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Abstract 

 
In this report, we summarize our current collobarative efforts, involving three national 

laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory 

(PNNL) and Los Alamos National Laboatory (LANL), to develop a computational 

framework for homogenous and heterogenous nucleation mechanisms into the generic 

phase-field model.  During the studies, the Fe-Cr system was chosen as a model system 

due to its simplicity and availability of reliable thermodynamic and kinetic data, as well 

as the range of applications of low-chromium ferritic steels in nuclear reactors.  For 

homogenous nucleation, the relavant parameters determined from atomistic studies were 

used directly to determine the energy functional and parameters in the phase-field model.  

Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were 

systematically examined in two- and three- dimensional models.  For the heteregoneous 

nucleation mechanism, we studied the nucleation and growth behavior of chromium 

precipitates due to the presence of dislocations.  The results demonstrate that both 

nucleation schemes can be introduced to a phase-field modeling algorithm with the 

desired accuracy and computational efficiency. 
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I. INTRODUCTION 
 

The phase-field method is gaining popularity to model microstructure evolution under 

different thermodynamic driving conditions.  In most phase-field modeling, the phase-

field equations are deterministic with the evolution of the phase-field variables driven by 

the reduction in the total free energy of an inhomogeneous system.  Although phase-field 

modeling successfully accounts for growth kinetics, there are no efficient models to 

accurately and efficiently include the nucleation kinetics.  This is particularly difficult for 

the homogenous nucleation behavior due to the short temporal and small spatial scales 

associated with this nucleation mechanism.  Currently, homogeneous nucleation events 

are handled within the phase-field modeling framework either with the introduction of a 

Langevin noise term, where the initial state is not too far from the instability temperature 

or composition, or via explicit nucleation methods based on the classical nucleation 

theory and Poisson seeding.  The advantages and disadvantages of both methods have 

recently been summarized in [1].  It is now well established that the presence of sub-

microstructural features, such as dislocations and grain boundaries, provides 

thermodynamically favorable sites for nucleation and alters the evolution kinetics by 

providing different diffusional pathways. 

 

In this study, both nucleation mechanisms are incoprated into the phase-field formalism.  

The Fe-Cr system was choosen as a model system due to its simplicity and availability of 

reliable thermodynamic and kinetic data, as well as the range of applications of low-

chromium ferritic steels in nuclear reactors.   

 

The report  is organized in three main sections and a conclusion: In the first section, the 

details of the studies at the atomistic scale for generation of the necessary parameters 

used for the homogenous nucleation events are described. The second section follows 

with the demonstration of a generic phase-field modeling methodology for homogenous 

nucleation.  In the third section, we present the results for heteregenous nucleation and 

growth behavior of chromium precipates due the presence of dislocations.  Finally, we 

offer our concluding remarks. 
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II. Atomistic studies for the analytical calculation of critical size for Cr precipitation 
in the Fe-Cr system 
 
Fe-Cr systems show a miscibility gap in the bcc solid solution phase that becomes 

heterogeneous with an α -phase (Fe-rich solid solution) and an ′α -phase (Cr-rich solid 

solution).  Only recently has data become available for both the free energy of the solid 

solution and the interfacial free energy of the Fe-Cr system.  Our group obtained the free 

energy of the solid solution phase using a switching Hamiltonian method in a molecular 

dynamics simulation with an empirical concentration-dependent embedded atom (CD-

EAM) potential [2,3].  The applicable range of the resulting free energy surface goes 

from room temperature up to 700K, well below the Curie temperature.  Above this 

temperature, the model is not accurate as magnetic effects become important, and below 

it, classical nuclei mechanics is not valid (the Debye temperature of Fe is 460K). 

 

The interfacial free energy was obtained using variance-constrained semi-grand canonical 

Monte Carlo (VCSGCMC) calculations by Sadigh and Erhart [4] with the same 

interatomic potential.  The authors observe similar values for the three cubic orientations 

of the interface, namely (100), (110), and (111), which implies nearly spherical 

precipitates.  Ab initio calculations by Lu et al. [5, 6] on the (001) and (110) interfaces 

support the observed isotropy and offer excellent agreement on the energy values.  

 

When calculating the interfacial free energies, a possible radius dependence was ignored.  

In practice, the cluster interfacial free energy can strongly depend on cluster radii for 

small cluster sizes and vary from the bulk values, as calculated by DFT for example. 

 

Due to the low lattice mismatch, the elastic energy contribution in the Fe-Cr system is 

negligible and omitted in this study, greatly simplifying the derivations of the critical 

radius and nucleation rate.  We note that the framework of classical nucleation theory is 

strictly valid only in the limit of low supersaturations [7].  Furthermore, the latent heat 

released during nucleation, which can lead to a local temperature increase, also is 

ignored.  This is justified by the good heat conductivity of the alloy as well as the long 

timescale of the kinetically limited nucleation processes.  

 

The nucleation treatment in this work uses equilibrium thermodynamics and a steady 
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state approximation.  This is justified because we are only interested in instantaneous 

nucleation rates within individual phase-field cells, which by design contain no other 

nuclei.  Growth and coarsening of the resulting precipitates is then treated within the 

phase-field framework. 

 

The maximal nucleation driving force, obtained using the parallel tangent construction, 

can vary if the precipitate composition is allowed to deviate from the ′α  equilibrium 

composition.  However, because the solubility of Fe in Cr for the potential used in this 

work, as well as other Fe-Cr potentials [8, 9] is low below 700 K, changes in the driving 

force due to changes in ′α  composition are expected to be small. 

