for each modeled scenario for each algorithm, and the best results 

were convoluted with US-bound cargo distributions to provide an estimate of detection capability in 

terms of cargo scanned as a function of MDQ for HEU. 

The SNL SBRD system uses 32 thallium-doped sodium iodide [NaI(Tl)] scintillators to detect the 

gamma radiation.  Each NaI(Tl) detector is 2 inches in diameter by 18 inches long and mounted in a 

detector box with shock mounting to handle the rough handling encountered during the loading and 

unloading of containers. 

 

 
Figure 4. Photograph of the SBRD, before being placed on the 40-foot IMCC. 

 

2.1 Model Validation 

Experimental measurements were made at SNL on 3 November 2011 to validate the ability of the 

computer model of the SBRD to reproduce the functioning of the actual device. In these “zone-
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mapping” measurements, three radioactive sources were located together at various positions in the 

empty 40-foot inter model container (IMCC) on which the SBRD had been placed. The three sources 

were 
133

Ba, 
137

Ba, and 
60

Co, and all placed together for each measurement. Figure 4 shows the SBRD 

before mounting on the IMCC. Some of the blue detector boxes, mounted to the side of the SBRD, 

are visible in the photograph. 

 

Figure 5 shows the relative horizontal positions of the 32 NaI(Tl) detectors in the SBRD and the 15 

source positions in the empty 40-foot IMCC during the zone-mapping measurements. The squares 

represent the detector positions and the circles are the source positions. The various detectors were 

mounted on the SBRD at three different heights depending on the mounting location: the main frame, 

the extension ‘spreader’ arms, or the end frame.  

 
Figure 5. Relative horizontal detector positions (blue squares) and source positions (red circles). 

 

For the measurements the sources were placed at two different heights for a total of 30 source 

positions. Source positions 1 through 15 had the source lying on the floor of the cargo container. 

Source positions 16 through 30 had the source held by a tripod at a height of about 130 cm above the 

floor of the cargo container, but at the same horizontal location as 1-15. 

 

In order to keep the following comparisons of computer simulations to measured data manageable, 

comparisons are shown for the lower 15 source positions only and, at each source position, for the 

four detectors closest to that source position. Table 1 lists the four detectors in the SBRD closest to 

each source position. Those detectors are the same for the higher source position directly above each 

lower source position (i.e., source positions 16-30). 

 
Table 1. Detector number of the four detectors closest to each source position. 

 

Source 

Position 

Nearest Detectors 

Numbers 

1 16 16 5 15 12 

2 17 15 16 5 12 

3 18 12 15 16 5 

4 19 3 2 7 4 

5 20 3 10 7 9 

6 21 10 14 9 3 

7 22 6 22 1 17 

8 23 6 8 22 24 

9 24 8 24 13 29 

10 25 19 18 23 26 

11 26 26 19 23 25 

12 27 26 30 25 27 

13 28 21 32 31 28 

14 29 31 32 28 21 

15 30 31 28 32 21 



PNNL-21948 

 

 
20 

 

 

The following plots compare the simulations of the zone-mapping measurements for the four closest 

detectors to each of the lower set of source positions to the measured data. In each plot, the measured 

spectrum is shown in red and the simulated spectrum in blue. The measured spectra were energy 

calibrated using the lines of the 
133

Ba, 
137

Ba, and 
60

Co sources evident in the spectra as well as the 

lines from 
40

K and 
208

Tl in the background. Based on the energy calibration, each measured spectrum 

was re-binned to 5-keV bins. The simulated spectra were also calculated in 5-keV bins. The plots are 

divided into five groups of three source positions, moving from the left end of Figure 5 to the right 

end. The first group of plots shown in Figure 6 gives the results for source positions 1 through 3. 

 

 
Figure 6. Comparison of simulated to measured spectra for source positions 1 through 3. 

 

Figure 7 gives the results for source positions 4 through 6 and Figure 8 gives the results for source 

positions 7 through 9.  Source positions 10 through 12 are shown in Figure 9 and finally, Figure 10 

gives the results for source positions 13 through 15.  The agreement is quite good for most of the 

sources, but it is challenging to quantify.  Therefore a difference between the simulated and measured 

data was computed and normalized to have a fractional difference as a function of energy to be able 

to more quantitatively compare the simulations with the experimental measurements. 
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Figure 7. Comparison of simulated to measured spectra for source positions 4 through 6. 
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Figure 8. Comparison of simulated to measured spectra for source positions 7 through 9. 
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Figure 9. Comparison of simulated to measured spectra for source positions 10 through 12. 
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Figure 10. Comparison of simulated to measured spectra for source positions 13 through 15. 

 

Figure 11 show the fractional difference (Si – Mi) / Mi, with Si the counts in channel i of the simulated 

spectrum and Mi the counts in channel i of the measured spectrum, between the simulated and 

measured spectra for the four detectors nearest to each source position. The differences are plotted up 

through the energy of the highest strong transition, the 
208

Tl transition at 2.6 MeV. Above that energy 

both the measured and simulated data have few counts and are dominated by statistical fluctuations.  
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Figure 11. Plots of the fractional difference between the simulated and measured spectra for the four 

detectors nearest to each source position. 

 

All the curves were combined together and are shown in the Figure 12, where it can be seen that they 

form four groups. Most of the curves, shown in blue, have a very similar pattern that clusters around 

zero. These curves correspond to measurements involving 26 of the 32 detectors. The six curves, 

shown in red, where the simulations are low compared to the measurements (at the left end of the 

plot) are all the measurements involving the detectors 15 and 16, which are located all the way at one 

end of the SBRD (see Figure 5). Similarly the six curves, shown in green, where the simulated results 

are high compared to the measurements (at the left end of) the plot are all the measurements involving 

the detectors 31 and 32, which are located at the other end of the SBRD. The four curves, shown in 

gray, that are also low on the left involve the two detectors 6 and 9, which are located in the middle of 

the SBRD. It is not known why these six detectors out of 32 are less well reproduced by the model. 
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Figure 12. Plot of the fractional difference between the simulated and measured spectra for the four 

detectors nearest to each source position for source positions 1 through 15. 

 

 

 

The standard deviation of the fractional differences between simulated and measured spectra for the 

four detectors closest to each of source positions 1 through 15 range from about 10% to 25%. For the 

subset of 26 detectors shown in blue in Figure 12, the standard deviation range from about 10% to 

20%. This is reasonable agreement for a computer model of this complexity, and is consistent enough 

to provide good data from estimation of the SBRD capability.  Although better reproducibility may be 

achievable by adding additional features into the model, it would require significant additional effort. 

2.2 Threat Scenario Simulation  

Once the validation was completed to a sufficient level, simulation of threat material contained within 

cargo in the IMCC was made.  Therefore only a single material, HEU, was simulated in a single 40-

foot container, in keeping with the change in priorities of this project.  As with the previous 

investigation, wood with a density of 0.46 g/cm
3
 was used to simulate cargo in the container, to 

provide for a complete validated model to describe data from the HEU source and background with 

intervening cargo.  This is the density that would constitute the maximum weight that a normal 40-

foot container could carry (58000 pounds), if the cargo container was completely filled.  It is possible 

to ship more dense material, but the cargo could not then fill the container before reaching the 

maximum weight.  Gamma ray attenuation effects due to the atomic number of the material are 

relatively small if the aerial density of the cargo does not change.  That is, the same weight of cargo, 

spread evenly across the floor would attenuate gamma rays to about the same extent, whether it was a 

low-density material filled to the top of the container, or a high-density material only partially filling 

the container.  This allows a single cargo (the wood at a density of 0.46 g/cm
3
) to provide a good 

simulation of all cargo even with different densities, by using equivalent weight cargo loading.  With 

this approach, only the cargo weight needs to be known, and greatly reduces the complexity of the 

overall estimation, although some fidelity (at the ~10% level) is lost due to the effects of the atomic 

number of the cargo.  However, the loss of fidelity greatly simplifies the complexity of the 

calculations and allows a reasonable estimation.  By using a single cargo and focusing on the cargo 

weight, the results can easily be combined with the cargo weight distribution of containers carrying 

US imports in order to report the results as fractions of the amount of cargo entering the US. 
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Figure 13 shows a simulation for the energy spectra recorded in a NaI(Tl) detector located just above 

the middle of the top of the cargo container for the background radiation coming from the asphalt 

below the cargo container. The container is filled with various thicknesses of wood, indicated as 

percentage of a full container. 

 

 
Figure 13. Simulated spectra in the central detector for the asphalt background. 
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3 Algorithm Development and Characterization 

One of the shortcomings of the initial investigation was the reliance on the commercial SBRD 

algorithms.  It was observed in both the CBP tests at Tacoma, and the SLD testing at LANL, that the 

commercial vendor’s algorithms could be improved.  For the initial investigation, an improvement 

factor was estimated based on spectra from the CBP test, but was not validated, and therefore was an 

area of investigation for the follow-on study.   

For this investigation, a significant effort was expended on the development and testing of improved 

data analysis approaches for SBRD systems.  Several aspects of data analysis pertinent to optimal 

detection were investigated, including the optimal scanning time, the optimal subset of detectors to 

include in the analysis, and the optimal detection algorithm for source detection in deeply shielded 

scenarios.  The detection algorithms investigated for this analysis had been developed previously, but 

were optimized or re-implemented for this application.  These algorithms consisted of a number of 

detection and identification algorithms including gross counting [14], energy distance (anomaly 

detection using a principle components approach) [15], peak finding [16], Gamma Detector Response 

and Analysis Software (GADRAS) [17].  In addition, several algorithmic approaches are in 

development at PNNL and are used here, including limited GADRAS (anomaly algorithm using a 

library with only naturally occurring isotopes), KUT (anomaly algorithm using potassium, uranium, 

and thorium components) and QuID (an isotope identification algorithm utilizing a novel template 

matching approach) [18].  

