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SUMMARY 
This report provides some preliminary data for the consolidation of chalcogen-based aerogels.  The 
chalcogels tested to date at PNNL show great promise as iodine sorbents and preliminary consolidation 
research shows that they can be melted into a phase-pure glass at moderate temperatures.  The 
preliminary consolidation experiments show that these materials might attack fused quartz so an 
alternative crucible material will likely need to be used to prevent this.  The next steps will be to  

• Consider melting other chalcogel chemistries, e.g., Sn-Sb-S, Ge-Sn-S chalcogels 
• Consider melting chalcogels with adsorbed iodine to monitor iodine loss during melting 
• Optimize the consolidation temperatures to minimize the iodine loss and volatilization 
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ABBREVIATIONS AND DEFINITIONS 
AN aggregation of nanocrystals/nanoparticles (chalcogel fabrication method) 

CL chemical linkage of clusters (chalcogel fabrication method) 

DIW deionized water 

EDS energy dispersive spectroscopy 

M interlinking metal (used in CL method for chalcogel fabrication) 

mmol millimoles 

N/A not applicable 
OAc acetate (CH3COO-) 

PNNL Pacific Northwest National Laboratory 

psi pounds per square inch 

SEM scanning electron microscopy 

SSA specific surface area 

XRD X-ray diffraction 

 





Initial Assessment of the Consolidation of Chalcogels into a Viable Waste Form  
August 31, 2012 7 
 

 

1 INTRODUCTION 
A new family of non-oxide, chalcogen-based aerogels, called chalcogels, has been reported in the 
literature (Mohanan et al., 2005; Kalebaila et al., 2006; Bag et al., 2007; Kanatzidis and Bag, 2008; Bag et 
al., 2009; Bag and Kanatzidis, 2010; Oh et al., 2011; Yuhas et al., 2011b; Yuhas et al., 2011a; Shafaei-
Fallah et al., 2011; Riley et al., 2011; Polychronopoulou et al., 2012).  These are highly porous semisolids 
made from a variety of S-, Se-, and/or Te-based building blocks that have selective affinity for various 
heavy metals and gases (Bag et al., 2007; Bag et al., 2009; Bag and Kanatzidis, 2010).  Different methods 
have been discovered to make these chalcogels including (1) the aggregation of nanoparticles and (2) the 
chemical linkage of chalcogenido clusters with an interlinking metal (or metals).  A comprehensive 
summary is provided in Table 1 (Riley et al., 2012). 

Table 1.  Summary of non-Pt chalcogel chemistries (families).  *AN: aggregation of nanocrystals;  
CL: chemical linkage of clusters. 

Chemistry 
(Family) Method* Chalcogenido  

cluster(s) 
Interlinking 
metal(s), M Reference(s) 

(Cd,Zn,Pb)-(S,Se) AN N/A N/A (Mohanan et al., 2005) 
Ge-S AN N/A N/A (Kalebaila et al., 2006) 

(Mo,W)-M-S CL (Mo,W)S4
2- Co2+, Ni2+ (Bag et al., 2009; Shafaei-

Fallah et al., 2011) 

(Sn,Sb)-M-(S,Se) CL Sn2(S,Se)6
4-, 

Sn(S,Se)4
4-, SbSe4

3- Sn2+, Sb3+ (Bag and Kanatzidis, 
2010) 

Zn-Sn-S CL SnS4
4-, Sn2S6

4-, 
Sn4S10

4- Zn2+ (Oh et al., 2011) 

Fe-Sn-S CL Fe4S4
m-, Sn2S6

4- Fe4S4
m-, Sn2S6

4- (Yuhas et al., 2011b) 

Fe-M-Sn-S CL Fe4S4
m-, Sn2S6

4- Zn2+, Sn2+, Ni2+, 
Co2+ (Yuhas et al., 2011a) 

Mo-Co-M-S CL MoS4
2- Co2+, Pb2+, Cd2+, 

Pd2+, Cr3+, Bi3+ 
(Polychronopoulou et al., 
2012) 

 

At the Pacific Northwest National Laboratory (PNNL), we have been studying these materials as sorbents 
for the radioiodine evolved during the proposed reprocessing of used nuclear fuel.  While the 
concentrations of iodine are low, the required capture efficiencies are very high at ≥99.4% (40 CFR 190, 
2012).  The initial chalcogel materials tested at PNNL to date show promise as sorbents with >99% 
capture efficiencies for low iodine concentrations in air (Riley et al., 2011; Riley et al., 2012). 