 

The free energy surface T)G(x,  as a function of Cr concentration x  and temperature T  is 

given by the following set of equations, where χH  are the composition-dependent 

coefficients of a polynomial fit to the enthalpy calculated using molecular dynamics, and 

0G  is the free energy at the switching temperature obtained using the Hamiltonian 

switching method.  All fitting parameters are listed in Table-1, and a plot of the free 
energy surface is given in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
Figure 1. Free energy surface G(x,T)  
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The final expression results from applying the Gibbs-Duhem equation and adding the 

configurational entropy of an ideal solution.  The form of the equations closely follows 

the CALPHAD [10] standard.  Although in alloys with a negative heat of formation, 

short-range order in the solid solution may develop, it has been shown that the random 

solution approximation still adequately models the free energy and resulting phase 

diagram [9].  Figure 2 shows the phase diagram for the Fe-Cr system as modeled by our 

potential constructed using the common tangent method.  The solid curve marks the 

miscibility gap of the Fe-Cr system, while the dashed curve marks the spinodal line (the 

boundary of the thermodynamically unstable region, given by 
d 2G
d x2 = 0 ).  The diamond 

symbols with error bars indicate the solubility limits obtained by a SGCMC simulation.  

The shaded region gives a range of possible Cr solubility limits in Fe as obtained by 

Xiong et al. [11], while the triangles are results from cluster expansion (CE) calculations 

fitted to first principles data [12].  In the validity region of the potential, we observe that 

the results from the the CD-EAM model agree quite well with the Xiong et al. values and 

are similar to those given by the CE.  The CD-EAM potential is fitted to the mixing 

enthalpy expressed by a coherent potential approximation obtained by Olsson et al. [13].  

The maximum value of this mixing enthalpy is more than 20 meV larger than the one 

obtained using special quasi-random structures [14].  This difference, and the difference 

in curvature, partially explains the lower Cr solubility obtained with the CD-EAM 
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compared to the results by Xiong et al. [11]. 

 
 

ξ = a b c d f

ξ0  0.3856 0.0003 3.1446 · 10−9 −1.7601 · 10−13 0.3817

ξ1  −0.0973 4.6956 · 10−5 −2.2031 · 10−8 5.5788 · 10−12 −0.1007

ξ2  −0.0467 −4.9588 · 10−5 3.9597 · 10−8 −5.9353 · 10−12 −0.0485

ξ3  −0.1945 1.1333 · 10−5 −3.0902 · 10−8 1.2285 · 10−11 −0.1541

ξ4  −0.1856 0.0000 0.0000 0.0000 −0.1684

ξ5  −0.0044 0.0000 0.0000 0.0000 −0.0416

ξ6  −3.8366 0.0000 0.0000 0.0000 −3.8602

ξ7  −4.1231 0.0000 0.0000 0.0000 −4.1671

 
 Table-1 Coefficients for the Fe-Cr free energy surface given in Equations 1-5. 
 
To obtain an expression for the interfacial free energy, we fit the second degree 

polynomial 2
321 TeTee=[T]Fi   to the data reported by Sadigh and Erhart [4].  Figure 

3 shows both our data and that of Sadigh.  The values for the coeffients are 

21 m

J
441.4385=e  , 

22 Km

J
0.1091=e  , and 

22
5

3 mK

J
104.2794 =e  .  

 

The composition (T)cα
′  of the terminal phase on the Fe-rich side at the temperature T  

was fit to the calculated phase diagram shown in Figure 2 using a third order polynomial: 
 

c '(T) = 0 +1T +2T
2 +3T

3,   (6)  

 
with the parameters 2

0 102.557 =χ , 5
1 105.120 =χ , 9

2 108.730 =χ , and 
11

3 102.065 =χ . For the Cr-rich side, we assume this composition to be independent of 

temperature at 0.998=cα . 
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Figure 2.  Phase diagram of the Fe-Cr system calculated from the free energy 
surface.  The solid curve marks the miscibility gap of the Fe-Cr system, and the 
dashed curve marks the spinodal line (the boundary of the thermodynamically 
unstable region). The diamond symbols with error bars show the solubility limits 
as obtained by a SGCMC simulation.  The shaded region offers a range of 
possible Cr solubility limits in Fe as obtained by Xiong et al. [11], while the 
triangles are results from CE calculations fitted to first principles data [12]. 

 

Gibbs [14] showed that the formation free energy nΔG  of a cluster containing n  atoms 

is in a matrix with composition mc  given by: 

 

Gn = Gnuc (T,cm )V(n)+Fi (T)A(n), (7) 

  

where nucG  is the free energy gain from nucleating an atom of precipitate material, iF  is 

the cost of creating one unit of interface surface, and V  and A  are the volume and 

interface area of a particle containing n  atoms.  The volume and interface terms are in 

competition. In the thermodynamically meta-stable region of the miscibility gap, the 

interface term wins over the volume term for all cluster sizes below a critcal size n .  

Above the critical size, the volume term dominates, and the addition of further atoms into 
the nucleus becomes energetically favorable.  Therefore, the critical size is obtained by 
solving  
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Figure 3. Interfacial free energy of the Fe-Cr system as a function of temperature 
obtained by Sadigh and Erhart [4] using VDSGCMC simulations.  The solid line 
shows the polynomial fit to the data used in our calculations. 