3.1.1 Optimal Scan Time 

The SBRD system allows for a long dwell time for scanning of the container, since the detector can 

measure the container for the length of time the spreader-bar is attached to the container for 

movement.  For loading or unloading a ship, this time is about 60 seconds on average, allowing for 

approximately 30 containers to be loaded or unloaded each hour (total cycle time is ~two minutes).  

There can be shorter times for containers that are loaded onto, or offloaded from ship locations nearer 

the dock, whereas containers deep in the hold with take longer than the average.  And the time could 

be much longer, for example, when a straddle carrier moves the container in the lay-down yard. 

The background observed by the SBRD system can change significantly during the move, particularly 

in loading and unloading ships.  The background arises from naturally occurring radioactive isotopes 

primarily in the soil, specifically, from potassium-40, and the uranium and thorium decay chains.  

Some background is also expected from NORM contained in cargo onboard the ship itself. While this 

background is not explicitly included in the simulations due to its unpredictable nature, it is expected 

that it will impose a minimum distance of spreader-bar approach beyond which no data will be taken, 

in practice.  Additionally, some component of the background comes from cosmic rays.  The 

naturally occurring isotopes are present but to a lesser degree in water, and so the background is 

significantly less when a detector is over the water, by as much as a factor of ten.  Typically, the 

spreader-bar and container do not move over open water, as the ship is tied to the dock, and therefore 

the background changes are less than when moving over open water.  However, the backgrounds can 

still change by factors of two to three moving between ship and dock.  One of the ideas for increasing 

capability is to maximize the signal-to-noise ratio (SNR), which is basically the detector net signal 
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(minus background) divided by the square root of the background, by selecting only the data that is 

associated with low background.  

Measurements were made with a single NaI(Tl) detector on a spreader bar at the Port of Tacoma in 

June 2010. The detected gamma ray signal for a large number of movements of the spreader bar 

carrying a container from a ship back to the shore is shown in Figure 14. The signal starts out low 

above the ship and increases by nearly a factor of three as the detector moves over the asphalt of the 

dock. There is a great deal of variation container to container, but the average signal, shown as a 

dashed line, follows a simple sigmoid form. Also shown by dotted lines are the one-standard-

deviation limits for the distribution of signal. Under the assumption that most of these containers did 

not hold radioactive sources, this represents the background that would be seem in a gamma ray 

detector mounted in a spreader bar as it moves from the ship to the shore. 

 

Figure 14. Count rate in a single detector as a function of time as the detector is moved back from over 

the ship to the dock. 

 

Using the average background dependence, one can calculate the signal-to-noise ratio for a given 

source signal and different detection schemes. The first question to be asked is what the optimum 

measurement time is. The two extremes are summing the measurement over individual time intervals 

or over the entire time. This comparison is shown in Figure 15 for the signal-to-noise ratio calculated 

for the sum over all detected gamma energies. The blue curve shows the case of individual, one-

second measurements. As can be seen, the signal-to-noise ratio for each one-second measurement 

decreases as the spreader bar moves back over the dock and the background increases. 

On the other hand, the red curve shows the total, cumulative signal-to-noise ratio for a measurement 

that sums the signal (source plus background) for the time the spreader bar leaves the ship to a later 

time t as a function of that time. As can be seen, the total signal-to-noise ratio continues to rise for all 

times out to that when the spreader bar is back over the shore. This indicates that the optimal 

measurement time as determined by signal-to-noise ratio is the entire time from ship to shore even 

though the signal-to-noise ratio for small time intervals is decreasing as the spreader bar moves 

toward the shore.  
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Figure 15. Signal-to-noise ratio in a single detector as it is moved back from over the ship to the dock. 

The lower, blue curve is calculated for separate, one-second intervals while the upper, red curve is 

calculated for the entire cumulative time. 

 

At the same time that the overall count rate is changing as the detector mounted in the spreader bar 

moves from the ship back over the shore, the energy distribution of the detected signal is also 

changing. This is shown in Figure 16, which shows the spectra taken when the detector and container 

are over the ship, in red and over the shore, in blue.  

 

 

Figure 16. Energy distribution of gamma rays detected over the ship (lower, red curve) and at the dock 

(upper, blue curve). 

 

This is also shown in Figure 17, which shows measured background for the return trip from the ship 

to the dock for three different gamma ray energy regions. The three curves are normalized to a value 

of one at the initial time above the ship and give the rate relative to that value as the detector is moved 
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back over the dock. The upper, red curve is for gamma ray energies up to about 1.6 MeV, or just 

above the potassium-40 emission line (at 1460 keV) visible in the spectra of Figure 16. It increases by 

about a factor of three during the movement to the dock. The middle, blue curve is for gamma ray 

energies from there up to about 2.9 MeV, or just above the thallium-208 emission line (at 2614 keV), 

also visible in Figure 16. It increases by only a factor of about two during the return trip. The lower, 

gray curve is for higher gamma ray energies (mostly cosmic rays). It stays essentially constant. This 

indicates that alarm algorithms that are sensitive to the energy distribution of the gamma rays may 

have a somewhat more complicated dependence on measurement time. This should be investigated in 

more detail. 

 

 

Figure 17. Count rate in a single detector as a function of time for three different gamma energy regions 

as the detector is moved back from over the ship to the dock. 

 

3.1.2 Optimal Detector Subset 

To simulate optimal use of the detector array, the optimal number of detectors to be used (i.e., 

summed together in a single measurement) has been investigated.  In general, using only one detector 

element (and applying the algorithm in question only to the single crystal with the highest count rate) 

will lose resolving power of the instrument, while always summing every detector together will 

include too much background and reduce sensitivity.  Therefore, some “optimal number” between 

these extremes is sought. 

In the previous data generation stages, we have assumed a set of sensors arrayed above a container 

filled with a uniform material and containing a point source at a given depth. We furthermore assume 

that the sensors are identical and independent. To improve detection, we add the measurements across 

the sensors before applying a detection algorithm. Sensors nearest the source will provide the highest 

signal-to-noise ratio (SNR). Adding their measurements will increase total SNR. Assume for this 

discussion that the measured background is the same for every detector. As distance from the source 

increases, sensors see less and less source but the same background, and so eventually adding 

measurements from sensors far from the source will decrease SNR. If we simply add measurements, a 
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key question is where the cutoff is in terms of sensors to include in the measurement sum, by 

identifying the set of sensors whose sum provides maximal total SNR. 

 

For this study, it is assumed that the detector most closely approximating the source’s location in the 

cargo is known from inspection of the relative count rates in each crystal. Then, the optimal number 

of detectors to sum is defined to be that which yields the greatest signal-to-noise ratio for the sum.  

The signal used for this optimization is the rate from the HEU source at the bottom of the cargo 

container with a full load of wood cargo. The noise is the square root of the total background rate 

with the same full load of wood cargo. The signal-to-noise ratio is plotted in Figure 18 as a function 

of the number of summed detectors starting from the center detector. The inset shows a detail of the 

curve near its maximum, the section corresponding to the 15 to 25 nearest detectors. 
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Figure 18. SNR for the summation of detector elements. 

 

The validated MCNP model described in the preceding section, and example shown in Figure 13, is 

used for optimization of detector subset. For each depth of cargo two MCNP simulations were 

performed: one with the HEU source and one with the soil source (as background). The background 

data was simulated by two modeled sources, one representing the direct gamma-ray contribution from 

the background, and the other representing the skyshine component from the surrounding air.  The 

first (and dominant) source of radiation was similar to an earlier MCNP “terrestrial background” disk 

source emitting around 2.1 gamma rays/(cm
2
/s) from points on the ground [19].  Data from all 32 

crystals were simulated (Figure 19). Sources in several locations are shown in Figure 19 and 

observable as prominent elevated regions in the net counts. 
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Figure 19. (a) Source, Background and total Counts for a source in position 7, depth=0%. 
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Figure 20. (b) Source, Background and total Counts for a source in position 7, depth=50%. 
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Figure 20. (c) Source, Background and total Counts for a source in position 1, depth=0. 
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Figure 20. (d) Source, Background and total Counts for a source in position 1, depth=50%. 

 

The exact location of individual detectors in the sparser detector model makes a great deal of 

difference to the intensity map.  While this is not expected to hurt the results gained from summing 

results over the optimal detector subset (by the arguments made earlier), it may pose a challenge to 

source localization with this method, as the source cannot be expected to give a consistent “count-rate 

pattern” given the scarcity of detector elements. 

 

For each detector element, the signal-to-noise ratio for groups of detectors is calculated as the ratio of 

the total signal counts in the group of detectors to the square root of the total background counts in the 

group of detectors. An optimal choice of detector subset is expected to include the center detector (the 

one most directly above the HEU source) and some number of detectors that are closest to this center 

detector, and approaches which automatically choose this optimal subset are explored in the 

following section.  The signal-to-noise ratio is calculated as a function of the number of detectors for 

various thicknesses of wood cargo, as a percent of the maximum thickness. In each case, the optimum 

number of detectors, which maximizes the signal-to-noise ratio, is plotted against the thickness of 

wood cargo as a fraction of a full cargo load (Figure 20).  The curve drops off sharply as thicker cargo 

is introduced, and in general suggests fewer detectors as cargo moves toward 100%.  While further 

evaluation of different thicknesses may add structure to this curve, the most important result is that 

the optimal detector subset varies as cargo and source configuration varies. 
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Figure 20. Optimum detectors in subset vs. cargo load with source at container bottom. 

