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Summary 

In data analysis, it is often useful to delineate or segregate areas of interest from the general 
population of data in order to concentrate further analysis efforts on smaller areas.  Three methods are 
presented here for automatically generating polygons around spatial data of interest.  Each method 
addresses a distinct data type.  These methods were developed for and implemented in the sample 
planning tool called Visual Sample Plan. 

Method A is used to delineate areas of elevated values in a rectangular grid of data (raster).  The data 
used for this method are spatially related.  Although Visual Sample Plan uses data from a kriging process 
for this method, it will work for any type of data that is spatially coherent and appears on a regular grid. 

Method B is used to surround areas of interest characterized by individual data points that are 
congregated within a certain distance of each other.  Areas where data are “clumped” together spatially 
will be delineated. 

Method C is used to recreate the original boundary in a raster of data that separated data values from 
non-values.  This is useful when a rectangular raster of data contains non-values (missing data) that 
indicate they were outside of some original boundary.  If the original boundary is not delivered with the 
raster, this method will approximate the original boundary. 

Appendices contain C++ code for each of the methods.  The appendices may not contain all the 
supporting functions called by the core functions, however, the most important and non-obvious 
supporting functions are presented. 
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1.0 Method A 

This method is used to delineate areas of values above (or possibly below) a threshold level in a 
spatially related regular grid.  Figure 1 depicts such a grid of values, where each square in the grid is 
colored according to its Kriged value.  Kriging is a method of estimating a value on a regular grid by 
interpolating between sparsely located measured values. 

 
Figure 1.  Kriged Values 

1. The process begins by selecting those cells from the grid above a user-specified threshold.  For 
this example, those cells that are greater than or equal to 80 units are selected.  Figure 2 below 
illustrates the selected cells in black. 

 
Figure 2.  Cells Greater than Specified Threshold 
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2. At this point, all the selected cells are independent, having no spatial relationship to each other.  
The following algorithm is performed to group these individual cells into “clusters”. 

a. The cells are sorted by their Y (vertical) coordinate and then by their X (horizontal) 
coordinate to make the clustering algorithm more efficient. 

b. The first cell is removed from the sorted list.  (For efficiency, the cell is not actually removed 
but is marked as “used”.)  The first cell is also placed on a stack (first-in, last-out list) so that 
further investigation can be conducted at the location.  All unused cells that are part of the 
same “cluster” as the first cell are added to the cluster as follows: 

i. If there is a cell in the stack, it is removed from the stack and becomes the “current cell”.  
If there are no cells in the stack, then the cluster is complete and the algorithm ends.  
Continue at step A.2.c. 

ii. The location above the “current cell” is checked.  If the cell for that location is in the 
unused list, that cell is removed from the list and added to the current cluster.  That cell is 
also placed on the stack. 

iii. The process in step A.2.ii is repeated for locations to the right, below, left, above and 
right, below and right, below and left, above and left of the “current cell”. 

iv. Steps A.2.b.i through A.2.b.iii are repeated until there are no more locations in the stack. 

c. If there are any unused cells left in the list, then step A.2.b is repeated creating another 
cluster.  If there are no unused cells left in the list, then the creation of clusters is complete. 

3. At this point, all the cells are contained in clusters.  The next step is to create a polygon that 
represents the outer edge of each cluster.  The following algorithm accomplishes this. 

a. A regular grid is established for the cluster.  Each cell in the grid is set on or off, depending 
on whether a cell in the cluster exists at that location.  Figure 3 below depicts the regular grid 
for a cluster. 

 
Figure 3.  Regular Grid for Cluster.  Black cells are part of cluster, white cells are not. 
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b. A check is done to find any locations where part of a cluster is joined together only by a 
corner.  If such a location is found it is filled in as illustrated in Figure 4 below.  This is done 
to avoid inner loops or missing sections in the next part of the algorithm.  After a section is 
added, the entire grid is search again to ensure that no more occurrences were added by the 
action. 

 
Figure 4.  Filling in Section Joined by Corner 

c. Next, everywhere that a cluster cell is next to a blank cell, that edge line segment is added to 
a segment list.  Figure 5 depicts all the edges in the segment list where cluster cells border 
blank cells. 

 
Figure 5.  Edges Where Cluster Cells Adjoin Non-cluster Cells 



 

4 

d. Segments in the list are joined end-to-end in a polygon until the end meets the beginning, 
creating a closed polygon.  This method of creating a polygon automatically eliminates 
interior holes, because the first segment chosen is on the outer polygon and the algorithm 
ends when the outer polygon is closed. 

e. Finally, collinear points are removed. 

4. Now the boundary of the elevated area is defined by a polygon.  However, the polygon is very 
jagged.  The following algorithm simplifies the polygon and makes it more aesthetic. 

a. Each angle created by 3 points is checked.  If the angle is greater than 90 degrees, the angle is 
ignored and next angle is checked. 

b. The line segment from the first point to the third point is checked.  If the segment lies inside 
the polygon, the angle is ignored and the next angle is checked (step A.4.a). 

c. The triangle formed by the 3 points is checked to see if it contains any other point in the 
polygon.  If it does, the angle is ignored and the next angle is checked (step A.4.a).  Removal 
of such an angle could result in a polygon that crosses over itself. 

d. If the angle passes the tests listed above, the middle point is removed, straightening out the 
edge.  Figure 6 depicts the polygon after the first pass of the algorithm.  The red segments 
represent where edges have been straightened by removing the middle point of an angle. 

 
Figure 6.  Straightening and Simplifying the Polygon 
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e. After all the angles in the polygon have been checked, the algorithm is repeated (steps A.4.a 
through A.4.d) until no more points are removed.  

f. Finally, collinear points (that might have been created by the algorithm) are removed.  
Figure 7 represents the final polygon created by the algorithm. 

 
Figure 7.  The Final Polygon Representing the Area of Elevated Density 

1.1 Method A Conclusions 

This method is guaranteed to contain all the values above the threshold.  The process of removing 
interior acute and right angles will contain areas below the threshold.  However, this area will be no larger 
(and usually much smaller) than the convex hull of the same polygon. 
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2.0 Method B 

This method is used to surround areas of interest characterized by individual data points that are 
congregated within a certain distance of each other.  The purpose or meaning of the data points is not 
considered.  This method assumes that irrelevant data points have been removed prior to the method.  
Areas where data are “clumped” together within a user-specified distance will be delineated. 

Figure 8 below depicts data points, or markers, that have been placed on a map in Visual Sample 
Plan. 

 
Figure 8.  Markers Placed on a Map 

1. The process begins by creating a square of a user-specified size around each data point.  The 
squares are placed into a list and are sorted by their Y (vertical) coordinate then by their 
X (horizontal) coordinate to improve the efficiency of subsequent steps in the process.  Figure 9 
below visualizes the arrangement of these squares. 

 
Figure 9.  Squares Around Markers 

2. Next, the squares are grouped together into polygons.  Squares touching each other become part 
of the same polygon.  This is accomplished by the following algorithm: 
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a. The first square is removed from the list and becomes the “current polygon”.  (For efficiency, 
the square is marked as being used rather than actually being removed from the list.)  This 
square is also placed on a stack (first-in, last-out list) so that further investigation can be 
conducted at the location. 

i. If there is a square in the stack, it is removed from the stack and becomes the “current 
square”.  If there are no squares in the stack, then the polygon is complete and the 
algorithm ends.  Continue at step B.2.b. 

ii. This list of unused squares is searched in both directions from the “current square” to see 
if any unused squares overlap the “current polygon”.  (This searching is made efficient by 
the sorted list and proximity checks.)  Each unused square that does overlap is removed 
from the list and added to the “current polygon” by a polygon union.  (The polygon union 
is not discussed here.)  These squares are also placed on the stack. 

iii. Steps B.2.a.i through B.2.a.ii are repeated until there are no more squares on the stack. 

b. The “current polygon” is saved.  If there are any unused squares left in the list, step B.2.a is 
repeated to create another polygon.  Figure 10 represents the resulting polygons. 