 
 

dGn

dn n*

= 0  (8) 

 
In classical nucleation theory, an infinitesimal global change in matrix composition is 
assumed to balance the creation of a precipitate.  However, this can only be valid in the 
limit of infinite diffusivity.  Conservation of mass demands that any fluctuation resulting 
in a local composition increase must be balanced by an equal solute depletion somewhere 
in the sample.  At low diffusivities over short timescales the depleted region must be in 
close proximity to the enriched region.  
 
Thus, we consider two limiting cases.  The first is an infinitesimal global depletion in 
solute following classical nucleation theory. The second case is a localized depletion 
zone around the particle.  
 
For the infinitesimal depletion case we start with the well-known expression for the free 
energy of nucleation (see Clouet [15] for a comprehensive review): 
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Gnuc = G(c ',T)G(cm,T) (c '  cm )
∂G

∂c
(cm,T).   (9) 

 
For the second case, we assume that all solute needed to form the nucleus comes from a 
localized region, which as a zeroth-order approximation can be assumed to consist of a 

solute-depleted α -phase material at a constant equilibrium composition αd c=c .  We 

assume this depletion zone to be centered around the particle with a radius dr .  The 

volume of the depletion zone (n)Vd  needed to form a precipitate containing n  atoms in a 

matrix with a solute concentration mc  is then given through mass conservation as: 

 

Vd = nΩ
c '  cm

cm  c '

,  (10) 

where αc  and ′
αc  are the equilibrium temperature-dependent compositions in the terminal 

phases. The free energy of nucleation is then given by:  
 

Gnuc = G(cm,T)G(c ,T) cm  c
c '  c

 (G(c ',T)G(c ,T)).  (11) 

 

Figure 4 depicts the critical nuclei sizes )c(T,n m  at temperatures 300K, 500K, and 700K 

for all matrix concentrations mc  between the binodal and the spinodal on the Fe-rich side 

of the phase diagram. 
 
We note that by increasing the local depletion zone composition, thus the depletion zone 

radius, the classical nucleation theory result can be recovered in the limit of ∞dr  and 

md cc  .  Both limits then can be considered as representing cases of fast and slow 

kinetics, respectively.  
 
The thermodynamic nucleation rate has a prefactor that accounts for the shape of the 
nucleation barrier and the fact that developing critical nuclei can be viewed as performing 
a random walk in cluster-size space.  This prefactor is called the “Zeldovich factor” [16] 
and is given by: 

 Z =
1

2πkBT

∂2G

∂n2
n*

 (12) 

Knowing the entire free energy surface and, consequently, the functional form of the 
nucleation barrier, this factor is readily computed. Figure 5 shows the results.  
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Figure 4. Critical nucleus sizes n∗ in number of atoms for the local (gray) and 

global (black) depletion cases as a function of solute concentration in the matrix 
at 300K, 500K, and 700K. The dotted, dashed, and solid arrows indicate the 
solubility limit at the three temperatures.  The disk symbols indicate the spinodal, 
beyond which nucleation is replaced by spontaneous phase decomposition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Zeldovich factors Z for the local (gray) and global (black) depletion 
cases as a function of solute concentration in the matrix at 300K, 500K, and 
700K. 
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To calculate the actual nucleation rate R , the thermodynamic picture has to be 
complemented by the kinetic side of the problem in the form of a monomer arrival rate 

β  determined by the rate-limiting diffusion coefficients.  Here, we use the diffusion 

coefficient of Cr in α -Fe, given by Lee et al. [17], and calculate the arrival rate as: 

 

* = csurfΩ
2

3

A
f

2
,  (13) 

where f  is the jump frequency of a solute atom and AΩc 3/2
surf

  is the number of solute 

atoms near the surface of the precipitate.  We assume that half of the jumps lead to an 
addition of a monomer to the particle.  The nucleation rate per unit volume is then given 
by:  

R = N *Ze
Gn
kBT

,          (14) 

 

where N  is the number of nucleation sites per unit volume, which, in classical nucleation 

theory, is assumed to be equal to the number of solute monomers.  In the global depletion 

limit we set mc=csurf  and in the local depletion limit we set dc=csurf .  Figure 6 

illustrates the resulting nucleation rates as a function of solute concentration mc .   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Nucleation rates R per unit volume for the local (gray) and global 
(black) depletion cases as a function of solute concentration in the matrix at 300K, 
500K, and 700K. A single experimental data point by Mathon et al. [18] on 
martensitic LA4Ta steel with 11.8% Cr at 700K is shown in the top left. 
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Experimental data for comparison are especially scarce.  Data from a single thermal 

annealing experiment by Mathon et al. [18] on martensitic LA4Ta steel with 11.8% Cr at 

700K is shown in the top left of the plot (Figure 6).  Compared to our model alloy, the 

system in the experiment differs both in morphology and trace element composition.  

Yet, by taking the size of the result space into account, a reasonable agreement with the 

simulation is observerd.  

 

The analytical expressions for the critical size and nucleation rate are rather bulky and 

contain the first and second derivatives of the already complex free energy function.  

Here, we present simple and computationally inexpensive fitting functions and their 

parameter sets, to reproduce the critical size gn  and nucleation rate }{ gl,R  data with 

reasonable accuracy.   

nl
*  a1

(x a2 )6
 a3

(x a2 )2
 (15) 

ng
*  b1

(x b2 )b3
b4  (16) 

R{l,g}  exp {c,d}1 {c,d}4 x {c,d}2 {c,d }3



 (17) 

{a,b}* {a,b}*,1 {a,b}*,2T {a,b}*,3T
2  (18) 

{c,d}* {c,d}*,1 {c,d}*,2T {c,d}*,3 T  (19) 

 

The subscripts l  and g  refer to the local and global depletion cases, respectively.  The 

functions are fit for a temperature range of 300K to 700K. All parameters are listed in 

Table-2.  The fitted critical nucleus sizes match the target within 5%, and the fitted 

nucleation rate matches the target within better than one order of magnitude. 