 

Another approach is to look for the optimum size for a maximum load of wood cargo, but allow the 

source to be located at different depths from the top in the cargo.  This arrangement is the same as 

shown in the figures above, except that the wood cargo is always 223 cm thick, and the source is 

placed at different depths below the top of the wood cargo. To illustrate the falloff of increasing 

performance with a larger and larger detector subset, the signal-to-noise ratio is plotted against the 

number of detectors for various thicknesses of wood cargo, as a percent of the maximum thickness. In 

each case the inset shows the area of the curve around the maximum signal-to-noise ratio (Figure 21). 

The signal-to-noise ratio is plotted against the number of detectors for various depths in the wood 

cargo, as a percent of the maximum thickness. In each case the inset shows the area of the curve 

around the maximum signal-to-noise ratio. 
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Figure 21. Signal-to-noise ratio for the summation of detector elements. 

 

Again, the optimum number of detectors, which maximizes the signal-to-noise ratio, is plotted against 

the thickness of wood cargo as a fraction of the maximum thickness in Figure 22. 
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Figure 22. Optimum detectors in subset versus cargo load with source at different depths in a fully loaded 

container. 

 

In this case the dependence on amount of cargo above the source is very different than when the 

source is always on the bottom since the source becomes much closer to the center detector as the 

amount of cargo above it decreases. Up to 20% of the cargo depth, when the source is close to the 

center detector, the optimum number of detectors is only three. As the source moves down to the 

bottom of the container, the optimum number of detectors approaches 20, in agreement with the 

analysis above for the source always on the bottom of the container. 

 

This varying number of detectors for summation poses a problem for the subset algorithm, as the 

cargo depth will not be known during measurement by the SBRD, and no single number of detectors 

optimizes SNR across all cases.  Therefore, the algorithm would have to use cues from the measured 

radiation data to provide an optimal subset. 

3.1.3 Optimal Detector Subset – Iterative Methods 

A varying optimal subset of detectors was observed in each measurement scenario, leading to an 

inherent difficulty in assigning an optimal set before measurements are made. To approach this issue, 

an iterative method was applied, intended to be applied at the time of measurement, in order to 

determine the best detector subset to use.  This method will iteratively attempt several subsets, in 

keeping with the assumptions and constraints of this section, in order to determine the optimal one for 

each measurement. 

The SNR of each detector element is first considered when the HEU source is placed near the middle 

(Figure 23).  The benchmark of 25 included crystals does not require the same SNR cutoff for each 

source location, which makes deciding on an explicit (e.g. single and unchanging) SNR cutoff as a 

selector algorithm ineffective.  Instead, even crystals with substantial SNR should be excluded from 

the measurements with low shielding, while the deepest shielding requires the addition of crystals 

with very low SNR, as made obvious by the examination of individual detector SNR under various 

conditions.   
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Figure 23. Detector number versus signal-to-noise ratio. 

 

In general, assuming the background to be roughly equal across detector crystals (or only slowly 

varying as shown in central plots of Figure 19), we could write the summation of SNR figures for 

several detectors as: 
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Where Si is the source counts in detector i and the B is the background rate. 

 

A “compactness criterion” is also added to the optimal detector subset algorithm.  It is expected that 

sources of interest will be compact, and therefore the set of detectors reasonable to use will represent 

a simply connected “spot” on the surface of the spreader bar.  A radially symmetric source in a 

homogeneous medium produces circular contours (or portions thereof) of constant flux on a face of 

the container. This suggests the use of circles to define regions of maximal SNR around the point on 

the surface nearest the source.  

 

Pfund et al. [20] studied the similar problem of finding the optimal measurement time for continuous 

measurements in terms of maximizing SNR, where a source and detector are in relative (linear) 

motion. Conversely this can be thought of as finding the distance from the closest approach to the 

source within which measurements should be summed to maximize SNR. This is effectively a 

continuous 1-D version of the SNR optimization problem as stated above. In the 1-D case, a 

theoretical maximum distance exists. One can easily reason that there is an optimal subset of a 

discrete array of detectors. 
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The basic notion of finding maximal total SNR for a set of detectors within a closed region seems 

sound, and the circle is used as an appropriate choice for roughly homogeneously spaced detectors. 

 

The algorithms attempts to determine which circle (in terms of location and area) optimizes the 

overall SNR by centering this “spot” on the detector with the highest individual SNR and find the 

radius by an iterative method.  However, this neither accounts for the case where there is no source 

(and thus the choice of maximal detector is incidental) or the case where the source is between 

detectors or otherwise difficult to localize. 

 

Another approach would be to use a slightly larger “initial circle” – for example, an annulus around 1 

meter in radius, and then determine which location for this circle maximizes SNR.  Thereafter, the 

center and radius of the circle (or just the radius) can be optimized with simple nonlinear fitting 

methods.  Additionally, detectors at the edge of this contour can be included or excluded from the 

measurement by examining their individual contribution to the total SNR.  Results from these 

approaches are shown in Figure 24. 
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Figure 24. Plots of the results of several methods used for selecting optimal detector subset. 

 

The “checking every location” and “annulus with refinement” methods produce similar results.  The 

optimal number of detectors chosen by the annulus methods also closely matches the optimal number 

chosen by summation as performed earlier.  For the sake of operation with limited computational 

resources, the “annulus with refinement” method is chosen as an efficient metric for the production of 

data subsets.  This method may also allow for an estimate of source location at all depths. 

 

As an additional consideration, it is not completely known if the optimal subset for determining 

gross-count SNR is also the best for other algorithms, or if maximizing the gross-count SNR does 

indeed maximize sensitivity, or instead tends to exaggerate the measured SNR of background-only 

measurements.  Every algorithm—e.g., gross counting, energy windowing, anomaly detection, 

discriminant analysis, peak-fitting, template matching—relies on whatever information is available in 

some subset (or all) of the energy range of the spectrum measured at each sensor. Let E represent the 

combination of all energy regions of interest for a given algorithm. The SNR at sensor i for the 

algorithm may be defined as 

 
 
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iS E

B E
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Let  0S E  represent the signal that would be measured at a sensor directly above the source (whether 

a sensor is actually in that position or not). Let ir  be the distance between sensor i and the source. 

Considering only the loss of photons to absorption and scatter, we may posit an attenuation model 

        0 expi i iS E S E E f   r r , 

where f is some function of the distance.  

 

Summing measurements over some set of sensors , ,1i n   the total SNR is 
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It is clear from this form that maximizing this SNR over the number of sensors (n) does not depend 

on background or strength of the source ( 0 /S B  scales out as a factor independent of n). The 

optimal number of sensors depends on distance from the source (or equivalently, distance from the 

sensor nearest the source). It also depends on the algorithm through the choice of energy regions of 

interest, as is evident in that dependence coupled to the distance in the exponential. If the dependence 

of attenuation on energy is relatively weak, then this dependence may be ignored and we may say that 

optimal number of sensors is independent of algorithm. Strong differential attenuation could 

definitely impact the optimal number of sensors, but should not affect the choice of circular regions as 

a basis for maximizing SNR. 

 

In order to verify optimality of subsets chosen by this method, we first expand the data set used to 

include several additional location sets in the cargo container (Figure 25).  Data (and gross-count 

digests) are produced for each location, with associated backgrounds.  The aforementioned adaptive 

algorithm for optimal subset finding is produced as mentioned above and run over this expanded set 

of data (Figure 26). 

 

 
 

Figure 25. Enumerated source locations used for the simulation. 
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Figure 26. Optimal detector subsets for SNR maximization, as chosen by annulus algorithm, several 

cargo depths (0 to 100%). 
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In addition, the x, y, and radius values chosen are shown superimposed on the map of count rates for 

0% cargo depth.  The algorithm generally selects the correct location, with minor excursions about 

that value.  The inclusion or exclusion of detectors near the edge of the acceptance region should not 

greatly change the overall SNR. 

 

The above approach will then be applied to the specific problem of gross-count sensitivity in a 

detection context, to show optimality for real detection.  The “optimal detector subset” choice 

algorithm just created will also be applied to background-only data to investigate the issue of false 

positives.  The combined SNR obtained in this way will be compared with the combined SNR from a 

similarly sized random selection of crystals, with the understanding that actually alarming on source 

data will mean optimizing the response of a detection algorithm as compared to the response to 

background data.  Therefore, any increase to SNR obtained by using a down-selection of crystals 

must be compared with the expected increase in SNR with “no-source” runs when using that same 

method.  It is expected that, for example, a method where all the highest-count detectors are summed 

regardless of location would produce a higher measured SNR when presented with background data 

than a method using compactness and connectedness of the detector subset.  It is expected that the 

SNR from a connected detector set will not be far in excess of the SNR from a random set, but this 

must be verified, and this “background” SNR will also be used for a lower threshold when 

determining alarms from data.  

 

In order to demonstrate the above argument, the data are produced with and without a real source 

present.  Many realizations are made of each scenario by adding the Poisson noise appropriate to a 

30-second measurement (Figure 27). Likewise, the “no source” data are produced by adding 

stochastic noise once more to the background data and using the residual error in each energy bin as a 

source term. The data in each case for the “random detectors” SNR was found by selecting the same 

number of detectors at random as are used for the corresponding “best spot” method. 
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Figure 27. Results for best detector subset, with and without HEU test source (source at loaction 7 of 

Figure 25).  Both plots are of the same data, with the right plot having a different y-axis range to show 

low level detail. 