 
Figure 10.  Squares Joined Together into Polygons 

3. Now the boundary of each elevated area is defined by a polygon.  However, the polygons are 
very jagged.  The following algorithm simplifies the polygons and makes them more aesthetic. 

a. Each angle created by 3 points is checked.  If the angle is greater than 110 degrees, the angle 
is ignored and next angle is checked.  This threshold angle could also be a user input. 

b. The line segment from the first point to the third point is checked.  If the segment lies inside 
the polygon, the angle is ignored and the next angle is checked (step a). 

c. The triangle formed by the 3 points is checked to see if it contains any other point in the 
polygon.  If it does, the angle is ignored and the next angle is checked (step B.3.a).  Removal 
of such an angle could result in a polygon that crosses over itself. 

d. If the angle passes the tests listed above, the middle point is removed, straightening out the 
edge.  Figure 11 depicts a polygon after the first pass of the algorithm.  The red segments 
represent where edges have been straightened by removing the middle point of an angle. 
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Figure 11.  Simplifying the Polygon 

e. After all the angles in the polygon have been checked, the algorithm is repeated (steps B.3.a 
through B.3.d) until no more points are removed.  

f. Finally, collinear points (that might have been created by the algorithm) are removed.  
Figure 12 represents the final polygons created by the algorithm. 

 
Figure 12.  The Final Polygon Representing the Areas of Interest 

2.1 Method B Conclusions 

The process of removing interior acute and right angles results in an area that might be larger than is 
strictly necessary to contain all the points.  However, this area will be no larger (and usually much 
smaller) than the convex hull of the same polygon.  It might be useful to try surrounding each data point 
with a shape other than a square.  A hexagon might yield aesthetically pleasing results.  The angle used in 
step B.3.a could be varied.  The current setting is 110 degrees to remove interior right angles. 
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3.0 Method C 

The third method (Method C) is used to recreate the original boundary in a raster of data that 
separated data values from non-values.  This is useful when a rectangular raster of data contains non-
values (missing data) that indicate they were outside of some original boundary. 

Figure 13 depicts such a pattern of data values.  The dots represent a regular grid of data locations.  
Many dots are missing at the edges of the pattern indicating locations outside of the original area of 
interest.  Algorithm C will reconstruct the approximate boundary of the original area. 

 
Figure 13.  Pattern of Data Inside the Area of Interest 

1. The process begins by finding all the non-blank points that are adjacent to blank points.  
Following from natural order of mapping coordinates, the points are ordered bottom to top then 
left to right.  Because the data are placed on a regular grid, the points in this step are actually row 
and column indices, rather than spatial coordinates.  The points will be rectified to actual spatial 
coordinates in a later step.  Figure 14 shows the pattern of resulting points.  If a point stands alone 
on the bottom row it is removed (because such a point will interfere with the next step). 
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Figure 14.  Pattern of Non-blank Points that are Adjacent to Blank Points 

2. Next, these points are joined together to make a polygon.  The constraints on the polygon are:  
1) points are connected either vertically or horizontally but not diagonally, 2) consecutive points 
are in adjacent columns or rows, 3) if a point stands alone on a row or column then it must be 
duplicated in the final polygon (see Figure 15), and 4) the polygon will naturally be ordered 
counter-clockwise. 

 
Figure 15.  Point Standing Alone in Row that Must be Duplicated 

a. The first point (bottom row and left-most column of data) is selected as the current point. 

b. The current point is added to the polygon and removed from the available list of points. 

c. The taxi distance is computed from the current point to each available point.  The taxi 
distance is the absolute column difference plus the absolute row distance.  The minimum taxi 
distance is computed. 
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d. If the minimum taxi distance is greater than one then the polygon must be complete and the 
current process ends.  Continue with step C3.  Any remaining points constitute a contained 
hole.  They may be discarded or processed as desired.  Contained holes will be discarded for 
our purposes. 

e. If more than one point shares the minimum taxi distance of one, then the point with a single 
connection remaining is chosen as the minimum point (see Figure 16).  If more than one point 
has a single connection remaining, then the right-most point is chosen.  If a point has no 
available connections, then this it is the special case where a point doubles back on itself.  In 
such a case, the point will be added to the polygon and the previous polygon point will be 
added back to the list of available points allowing the polygon to double back on itself and 
continue from there. 

 
Figure 16.  Choose Point with Fewest Remaining Connections 

f. The minimum point becomes the current point and processing continues at step C.2.b. 

3. Rectify the list of connected index points into a regular polygon that constitutes the inner 
boundary. 

a. Each row column index point is rectified into a spatial point: 

i. X = minimum x + column * column spacing 

ii. Y = minimum y + row * row spacing 

b. Co-linear points are removed 

4. Next, all blank points that are adjacent to non-blank points are collected in a list.  This is similar 
to step C.1.  Special care must be taken because the points may be outside the boundaries of the 
grid. 

5. Step C.2 and C.3 will be performed on this list of index points to produce a polygon than 
constitutes the outer boundary.  The final boundary will be constrained between the inner and 
outer boundaries (although the original boundary may not have been completely constrained 
between them).  Figure 17 shows the inner and outer boundaries.  For the rest of the algorithm to 
work properly, both boundary polygons must have the same number of vertices.  This is the 
reason why points must be duplicated when the boundary doubles back on itself (see Figure 18). 
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Figure 17.  Inner and Outer Boundaries 

 
Figure 18.  Points Must be Duplicated to Match Inner and Outer Boundaries 

6. Next, the polygons are examined and reversal points are identified and added to two lists: an 
inner and an outer list.  A reversal is where two consecutive points have 90 degree turns in the 
same direction.  An outer reversal has two turns towards the center of the polygon and an inner 
reversal has two turns away from the center of the polygon.  Figure 19 shows the outer reversals 
marked with red dots and inner reversals marked with green dots.  The reversal lists contain the 
point (vertex) number of the first of the two turns.  The red arrow points to a reversal point so 
defined. 
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Figure 19.  Outer and Inner Reversals Marked with Red and Green Dots, Respectively 

7. The next step of the algorithm, in simple terms, chooses a beginning point and adds it to the final 
boundary polygon and then tries to extend a line from the beginning point down the corridor 
formed by the inner and outer boundaries until the line can be extended no further without hitting 
a boundary.  This end is added to the final boundary and becomes a new beginning point and the 
process is repeated.  The details of the algorithm are as follows: 

a. The “beginning” point is chosen as the midpoint of the first two points on the outer boundary 
(see Figure 20).  This point is stored to the boundary. 

 
Figure 20.  Location of Beginning and Next Points with Inner and Outer Angles 

b. An inner index and an outer index are set to the 2nd point of the inner boundary and outer 
boundary, respectively. 

c. The angle from the beginning point to the point at the inner index is computed and stored as 
the inner angle.  The angle from the beginning point to the point at the outer index is 
computed and stored as the outer angle (see Figure 20). 

d. The midpoint of the points at the inner index and outer index is computed and stored as the 
“next” point (see Figure 20). 
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e. Check to see if the inner index is at the end of the inner polygon.  If so, close the boundary 
and the algorithm is complete.  See figures 22 and 23. 

f. Check to see if the inner angle is less than or equal to the outer angle.  If so, this means that 
the line has progressed as far as possible down the corridor between the inner and outer 
boundaries.  Therefore: 

i. add the “next” point to the boundary  

ii. set the “beginning” point equal to the “next” point 

iii. move the inner and outer index one past the “next” point 

iv. check to see if the inner index is at the next inner reversal.  If so, navigate out of the 
reversal with these steps: 

1. set the “next” point equal to the midpoint of the points at the inner and outer index 

2. add the “next” point to the boundary 

3. increment the inner and outer indices 

4. set the “next” point equal to the midpoint of the points at the inner and outer index 

5. add the “next” point to the boundary 

6. increment the inner and outer indices 

v. set the “next” point equal to the midpoint of the points at the inner and outer index 

vi. set the inner and outer angles from the new “beginning” point to the points at the inner 
and outer indices respectively 

g. Increment the inner index. 