 

This data is useful as input for larger length scale models such as the phase-field method. 

We give both the critical nucleus size and nucleation rate in terms of computationally 

efficient fitting functions that can be directly plugged into a coarse-grained simulation 

code. 
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 κ*∗,1 κ*∗,2 κ*∗,3 

    

κa1 4.0563 · 10−6 −5.7096 · 10−9 2.2396 · 10−11

κa2 7.0273 · 10−3 3.8405 · 10−5 3.0734 · 10−8

κa3 3.0597 · 10−1 −2.5131 · 10−5 6.1304 · 10−7

κb1 6.4613 · 10−3 −1.6848 · 10−6 1.7113 · 10−8

κb2 2.7760 · 10−2 4.1084 · 10−5 3.6018 · 10−8

κb3 2.5358 −3.0997 · 10−5 −5.0254 · 10−8

κb4 3.3010 1.8115 · 10−4 6.6956 · 10−6

    

κc1 −430.6123 −4.7526 · 10−1 28.3425

κc2 6.3364 · 10−2 1.7403 · 10−4 −4.1923 · 10−3

κc3 −8.9569 · 10−1 2.1468 · 10−3 −9.0857 · 10−2

κc4 −3.5363 −5.0870 · 10−3 2.5480 · 10−1

    

κd1 −439.0426 −5.1439 · 10−1 29.8054

κd2 4.2415 · 10−2 1.2897 · 10−4 −2.2891 · 10−3

κd3 −2.6509 −1.2347 · 10−3 5.6874 · 10−2

κd4 −2.3432 · 10−1 −1.6963 · 10−4 1.1569 · 10−2 

Table-2.  Coefficients for the approximate fitting functions for critical nucleus size (κ{a,b}) 
and nucleation rate (κ{c,d}) (Equations 15-19). 
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III. Phase-field model of homogenous nucleation of Cr precipitates in Fe-Cr alloys 

In Fe-Cr alloys, Cr precipitate is a Cr-rich phase with the same structure as the matrix 

phase (bcc Fe-Cr solid solution).  Therefore, the precipitate microstructure in bcc Fe-Cr 

alloys can be uniqely described by Cr concentration.  In this section, we will introduce 

the homogenous nucleation mechansim into phase-field formalism using the atomistic 

data given in the previous section.   

 

In the framework of phase-field approach, the concentration of Cr, CCr(r,t), is employed 

as a phase-field variable, where r =(r1, r2, r3) is the spatial coordinate and t is time.  

Compared with Cr solubility in Fe-Cr alloys, the thermal equilibrium vacancy 

concentration is very small. Thus, it is ignored in the present model.  As such, the 

concentration of Fe is 1-CCr.  The total free energy of the binary system can be expressed 

as: 

dVCTCf
NA

F
V

CrCr 










 2

0

0

2
),(


 ,      (20) 

 
where T is temperature,  321 rrr   is the gradient operator, and V is the 

volume of the considered system. atom/mol10022.6 23N  is the Avogadro’s constant. 

/molm104087.1 35
0

  is the molar volume of bcc Fe, and J/eV10602.1 19
0

A .  
f(CCr,T) is the free energy density per atom in electron voltage (eV) and is expressed via 
Eqs. (1)-(5) with the coefficients given in Table-1.  Based on these, Figure 7 shows the 
free energies calculated at given temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Chemical free energy of Fe-Cr alloys. 
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Because concentration CCr is a conserved field variable, its temporal evolution is 

described by the Cahn-Hilliard equation [19]:  





























Cr
CrCr

Cr C
C

fNA
M

C

F
M

t

C 2

0

0 



 ,                     (21) 

where M is the mobility of Cr and related with its diffusivity, D, as 
T

D
M




 0  with 

K)J/(mol314.8  being the gas constant.  For numerically solving Eq. (21), the 

following normalizations are used: t
l

MNA
t

0
2
0

0*


 , 

0

*

l

r
r i
i  , 

*

0
*

3
*

2
*

10321

1
,,

1
,, 



































lrrrlrrr

, and
2
00

0*

lNA




 , where 0l  is 

characteristic length. Then, Eq. (21) is changed into: 

 


















Cr
Cr

Cr C
C

f

t

C 2**2*
*


,
                                                      (22) 

 

To predict Cr precipitate formation and growth, the system’s thermodynamic and kinetic 

properties, including the diffusivity of Fe and Cr, the interfacial energy, and the 

nucleation rate of Cr-rich precipitates, are needed. 

 

III.1. Diffusivity of Fe and Cu in Fe-Cr alloys 

 

The diffusivity of Fe in bcc Fe via vacancy mechanism was calculated using the LeClaire 

model [20], and the values of the vacancy formation energy and migration energy 

( eV18.2, fvE  and eV65.0, mvE , respectively) were obtained from ab initio 

calculations.  The diffusivity of Fe in the unit of m2/s is given by [21]: 

)
84.2

exp(10051.2 5
_ Tk

D
B

Fe
Febcc        

Cr diffusivity also can be calculated from the LeClaire model.  When including the solute 

enhancement of solvent diffusion, the Cr diffusion rate was found to be much faster than 
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Fe in both cases of the dilute limit and concentrated Fe-10%Cr alloys.  Kinetic lattice 

Monte Carlo (KLMC) simulations also showed that Cr diffuses faster (2~150 times) than 

Fe by a vacancy mechanism [21].  In the present simulations, we assume the diffusivity 

of Cr is two orders of magnitude larger than that of Fe (i.e., Fe
Febcc

Cr
Febcc DD __ 100 ).  Table-

3 lists the temperature dependence of Fe and Cr diffusivity. 