Unlike the traditional iodine sorbents such as silver-exchanged zeolites, chalcogels do not require 
“functionalization” to bind the iodine.  Silver is a precious metal and toxic per the Resource Conservation 
and Recovery Act (40 CFR 261, 2012).  These make chalcogels an attractive material for removal of 
iodine from reprocessing off-gases.  The mechanism by which chalcogels bind iodine is likely a 
combination of physisorption and chemisorption, whereas AgI is formed in any Ag-functionalized 
sorbent.   

It has been shown that iodine is soluble in several different chalcogenide glasses and they can 
accommodate large fractions of iodine into their structure (Heo and Mackenzie, 1989; Wang et al., 2001; 
Krasteva et al., 1997b; Krasteva et al., 1997a; Seddon and Hemingway, 1991, 1993; Heo et al., 1987; Lin 
and Ho; Maneglier-Lacordaire et al., 1975; Turyanitsa et al., 1974).  Like the other iodine capturing 
materials being considered (zeolite and silica aerogel), chalcogels have high surface area and porosity, 
they and require consolidation to collapse the pore structure with heating, for example to make them 
suitable for disposal.  Chalcogels fall into a category of materials called chalcogenides and many 
chalcogenide compounds can be melted into glasses at moderate temperatures, e.g., typically <700 °C.  
The primary goal of this brief report is to demonstrate the melting of a chalcogel into a chalcogenide 
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glass.  These melted glasses potentially have high chemical durability.  This is in contrast to oxide glasses 
where halides tend to remain as undissolved salts within the glass network or evolve from the glass 
surface during melting (Hrma, 2010).  The preliminary results reported here fulfill the milestone “M3FT-
12PN03030912-Provide an initial assessment of the consolidation of chalcogels into viable waste forms” 
(FCRD-SWF-2012-000246). 

From a glass formation standpoint, the most promising chalcogel chemistries are Sn-S and Sn-Se 
formulations that include Ge or Sb.  Since Zn-Sn-S chalcogels tend to change from an amorphous aerogel 
to a crystalline material when heated (Oh et al., 2011), we suspect that the Sn-S chalcogels will crystallize 
as well.  Therefore, this system probably requires a glass-forming additive in order to obtain a glassy 
product , e.g., Ge or Ge-S (Ruffolo and Boolchand, 1985) (Figure 1).  Figure 1 shows the glass transition 
temperature (Tg ), crystallization temperature (Tc), and value of (Tc – Tg ) for the Sn2S3-Ge2S3  binary 
system.  The value of (Tc – Tg ) provides an estimate of ability to make a glass where a larger difference 
allows for slower quench rates to prevent glass crystallization and from Figure 1, it is evident that 
increased Sn2S3  loadings decrease the glass formability.   

It is possible to make a Sn-Ge-S chalcogel with the variety of Ge-S and Sn-S chalcogel precursors 
discovered to date that include GeS4

4-, Ge4S10
4-, SnS4

4-, Sn2S6
4-, and Sn4S10

4- (Melullis and Dehnen, 
2007; Bowes et al., 1996; Schiwy et al., 1973; Krebs et al., 1972; Tsamourtzi et al., 2008).  Glass 
formation has been demonstrated in the Sb-Sn-S system with iodine (Turyanitsa et al., 1974).  Thus, our 
focus is on these two systems—Sn-S with added Ge-S powder and Sb-Sn-S.  Several techniques are 
evaluated for consolidating both the as-made and iodine-sorbed chalcogels.  These include melting, hot 
pressing, and spark plasma sintering. 

 

 
Figure 1.  Glass formation tendency in Sn-Ge-S chalcogenide glasses (Ruffolo and Boolchand, 1985). 
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2 METHODS 
2.1 Gel Synthesis and Characterization 
The Cg-17C-2 Sn2S3  chalcogel was fabricated with solutions of Na4Sn2S6-14H2O and SnCH3COO, or 
tin(II) acetate; hereinafter SnOAc.  The Na4Sn2S6-14H2O was made with the procedure used by Oh et al. 
(2011) and the SnOAc was purchased from Sigma Aldrich.  The Na4Sn2S6-14H2O compound was made 
by slowly adding solution (1) containing 20 mmol (7.01 g) of SnCl4-5H2O in 5 mL of deionized water 
(DIW), to solution (2) containing 60 mmol (14.41 g) of Na2S-9H2O in 100 mL of DIW, and mixing.  The 
process of the chemical reaction that took place is presented in Equations 1a–1c where the species present 
at each step are defined (assuming 100% yield).  This mixture was added to ~300 mL of acetone and, 
after stirring/shaking, a yellow emulsion was observed that eventually resulted in a white precipitate.  The 
solution was kept in the refrigerator for a few days to increase the yield of the precipitate and then the 
precipitate was vacuum filtered with a Buchner funnel, washed with acetone, and dried in a vacuum 
desiccator.   