h. See if the inner index is at the next inner reversal.  If so: 

i. compute the mid angle as the average of the inner and outer angles (adjust outer angle if 
it not pointing to the outer boundary opposite the inner reversal) 

ii. if the mid angle intersects the centerline of the reversal (see Figure 21) then set the “next” 
point to the intersection 

iii. otherwise, if the mid angle intersects the edge of the reversal (see Figure 21) then set the 
“next” point to the intersection 

iv. add the “next” point to the boundary 

v. set the “beginning” point equal to the “next” point 

vi. set the inner and outer indices to the point past the reversal 

vii. set the “next” point equal to the midpoint of the points at the inner and outer index 

viii. set the inner and outer angle from the new “beginning” point to the points at the inner and 
outer indices respectively. 
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Figure 21.  Location of Reversal Centerline with Respect to Mid Angle and Beginning Point 

i. Calculate the angle from the “beginning” point to the point at the inner index.  If the angle is 
less than the current inner angle 

i. set the inner angle equal to this new angle. 

ii. compute the distance from the “beginning” point to the point at the inner index and call it 
the “current” distance 

iii. compute mid angle as the average of the inner and outer angles 

iv. set the “next” point at the “current” distance from the beginning point along the mid 
angle 

j. (Steps j – m are analogous to steps f – i except they deal with the outer boundary).  Check to 
see if the inner angle is less than or equal to the outer angle.  If so, this means that the line has 
progressed as far as possible down the corridor between the inner and outer boundaries.  
Therefore: 

i. add the “next” point to the boundary  

ii. set the “beginning” point equal to the “next” point 

iii. move the inner and outer index one past the “next” point 

iv. check to see if the inner index is at the next outer reversal.  If so, navigate out of the 
reversal with these steps: 

1. set the “next” point equal to the midpoint of the points at the inner and outer index 

2. add the “next” point to the boundary 

3. increment the inner and outer indices 

4. set the “next” point equal to the midpoint of the points at the inner and outer index 

5. add the “next” point to the boundary 

6. increment the inner and outer indices. 

v. set the “next” point equal to the midpoint of the points at the inner and outer index 

vi. set the inner and outer angles from the new “beginning” point to the points at the inner 
and outer indices respectively. 

k. Increment the outer index. 
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l. See if the outer index is at the next outer reversal.  If so: 

i. compute the mid angle as the average of the inner and outer angles (adjust inner angle if 
it not pointing to the inner boundary opposite the outer reversal) 

ii. if the mid angle intersects the centerline of the reversal (see Figure21) then set the “next” 
point to the intersection 

iii. otherwise, if the mid angle intersects the edge of the reversal (see Figure 21) then set the 
“next” point to the intersection 

iv. add the “next” point to the boundary 

v. set the “beginning” point equal to the “next” point 

vi. set the inner and outer indices to the point past the reversal 

vii. set the “next” point equal to the midpoint of the points at the inner and outer index 

viii. let the inner and outer angle from the new “beginning” point to the points at the inner and 
outer indices respectively. 

m. Calculate the angle from the “beginning” point to the point at the outer index.  If the angle is 
greater than the current outer angle 

i. set the outer angle equal to this new angle. 

ii. compute the distance from the “beginning” point to the point at the inner index and call it 
the “current” distance 

iii. compute mid angle as the average of the inner and outer angles 

iv. set the “next” point at the “current” distance from the beginning point along the mid 
angle. 

n. Continue with step C.7.e 

 
Figure 22.  The Final Boundary (in red) with Respect to the Inner and Outer Boundaries 
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Figure 23. The Final Boundary (in red) with Respect to the Original Boundary (in blue) that Provided 

the Basis for the Data Grid 

3.1 Method C Conclusions 

This method does a good job of reproducing the original boundary without the jagged features that 
would be introduced if the data points were simply connected with line segments.  Most errors are 
introduced at the reversals, so a more intelligent method of determining where to position the point at the 
reversal could reduce overall divergence. 
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Appendix A 

Selected C++ Source Code for Method A 

// Automatically delineates spatial areas from gridded data 
// arrHot - an array of DPoints, each of which is the center of a grid cell above the threshold 
value 
// dMinSize - the minimum size for final polygons 
// dWidth - horizontal spacing of original grid 
// dHeight - vertical spacing of original grid 
// Notes: CDPoint is a 3D Point class, CPolyLine is a polygon class that contains a list of 
CDPoints 
void MethodA(CArray <CDPoint,CDPoint&> &arrHot, double dMinSize, double dWidth, double dHeight) 
{ 
 int iNumHot = arrHot.GetCount(); 
 
 if (iNumHot>0) { 
  // Group Hot Cells into Clusters 

// Start by sorting array of points by Y Coordinate then X Coordinate 
qsort(arrHot.GetData(), arrHot.GetCount(), sizeof(CDPoint), QCompareDPointYX); 
for (int iHot=0; iHot<iNumHot; iHot++) { 

// Use Z-Coordinate as "Used" flag: -1=unused, 0=used 
   arrHot[iHot].m_z = -1.0; 
  } 
 
  CArray <CPolyLine, CPolyLine&> arrCluster; 
  for (int iHot=0; iHot<iNumHot; iHot++) { 
   if (arrHot[iHot].m_z < 0.0) { 
    // Start a new Cluster 
    CPolyLine cluster(RGB(0,0,0)); 

// Add cell point to cluster 
    cluster.AddDPoint(arrHot[iHot]); 

// Mark point as being used 
    arrHot[iHot].m_z = 0.0; 
 
    // Add to cluster all cells that touch first cell 
    MakeCluster(arrHot, cluster, dWidth, dHeight, iHot); 
 
    // Add cluster to the array 
    arrCluster.Add(cluster); 
   } 
  } 
 
  int iNumClusters = arrCluster.GetCount(); 
 
  // Convert Each Cluster into a PolyLine 
  int iNumAdded = 0; 
  for (int iCluster=0; iCluster<iNumClusters; iCluster++) { 
 
   // New polygon 
   CPolyLine poly(RGB(0,0,0)); 
 
   // Convert Points on Regular Grid to Polygon 
   ConvertClusterRegular(arrCluster[iCluster], poly, dWidth, dHeight); 
 
   // Remove acute indentations 
   poly.RemoveAcuteIndents(); 
 
   // Remove folds 
   poly.RemoveFolds(); 
 
   if (poly.CalcArea() >= dMinSize) { 
    // poly is a complete polygon that passes all checks 
    // TODO: do something with it 
   } 
  } 
 } 
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} 
// Convert cells in cluster to a polyline 
void ConvertClusterRegular(const CPolyLine &cluster, CPolyLine &poly, double dWidth, double 
dHeight) 
{ 
 // Convert to a regular grid to make conversion simpler 
 double dMinX = cluster.GetMinX(); 
 double dMaxX = cluster.GetMaxX(); 
 double dXExt = dMaxX - dMinX; 
 double dMinY = cluster.GetMinY(); 
 double dMaxY = cluster.GetMaxY(); 
 double dYExt = dMaxY - dMinY; 
 int iCols = int(dXExt / dWidth + 0.5) + 1; 
 int iRows = int(dYExt / dHeight + 0.5) + 1; 
 CArray <CDPoint,CDPoint&> arrGrid; 
 arrGrid.SetSize(iCols * iRows); 
 
 // Put the Points for the Cluster into the Grid 
 int iNumPoints = cluster.NumPoints(); 
 for (int i=0; i<iNumPoints; i++) { 
  CDPoint dPnt = cluster.GetPoint(i); 
  int iCol = int((dPnt.m_x - dMinX) / dWidth + 0.5); 
  int iRow = iRows - 1 - int((dPnt.m_y - dMinY) / dHeight + 0.5); 
  int iCell = iRow * iCols + iCol; 
  // Set Grid Cell 
  arrGrid[iCell] = CDPoint(dPnt.m_x, dPnt.m_y, 1.0); 
 } 
 
 double dWidth2 = dWidth / 2.0; 
 double dHeight2 = dHeight / 2.0; 
 