 

 

Temperature (K) )/sm( 2
_

Fe
FebccD  )/sm( 2

_
Cr

FebccD  

550 1.9×10-31 1.9×10-29 

600 2.8×10-29 2.8×10-27 

650 1.9×10-27 1.9×10-25 

700 7.2×10-26 7.2×10-24 

 
Table-3. Fe and Cr self-diffusivity in Fe-Cr alloys. 

 
III.2. Interfacial energy 

 

In the phase field model, both the chemical free energy f(CCr,T) and gradient energy 

contribute to the interfacial energy.  For a given characteristic length 0l  and gradient 

coefficient  , the interfacial energy of a flat interface can be numerically calculated.  To 

achive this, we put a precipitate at the center of a one-dimensional simulation cell and 

allowed the system to approach its equilibrium through Cr diffusion.  At the equilibrium 

state, the concentrations in both the precipitate and matrix reach their equilibrium values, 

respectively.  The equilibrium interface concentration profile is obtained 

correspondingly.  The interfacial energy is numerically calculated with the equilibrium 

concentration profile by: 
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 .    (23) 

 
If we define the interface to be the region that the Cr concentration falls within eqP

CrC ,05.0  
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and eqP
CrC ,95.0 , we can calculate the interface thickness from the equilibrium interfacial 

concentration profile, where eqP
CrC ,  is the Cr equilibrium concentration in the precipitate 

phase.  Thus, through tailoring the characteristic length 0l  and gradient coefficient  , the 

phase field model can correctly describe the interfacial properties, i.e., interfacial 

thickness and interfacial energy of Cr precipitates. 

 
III.3. Nucleation rate and nucleation scheme 

 

In the classical nucleation theory [22-25], for simplicity, it is assumed the concentration 

in the nucleus is more or less constant throughout its volume.  Its interface is sharp, while 

the interaction among nuclei is ignored and nucleation barrier *G , critical size *R , 

incubation time  , atomic impingement rate *  remain unchanged.  Under these 

assumptions, the nucleation rate can be calculated by: 

 

)/exp()/exp()( *
0

** tTkGNZtJ B   ,                                       (24) 

 

where 0N  is lattice sites per unit volume of the crystal and Z is the Zeldovich factor.  The 

assumptions in the classical nucleation theory can be partially released in the non-

classical nucleation theory developed by Cahn and Hilliard [19,26].  The phase-field 

method describes bulk energy, interfacial energy, long-range interaction energy, and 

microstructures in the same way as the non-classical nucleation theory.  It has been 

successfully used to predict thermodynamic properties of critical nuclei, including critical 

sizes, critical shapes, nucleation barriers, and critical composition fluctuations [26,27].  

However, modeling the nucleation process is one of the great challenges in phase-field 

simulations.  Here, we propose a general nucleation scheme to introduce the critical 

nuclei into the simulation cell.  The scheme is similar to the nucleation process proposed 

in [28] but it is more general.  It is based on the nucleation probability calculated from the 

nucleation rate in the classical and/or non-classical nucleation theory.  According to the 

nucleation theory, the probability of forming a nucleus at one atomic site in one 

characteristic nucleation time interval can be calculated by Eq. (24). We consider the 
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nucleation rate in a small representative volume 
1MV , consisting of 1M  phase-field grids 

during Mt  time interval. Usually, Mt  is much larger than the incubation time  . Thus, 

the total number of nuclei formed in the representative volume 
1MV  during Mt  is 

M
TkG

M teMZNtJM B   /*
10

*
0

*

 .                                                                      (25) 

 
In the nucleation scheme, we assume that:  

1) Transition driving force aG  is proportional to local super-saturation 

)(, TCCC eqM
CrCr  .  For a two-dimensional model, we have 

)/(/ 22* CconstGG a    and M
C

M tetJM   /
1

*
0

2 ,  where 

*
101  MZN  and )/(2

2 Tkconst B  . 

2) The nucleation may take place at the point with the maximum supersaturation in 

the representative volume 
1MV  with the probability of )exp(1 0MP  .  

3) The probability of nucleation P is zero once a Cr precipitate in 
1MV  already exists 

and/or the total amount of Cr in 
1MV is less than that required to form a critical 

nucleus.   

In the simulations, we use the following scheme to generate the nucleus in the simulation 

cell.  At each nucleation time:  

1) randomly search for a small representative volume 
1MV ;  

2) calculate the nucleation probability at the point with the maximum supersaturation 

in 
1MV ;  

3) determine whether or note a nucleus, which has critical concentration profile, 

should be added at the nucleation site;  

4) repeat steps 1 through 3 until the whole simulation cell has been searched.  

 

III.4. Results and discussions 

The model parameters nml 43.00  , 03.0*  , 007.0* dt , 006.01  , 6.02  , and 

*76.1 ttM   are used in the following simulations.  
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III.4.1 Interfacial energy 

First, we numerically calculate the interfacial energy of a flat interface at different 

temperatures of KKKKKT 700and600,500,400,300 , respectively.  The simulation is 

carried out in a one-dimensional simulation cell of drdrdr 111024  , including a Cr-rich 

precipitate with the radius of drR 50   at the center of the simulation center.  Inside the 

Cr-rich precipitate, the initial concentration is eqP
CrCr CC , and 13.00  CCCr  for the rest 

of the simulation cell.  Periodic boundaries are applied in r1-, r2-, and r3- directions.  For 

each temperature, the equilibrium profile of CCr can be reached by solving Eq. (22).  