Reactants: 20 SnCl4-5H2O + 60 Na2S-9H2O + 5828 H2O →  (1a) 

Species in water: 20 Sn4+ + 60 S- + 120 Na+ + 80 Cl- + 6468 H2O →  (1b) 

Species in acetone: 10 Na4Sn2S6-14H2O + 80 Na+ + 80 Cl- + 6328 H2O (1c) 

To make the chalcogel, a scaled-up version of the process defined by Bag and Kanatzidis for Chalcogel-
Sn-2 was followed (Bag and Kanatzidis, 2010).  Here, 4 mmol (3.10 g) of Na4Sn2S6-14H2O was 
dissolved in 80 mL of formamide and 8 mmol (1.89 g) of SnOAc was dissolved separately in 80 mL of 
formamide (CH3NO).  Then, the SnOAc solution was slowly added to the Na4Sn2S6-14H2O solution at 
which point, the solution turned from a clear (sometimes light blue) to a green, orange, and then dark 
maroon (see Figure 2).  The chemical reaction that took place is presented in Equations 2a–2c where the 
species present at each step are defined (assuming 100% yield).   

Reactants: 4 Na4Sn2S6-14H2O + 8 SnCH3COO + 4025 CH3NO →  (2a) 

Before gelation: 4 Sn2S6
4- + 8 Sn2+ + 16 Na+ 8 CH3COO- (2b) 

After gelation: 8 Sn2S3  + 16 Na+ + 8 CH3COO- + 56 H2O + 4025 CH3NO (2c) 

 

 
Figure 2.  Progression of making Sn2S3  chalcogels.  

The solution was then poured into polypropylene vials with lids and zero headspace.  These were covered 
with aluminum foil to exclude light, left to gel over the course of 4–5 weeks, after which the gels were 
removed from the vials, cut into ~3–6 mm pieces, and placed in a 50/50 (v/v) ethanol/DIW mixture to age 
overnight.  The aged gels were washed several times in fresh 50% ethanol to remove the water-soluble 
byproducts (Equation 2c).  This was followed by several washes in 100% ethanol to remove the water.   

The washed gels were submerged in fresh ethanol in an autoclave (4762Q, Parr Instruments) and placed 
in a temperature-controlled water bath at 10°C.  A syringe pump (Teledyne ISCO 500D) was used to 
slowly add liquid CO2 to a pressure of 6.9×106 Pa (1000 psi).  This was repeated until approximately 1 to 
2 L of liquid CO2 was flushed through autoclave to replace the ethanol.  After the CO2 drying, the 
autoclave was left overnight with liquid CO2 at 1.0×107 Pa.  The next day, an additional CO2 wash was 
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performed and the temperature of the water bath increased to 50 °C.  Once the temperature equilibrated, 
the CO2 was vented from the autoclave resulting in an aerogel.   

After degassing at 25, 60, 100, and 125 °C for 8 h at each temperature, the specific surface areas of these 
gels measured with nitrogen adsorption/desorption isotherms were 456, 432, 378, and 364 m2/g, 
respectively (Figure 3).  The specific surface areas of this chalcogel decreased with increasing degas 
temperature.  This decrease could be due to the collapse of pore structure during evaporation of residual 
solvent in the gel network.  A picture of a typical Sn2S3  chalcogel is also presented in Figure 3.   

In order to relate these chalcogels to the more common silica aerogel, a “silica equivalent specific surface 
area” is often used (Kanatzidis and Bag, 2008).  Here, the chalcogel composition is normalized to two 
anions, e.g., Sn2.00S3.00  becomes Sn1.33 S2.00  and the molecular mass of this compound (222.41 g/mole) is 
compared to that of SiO2 (60.08 g/mole) and the silica equivalent specific surface area (SSA) translates to 
3.70× that of the values measured with the adsorption/desorption isotherms.  These values are plotted on 
the right y-axis in Figure 3.  