 // Fill in gaps in grid where cells are joined only by a corner 
 // As this may sometimes lead to an inner loop or a missing section 
 BOOL bDone = FALSE; 
 while (!bDone) { 
  bDone = TRUE; 
  for (int iRow = 0; iRow<iRows-1; iRow++) { 
   for (int iCol = 0; iCol<iCols-1; iCol++) { 
    int iCur = iRow * iCols + iCol; 
    int iRt = iCur + 1; 
    int iDn = iCur + iCols; 
    int iOp = iCur + iCols + 1; 
    if (arrGrid[iCur].m_z > 0.0 && arrGrid[iOp].m_z > 0.0 && arrGrid[iRt].m_z == 0.0 
&& arrGrid[iDn].m_z == 0.0) { 
     CDPoint dPnt; 
     dPnt.m_x = arrGrid[iOp].m_x; 
     dPnt.m_y = arrGrid[iCur].m_y; 
     dPnt.m_z = 1.0; 
     arrGrid[iRt] = dPnt; 
     bDone = FALSE; // Redo in case we just added another 
    } else if (arrGrid[iCur].m_z == 0.0 && arrGrid[iOp].m_z == 0.0 && arrGrid[iRt].m_z 
> 0.0 && arrGrid[iDn].m_z > 0.0) { 
     CDPoint dPnt; 
     dPnt.m_x = arrGrid[iDn].m_x; 
     dPnt.m_y = arrGrid[iRt].m_y; 
     dPnt.m_z = 1.0; 
     arrGrid[iCur] = dPnt; 
     bDone = FALSE; // Redo in case we just added another 
    } 
   } 
  } 
 } 
 
 // Make a list of all segments where cells adjoin blank cells 
 CArray <CDPoint,CDPoint&> arrVert; 
 for (int iRow = 0; iRow<iRows; iRow++) { 
  for (int iCol = 0; iCol<iCols; iCol++) { 
   int iCur = iRow * iCols + iCol; 
   CDPoint dPnt = arrGrid[iCur]; 
   if (dPnt.m_z > 0.0) { 
    BOOL bUp = FALSE; 
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    if (iRow>0) { 
     bUp = (arrGrid[iCur-iCols].m_z > 0.0); 
    } 
    BOOL bRt = FALSE; 
    if (iCol<iCols-1) { 
     bRt = (arrGrid[iCur+1].m_z > 0.0); 
    } 
    BOOL bDn = FALSE; 
    if (iRow<iRows-1) { 
     bDn = (arrGrid[iCur+iCols].m_z > 0.0); 
    } 
    BOOL bLf = FALSE; 
    if (iCol>0) { 
     bLf = (arrGrid[iCur-1].m_z > 0.0); 
    } 
    if (!bUp) { 
     arrVert.Add(CDPoint(dPnt.m_x-dWidth2, dPnt.m_y+dHeight2)); 
     arrVert.Add(CDPoint(dPnt.m_x+dWidth2, dPnt.m_y+dHeight2)); 
    } 
    if (!bRt) { 
     arrVert.Add(CDPoint(dPnt.m_x+dWidth2, dPnt.m_y+dHeight2)); 
     arrVert.Add(CDPoint(dPnt.m_x+dWidth2, dPnt.m_y-dHeight2)); 
    } 
    if (!bDn) { 
     arrVert.Add(CDPoint(dPnt.m_x+dWidth2, dPnt.m_y-dHeight2)); 
     arrVert.Add(CDPoint(dPnt.m_x-dWidth2, dPnt.m_y-dHeight2)); 
    } 
    if (!bLf) { 
     arrVert.Add(CDPoint(dPnt.m_x-dWidth2, dPnt.m_y-dHeight2)); 
     arrVert.Add(CDPoint(dPnt.m_x-dWidth2, dPnt.m_y+dHeight2)); 
    } 
   } 
  } 
 } 
 
 // Add First Segment to Polygon 
 CDPoint dFirst = arrVert[0]; 
 poly.AddDPoint(dFirst); 
 CDPoint dLast = arrVert[1]; 
 poly.AddDPoint(dLast); 
 
 // Setup a list of segment indices 
 int iNumSegs = arrVert.GetCount()/2 - 1; 
 CArray <BOOL,BOOL> arrSeg; 
 arrSeg.SetSize(iNumSegs); 
 for (int i=0; i<iNumSegs; i++) { 
  arrSeg[i] = i+1; 
 } 
 
 // Add unused Segments that attach until we come back to beginning 
 while (dFirst != dLast) { 
  for (int iSeg=0; iSeg<iNumSegs; iSeg++) { 
   int iIndex = arrSeg[iSeg]*2; 
   if (dLast.Compare(arrVert[iIndex], 1e-10)) { 
    dLast = arrVert[iIndex+1]; 
    poly.AddDPoint(dLast); 
    arrSeg.RemoveAt(iSeg); 
    iNumSegs--; 
    break; 
   } else if (dLast.Compare(arrVert[iIndex], 1e-10)) { 
    dLast = arrVert[iIndex]; 
    poly.AddDPoint(dLast); 
    arrSeg.RemoveAt(iSeg); 
    iNumSegs--; 
    break; 
   } 
  } 
 } 
 
 // Finally, Remove In-Line Points 
 poly.RemoveInLine(); 
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} 
 
// Removes all indentation <= 90 degrees 
// Note:  m_arrPoint contains list of CDPoints for polygon 
int CPolyLine::RemoveAcuteIndents(double dMaxDegrees) 
{ 
 double dMaxAngle = dMaxDegrees / 180.0 * PI; 
 
 BOOL bDone = FALSE; 
 while (!bDone) { 
  bDone = TRUE; 
  for (int i=0; i<m_arrPoint.GetCount(); i++) { 
   // Check angle of next two segments 
   int j = (i+1) % m_arrPoint.GetCount(); 
   int k = (j+1) % m_arrPoint.GetCount(); 
   CDPoint dPnt1 = m_arrPoint[i]; 
   CDPoint dPnt2 = m_arrPoint[j]; 
   CDPoint dPnt3 = m_arrPoint[k]; 
   double dAngle = CalcAngle3D(dPnt2, dPnt1, dPnt3); 
   // <= 90 degrees? 
   if (dAngle <= dMaxAngle) { 
    // Yes, see if segment from Pnt1 to Pnt3 would be inside or outside of existing 
polygon 
    CDPoint dChk((dPnt1.m_x+dPnt3.m_x)/2.0, (dPnt1.m_y+dPnt3.m_y)/2.0); 
    if (!IsInside(dChk)) { 
     // Outside 
     // Now, check to see if Triangle (dPnt1,dPnt2,dPnt3) encloses any other 
point 
     BOOL bEncloses = FALSE; 
     for (int m=0; m<m_arrPoint.GetCount(); m++) { 
      if (m!=i && m!=j && m!=k) { 
       if (InTriangle(dPnt1, dPnt2, dPnt3, m_arrPoint[m])) { 
        bEncloses = TRUE; 
        break; 
       } 
      } 
     } 
     // No, go ahead and remove point 2 to make a short-cut from Pnt1 to Pnt3 
     if (!bEncloses) { 
      m_arrPoint.RemoveAt(j); 
      bDone = FALSE; // Will need to make another pass 
     } 
    } 
   } 
  } 
  if (!bDone) { 
   RemoveInLine(1e-12); 
  } 
 } 
 ResetArea();   // Reset Area 
 return m_arrPoint.GetCount(); 
} 
 
// Removes segments that fold-back on itself, and returns number of point remaining 
int CPolyLine::RemoveFolds() 
{ 
 int iSize = m_arrPoint.GetSize(); 
 for (int i=0; i<iSize && iSize>2; i++) { 
  int j = (i+iSize+0) % iSize; // This Point 
  int k = (i+iSize+1) % iSize; // Next Point 
  int l = (i+iSize+2) % iSize; // Point After Next Point 
  if (m_arrPoint[j] == m_arrPoint[l]) { 
   // Remove 2 Points that Make Segment 
   if (l > k) { 
    m_arrPoint.RemoveAt(l); 
    m_arrPoint.RemoveAt(k); 
    iSize = m_arrPoint.GetSize(); 
   } else { 
    m_arrPoint.RemoveAt(k); 
    m_arrPoint.RemoveAt(l); 
    iSize = m_arrPoint.GetSize(); 
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   } 
   i -= 2; // Back Up and Try Previous Segment 
  } 
 } 
 
 for (int i=0; i<iSize && iSize>2; i++) { 
  int j = (i+iSize+0) % iSize; // This Point 
  int k = (i+iSize+1) % iSize; // Next Point 
  int l = (i+iSize+2) % iSize; // Point After Next Point 
 