Figure 8a plots the Cr concentration temporal evolution at KT 600  in half of the 

simulation cell.  The origin is the center of the precipitate. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  (a) Temporal evolution of Cr concentration when the initial Cr 
concentration is 13.00 C  and (b) the equilibrium Cr concentration profiles for 

T=300K, 500K and 700K, respectively. 
 
Clearly, while the Cr precipitate grows, the concentrations in both the precipitate and 

matrix approach their equilibrium values eqP
CrC ,  and eqM

CrC , , respectively.  Figure 8b 

depicts the equilibrium Cr concentration profiles for KKKT 700and500,300 .  Using 

the equilibrium Cr concentration profiles, the interfacial energy can be calculated with 

Eq. (23). Table-4 lists the interfacial energies of the flat interface calculated from the 

phase-field model.  For comparison, the results from atomistic simulations are also listed.  

We can see the interface energies from atomistic and phase field simulations have similar 
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temperature dependency, i.e., decrease with increasing temperature.  However, the 

interfacial energy predicted from the phase field model is slightly higher than that from 

the atomistic simulations.  

 
Temperature  
(K) 

Phase-field  
(J/m2) 

Atomic calculation1 
(J/m2) 

300 0.58  0.405 
400 0.56 0.391 
500 0.53 0.376 
600 0.50 0.361 
700 0.49 0.344 

 
Table-4  Interfacial energies from phase-field simulations  

 
III.4.2  Critical size of a nucleus in a three-dimensional model 

 

Critical nucleus sizes are examined in a three-dimensional model.  The simulations are 

performed in a simulation cell drdrdr 128128128   with periodic boundary conditions 

in r1-, r2-, and r3- directions.  The simulation starts with uniform Cr concentrations of 

17.0,15.0,13.0,11.0CrC , and 0.19, respectively.  The temperature is set at 600K.  

During simulations, Cr nuclei are introduced continuously into the simulation cell with 

the previously described nucleation scheme.  For a given concentration, nuclei with 

different sizes are introduced in different runs.  The added nucleus shrinks when its size 

is smaller than the critical size, but it grows when its size is larger than the critical size.  

Figure 9 summarizes the evolving microstructure from the simulations, and Table-5 

presents the predicted critical nucleus sizes from both the phase field modeling and 

atomistic calculations described earlier.  The results show the predicted critical nucleus 

size with the phase field model is in good agreement with the the atomistic results of the 

local depletion mechanism.  Similar to the molecular dynamics simulations, the current 

model also uses the local depletion mechanism when introducing a nuclei.  
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Figure 9.  Dependence of the microstructure on the nucleus size and initial Cr 
concentration. The red isosurface denotes the interface of Cr precipitates with  
CCr = 0.5.  The color bar shows Cr concentration from 0 to 1.0.   

 
 
Cr 
concentration  

Diameter 
(phase field 
model, 

nm43.00 l ) 

No. of atoms1 
(Global 
depletion) 

Diameter 
(Global 
depletion) 

No. of atoms1 
(Local 
depletion) 

Diameter 
(Local 
depletion) 

0.11 
00.4 l  33 2.65l0 189 4.74l0 

0.13 
00.4 l  17 2.12l0 82 3.59l0 

0.15 
00.3 l  11 1.84l0 48 3.00l0 

0.17 
00.3 l  9 1.72l0 33 2.65l0 

0.19 
05.2 l  8 1.65l0 24 2.38l0 

Table-5. Critical size (spherical diameter) of Cr precipitates in Fe-Cr alloys at T=600K. 
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III.4.3. Composition dependence of nucleation rate in a two-dimensional model 

Nucleation and growth of Cr precipitates are simulated in a two-dimensional simulation 

cell of drdrdr 1512512   for different initial Cr concentrations at T=600K.  In the 

simulations, nuclei with the critical sizes listed in Table-5 are introduced continuously 

into the simulation cell with the nucleation scheme (previously described).  Figure 10 

presents the time evolution of the Cr precipitates.  In the figure, the color bar describes 

the Cr concentrations, and the red particles are Cr precipitates.  Figure 11 shows the 

evolution of total numbers of the survived nuclei and average Cr concentration in the 

simulation cell.  The temporal evolution of nucleation rates are plotted in Figure 12.  

From the results in Figures 10-12, it is evident that: 

1) Nucleation occurs only at the early stage.  The lower the initial Cr 

concentration, the longer the nucleation period.   

2) The nucleation rate, which is the first derivative of the total nucleus number 

with respect to time, increases with the increase of the initial Cr concentration. 

3) The total Cr concentration is conserved during nucleation and growth, which 

can be seen in Figure 11b. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Two-dimensional temporal evolution of Cr-rich precipitates via nucleation and 
growth: (a) 11.00  CCCr , (b) 15.00  CCCr , and (c) 19.00  CCCr . 
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(a)                                                                 (b)                     

 

 

Figure 11. (a) Total nucleus number versus time and (b) average Cr concentration 
versus time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Time dependence of nucleation rate for different initial Cr 
concentration at T=600K. 