 

As expected, the “best values” become close to random when the spot for detection is fit to a situation 

with no actual source.  The error bars in this situation become very large, and no structure is readily 

discernible.  Likewise, the SNR as measured with a group of random detectors and no source hovers 

around zero.  However, there is some enhancement to this value when a spot is chosen with the above 

methods but no source is present.  As would be hoped, this enhancement is small, averaging around 

0.5 sigma; far lower than the expected value for gross count detection against the background.  This 

small difference to the SNR algorithm is not expected to significantly affect the detection capability 

of the system, and will represent a similarly small alteration to the detection threshold used for an 
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algorithm when results are analyzed in the field.  This alteration will be accounted for by the full 

comparison of algorithms, and represents an overall benefit to the detection apparatus. Likewise, 

these results show a far superior result from the annulus method than a random selection of crystals 

would allow, given a present source. 

3.2 Data Production 

Optimal subsets for detection are produced in keeping with these simulated data sets, by maximizing 

the gross-count SNR value for a given subset.  For each source location and depth, the list of 

detectors to use is kept as a binary vector, and stored in a file (locations shown in Figure 28).  Note 

that this is performed for a substantial multiplication of the source counts to ensure proper subset 

selection.  At a depth of zero, a single source’s emissions are used, at 25% depth this rises to 25 

sources, 50 at 50% depth, and so on.  This is intended to be beneath the expected MDQ for these 

depths, for most detection methods, but does not affect the choice of optimal subsets at these levels. 
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Figure 28. Overall Count Rate and Optimal Detector Subsets, included detectors for depth=0 shown in 

green.  Top:  Source Position 1, Middle:  Source Position 7, Bottom:  Source Position 14. 

 

A second stage is made to generate data according to these subsets.  Specific details of this generation 

stage are included in Appendix A. 

3.2.1 Detection Algorithms 

Several algorithms are chosen to attempt a variety of approaches, in keeping with the various 

approaches used for source detection and identification in fielded detection systems, as well as recent 

advancements in these approaches [21].  These are summarized briefly here: 

 

Gross Counting: The gross-counting algorithm is one of the simplest methods of source detection and 

is used in many deployed detector schemes.  In this algorithm, the number of counts above the 
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background is computed and compared with a threshold.  The figure of merit F is generally 

calculated: 

 BFBC      or  

 
BBCF /)(   

where C is the total counts and B is the background counts.  Gross counting is thought to be an 

effective “baseline” solution as its performance will not be significantly changed by anything other 

than attenuation by cargo materials. 

Energy Distance: Previous work has shown improved results in some cases of source detection with 

the use of “energy distance” anomaly detection algorithms [15].  In this approach, the available 

spectrum is first binned into coarse energy bins (eight bins are used for this investigation).  These bins 

are treated as an eight-dimensional vector and normalized.  Then the “opening angle” between 

background and source spectra is found by taking the dot product between them.  This opening angle 

is the figure of merit returned from this algorithm. 

Peak Finding: The peaks present in the spectroscopic data can be “picked out” with a variety of 

methods and then compared with a catalog of known source emission lines to produce a list of the 

isotopes present in the measured spectrum.  The peak-finding algorithm used for this work first 

subtracts background and then takes the convolution integral of the data with a Gaussian peak of 

width matching the detector resolution.  The resulting function over energy is compared with a 

threshold to generate peaks and these peaks are compared with a limited catalog of sources to 

determine source detection.  In this case, a detection of HEU (that is, a detection of the relevant 

emission lines from uranium-235) is considered to constitute a positive detection, while any other 

isotopes are ignored. 

GADRAS: In the template-matching technique used by the Gamma Detector Response and Analysis 

Software (GADRAS [17]), the spectrum to be analyzed is compared with a library of templates.  

When a "good" match is found, the spectrum can be identified as that of the isotope used to generate 

the template.  The template library contains the measured or calculated spectra of most isotopes as 

well as some background spectra.   

Template matching is well suited to the identification of unshielded radiation sources; multiple 

regressions can also be applied to identify combinations of radionuclides.  Template matching can be 

performed quickly with limited computational resources, a desirable feature for use in handheld 

radioactive isotope identifiers.  The GADRAS template-matching code was used in this work for 

identification of the HEU source.  In this case, the presence of uranium in the list of detected sources 

is used as a positive indicator of detection, meaning that the figure of merit for this use of GADRAS 

is effectively binary.  While false alarms may be present in the form of declarations of other sources 

not present in the data, there is no trivial way to set a threshold on detection using the GADRAS 

algorithm, and the probability of detection is therefore reported irrespective of false detections. 

Limited GADRAS:  GADRAS is employed in one other fashion in this work.  In this technique, only 

the natural isotopes expected in background were included in the GADRAS template library.  The 

presence of an additional source will tend to make the “goodness of fit” progressively worse with 

intensity.  Thus, the goodness of fit (Chi
2
) is used as the figure of merit for this use of GADRAS, 

rendering it an anomaly-detecting algorithm. 

 



PNNL-21948 

 

 
46 

 

KUT:  In this approach, the Potassium, Thorium, and Uranium components of natural background are 

simulated at equilibrium, in a deeply shielded configuration.  These components form the basis of 

terrestrial background models for Monte Carlo radiation transport simulations performed at PNNL. 

Each component is simulated with MCNP as incident on the detectors in the spreader bar model.  The 

resultant spectra are used as the three components for a linear fit to the observed spectrum, and the 

sum of square errors is used as an anomaly metric. 

 

QuID:  A new algorithm developed at PNNL, called QuID for “quick ID”, does not find the peaks 

explicitly, but rather performs a general linear least squares fit of a series of isotopic models against 

the spectrum [22-23,23].  The spectrum is first rebinned such that its peaks have a full width at half 

maximum that is constant.  This simplifies the computations that follow.  A set of Gaussian models 

representing the isotopes in the library are then created, and the models and gamma ray spectrum are 

filtered using a zero-area square wave filter (SWF).  Filtering the spectrum enhances the peak 

signatures and minimizes the baseline, thus preventing the need to subtract it out or model it 

accurately.  The models are then fit in linear combination against the filtered spectrum using an 

iterative non-negative linear least squares technique.  Output of the fit is the relative source strength 

of each model and its uncertainty.  The ratio of these two quantities is compared against a single 

threshold to determine if the isotope is present in the spectrum. 

 

3.2.2 Data Analysis 

Results from selected algorithms are shown, to show the algorithm results for each source depth and 

strength (Figure 29).  These results are plotted with respect to source strength and depth: 
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Figure 29. Average Algorithm data for Optimal Detector Subsets, for varying source depth, strength 

(Central source location shown). Top: Energy Distance Algorithm.  Middle:  Gross Count Algorithm.  

Bottom: KUT Algorithm. 

 

Several thresholds for detection must be produced for each algorithm involved.  A NORM (i.e., 

assuming that NORM sources must be avoided) and non-NORM (i.e., assuming that NORM will not 

be considered) threshold must be produced for each algorithm to provide alarm results.  These 

thresholds will be produced from the algorithm results.   

 

For each algorithm, the raw data are parsed, and a threshold for detection is set.  Two such thresholds 

are made, either considering NORM sources as a component of background or not.  In either case, the 

threshold is set to exclude all the results from these backgrounds in order to provide alarms.  Two 

figures of merit (Algorithm source FOM, Algorithm false alarm FOM) are also produced by 

analyzing the simulated data with each algorithm.  In a real scenario, the source is not known 

beforehand.  Therefore, we set these thresholds to exclude the “false” FOM (the rate of positive 

detection from scenarios with no actual sources).  Thresholds for detection are estimated by excluding 

only false identifications that occur in background or NORM cases. The thresholds based on this 

reasoning are saved in a file containing the thresholds to use for each algorithm. 

 
To produce MDQ figures, we apply each algorithm to all the background files and produce data 

digests containing values of cargo depth, iteration number, and figure of merit.  We also apply the 

algorithms to our source data set to produce another file with the values of cargo depth, source rate, 

iteration number, and figure of merit.  We declare the acceptable false alarm probability to be about 

1/1000 and determine an appropriate alarm threshold that gives this for each algorithm, for any part of 

the data set not containing any source term (i.e., taking the statistical limit of algorithm performance).   

These results are post-processed by comparing the alarm algorithms for each algorithm to the figures 

of merit for all the source runs.  The number of source runs exceeding the thresholds are combined to 

produce plots of source emissions versus probability of detection for each algorithm and depth.  After 

this, for each source depth, the source emission rate necessary to produce a probability of detection of 

95% is found by interpolation of the data and a plot of minimum detectable source amount versus 

cargo depth is produced for each algorithm. These results are discussed further in Section 5. 
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4 Commodity Study 

As part of this project, we analyzed US import data collected during all of 2006 on containers shipped 

through US ports—over 4.5 million containers.  Using these data, we extracted a variety of 

distributions of interest to modelers and developers of active and passive detection systems used to 

scan IMCCs for potential contraband.  This work expands on some of the analysis presented in an 

earlier report from LLNL by investigating the foreign port distribution of commodities shipped to the 

US [12]. Details of this present analysis are given in a separate report [24]. 

 

The data used in this report were obtained from Port Import Export Reporting Service (PIERS) 

Global Intelligence Solutions, hereinafter referred to as PIERS.
1
  The company collects data from 

more than 15 million bills of lading per year, which translates to more than 20 million shipments, 

with data as far back as 1950.  PIERS processes these data into databases, facts, and figures, which 

others can then use to better understand the global trade market.  With the database we obtained, we 

were able to better understand the dynamics of what commodities are shipped to the US, from which 

ports, and in what quantities.  Each commodity has a specific Harmonized System (HS) Code—a 

numerical identifier for the commodity. 