  // Check for Co-Linear Points 
  if (PointLineDist(m_arrPoint[j], m_arrPoint[k], m_arrPoint[l]) < 1e-8 ) { 
   // Doubles back across itself, Remove center point 
   m_arrPoint.RemoveAt(k); 
   iSize = m_arrPoint.GetSize(); 
  } 
 } 
 
 return m_arrPoint.GetSize(); 
} 
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Appendix B 

Selected C++ Source Code for Method B 

 
// Automatically delineates spatial areas around markers of interest 
// arrMarker - an array of DPoints, each of which is a point of interest 
// dGridSize – size of box to create around markers 
// dMinSize - the minimum size for final polygons 
void MethodB(CArray <CDPoint,CDPoint&> arrMarker, double dGridSize, double dMinSize) 
{ 
 double dGridSize2 = dGridSize / 2.0; 
 int iNumMarkers = arrMarker.GetCount(); 
 if (iNumMarkers<=0) { 
  return; 
 } 
 
 // Sort Markers by Y then X 
 qsort(arrMarker.GetData(), arrMarker.GetCount(), sizeof(CDPoint), QCompareDPointYX); 
 
 // Create an Array of PolyLines (Boxes) 
 CArray <CPolyLine,CPolyLine&> arrPoly; 
 arrPoly.SetSize(iNumMarkers); 
 for (int iMarker=0; iMarker<iNumMarkers; iMarker++) { 
  CPolyLine poly(RGB(0,0,0)); 
  CDPoint dCenter = arrMarker[iMarker]; 
  poly.AddDPoint(CDPoint(dCenter.m_x-dGridSize2, dCenter.m_y+dGridSize2)); 
  poly.AddDPoint(CDPoint(dCenter.m_x+dGridSize2, dCenter.m_y+dGridSize2)); 
  poly.AddDPoint(CDPoint(dCenter.m_x+dGridSize2, dCenter.m_y-dGridSize2)); 
  poly.AddDPoint(CDPoint(dCenter.m_x-dGridSize2, dCenter.m_y-dGridSize2)); 
  poly.AddDPoint(CDPoint(dCenter.m_x-dGridSize2, dCenter.m_y+dGridSize2)); 
  poly.SetExtents(); 
  poly.m_bSelect = FALSE; 
  arrPoly[iMarker] = poly; 
 } 
 
 // Group all the PolyLines into Clusters 
 CArray <CPolyLine, CPolyLine&> arrCluster; 
 for (int iMarker=0; iMarker<iNumMarkers; iMarker++) { 
  if (!arrPoly[iMarker].m_bSelect) { 
   // Start a new Cluster 
   arrPoly[iMarker].m_bSelect = TRUE;  // Mark as being used 
   CPolyLine cluster = arrPoly[iMarker]; 
 
   // Add to cluster all markers that touch first marker 
   TargetCluster(arrPoly, cluster, iMarker); 
 
   // Add cluster to array 
   arrCluster.Add(cluster); 
  } 
 } 
 
 int iNumClusters = arrCluster.GetCount(); 
 
 int iNumAdded = 0; 
 for (int iCluster=0; iCluster<iNumClusters; iCluster++) { 
  arrCluster[iCluster].RemoveAcuteIndents(110.0); // Cleanup Edges 
  arrCluster[iCluster].SetExtents(); // Update the Stored Extents 
  if (arrCluster[iCluster].CalcArea() >= dMinSize) { // Check Size 
   // arrCluster[iCluster] is a complete polygon that passes all checks 
   // TODO: do something with it 
  } 
 } 
} 
 
// Group all the marker polygons (arrMarker) 
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// that touch the given marker (iMarker) 
// into a single polygon (cluster) 
void TargetCluster(CArray <CPolyLine,CPolyLine&> &arrMarker, CPolyLine &cluster, int iMarker) 
{ 
 int iNumMarker = arrMarker.GetCount(); 
 
 CArray <CPolyLine,CPolyLine&> arrNew; 
 
 CArray <int,int> arrStack; // Save Marker to Check 
 arrStack.Add(iMarker); 
 
 while (arrStack.GetCount()>0) { // Any Markers to Check? 
  // Yes 
  int iStack = arrStack.GetCount()-1; 
  iMarker = arrStack[iStack]; 
  arrStack.RemoveAt(iStack); 
  CPolyLine &Marker = arrMarker[iMarker]; 
 
  // Check forward in list (upward in space) 
  for (int i=iMarker; i<iNumMarker; i++) { 
   // See if checked far enough 
   if (Marker.GetMaxY() < arrMarker[i].GetMinY()) { 
    break; 
   } 
   if (!arrMarker[i].m_bSelect) { 
    // Found Unused Marker 
    // Merge Two Polygons, resulting Polygons go into arrNew array 
    if (Union(cluster, arrMarker[i], arrNew, TRUE)) { 
     // Choose Largest PolyLine, assume others are holes 
     int iNew = arrNew.GetCount(); 
     int iLrg = 0; 
     double dLrg = 0.0; 
     for (int j=0; j<iNew; j++) { 
      if (dLrg < arrNew[j].CalcArea()) { 
       dLrg = arrNew[j].CalcArea(); 
       iLrg = j; 
      } 
     } 
     cluster = arrNew[iLrg]; 
     // Remove colinear points 
     cluster.RemoveInLine(); 
     // Mark as used 
     arrMarker[i].m_bSelect = TRUE; 
     // Save marker on stack so we can check everwhere from here 
     arrStack.Add(i); 
    } 
   } 
  } 
 
  // Check backward in list (downward in space) 
  for (int i=iMarker; i>=0; i--) { 
   // See if checked far enough 
   if (Marker.GetMinY() > arrMarker[i].GetMaxY()) { 
    break; 
   } 
   if (!arrMarker[i].m_bSelect) { 
    // Found Unused Marker 
    // Merge Two Polygons, resulting Polygons go into arrNew array 
    if (Union(cluster, arrMarker[i], arrNew, TRUE)) { 
     // Choose Largest PolyLine, assume others are holes 
     int iNew = arrNew.GetCount(); 
     int iLrg = 0; 
     double dLrg = 0.0; 
     for (int j=0; j<iNew; j++) { 
      if (dLrg < arrNew[j].CalcArea()) { 
       dLrg = arrNew[j].CalcArea(); 
       iLrg = j; 
      } 
     } 
     cluster = arrNew[iLrg]; 
     // Remove colinear points 
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     cluster.RemoveInLine(); 
     // Mark as used 
     arrMarker[i].m_bSelect = TRUE; 
     // Save marker on stack so we can check everwhere from here 
     arrStack.Add(i); 
    } 
   } 
  } 
 } 
} 
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Appendix C 

Selected C++ Source Code for Method C 

CPolyLine* Grid2Poly(const CArray <double,double> &arrData, int iCols, int iRows, double dXMin, 
double dYMin, double dGridSize) 
{ 
 if (iCols>1 && iRows>1 && arrData.GetCount()==iRows*iCols) { 
  // Max and Min Z at edge 
  double dMinZ = -VALUE_BLANK; 
  double dMaxZ = VALUE_BLANK; 
 
  // Make a local copy 
  CArray <double,double> arrTemp; 
  arrTemp.SetSize(arrData.GetCount()); 
  for (int i=0; i<arrData.GetCount(); i++) { 
   arrTemp[i] = arrData[i]; 
  } 
 