 

For the case with the initial Cr concentration of CCr=C0=0.17 and T=600K, the whole 

aging process from nucleation and growth to coarsening is simulated.  Figure 13 shows 

the plot of 3
0 )/( lR  versus  *t .  A linear relationship between 3

0 )/( lR  and *t  holds in the 

coarsening process and is in agreement with the Lifshitz-Slyozov-Wagner (LSW) theory 

of Ostwald ripening [30,31].  
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Figure 13. The predicted relationship between mean radius R  and time during 
coarsening for the case with initial Cr concentration of 0.17 at T=600K. 

 
 
IV. Heteregenous nucleation behavior due to the presence of dislocation in Fe-Cr 
systems  
 
It is now well established that the presence of sub-microstructural features, such as 

dislocations and grain boundaries, provides thermodynamically favorable sites for 

heteregenous nucleation and alters the kinetics of the evolution by providing different 

diffusional pathways.  In this section we model the precipitation behavior due to the 

presence of dislocations in the system. 

 

The total free energy of the system given in Eq. 20 can be expended to include other 

energy terms arising from other internal and external driving forces, such as the stored 

elastic energy elE  in the system:  
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      (26) 

The elastic strain induced to the system by the composition inhomogeneity is the 

difference between the total strain ij and the eigenstrain 0
ij , which is taken as: 

 



 26

cij
o
ij  0 ,         

 

where ij is the Kronecker-delta function and o is the lattice expansion coefficient which 

is 













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Cr
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d
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1
0  and taken as 0.006 in this study.  Hooke’s law links the stress tensor to 

the strain tensor, and in the presence of eigenstrain, takes the form of: 

 

 0
klklij Cijkl          (27) 

 

The elastic constants were used in the construction of the elasticity tensor, ijklC , which is 

given in Table-6 [32]. Vegard’s law was used to calculate the position-dependent elastic 

constants using the values from Table-6. 

 

 Fe Cr 

C11  233.10 350.00 

C12 135.44 67.80 

C44 178.30 100.08 

 

Table-6.  Elastic constants of Fe and Cr used in the simulations.  The units are in GPa. 

 

The dislocation stress-strain fields can be introduced into the phase-field formalism in a 

variety of ways [33].  In this study, we adopted the eigenstrain formalism of an edge 

dislocation given by Mura [34].  For a straight edge dislocation, the resulting eigenstrain 

has only one component and it can be described by: 

 

   1221 2

1
xHxbD          (28) 

 

where b is the magnitude of the Burgers vector,  2x is the Dirac delta function, and 

 1xH   is the Heaviside step function for a local coordinate system  21 , xx  located at 
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the dislocation.  With this implementation into our phase-field formalism, the resulting 

stress fields for an edge dislocation dipole are shown in Figure 14.  As seen from the 

figure, the well-known stress fields are quite accurately reproduced even with a coarse-

grid simulation. 

 

Figure 14.  The stress fields of an edge dislocation dipole obtained with 
eigenstrain formalism. 

 

Then, the elastic strain energy density per unit volume can be obtained from: 
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while the evolution equation takes the form of: 
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Because we assumed constant mobility M, Eq. 30 can be efficiently solved via the 

spectral method [35].  In addition, the following nondimensional form of Eq. 30 was 

adopted in the solution: 

 

 /),/(,/,/,/ 2*2**
elelm EEbffbVtMtbxx    (31) 

in which  is the shear modulus of Cr (Table-6) and b is the magnitude of the Burgers 

vector, taken as 10-10m. 
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IV.1. Results and discussion 

 

In the first set of simulations, the aging of 20at.%Cr alloy at 535K is considered.  In these 

simulations, a composition fluctuation of 0.0025 with a random distribution is 

introduced into the system at the first time step to facilitate the phase separation.  The 

spatial and temporal evolution of the aging process is shown in Figure 15. 

 

As shown in the figure, although a relatively large compositional fluctuation was 

introduced into the system, the nucleation of the Cr precipitates takes quite some time 

(between 2000 and 4000 reduced time units).  At a reduced time of 4000, the formation 

of stable Cr precipitates is apparent.  Both the nucleation and coarsening of the early-

nucleated precipitates continues to the reduced time of 6000.  Thereafter, the coarsening 

of the large precipitates at the expense of smaller ones with Oswald ripening can be 

clearly inferred from the figure.  

 

In the next set of simulations, an edge dislocation dipole (composed of a positive and a 

negative edge dislocation, 50 nondimensional units apart from each other) was introduced 

into the system.  Figure 16 summarizes the predicted spatial and temporal evolution of 

the aging process in this case.  As shown in the figure, the results clearly illustrate a much 

earlier nucleation of two stable precipitates at the tensile regions of hydrostatic stress in 

the presence of dislocations at the reduced time step of 2000.  Although the overall 

evolution proceeds similar to the cases described earlier, there are differences in the case 

with dislocations.  As seen at the reduce time of 4000, there are only a few nuclei of 

precipitates near the dislocations, due to the formation of the denuded zones resulting  

from the local depletion of the Cr concentration.  In addition, these two early nucleated 

precipitates at the dislocations continuously grow in size and became the largest ones 

compared to any of the other precipitates formed later during the course of the 

simulation. 
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Figure 15.  Microstructural evolution behavior of Fe-Cr alloy with 20at.%Cr at 535K. 