 

The majority of containers shipped to the United States are 40-ft containers (~70%); about 25% are 

20-ft; and about 3.6% are 45-ft containers.  A small fraction (<1%) of containers are of other, more 

specialized sizes, and very few ports actually ship these unique size containers.  The primary foreign 

ports that ship the largest numbers of each container size are shown in Table 2 below.  Given that 

45-ft containers comprise 1 of out every 27 containers shipped to the US, and considering the foreign 

ports from which they are shipped, they should not be ignored in screening; further testing and 

analysis of radiation measurements for national security with this size container is warranted. 

 
Table 2. Summary of Top 10 International Ports for the Three Major Container Sizes Shipped to the US 

 

Ran
k Port 

20-ft Containers 

Port 

40-ft Containers 

Port 

45-ft Containers 

Number 
% of 
Total Number 

% of 
Total 

Numbe
r 

% of 
Total 

1 Shanghai 159,507 8.60 Yantian 778,866 15.25 Yantian 75,824 28.94 

2 Busan 143,284 7.72 Shanghai 594,462 11.64 Hong Kong 33,541 12.80 

3 Kaoshiung 128,149 6.91 Hong Kong 417,513 8.17 Shanghai 26,933 10.28 

4 Hong Kong 94,618 5.10 Busan 348,586 6.82 PTO Cortes 17,545 6.70 

5 Singapore 71,095 3.83 Kaoshiung 317,897 6.22 San Juan 16,443 6.28 

6 Yantian 69,585 3.75 Ningpo 164,551 3.22 Kaoshiung 16,344 6.24 

7 Freeport 55,450 2.99 Bremerhaven 154,928 3.03 Singapore 9,018 3.48 

8 Antwerp 52,231 2.82 Singapore 146,296 2.86 Rotterdam 6,549 2.50 

9 Santos 48,775 2.63 Rotterdam 123,913 2.43 Xiamen 6,115 2.33 

10 Qingdao 47,773 2.58 Qingdao 103,273 2.02 STO Tomas 5,613 2.14 

                                                      
1
 Piers Global Intelligence Solutions, 2 Penn Plaza East, 12

th
 Floor, Newark, New Jersey, USA. 



PNNL-21948 

 

 
50 

 

Analysis of all containers can provide a wealth of information.  Access to the database makes it 

possible to determine which general commodities are shipped overseas in IMCCs more frequently.  

Commodities are generally shipped with a 4- or 6-digit HS code that describes the commodity.  These 

codes can be grouped by a collapsed 2-digit HS Code that represents the commodities.  This shipping 

data is generalized into approximately 16 categories that span the range of commodities. This was 

performed by collapsing the two-digit codes into general categories specified by Foreign Trade On-

Line Corporation.  These data are shown in Table 3 below.  It should be noted that HS codes 90-97 

are generally referred to as a ‘miscellaneous’ category, but we did not collapse the HS codes in this 

major category because these commodities represent a large fraction of the total number of containers 

shipped to the US (particularly 40- and 45-ft containers), and the commodities grouped therein are 

quite different from one another.  The breakdown for all 97 HS codes is shown in Appendix B of the 

separate, detailed report [24]. 

 

Table 3. Shipping Container Data Arranged by Major HS Code Categories 

 

HS 
Code 
Rang

e Description 
20-ft 

Containers Percent 
40-ft 

Containers Percent 
45-ft 

Containers Percent 

00 Household Goods 49,895 2.69 199,852 3.91 12,032 4.59 

01-05 Animal and Animal 
Products 

45,524 2.45 104,827 2.05 268 0.10 

06-15 Vegetable Products 128,119 6.91 227,331 4.45 964 0.37 

16-24 Foodstuffs 182,724 9.85 280,804 5.50 3750 1.43 

25-27 Mineral Products 74,358 4.01 16,114 0.32 138 0.05 

28-38 Chemical & Allied 
Industries 

163,034 8.79 128,406 2.51 5162 1.97 

39-40 Plastics & Rubbers 128,262 6.91 455,844 8.92 13,948 5.32 

41-43 Raw Hides, Skins, Leather 
& Furs 

11,085 0.60 83,440 1.63 7767 2.96 

44-49 Wood & Wood Products 120,774 6.51 391,535 7.66 10,176 3.88 

50-63 Textiles & Clothing 67,524 3.64 382,513 7.49 51,426 19.63 

64-67 Footwear & Headgear 15,108 0.81 108,316 2.12 18,999 7.25 

68-71 Stone & Glass 238,465 12.85 156,979 3.07 5203 1.99 

72-83 Metals 299,302 16.13 316,307 6.19 18,730 7.15 

84-85 Machinery & Electrical 174,963 9.43 801,411 15.69 22,395 8.55 

86-89 Transportation Products 80,965 4.36 293,234 5.74 12,384 4.73 

90 Photograph and Medical 
Instruments 

10,437 0.56 50,093 0.98 4898 1.87 

91 Clocks & Watches 684 0.04 4905 0.10 566 0.22 
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HS 
Code 
Rang

e Description 
20-ft 

Containers Percent 
40-ft 

Containers Percent 
45-ft 

Containers Percent 

92 Musical Instruments 1566 0.08 8786 0.17 478 0.18 

93 Arms & Ammunition 1068 0.06 1109 0.02 8 0.00 

94 Furniture 31,576 1.70 816,169 15.98 38,074 14.53 

95 Toys, Games & Sports 
Equipment 

25,360 1.37 255,781 5.01 33,013 12.60 

96 Manufactured Articles 3682 0.20 20,819 0.41 1325 0.51 

97 Works of Art & Antiques 766 0.04 4113 0.08 268 0.10 

 

While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped 

with enough frequency to present potential issues in screening IMCCs at ports that handle overseas 

shipping containers.  The majority of containers with NORM will contain fertilizers (5,700 

containers), granite (59,000 containers), or ceramic (225,000 containers) materials.  Fertilizers were 

generally shipped in either 20- or 40-ft containers with equal frequency.  While granite is mostly 

shipped in 20-ft containers, ceramic materials can be shipped in either 20- or 40-ft containers.  The 

size of container depended on the specific use of the ceramic or porcelain material.  General 

construction ceramics (such as floor and roofing tiles) tend to be shipped in 20-ft containers.  

Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally 

shipped in 40-ft containers.  This discrepancy is due in large part to the packaging of the commodity.  

Consumer products are generally shipped packed in a box loaded with Styrofoam™ or other packing 

material to protect the product from breakage.  Construction ceramic materials are generally shipped 

in less packing material, many times consisting of only a cardboard or wooden box.  Granite is almost 

always shipped in a 20-ft container, due to its very high density. Thus, signatures from certain 

commodities containing NORM can be associated with specific container sizes. 

 

A previous report [12] contained analysis of weight distributions based on twenty-foot equivalent 

units (TEU), which normalized all container sizes.  However, it is probably more illustrious to 

investigate these distributions based on container size.  This is demonstrated in Figure 30, which 

shows distinct distributions for the three different containers.  For 20-ft containers, the distribution is 

relatively flat below 30,000 lbs., but has two peaks centered around 37,000 and 43,000 lbs., 

respectively.  The 40-ft container distribution has a large, broad peak below 30,000 lbs., with a 

maximum around 14,000 lb.  There is also a peak around 42,000 lbs., and a relatively flat distribution 

from 50,000-57,000 lb.  Forty-five-foot containers had a very broad distribution from 5000-

45,000 lbs. /container, with a maximum near 17,500 lb. The distribution for the dominant, 40-ft 

containers is used below in our analysis of the performance of an SBRD system. 
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Figure 30.  Weight distribution of all containerized commodities entering the United States for 45-foot 

containers (red curve) 40-foot containers (blue curve) and 20-foot containers (green curve). 
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5 Results and Discussion 

5.1.1 Algorithm Results 

Results from the “New SBRD” detector have been analyzed in the style of the last report from March 

2010, in which the “SBRD” and “Enhanced SBRD” were compared [10-11]. MCNP calculations of a 

1-kg HEU source at various heights in a full load of wood in a 40-foot IMCC were used to calculate 

the MDQ as a function of depth for various algorithms (Figure 31). 
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Figure 31.  MDQ for various algorithms, with and without optimal subset method. 

 
Several results are of special note here.  As would be expected, algorithms that rely on specifics of the 

spectra such as peak shape or templates tend to degrade more quickly as shielding becomes large.  

However, these sorts of algorithms perform well with light shielding and showed reasonable 

capability to identify sources at these levels.  However, the inclusion of NORM degraded the 

performance of many algorithms somewhat, particularly in the case of the gross count (GC) and 

energy distance (ED) metrics, the results of which are coincident in many cases.  In general, when the 

ED line is not visible it is equivalent to the GC result. Algorithms that account for background 

fluctuations such as the QuID and GADRAS algorithms seem to be affected the least by the 

requirement to exclude NORM, allowing for substantially better detection when NORM is present.  

The GADRAS and Limited GADRAS results deserve some specific consideration.  The addition of 

NORM substantially impacts the specific algorithms, with the exception of GADRAS.  The 

GADRAS algorithm was run under the assumption that no nuisance alarms due to NORM were 

present.  The inclusion of these effects it makes GADRAS almost entirely untenable when NORM is 

a consideration, as the spurious detection of additional isotopes not actually present leads to a 

substantial false alarm rate.  For this reason, the GADRAS result is not perfectly analogous to the 

others, as the requirement on false alarm rate makes its use nearly impossible in a real way.  

However, the Limited GADRAS approach (in which a limited set of benign spectra are used) 

removes this issue and allows the inherent power of the template matching scheme to be used without 

relying on an expanded catalog of sources. 