     
Figure 3.  (left) As-measured and silica equivalent specific surface area as a function of degas temperature 

and (right) SEM micrograph of Sn-S chalcogel.   

 

2.2 Consolidation and Characterization 
Before consolidation, the Cg-17C-2 Sn2S3  chalcogel was analyzed with scanning electron microscopy 
(SEM, JEOL 7001F, JEOL, Ltd) and energy dispersive spectroscopy (EDS, AMETEK Apollo XL) to 
verify the chemistry.  The Sn:S ratio was ~2:3, with inclusions of Na, an impurity from the reactants 
(Equation 2c).  The Cg-17C-2 chalcogel was weighed (0.1786 g) and added to a fused quartz tube (10×12 
mm along with 0.1464 g GeS2 , resulting in a Sn:Ge = 1, on a molar basis, i.e., ~x = 20 in Figure 1.  This 
tube was added to a secondary tube (22×25 mm) that was evacuated and sealed under vacuum.  This 
assembly was loaded into a Deltech furnace (Deltech, Inc.) and heated to various temperatures, taken out 
briefly for observation, returned to the furnace, and heated to the next higher temperature.  Observations 
were made at 400, 550, 750, and 830°C.  At 830°C, the sample was quenched in water. The inner 
ampoule was then mounted in resin, cross-sectioned, and polished for SEM/EDS observation. 
The portion of the consolidated glass that was not mounted in resin was removed from the quartz tube, 
ground to a powder in an agate mortar and pestle, and analyzed with X-ray diffraction (XRD).  The 
instrument was a Philips X’Pert with a radius of 190 mm and variable divergence and anti-scatter slits (10 
mm irradiated area).  The scan range was 5–90° 2θ with 0.03 degree steps and a 2 s count at each step.  
The phases were identified with JADE® 6 software. 
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3 RESULTS 
Figure 4 shows a progression of the consolidation process.  From these pictures it is readily apparent that 
the sample melted between 550 and 750 °C.  A likely processing temperature would be about 750 °C or 
slightly less.  The yellow films observed on the walls of the quartz tube are very thin films of the 
chalcogenide glass that evaporated but condensed upon cooling (likely < 1 mass% of melt).   

 
Figure 4.  Progression of chalcogel consolidation in a fused quartz ampoule  

(as viewed through outer tube). 

Figure 5 shows a complete and polished cross-section of the bottom portion of the sample quenched from 
830 °C.  The bright red opaque glass is common to chalcogenides.  Quenching the glass and the thermal 
expansion mismatch between the glass and the quartz likely caused the cracking – the molten glass 
attacked the fused quartz causing SiO2 particles to spall from the ampoule wall and into the melt (Figure 
5b-d).  Future experiments will be conducted with different crucible materials, e.g., alumina.  Other than 
the SiO2 particles, the glass was completely homogeneous according to backscattered electron imaging 
and random area EDS analyses.  

 
Figure 5.  Optical and SEM micrographs of the heat-treated and polished Cg-17C-2 chalcogel. 

Figure 6 provides the XRD spectrum of the powdered glass.  The results show that XRD from the melted 
chalcogel has broad maxima characteristic of amorphous materials, e.g., chalcogenide glass.  A few weak 
crystalline peaks were observed that were attributed to the quartz from the wall of the tube.  



Initial Assessment of the Consolidation of Chalcogels into a Viable Waste Form 
12 August 31, 2012 
 

 

 
Figure 6.  XRD spectrum of portion of consolidated glass that was not mounted in resin for SEM 

observations.  Minor quartz peaks were observed (Wyckoff, 1926). 
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4 CONCLUSIONS 
The chalcogels tested to date at PNNL show great promise as iodine sorbents and preliminary 
consolidation research shows that they can be melted into a phase-pure glass at moderate temperatures.  
The preliminary consolidation experiments show that these materials might attack fused quartz so an 
alternative crucible material may be needed to prevent this.  The next steps will be to  

• make glasses from other chalcogel chemistries, e.g., Sn-Sb-S, Ge-Sn-S chalcogels 
• Melt chalcogels containing iodine to monitor iodine loss  
• Optimize the consolidation temperatures to minimize the iodine loss and volatilization 
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