  // Check first row with data and see if one point stands alone 
  BOOL bFound = FALSE; 
  for (int iRow=0; iRow<iRows && !bFound; iRow++) { 
   for (int iCol=1; iCol<iCols-1; iCol++) { 
    int iIndex = iRow * iCols + iCol; 
    if (arrTemp[iIndex] > VALUE_BLANK) { 
     bFound = TRUE; // Found data 
     if (arrTemp[iIndex-1] <= VALUE_BLANK &&  

arrTemp[iIndex+1] <= VALUE_BLANK) { 
      // Stands alone, get rid of it 
      arrTemp[iIndex] = VALUE_BLANK; 
      break; 
     } 
    } 
   } 
  } 
 
  // Find all the non-blank points that are adjacent to a blank point 
  CArray <CPoint,CPoint&> arrPoints; 
  int iIndex = 0; 
  for (int iRow=0; iRow<iRows; iRow++) { 
   for (int iCol=0; iCol<iCols; iCol++) { 
    if (arrTemp[iIndex] > VALUE_BLANK) { 
     BOOL bEdge = (iRow==0 || iCol==0 || iRow==iRows-1 || iCol==iCols-1); 
     if (bEdge) { 
      arrPoints.Add(CPoint(iCol,iRow)); 
      if (dMinZ > arrTemp[iIndex]) { 
       dMinZ = arrTemp[iIndex]; 
      } 
      if (dMaxZ < arrTemp[iIndex]) { 
       dMaxZ = arrTemp[iIndex]; 
      } 
     } else { 

if (arrTemp[iIndex-1]<=VALUE_BLANK || arrTemp[iIndex+1]<=VALUE_BLANK ||  
arrTemp[iIndex-iCols]<=VALUE_BLANK || 
arrTemp[iIndex+iCols]<=VALUE_BLANK || 

       arrTemp[iIndex-iCols-1]<=VALUE_BLANK ||  
arrTemp[iIndex-iCols+1]<=VALUE_BLANK ||  
arrTemp[iIndex+iCols-1]<=VALUE_BLANK || 
arrTemp[iIndex+iCols+1]<=VALUE_BLANK) { 

       arrPoints.Add(CPoint(iCol,iRow)); 
       if (dMinZ > arrTemp[iIndex]) { 
        dMinZ = arrTemp[iIndex]; 
       } 
       if (dMaxZ < arrTemp[iIndex]) { 
        dMaxZ = arrTemp[iIndex]; 
       } 
      } 
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     } 
    } 
    iIndex++; 
   } 
  } 
 
  // Decide on edge Z-Offset 
  double dEdgeZ = dMinZ; 
  if (fabs(dMaxZ) < fabs(dMinZ)) { 
   dEdgeZ = dMaxZ; 
  } 
  dEdgeZ = Round(dEdgeZ, 2); 
 
  // This is the inner polygon 
  CPolyLine *pInner = Points2Poly(arrPoints, dXMin, dYMin, dGridSize); 
  if (pInner) { 
   if (pInner->NumPoints() <= 5) { 
    // Inner polygon is probably rectangle, can just return it 
    pInner->SetZOffset(dEdgeZ); 
    return pInner; 
   } 
   arrPoints.RemoveAll(); 
   for (int iRow=-1; iRow<=iRows; iRow++) { 
    for (int iCol=-1; iCol<=iCols; iCol++) { 
     int iIndex = iRow * iCols + iCol; 
     if (iRow>=0 && iRow<iRows && iCol>=0 && iCol<iCols) { 
      // Within the grid 
      if (arrTemp[iIndex] <= VALUE_BLANK) { 
       if (iCol>0 && arrTemp[iIndex-1]>VALUE_BLANK || 
        iCol<iCols-1 && arrTemp[iIndex+1]>VALUE_BLANK || 
        iRow>0 && arrTemp[iIndex-iCols]>VALUE_BLANK || 
        iRow<iRows-1 && arrTemp[iIndex+iCols]>VALUE_BLANK || 
        iRow>0 && iCol>0 && arrTemp[iIndex-iCols-
1]>VALUE_BLANK || 

iRow>0 && iCol<iCols-1 && arrTemp[iIndex-iCols+1] > VALUE_BLANK || 
iRow<iRows-1 && iCol>0 && arrTemp[iIndex+iCols-1] > VALUE_BLANK || 
iRow<iRows-1 && iCol<iCols-1 && arrTemp[iIndex+iCols+1] > 
VALUE_BLANK) { 

        arrPoints.Add(CPoint(iCol,iRow)); 
       } 
      } 
     } else { 
      // Outside the grid 

if (iCol>0 && iRow>=0 && iRow<iRows && arrTemp[iIndex-1] > VALUE_BLANK || 
iCol<iCols-1 && iRow>=0 && iRow<iRows && arrTemp[iIndex+1] > 
VALUE_BLANK || 
iRow>0 && iCol>=0 && iCol<iCols && arrTemp[iIndex-iCols] > VALUE_BLANK 
|| 
iRow<iRows-1 && iCol>=0 && iCol<iCols && arrTemp[iIndex+iCols] > 
VALUE_BLANK || 

       iRow>0 && iCol>0 && arrTemp[iIndex-iCols-1] > VALUE_BLANK 
|| 

iRow>0 && iCol<iCols-1 && arrTemp[iIndex-iCols+1] > VALUE_BLANK || 
iRow<iRows-1 && iCol>0 && arrTemp[iIndex+iCols-1] > VALUE_BLANK || 
iRow<iRows-1 && iCol<iCols-1 && arrTemp[iIndex+iCols+1] > VALUE_BLANK) 
{ 

       arrPoints.Add(CPoint(iCol,iRow)); 
      } 
     } 
    } 
   } 
 
   // This is the outer polygon 
   CPolyLine *pOuter = Points2Poly(arrPoints, dXMin, dYMin, dGridSize); 
   if (pOuter) { 
    CArray <CDPoint,CDPoint&> arrInner; 
    pInner->GetPoints(arrInner); 
    int iNumInner = arrInner.GetCount(); 
    CArray <CDPoint,CDPoint&> arrOuter; 
    pOuter->GetPoints(arrOuter); 
    int iNumOuter = arrOuter.GetCount(); 
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    if (iNumOuter > 3 && iNumOuter == iNumInner &&  

!pOuter->ComparePoints(pInner,FALSE,1e-6)) { 
     // Find all the reversal points 
     CArray <int,int> arrRevIn; 
     CArray <int,int> arrRevOut; 
     for (int i=1; i<iNumInner-2; i++) { 

if (!arrOuter[i-1].Compare(arrOuter[i],1e-6) && 
!arrOuter[i].Compare(arrOuter[i+1],1e-6) &&  
!arrOuter[i+1].Compare(arrOuter[i+2],1e-6)) { 

       double dAngle1 = Angle(arrOuter[i-1], arrOuter[i]); 
       double dAngle2 = Angle(arrOuter[i], arrOuter[i+1]); 
       double dAngle3 = Angle(arrOuter[i+1], arrOuter[i+2]); 
       if (fabs(dAngle1-dAngle3) > 1e-6) { 
        // Hit Reversal 
        double dTurn = NormalizeAngle(dAngle2 - dAngle1); 
        if (fabs(dTurn-PI/2.0) < 1e-6) { 
         // Left turn - Outer reversal 
         arrRevOut.Add(i); 
        } 
       } 
      } 

if (!arrInner[i-1].Compare(arrInner[i],1e-6) && 
!arrInner[i].Compare(arrInner[i+1],1e-6) &&  
!arrInner[i+1].Compare(arrInner[i+2],1e-6)) { 

       double dAngle1 = Angle(arrInner[i-1], arrInner[i]); 
       double dAngle2 = Angle(arrInner[i], arrInner[i+1]); 
       double dAngle3 = Angle(arrInner[i+1], arrInner[i+2]); 
       if (fabs(dAngle1-dAngle3) > 1e-6) { 
        // Hit Reversal 
        double dTurn = NormalizeAngle(dAngle2 - dAngle1); 
        if (fabs(dTurn-PI/2.0) >= 1e-6) { 
         // Right turn - Inner reversal 
         arrRevIn.Add(i); 
        } 
       } 
      } 
     } 
     // Add another entry to keep from running off end of array 
     arrRevIn.Add(-1); 
     arrRevOut.Add(-1); 
     int iNextRevOut = 0; 
     int iNextRevIn = 0; 
 