 

It’s also worth noting that these results vary strongly with and without the application of “optimal” 

subsets.  Using the optimal subset method dramatically improves the performance for most 

algorithms but actually seems to hurt the performance of GADRAS and Limited GADRAS, due to 

the fact that additional noise due to fewer detectors leads to the detection of incorrect isotopes.  In the 

case of Limited GADRAS, the use of only a few detectors for the “optimal” set leads to a very erratic 

result, and a few NORM results therefore have high chi square values.  The regular GADRAS 

implementation simply does not evaluate the counts from the limited detector set as sufficient to 

estimate HEU, and as a result does not return this result. Thus, while GADRAS may not be the best 
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choice for this kind of detection due to the high nuisance incidences, Limited GADRAS may still be 

among the optimal choices when all the available detectors are used to limit false identifications. 

 

The QuID algorithm maintains the best result for the relatively unshielded source, providing the best 

possible result at low depths but quickly degraded as more limited spectral information is available 

due to attenuation and down scattering by cargo. 

 

For the best results estimated in this way, the KUT algorithm used with a limited subset of detectors, 

or the Limited GADRAS approach with the entire detector set may be optimal.  In these cases, MDQ 

rises from a very low level of a fraction of a source in the unshielded case, to between 1 and 10 

sources worth of flux over the first 50% of cargo depth.  This is in keeping with the results from the 

previous study [10-11] with realistic background attenuation but more detector material.   Even after 

NORM is added as a consideration, the best-performing algorithms may be able to detect the presence 

of the stated sources near the center of the cargo container at the level of a few test sources worth of 

flux.  This relatively optimistic result is found by exploiting the capability of anomaly algorithms to 

provide insensitivity to NORM while detecting illicit sources.  As both of the best results found by 

this work use similar methods for detection (Limited GADRAS and the KUT approach both operate 

by using a limited set of spectra for fitting, and employ a goodness-of-fit metric as an anomaly 

detector), these approaches are expected to be the best for the operation of a fielded detection system.  

It is possible that multiple algorithms may be used in parallel, for example the pairing of an algorithm 

which uses peak finding (for use when peaks are easily discernible) with an anomaly detector when 

peaks are not obviously present in the data.  It is expected that this sort of hybrid approach may 

combine the best performance at both low and high attenuation. 

5.1.2 Commodity Distribution 

The distribution of 40-foot cargo containers entering the USA as a function of weight of the cargo 

was also determined for comparison with the detector performance to varying overall cargo amount. 

The weight distribution of all containers coming into the United States was described previously and 

shown in Figure 30. The 40-foot container distribution was normalized and the fraction of containers 

(intermodal cargo container or IMCC) versus cargo weight is shown in Figure 32. 

 

 
 

Figure 32. Forty-foot container prevalence by weight. 
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This distribution was in turn used to generate the fraction of 40-foot containers versus wood cargo 

depth assuming a constant cargo density equal to the wood cargo model used for the simulations in 

this work, 0.46 g/cm
3
 (Figure 33). A substantial fraction of cargo containers contain less than around 

1.1 meter of equivalent wood shielding in terms of overall mass, corresponding to a cargo container 

around 50% full of wood.   

 

 
 

Figure 33. Forty-foot container prevalence by equivalent cargo thickness. 

 

5.1.3 Enhancements 

To create a performance estimate for the enhanced SBRD system (New SBRD), the corresponding 

performance for the SBRD system was evaluated at the detection depth corresponding to a MDQ of 

10 kg of HEU. This is shown in Figure 34, where due to the limited simulations accomplished in this 

study, the distribution curve of the previous study was incorporated [10-11]. This performance was 

then scaled by the MDQ estimates produced by this work to give the estimates shown in Figure 35 

and Figure 36.  In each plot the upper curve for the New SBRD corresponds to the easiest location for 

detection (in the middle of the container), while the lower curve corresponds to the most difficult 

source position, which is in the corners of the container. 

 

These results for the enhanced SBRD are similar to the previous study (as shown in the introduction 

and described in Appendix B), but provide a much higher level of robustness, as these estimates 

include validation of the model to measurements, and using detection algorithms instead of an 

estimation of detection capability. 
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Figure 34. Simulated count rate as a function of source depth in the cargo for HEU. 

 

 

 
 

 Figure 35. Maximum cargo thickness for HEU source detection. 
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Figure 36. Maximum Cargo thickness for HEU Source Detection, Worst Case. 
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6 Conclusions and Path Forward 

6.1 Conclusions 

The combination of the best available detection algorithms and the enhanced SBRD model provides a 

significant estimated increase to overall sensitivity of the spreader bar detector system as compared to 

the commercial systems as tested in 2008, by an approximate increase of a factor of two for HEU.  

While this enhancement is most prominent in cases of light shielding (i.e., a limited overall cargo 

depth), the combination of additional detector elements, optimal detector combination and anomaly 

detection algorithms provides an enhancement across shielding depths.  However, the one-sided 

nature of the SBRD presents intrinsic limitations to overall sensitivity, leading to high MDQs for 

many detection scenarios. In particular, while the enhanced SBRD may achieve an MDQ of around 

10 kg for a substantial fraction of cargo containers entering the US, this figure is not the case for the 

most challenging source locations, where the MDQ may be unreasonably large.   

Significant work was performed on both the algorithm development and the container cargo 

distributions entering the US, and the result of this modeling, validation, and simulation effort was a 

set of estimates of the performance of a variety of radiation detection algorithms in this cargo-

screening environment.   

In the case of algorithms, a variety of contemporary radiation detection and identification approaches 

were employed, and the optimal approaches to selecting time and location subsets of detector data 

were explored.  In all cases, algorithm performance was compared, and the best approaches were 

suggested along with the best expected performance from the enhanced SBRD.  In general, template-

matching schemes employing a limited set of regression parameters tend to provide best results 

overall including the deep shielded scenarios.  For a central source location, these improvements may 

allow the enhanced SBRD to achieve an effective Minimum Detectable Quantity (MDQ) around 10 

kg of HEU positioned within around a 50% full cargo container, assuming nominal cargo density.  

However, the exponential attenuation due to additional dense cargo makes detection difficult behind 

any larger amounts of cargo.  

The improvements of an enhanced SBRD with increased detector material and improved algorithms 

result in an effective MDQ of 10 kg of HEU in ~50 percent of the imported cargo in 40-foot 

containers, assuming a random source location.  This is approximately two times the capability of the 

estimated performance of the commercial systems (based on 2008 configurations).  For an MDQ of 

the 10 kg HEU source located in the worst location (bottom of the 40-foot container), the volume of 

cargo scanned drops to 10% for the enhanced SBRD, again a factor of two or more larger than the 

commercial systems.  Enhancing the SBRD systems by adding more detectors, providing a more 

uniform coverage, and incorporating more advanced algorithms will result in a significant increase in 

capability. 

6.2 Path Forward 

This study has provided some indications of the possible improvements and limitations of a spreader-

bar radiation detection system.  This work was focused on HEU detection in a 40-foot container, 

additional investigation for other threat material, as well as other container configuration will help 
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map out the possibilities for SBRD systems.  The results here can be used along with other studies to 

support the development of specific requirements for a system of this type in the future. 

The additional capability of the enhanced SBRD model, combined with the difficulty of detection 

through high levels of intervening cargo suggest that the single sided nature of the SBRD will limit 

the potential for such a screening system. The system could be further enhanced with a basic variation 

to detector footprint and shape (e.g., a detector with additional side panels) or a combination of 

detection approaches (e.g., the combination of a spreader-bar detection system with a detector panel 

beneath the roadway to accomplish two-sided detection).   

The additional sensitivity of advanced algorithmic approaches is also of interest to the advancement 

of multiple-detector-element architecture of this sort, and combined or further algorithmic 

advancements may allow for further increases to detection sensitivity. 

Although this work included some validation with the SNL developed system, additional verification 

with additional experimental measurements and simulations would provide increased confidence in 

the models and results provided here, and lead to extending the simulations beyond the limited scope 

of this study. 
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8  Appendix A: File Generation and Structure 

These files are created by a MATLAB
2
 script which samples each data file according to each optimal 

subset for a source position and depth, creating single-spectrum, summed data files with file names in 

the format: 

 

Data _ <subset method> _ <source, Bkg, or NORM> _ 1sec _ <depth>depth _ newdetector _ pos_ 

<source position used for subset> __depth _ <source depth used for subset> 

Here, the first “depth” number has multiple meanings, referring to the source depth within full cargo 

for sources, and the depth of cargo for background (and NORM). 

 

ASC scenario files 

 

The current software used to produce ASC scenario files from raw data and MCNP inputs 

(ASC_stochastic_generator_v15_forSpreaderBar.rb) is written in the Ruby language, and provides 

statistical realizations of scenarios to be analyzed by detection/ID algorithms.  To provide this code 

with useful data, MATLAB code is written to input the source information and the various subsets, 

and appropriate combinations of the source, background and NORM data will be written to flat 

spectra files that correspond to the summed inputs for 30 seconds. 

 

The data output from the MATLAB stage is given to the ASC software such that optimal subsets can 

be constructed for each source location beforehand, and then used to generate the ASC “scenario 

files” used to estimate algorithm performance.  In this stage all of the data variations are taken in, and 

at present, the standard HEU source, background, and NORM source expected to represent a 

relatively “heavy” NORM source. 

 

All subsets, necessary to the operation of the algorithms, will be produced, each with the optimal, 

total, or random detector set. Then the .ASC writer stage will be used to generate the following 

scenario data, each realized for 30 seconds and for 50 different realizations, each with the appropriate 

background: 

All sources (including “no source”) 

All locations/depths 

All (appropriate) cargo depths 

Each NORM type 

 

Because of the additional procedural complexity associated with the preceding stages, efforts will be 

made to take these files and spot-check them for accuracy and find any potential errors.  From each 

subset of data, a few foreground, background and net spectra will be inspected and verified to be as 

expected from the original MCNP outputs.  