 
 
The microstructural evolutions described above can be more effectively quantified as 

shown in Figure 17.  In this figure, the time evolution of the concentration gradient along 

a line going through the simulation cell located midway along the x2 direction is shown 

for both cases.  In the figure, in addition to the magnitude of the local fluctuations of the 

composition, the value of the highest peak gives the local concentration of the 

precipitates, while changes in the peaks’ widths indicate the coarsening rates.   
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Figure 16.  Microstructural evolution behavior of Fe-Cr alloy with 20at.%Cr at 
535 K with the presence of an edge dislocation dipole. 

 
 

Also, the depletion of the local Cr concentration around the precipitates can be clearly 

inferred from the figure.  Although the production of such curves yields statistical 

information regarding nucleation and growth kinetics of the aging process, it is not 

detailed in this study.   

 

In the next set of simulations, we consider the microstructure evolution due to a 

dislocation dipole in the absence of any concentration fluctuations.  For this case, the 

spatial and temporal evolution of the aging process is shown in Figure 18.  As illustrated 

t* = 2000 t* = 4000 

t* = 6000 t* = 10000 
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by the figure, the two precipitates first nucleate at the dislocations as described earlier.  

Up to the reduced time of 6000, it appears these two are the only precipitates in the 

system.  However, they have coarsened into a much larger size compared to their sizes at 

the reduced time of 2000.  Of course, this coarsening behavior is related to the 

concentration flux driven by the stress gradients introduced by the dislocation dipole, 

which is completely different than the Oswald ripening seen earlier in Figures 3 and 4.  

At the reduced time of 8000 and 10000, we see the nucleation and growth of other nearby 

precipitates, resulting again from the concentration flux.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  Variation of the concentration gradient with time along the line 
parallel to x1 direction and in the center of the  simulation cell without the 
presence of dislocation (left) and with the presence of an edge dislocation dipole 
(right) for identical simulation conditions. 

 
 

As previously indicated, if the dislocation dipole was not in the system and with the 

presence of no concentration fluctuation, the system would not evolve at all due to the 

absence of any intrinsic homogenous nucleation mechanism.   
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Figure 18.  Microstructural evolution behavior of Fe-Cr alloy with 20at.%Cr at 
535K with the presence of an edge dislocation dipole and without any 
compositional fluctuation in the system. 

 
 
Next, the aging process due to the presence of the two dislocation walls, as summarized 

in Figure 19, is studied.  Again in this simulation, there was no compositional 

inhomogeneity in the system, and the dislocation walls presented with a number of 

dislocation dipoles, separated 16 unit dimension apart from each other in the x2 direction 

(a tilt grain boundary representation). Again, the early nucleation and growth of the 

precipitates at the dislocations forming the walls can be seen from the figure (at reduced 

times of 2000 and 6000) with the heterogeneous nucleation and concentration flux 
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mechanisms.  Figure 19 also shows that with further growth (between the reduced time of 

8000 and 10000), the formation of the platelet Cr precipitates takes place with 

coalescence compared to the circular ones seen earlier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Microstructural evolution behavior of Fe-Cr alloy with 20at%Cr at 
535 K with the presence of two dislocation walls and without any compositional 
fluctuation in system.  

 
 
From the results presented, the influence of underlying microstructural features -- in this 

case, simple dislocations dipoles and walls -- on the microstructure evolution is cleary 

demonstrated.  As shown, they do not merely introduce a heterogeneous nucleation 

mechanism, but they also may alter the growth kinetics with completely different 

diffusional mechanisms and evolving morphology of the phases.   
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V. CONCLUDING REMARKS 
 
In this study, we developed a computational framework for homogenous and 

heterogenous nucleation mechanisms into the generic phase-field model.  For 

homogenous nucleation, we proposed a general nucleation scheme to introduce the nuclei 

or concentration fluctuations into phase-field modeling.  The scheme is based on 

nucleation probability determined by local supersatuation, diffusivity, and temperature.  

The thermodynamic and kinetic properties of Fe-Cr alloys from atomistic simulations are 

used for quantitative simulations.  Simulation results on nucleation rate and coarsening 

kinetics in two-dimensional models demonstrate the scheme is feasible.  However, a 

quantitative assessment of nucleation theory in solids is inherently difficult.  In the 

proposed nucleation scheme, there are two parameters, 1  and 2 , which are functions of 

solute supersatuation, atomic impinging rates, interface area of the critical nucleus, 

atomic sites in the representative volume, temperature, and time.  To further evaluate the 

nucleation scheme, a set of parametric studies for the effects of 1 and 2  on nucleation 

rates, as well as evolution of precipitate size distribution and comparison with 

experimental and atomic simulation results, are needed. 

 

For the heteregoneous nucleation mechanism, we studied nucleation and growth behavior 

of Cr precipitates due to the presence of dislocations.  In the model, the presence of the 

dislocations was accounted for via the eigenstrain formalism of edge dislocations in two 

dimensions.  Even in its simple form, the results obtained from the simulations illustrate 

the importance of the underlying substructure of the microstructure (i.e., dislocations or 

grain boundaries) on the evolution behavior.  In addition to obtaining relevant physical 

parameters (diffusion coefficients and mobility of the interfaces, formation energies, 

etc.), the realistic representation of the submicrostructure (dislocation entangles, junctions 

and jogs, and grain boundary morphologies, etc.) and associated co-evolution for more 

realistic and quantitative modeling is also challenging. 

 

In this study, the phase-field simulations were conducted on fixed grids for both 

nucleation mechanisms.  It is well established that both variable grids and time 

integration schemes offer significant computational advantages in phase-field modeling.  

The implementation of the nucleation algorithms developed in this study to the phase-

field codes, as in MARMOT, that use such variable temporal and spatial integration 

schemes also needs be further explored. 
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