     CArray <CDPoint,CDPoint&> arrNew; 
     // Start at bottom of Outer 
     CDPoint dPntBeg = MidPoint(arrOuter[0], arrOuter[1]); 
     arrNew.Add(dPntBeg); 
 
     int iInner = 1; 
     int iOuter = 1; 
     double dAngleInner = NormalizeAngle(Angle(dPntBeg, arrInner[iInner])); 
     double dAngleOuter = NormalizeAngle(Angle(dPntBeg, arrOuter[iOuter])); 
     double dAngle = 0.0; 
     double dAngleMid = 0.0; 
 
     CDPoint dPntNext = MidPoint(arrInner[iInner], arrOuter[iOuter]); 
     int iNext = iInner; 
 
     BOOL bDone = FALSE; 
     while (iInner < iNumInner-1) { 
 
      if (dAngleInner <= dAngleOuter) { 
       // Angles crossed, so output best point 
       arrNew.Add(dPntNext); 
       // and start again from here 
       dPntBeg = dPntNext; 
       iNext++; 
       if (iNext >= iNumInner) { 
        break; 
       } 
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       iInner = iNext; 
       iOuter = iNext; 
       if (iInner == arrRevIn[iNextRevIn]) { 
        // Already in a reversal, so navigate out 
        iNextRevIn++; 
        dPntNext = MidPoint(arrInner[iInner], 
arrOuter[iOuter]); 
        arrNew.Add(dPntNext); 
        iNext++; 
        iInner = iNext; 
        iOuter = iNext; 
        dPntNext = MidPoint(arrInner[iInner], 
arrOuter[iOuter]); 
        arrNew.Add(dPntNext); 
        dPntBeg = dPntNext; 
        iNext++; 
        iInner = iNext; 
        iOuter = iNext; 
       } 
       dAngleInner = NormalizeAngle(Angle(dPntBeg, 
arrInner[iInner])); 
       dAngleOuter = NormalizeAngle(Angle(dPntBeg, 
arrOuter[iOuter])); 
       dPntNext = MidPoint(arrInner[iInner], arrOuter[iOuter]); 
       if (dAngleInner < dAngleOuter) { 
        // De-Normalize 
        if (fabs(dAngleOuter-dAngleMid) >  

fabs(dAngleInner-dAngleMid)) { 
         dAngleOuter -= PI*2.0; 
        } else { 
         dAngleInner += PI*2.0; 
        } 
       } 
      } 
 
      iInner++; 
 
      if (iInner == arrRevIn[iNextRevIn]) { 
       // Hit Reversal 
       iNextRevIn++; 
 
       // Need to check latest outer angle 
       dAngle = NormalizeAngle(Angle(dPntBeg, arrOuter[iInner])); 
       if (dAngleOuter < dAngle) { 
        dAngleOuter = dAngle; 
       } 
 
       // Extend current line out past edge 
       dAngleMid = (dAngleInner + dAngleOuter) / 2.0; 
       double dDist = LineLength(dPntBeg, arrInner[iInner+1]); 

CDPoint dPntEnd = CDPoint(dPntBeg.m_x + cos(dAngleMid)*dDist, 
dPntBeg.m_y + sin(dAngleMid)*dDist); 

 
       // Find intersection point with center of reversal 

CDPoint dPntChk1 = MidPoint(arrInner[iInner], arrInner[iInner+1]); 
CDPoint dPntChk2 = MidPoint(arrOuter[iInner], arrOuter[iInner+1]); 
if (LineLine(dPntBeg, dPntEnd, dPntChk1, dPntChk2, dPntNext, TRUE)) { 

        // Found 
        arrNew.Add(dPntNext); 
       } else { 
        // Not found, try intersection with edge 

if (LineLine(dPntBeg, dPntEnd, arrInner[iInner], 
arrInner[iInner+1], dPntNext, FALSE)) { 

         arrNew.Add(dPntNext); 
        } else { 
         break; // Must be an error 
        } 
       } 
       dPntBeg = dPntNext; 
       iNext = iInner + 1; 
       iOuter = iNext; 
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       iInner = iNext; 
       dAngleInner = NormalizeAngle(Angle(dPntBeg, 
arrInner[iInner])); 
       dAngleOuter = NormalizeAngle(Angle(dPntBeg, 
arrOuter[iOuter])); 
       dPntNext = MidPoint(arrInner[iInner], arrOuter[iOuter]); 
      } 
 
      if (iInner < iNumInner) { 
       // Need to move angle in? 
       dAngle = NormalizeAngle(Angle(dPntBeg, arrInner[iInner])); 
       if (dAngleInner > dAngle) { 
        // Yes 
        dAngleInner = dAngle; 
        if (dAngleInner > dAngleOuter) { 
         // This point is inside,  

// so keep it until a better point comes around 
         double dDist = LineLength(dPntBeg, 
arrInner[iInner]); 
         dAngleMid = (dAngleInner + dAngleOuter) / 
2.0; 

dPntNext = CDPoint(dPntBeg.m_x + cos(dAngleMid)*dDist, 
dPntBeg.m_y + sin(dAngleMid)*dDist); 

         iNext = iInner; 
        } 
       } 
      } 
 
      if (dAngleInner <= dAngleOuter) { 
       // Angles crossed, so output best point 
       arrNew.Add(dPntNext); 
       // Start again from here 
       dPntBeg = dPntNext; 
       iNext++; 
       if (iNext >= iNumInner) { 
        break; 
       } 
       iInner = iNext; 
       iOuter = iNext; 
       if (iOuter == arrRevOut[iNextRevOut]) { 
        // Already in a reversal, so navigate out 
        iNextRevOut++; 
        dPntNext = MidPoint(arrInner[iInner], 
arrOuter[iOuter]); 
        arrNew.Add(dPntNext); 
        iNext++; 
        iInner = iNext; 
        iOuter = iNext; 
        dPntNext = MidPoint(arrInner[iInner], 
arrOuter[iOuter]); 
        arrNew.Add(dPntNext); 
        dPntBeg = dPntNext; 
        iNext++; 
        iInner = iNext; 
        iOuter = iNext; 
       } 
       dAngleInner = NormalizeAngle(Angle(dPntBeg, 
arrInner[iInner])); 
       dAngleOuter = NormalizeAngle(Angle(dPntBeg, 
arrOuter[iOuter])); 
       dPntNext = MidPoint(arrInner[iInner], arrOuter[iOuter]); 
       if (dAngleInner < dAngleOuter) { 
        // De-Normalize 
        if (fabs(dAngleOuter-dAngleMid) >  

fabs(dAngleInner-dAngleMid)) { 
         dAngleOuter -= PI*2.0; 
        } else { 
         dAngleInner += PI*2.0; 
        } 
       } 
      } 
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      iOuter++; 
 
      if (iOuter == arrRevOut[iNextRevOut]) { 
       // Hit Reversal 
       iNextRevOut++; 
 
       // Need to check latest inner angle 
       dAngle = NormalizeAngle(Angle(dPntBeg, arrInner[iOuter])); 
       if (dAngleInner > dAngle) { 
        dAngleInner = dAngle; 
       } 
 
       // Extend current line out past edge 
       dAngleMid = (dAngleInner + dAngleOuter) / 2.0; 
       double dDist = LineLength(dPntBeg, arrOuter[iOuter+1]); 

CDPoint dPntEnd = CDPoint(dPntBeg.m_x + cos(dAngleMid)*dDist, 
dPntBeg.m_y + sin(dAngleMid)*dDist); 

 
       // Find intersection point with center of reversal 

CDPoint dPntChk1 = MidPoint(arrOuter[iOuter], arrOuter[iOuter+1]); 
CDPoint dPntChk2 = MidPoint(arrInner[iOuter], arrInner[iOuter+1]); 
if (LineLine(dPntBeg, dPntEnd, dPntChk1, dPntChk2, dPntNext, TRUE)) { 