 

Here are some spectra associated with the “optimal subset” data.  ASC files are kept in the format: 
 

<source>_<subset>_<sourceLocation>_<sourceDepth>_<cargoDepth>_<sourceStrength>_<iterationNumber>.ASC 

 

This format will be used to hold source, background (src=0), and NORM simulated data. 

 

Source=’BKG’ runs use the empty cargo container for both attenuated and un-attenuated background.  

These scenarios are meant to simulate a truly empty cargo container.  HEU sources with 0 source 

                                                      
2
 Available from The MathWorks, Inc. at http://www.mathworks.com/products/matlab/. 
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strength, on the other hand, represent scenarios with a container full of cargo but no source.  To 

ensure an acceptably low false alarm rate, both sorts of scenarios must be excluded by setting 

sufficiently high algorithm thresholds. 

 

In order to check these files, several inspections are performed.  First, a collection of spectra from 

each ASC file is displayed for consistency.  These spectra should reproduce the HEU energy 

structures at the appropriate locations and show that background and foreground are similar when 

source is small.  In fact, as the attenuated background uses a full cargo container while the previously 

measured background has an empty one, it should be somewhat smaller.  These things are verified 

visually first. 

 

From these results, we can see the following specific effects, which we expect: 

- Everything which begins with the same beginning (e.g. heu_optimal_1_0_100_xxx_y) should 

have the same background, as the same subsets and data are used 

- The backgrounds which are made using different subsets should scale with the number of 

crystals in that subset (more or less, since not all crystals seem the same background) 

- The foreground data in a no-source run should be different from the background, and the 

background should actually be larger, as it is considering an empty cargo container while the 

“foreground” uses a full one.  

 

Thereafter, a few quantitative measurements are made to verify the quantitative operation of the code.  

Specifically, for the optimal subset summation, and considering a strong HEU source at around 50% 

cargo depth, the gross-count sum in the ASC file is compared with the original data (as gotten from 

the original .xls files) for consistency.  Here we choose the ASC file 

“heu_optimal_1_4_100_819.2_33.ASC.”  The foreground (summed over all the bins) for this file is 

1.13E8, while the background is 5.6E3.  Now, the detectors used to establish the “optimal subset” for 

these data (location 1, depth 4%) contains detectors number 9, 12, and 13.  Looking at the files 

HEU_1sec_4depth_32detector.csv, BKG_1sec_100depth_32detector.csv and 

BKG_1sec_4depth_32detector.csv, we find the following sums from adding all the non-zero bins in 

detectors 9, 12, and 13 from position 1: 

 

HEU_1sec_4depth_newdetector.csv: 4.77E3 

BKG_1sec_100depth_newdetector.csv: 30.8 

BKG_1sec_0depth_newdetector.csv: 187.2 

 

Now, we expect the background from the corresponding ASC file to be drawn from the background 

of an empty container, over 30 seconds, or sum to around 187.2*30 =5.6E3, which is accurate.  

Likewise, we expect the foreground to be the sum of the remaining two (attenuated background and 

source times 819.2), or: 

 (30.8+(4.77E3*819.2))*30 = 1.17E8, which is also approximately correct.   

 

Given the result from this spot-check, we believe that the summation rules are being handled 

correctly all the way through the production of .ASC scenario files. 

 

Algorithm Results 

 

Now, each algorithm is run over every .ASC file.  To recap, the ASC files we read in will all have 

filenames like this: 

 

heu_optimal_1_0_0.05_1.ASC 
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These files have the format: 
<source>_<subset>_<sourceLocation>_<sourceDepth>_<cargoDepth>_<sourceStrength>_<iterationNumber>.ASC 

 

These are laid out as follows: 

 

Source: These currently include "heu," “norm” and “bkg”.  More sources may be added. 

 

Subset: "optimal" means the best subset found by the method described 

earlier, "all" means every crystal is summed together, and "random" means 

that the same number of crystals as "optimal" has been randomly selected. 

We may also include "weighted," in which the contribution from each 

crystal may be weighted by its gross-count SNR. 

 

SourceLocation - currently considering locations 1, 7, and 14. 

 

SourceDepth - any location, but currently 4, 15, 27, 50, and 75%. 

 

CargoDepth – currently always 100% - all scenarios include a full cargo container at present.  This 

may be extended in the future. 

 

SourceStrength - a direct multiplier of the source flux. 

 

IterationNumber – this number is a placeholder to differentiate statistical realizations of the same 

scenario. 

 

Each of these .ASC files will be analyzed by all available algorithms, producing a file of filename 

rawFOM_<algorithm initials>.csv.  This file will be written in the format: 

 
<source>,<subset>,<src location>,<src depth>,<cargo depth>,<source strength>,<iteration number>,<alg 

source FOM>,<alg false alarm FOM> 

 

In addition to the variables from the ASC filename, two additional columns are written here, and 

called “algorithm source FOM” and “algorithm false alarm FOM.” These are defined as follows: 

 

Algorithm source FOM – this is the figure of merit returned by the algorithm – in the case of anomaly 

detectors, this is simply the return value of the algorithm.  However, for identification algorithms, this 

represents a measure of confidence presented to the correct source (e.g., HEU). 

 

Algorithm false alarm FOM – this is the figure of merit expressing confidence in the presence of 

incorrect sources (e.g., the detection of 
137

Cs in a scenario that only contains HEU).  This should not 

contain confidences in background or NORM-sources, as these would not be investigated as would 

regular source alarms.  For non-identification schemes, this has no rigorous meaning and should be 

set to zero. 
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9 Appendix  B: Initial Data Analysis 

This appendix presents the initial analysis of the SBRD performance that was incorporated into a 

presentation in 2010 [10-11].  This provides some of the details of the previous analysis, and how 

results were obtained, but does not reflect the process used in the this work, since this current work 

input the data into algorithms and determined estimated detection rate, whereas the previous work 

scaled the results based on the commercial system results.  This appendix does however provide some 

insight into how the calculations to convolute the MDQ with the cargo distribution are carried out. 

 

A LANL report [8] provided results of testing and analysis of the detection capability of the 

commercial SBRD systems.  The results are fairly similar, and for simplicity, a value of the 

approximate average of the systems is used.  This average, which does not reflect the actual capability 

of either system, but provides a relatively consistent value is detection of a 1-kg HEU oxide source, in 

30% of a cargo container filled with polyethylene with a density of up to 0.295 g/cm
3
. 

 

In order to relate the fraction of cargo volume in which the source can be detected to the maximum 

depth in cargo at which the source can be detected, we use the following simple model that the 

contour of MDQ in a cross section of the cargo container is an arc of a circle centered on the top 

middle of the container. This is true in the limit that all the detectors are located along the middle 

spine of the top of the cargo container. A diagram of the model is shown in Figure 37. 

 

 
Figure 37. Diagram of the model relating fractional cargo volume to maximum cargo depth for detection. 

 

In this model, the fraction f of the cargo container (in blue) in which the source can be detected (the 

part above the red line) is related to the depth in cargo container d, which is also the radius of the 

circle, and the height h and width w of the cargo container as 
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In the third line, 

   

d2 sin-1 w

2d
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è 
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ö 

ø 
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is the area of the sector of the circle subtended by the red line and 

   

w

2
d2 -

w2

4  
is the area of the two triangles above the sector. In the second line the sector reduces to a half circle 

and there are no triangles. In the fourth line the final term is the area of the segment of the circle 

below the container that must be subtracted. 

 

For this calculation we use the inner dimensions of our cargo container model, in which the width w = 

2.38 m and the height h = 2.41 m. This relationship is show in the following plot (Figure 38). Using 

this relationship, the cargo depth that corresponds to 30% of the volume fraction is ~1.0 m. 

 

 

 
Figure 38. Plot of the fraction of a cargo container in which a source can be detected versus the maximum 

depth of detection of the source in the cargo container. 
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In our modeling the cargo is wood with a density of 0.46 g/cm
3
. The attenuation of signal S/S0 in the 

cargo depends on the thickness of the cargo approximately as 

  

S S
0

» e-mrt

 
where  is the attenuation coefficient for the cargo material,  is the density of the cargo material, and 

   

t is the thickness of cargo traversed. Since  is similar for polyethylene and wood, since they 

polyethylene is made of hydrogen and carbon while wood is mainly hydrogen, oxygen, and carbon, 

the attenuation in them will be approximately the same if the ratio  is the same. Thus we can 

compensate for the different densities of the two cargos by adjusting the thickness as 

   

twood = tpoly

rpoly

rwood . 

The maximum depth for detecting the LANL source in our wood for the average of the SBRD 

systems is 0.66 m (2.2 ft).  

 

To determine the signal we would detect in our model for the LANL source at these depths, we 

interpolate our calculations of the signal detected in the middle detector from the 5 source positions 

directly below it for the case of wood cargo filling the container.   

 

Because we need to consider both attenuation in the wood cargo, which is mainly exponential, and 

attenuation in the air above the cargo, which is mainly a power-law dependence with distance, we 

consider the detected signal in a window around the main, 186-keV transmission line in HEU.  

 

Interpolating the logarithm of the detected signal versus source depth, as shown in Figure 38 gives a 

smooth, nearly linear dependence. This is shown in Figure 39 where the points are the results of the 

MCNP model and the line is an interpolation of the logarithm of rate versus depth. 

 

 
Figure 39. Plot of the signal rate from an HEU source in a load of wood as a function of depth of the 

source in the wood. The points are the MCNP model and the line is an interpolating function. 

 

Figure 40 shows the inverse of Figure 39; an interpolation function for the source depth versus signal 

rate. 

 



PNNL-21948 

 

 
69 

 
Figure 40. Plot of the depth of an HEU source in wood as a function of the signal rate from the source. 

The points are the MCNP model and the line is an interpolating function. 

 

Figure 41 shows a similar interpolation for the case of an empty cargo container. 

 

 
Figure 41. Plot of the signal rate from an HEU source in an empty cargo container as a function of depth 

of the source in the container. The points are the MCNP model and the line is an interpolating function. 

 

Using the first interpolation above, the signal rate for the middle detector in our model for the LANL 

source at the maximum detection depth in the energy range from 150 keV to 230 keV is calculated to 

be 190 cps for the average SBRD.  

 

This depth and signal rate correspond to detection of the LANL source that is approximately 

equivalent to a 10- kg sphere of HEU metal, and thus to a MDQ of 10 kg at this signal rate. We use 
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our calculated signal (from a 1-kg cylinder of HEU metal) to scale around this signal to determine the 

MDQ at other points in the cargo container. 

 

In particular, we scale the MDQ linearly with the signal rate as 

   

MDQ r( ) = MDQ0

r0

r  
where r is the signal rate, r0 is the calibration signal rate, and MDQ0 is the calibration minimum 

detectable quantity. This corresponds to assuming that the HEU source consists of individual 1-kg 

cylinders that are arranged in the cargo container separated by enough distance so that they do not 

shield each other and so their signals add linearly. 

 

Another possibility would be to assume the HEU source consists of one cylinder. In that case the ratio 

of the signal of two masses should scale approximately as the area of the cylinder, or approximately 

as the 2/3 power of the mass of the cylinder. Thus 
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so the MDQ scales as the 3/2 power of the detected signal: 

   

MDQ = MDQ0

r0

r

æ 

è 
ç 

ö 

ø 
÷ 

3
2

. 

 

Applying the linear scaling to the signal rate in the middle detector for the source positions in the 

central plane of the cargo container gives the following contour plot of MDQ values, shown in Figure 

42. As expected, the 10 kg LANL source would be detected down to about 0.61 m (2 ft). 
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Figure 42. Contour plot of the MDQ for an HEU source in a cargo container full of wood. 

 

 

The corresponding contour plot for an empty container is shown in Figure 43. Note that the 1/r
2
 fall 

off in signal from the top to the bottom of the container is not negligible. As shown in Figure 42 

above, it is more than a factor of 30. At the middle on the bottom the HEU source would have to be at 

least 8 kg in this particular model to be detected. Note also that the model indicates that there is an 

enhancement of the detected signal coming from the sides of the container due to the scattering of 

gamma rays off the container walls. 
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Figure 43. Contour plot of the MDQ for an HEU source in an empty cargo container. 

 

 

To calculate the volume of cargo scanned for a given source mass, we start with the cargo distribution 

from a LLNL report [12] of the fraction of TEUs which have a given average cargo density and 

provide in Figure 44. The data was collected over a 14-day period at a number of ports in the U.S. 

 

 
Figure 44. Plot of the fraction of TEUs as a function of average cargo density for cargo containers 

entering the U.S. 

 

Assuming that this average cargo density is just the cargo weight divided by the volume of a TEU, 

which is given in the LLNL report as 33.13 m
3
, the distribution versus cargo weight is given by 

multiplying by this volume, and the results shown in Figure 45. 
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Figure 45. Plot of the fraction of TEUs as a function of cargo weight for cargo containers entering the 

U.S. 

 

Dividing this cargo weight by the density of wood used in our model gives the distribution versus the 

volume of wood cargo with the same weight. Dividing by the width and length of our wood cargo in a 

20-ft cargo container gives the thickness of the wood cargo with the same weight. This is shown in 

Figure 46. 

 

 
Figure 46. Plot of the fraction of TEUs as a function of the thickness of an equivalent wood cargo for 

cargo containers entering the U.S. 

 

With this distribution we can calculate the cargo volume fraction that will be scanned as a function of 

the source mass. For this we need to determine the maximum depth in cargo at which our HEU source 

can be detected as a function of source mass. Note that this also depends on the thickness of the cargo 

since the attenuation of signal in the air above the cargo is not negligible and will reduce the depth in 

cargo at which a given source is detectable.  

 

From above a source is detectable when its detected rate is at least that of the standard source, a 10-kg 

metal HEU source, at the standard depth of 0.66 m (2.2 ft), which is 190 cps. 



PNNL-21948 

 

 
74 

cps 1900

detdet  RR . 

The detected signal rate will be the signal rate emitted by the source and attenuated by the cargo and 

then attenuated by the air: 

  

Rdet = RsourceAcargoAair  
The emission rate of the source of mass m scales with the emission rate of the standard source as 

   

Rsource = Rsource

0 ´
msource

m0

æ 

è 
ç 

ö 

ø 
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a

, 

where the exponent a is either 1 for linear scaling or 2/3 for scaling with the area of the source. The 

attenuation in cargo for the source at a depth of d is given by the ratio of the interpolation function for 

the detected rate above for the depth d to the depth d = 0. 

   

Acargo =
Rcargo dsource( )
Rcargo 0( ) . 

The attenuation in the air above the cargo is  

   

Aair =
Rair zcargo( )
Rsource

0
=
Rair hdet - tcargo( )

Rsource

0

 
since the distance z from the detector to the top of the cargo is the height h of the detector above the 

container floor minus the thickness t of the cargo. 

 

Inserting the three terms implies that the detected rate must be 
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Using the fact that  

  

Rcargo 0( ) = Rair hdet - tcargo( ) 
gives 
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Rearranging gives 
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This equation is solved for d using the interpolation function in Figure 40 above that is just the 

inverse d(R) of R(d) 

   

dsource = dsource Rcargo( ) = dsource Rdet

0 Rair hdet - t0( )
Rair hdet - tcargo( )

m0

msource

æ 

è 
ç 

ö 

ø 
÷ 

aæ 

è 

ç 
ç 

ö 

ø 

÷ 
÷ 
. 

 

For a given source mass and cargo thickness we divide that depth by the cargo thickness to determine 

in what fraction of the cargo volume that source could be detected, ignoring any air volume above the 

cargo. We multiply that by the TEU fraction for that cargo thickness. We do this for all cargo 

thickness channels and then add up to get the total fraction of the cargo volume in which a source of 
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the chosen mass could be detected. This is plotted in Figure 47 for various source masses in a 40-foot 

cargo container. 

 

 
Figure 47. Plot of the cargo volume scanned as a function of the cargo weight for various HEU source 

masses. 

 

Summing over all cargo weights at each source mass with the LLNL distribution of cargo fraction 

versus cargo weight, or equivalently cargo thickness, gives the distribution of cargo volume scanned 

as a function of the HEU source mass and is shown in Figure 48. 

 

 

 
Figure 48. Plot of the cargo volume scanned as a function of the HEU source mass. 

 

As mentioned above, this analysis has been done with the assumption that the signal from the HEU 

source scales linearly with the mass of the source. Figure 49 compares the result shown in Figure 48 

to the same analysis done with the assumption of a 2/3-power-law scaling of the signal to the source 
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mass. As can be seen, the final result is not very sensitive to the form of the dependence of signal on 

source mass. 

 

 
Figure 49. Plot of the cargo volume scanned as a function of the HEU source mass. The blue curve depicts 

a linear dependence of signal on source mass while the red curve a 2/3 power-law dependence. 

 

For the Enhanced SBRD (2010), we developed an SBRD model with thirty-three 4 in × 4 in × 16 in 

NaI(Tl) detectors arranged along the length of the spreader bar, which is 2-3 times as much detector 

material as the commercial systems had in 2008.  

 

Several of the limitations of the commercial systems (treated as a whole) in 2008 were limited 

detector area, limited summing of all detectors, and integration of the signal over the entire move.  

Analysis of our enhanced model shows that there would be an enhancement factor of the signal-to-

noise ratio by a factor of 2.1 by increasing the detector material, and applying optimized detector 

summing and integration over time. This increases the depth of detection of the LANL 10-kg HEU 

source by 0.11 m (0.35 ft) from 0.66 m (2.2 ft) to 0.77 m (2.5 ft). 

 

In addition, observations during the Tacoma measurements [6-7] suggested that there is a possible 

additive enhancement term due to using enhanced algorithms that will allow the system to detect 0.35 

m (0.8 ft) deeper into the wood cargo. This further increases the depth of detection for the LANL 

source to 1.01 m (3.31 ft). This last additive enhancement would correspond to a multiplicative 

improvement in the signal-to-noise ratio by a factor of 4.6 on top of the factor of 2.1 above. This 

increase in the depth of detection in the Enhanced SBRD (2010) is shown in Figure 50, where it is 

superimposed on the interpolation of rate versus source depth from Figure 39. 
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Figure 50. Plot of the signal rate from an HEU source in a load of wood as a function of depth of the 

source in the wood. Points indicating the maximum depth for detection of a 10-kg source with the SBRD 

and with the Enhanced SBRD are shown. 

 

Repeating the analysis above with this new value of the detected rate R
0

det for the standard, 10-kg 

source with the Enhanced SBRD (2010) produces the dependence of total detectable cargo volume 

scanned as a function of the MDQ and is shown in Figure 51. Also shown are the distributions for the 

average of the commercial SBRD. 

 

 

 
Figure 51. Plot of the total detectable cargo volume scanned as a function of the MDQ of HEU for the 

case that the source is anywhere in the cargo. 

 

A similar set of calculations made with the HEU source always sitting on the bottom of the container 

gives the worst-case scenario for a spreader-bar-based detection system. This is shown in Figure 52. 
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Figure 52. Plot of the total detectable cargo volume scanned as a function of the MDQ of HEU for the 

case that the source is always on the bottom of the cargo container as a worst case. 

 



 

 

 