        // Found 
        arrNew.Add(dPntNext); 
       } else { 
        // Not found, try intersection with edge 

if (LineLine(dPntBeg, dPntEnd, arrOuter[iOuter], 
arrOuter[iOuter+1], dPntNext, FALSE)) { 

         arrNew.Add(dPntNext); 
        } else { 
         break; // Must be an error 
        } 
       } 
       // Start again from here 
       dPntBeg = dPntNext; 
       iNext = iOuter + 1; 
       iOuter = iNext; 
       iInner = iNext; 
       dAngleInner = NormalizeAngle(Angle(dPntBeg, 
arrInner[iInner])); 
       dAngleOuter = NormalizeAngle(Angle(dPntBeg, 
arrOuter[iOuter])); 
       dPntNext = MidPoint(arrInner[iInner], arrOuter[iOuter]); 
      } 
 
      if (iOuter < iNumOuter) { 
       // Need to move angle in? 
       dAngle = NormalizeAngle(Angle(dPntBeg, arrOuter[iOuter])); 
       if (dAngleOuter < dAngle) { 
        // Yes 
        dAngleOuter = dAngle; 
        if (dAngleInner > dAngleOuter) { 
         // This point is inside,  

// so keep it until a better point comes around 
         double dDist = LineLength(dPntBeg, 
arrOuter[iOuter]); 
         dAngleMid = (dAngleInner + dAngleOuter) / 
2.0; 

dPntNext = CDPoint(dPntBeg.m_x + cos(dAngleMid)*dDist, 
dPntBeg.m_y + sin(dAngleMid)*dDist); 

         iNext = iOuter; 
        } 
       } 
      } 
     } 
 
     if (dPntNext != dPntBeg) { 
      arrNew.Add(dPntNext); 
     } 
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     CPolyLine* pNew = new CPolyLine(RGB(0,0,0)); 
     for (int i=0; i<arrNew.GetCount(); i++) { 
      pNew->AddDPoint(arrNew[i]); 
     } 
     delete pOuter; 
     delete pInner; 
     pNew->RemoveDups(); 
     pNew->ClosePoly(); 
     pNew->SetZOffset(dEdgeZ); 
     return pNew; 
    } 
    delete pInner; 
    pOuter->SetZOffset(dEdgeZ); 
    return pOuter; 
   } 
   pInner->SetZOffset(dEdgeZ); 
   return pInner; 
  } 
 } 
 return NULL; 
} 
 
// Convert list of indices on edge to a polygon 
CPolyLine* Points2Poly(CArray <CPoint,CPoint&> &arrPoints, double dXMin, double dYMin, double 
dGridSize) 
{ 
 CPolyLine poly(RGB(0,0,0)); 
 CArray <int,int> arrOrder; 
 while (ConnectPoints(arrPoints, arrOrder)) { 
  // Transfer points to a new PolyLine 
  CPolyLine newPoly(RGB(0,0,0)); 
  for (int i=0; i<arrOrder.GetCount(); i++) { 
   int iPoint = arrOrder[i]; 
   // Use insert so we can get duplicate points 
   newPoly.InsertDPoint( 

CDPoint(double(arrPoints[iPoint].x) * dGridSize + dXMin, double(arrPoints[iPoint].y) * 
dGridSize + dYMin),  
newPoly.NumPoints()); 

  } 
 
  // Mark Used Points  

// (need to do it this way because points can be used more than once) 
  for (int i=0; i<arrOrder.GetCount(); i++) { 
   int iPoint = arrOrder[i]; 
   arrPoints[iPoint] = CPoint(-2,-2); 
  } 
 
  // Remove Used Points 
  for (int i=arrPoints.GetCount()-1; i>=0; i--) { 
   if (arrPoints[i] == CPoint(-2,-2)) { 
    arrPoints.RemoveAt(i); 
   } 
  } 
   
  // Cleanup PolyLine 
  newPoly.RemoveInLine(1e-6, TRUE); 
  newPoly.ClosePoly(); 
 
  // See if this PolyLine is inside a previous one 
  if (!poly.IsInside(&newPoly)) { 
   // No, keep this one 
   poly = newPoly; 
  } 
 } 
 
 if (poly.NumPoints() > 3) { 
  // Make a new PolyLine on the heap and return it 
  CPolyLine *pLine = new CPolyLine(poly); 
  pLine->SetExtents(); 
  return pLine; 
 }  
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 return NULL; 
} 
 
// Connect index points together to make a continuous polygon 
// Order of points are returned in arrOrder 
BOOL ConnectPoints(const CArray<CPoint,CPoint&> &arrPoints, CArray<int,int> &arrOrder) 
{ 
 arrOrder.RemoveAll(); 
 int iNumPoints = arrPoints.GetCount(); 
 if (iNumPoints >= 8) { 
 
  // Setup list of available points 
  CArray <int,int> arrAvail; 
  arrAvail.SetSize(iNumPoints); 
  for (int i=0; i<iNumPoints; i++) { 
   arrAvail[i] = i; 
  } 
 
  int iCurrent = 0; 
  arrOrder.Add(iCurrent); 
  arrAvail.RemoveAt(iCurrent); 
  CPoint pntCurrent = arrPoints[iCurrent]; 
 
  while (arrAvail.GetCount() > 0) { 
   int iMinDistance = iNumPoints; 
   int iClosest = -1; 
   int iClosestIndex = -1; 
   CArray <int,int> arrTies; 
   for (int i=0; i<arrAvail.GetCount(); i++) { 
    int iCheck = arrAvail[i]; 
    int iDistance =  

abs(pntCurrent.x - arrPoints[iCheck].x) +  
abs(pntCurrent.y - arrPoints[iCheck].y); 

    if (iMinDistance > iDistance) { 
     iMinDistance = iDistance; // Taxi distance to point 
     iClosest = iCheck;   // Index into arrPoints 
     iClosestIndex = i;   // Index into arrAvail 
     arrTies.SetSize(1);  // Reset arrTies 
     arrTies[0] = i; 
    } else if (iMinDistance == iDistance) { 

// Keep track of points that are the same taxi distance 
     arrTies.Add(i); 
    } 
   } 
   if (iMinDistance > 1) { 
    // Not connected, so quit 
    break; 
   } else { 
    // At least one point connected 
    if (arrTies.GetCount()>1) { 
     // More than one point that is connected 
     // Choose the one that has only one connection left 
     int iColumnOne = -1; 
     for (int iTie=0; iTie<arrTies.GetCount(); iTie++) { 
      int iAvail = arrTies[iTie]; 
      int iPoint = arrAvail[iAvail]; 
      int iAttach = 0; 
      for (int i=0; i<arrAvail.GetCount(); i++) { 
       if (i != iAvail) { 
        int iCheck = arrAvail[i]; 
        int iDistance =  

abs(arrPoints[iPoint].x - arrPoints[iCheck].x) + 
abs(arrPoints[iPoint].y - arrPoints[iCheck].y); 

        if (iDistance == 1) { 
         iAttach++; 
        } 
       } 
      } 
      if (iAttach == 0) { 
       // Doubles back on self, special case 
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       int iPrev = arrOrder[arrOrder.GetCount()-1]; 
       arrOrder.Add(iPoint); 
       arrAvail.Add(iPrev); 
       iClosest = iPoint; 
       iClosestIndex = iAvail; 
       break; 
      } else if (iAttach == 1) { 
       if (iColumnOne <= arrPoints[iPoint].x) { 
        iColumnOne = arrPoints[iPoint].x; 
        iClosest = iPoint; 
        iClosestIndex = iAvail; 
       } 
      } 
     } 
    } 
    iCurrent = iClosest; 
    arrOrder.Add(iCurrent); 
    arrAvail.RemoveAt(iClosestIndex); 
    pntCurrent = arrPoints[iCurrent]; 
   } 
  } 
  return TRUE; 
 } 
 return FALSE; 
} 
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