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Executive Summary 

The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 

(Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, 

and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals 

of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to 

farmers and refiners, acceptable to society, and environmentally sound.  A sustainable bioenergy economy 

will also contribute, in a fundamental way, to meeting national objectives on energy security and climate 

mitigation. 

The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for 

conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts 

of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal 

lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. 

To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for 

Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing 

data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover / land use (LCLU), and (6) 

ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of 

SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity 

and biogeochemical cycles as well as land-use changes associated with biofuel cropping. 

We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and 

environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both 

croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study 

region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated 

three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, 

soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In 

the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to 

supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third 

scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial 

mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated 

the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the 

practices. 

ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to 

create an advanced computing infrastructure to execute millions of simulations, conduct post-processing 

calculations, store input and output data, and visualize results. These computing resources included two 

components installed at the Research Data Center of the University of Maryland. The first resource was 

―deltac‖: an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL 

database hosting.  The second resource was the DOE-JGCRI ―Evergreen‖ cluster, capable of executing 

millions of simulations in relatively short periods. ARRA funding also supported a PhD student from 

University of Maryland who worked on creating the geodatabases and executing some of the simulations in 

this study. 



 

ii 

In the baseline scenario, EPIC simulation results captured 63% of the variance in reported NASS yields of 

corn, soybean, and winter wheat across 30 states. Agreement between simulated and observed corn yields was 

highest in Iowa and Illinois. EPIC underestimated yields with respect to those observed in the irrigated areas 

of Nebraska, Kansas, and Texas. Similar results were obtained for soybean. The wheat simulations were less 

accurate due, in part, to errors in classification of wheat lands in the CDL product used to model wheat 

production. Based on the simulation results, we estimated that corn and wheat residues could serve as 

feedstocks to produce ~13 billion gallons of cellulosic ethanol per year. However, our simulations show 

ensuing increases in soil erosion and carbon losses with the full implementation of these practices. 

 Using a physically based classification of marginal lands, we simulated production of cellulosic 

feedstocks from switchgrass and perennial mixtures grown on these lands in the US Midwest. Our simulated 

N-fertilized ―lowland‖ switchgrass yields compared favorably with those of 18 field trials except for two in 

West Virginia and Tennessee. Marginal lands in the western states of the US Midwest appear to have 

significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with 

simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of 

possible locations for the establishment of 34 cellulosic ethanol biorefineries with total annual production 

capacity of 5.6 billion gallons. 

In summary, we have reported on the development of a spatially explicit national geodatabase to conduct 

biofuel simulation studies and provided initial simulation results on the potential of annual and perennial 

cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have 

employed sophisticated spatial analysis methods in combination with the process-based biogeochemical 

model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery 

Framework as a way to contribute to the development of a sustainable bioenergy industry. This work 

provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic 

feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. 

This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as 

major contributors to the development of a sustainable bioenergy economy. Examples of research questions 

that could be pursued with the modeling framework presented here include: 

 How can the modeling framework be improved? (e.g., adding irrigation, improving winter wheat 

simulations) 

 What is the performance of emerging biofuel feedstocks such as miscanthus, energy cane, and 

energy sorghum? Where are the best regions to grow them?   

 What is the potential of marginal lands across the conterminous USA to provide sustainable 

levels of biomass feedstocks to the cellulosic ethanol industry? 

 What are the full GHG impacts of diverse biofuel production systems? 
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Acronyms and Abbreviations 

ARRA 2009 American Recovery and Reinvestment Act (Pub. L. 111-5) 

C3 A plant in which the CO2 is first fixed into a compound containing three carbon 

atoms before entering the Calvin cycle of photosynthesis 

C4 A plant in which the CO2 is first fixed into a compound containing four carbon 

atoms before entering the Calvin cycle of photosynthesis 

CDR Cedar Creek, Minnesota 

CDL USDA Crop Data Layer 

EERE USDOE Energy Efficiency and Renewable Energy 

EISA 2007 Energy Independence and Security Act (Pub. L. 110-140) 

EPIC Environmental Policy Integrated Climate model 

GIS Geographic Information System 

HSMU Homogenous Spatial Modeling Unit 

JGCRI Joint Global Change Research Institute 

KBS Kellogg Biological Station, Michigan 

LCA Life Cycle Analysis 

LCGHGE Lifecycle Greenhouse Gas Emission 

LTER Long Term Ecological Research 

NASS USDA National Agricultural Statistical Census 

NEE Net Ecosystem Exchange 

NPP Net Primary Productivity 

NOAA National Oceanographic and Atmospheric Administration 

NRC National Research Council of the United States of America 

OBP USDOE EERE Office of Biomass Program 

PNNL Pacific Northwest National Laboratory 

RFS Renewable Fuel Standard, a component of the 2005 Energy Policy Act of the United 

States of America 

SEIMF Spatially Explicit Integrated Modeling Framework 

SENGBEM Spatially Explicit National Geodatabase for Biofuels and Environmental Modeling  

SSURGO USDA Soil Survey Geographic Database 

USDA United States Department of Agriculture 

USDOE United States Department of Energy 

UMD University of Maryland 

Units 
Mg Equivalent to 1 metric ton or 1,000 kg 

Gg Equivalent to 1,000 Mg 
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1.0 Introduction 

1.1 Background and Rationale 

Biofuels have been emerging as viable alternatives to fossil fuels. Two major factors have 

determined their rise in prominence in the United States: energy security and climate change (NRC, 

2011). Energy security concerns about high oil prices and a continued dependence of the U.S. on 

foreign oil, led the U.S. Congress to establish the Renewable Fuel Standard (RFS) as part of the 2005 

Energy Policy Act. This RFS established the first renewable fuel target in the U.S. in the form of a 

requirement to blend 7.5 billion gallons of renewable fuel with gasoline by 2012. The 2007 Energy 

Independence and Security Act (EISA) expanded the RFS mandate by requiring an increase in the 

fuel blending from 9 billion gallons in 2008 to 36 billion gallons by 2022.  Of the 36 billion gallons 

by 2022, 58% has to originate from advanced biofuels; i.e. a renewable fuel that has a lifecycle 

greenhouse gas emission (LCGHGE) that is at least 50% lower than that of the baseline renewable 

fuel LCGHGE in 2005 (EISA, 2007). Cellulosic ethanol, an advanced biofuel, is expected to cover 

44% of the 2022 target. 

The second factor relates to climate change and the societal need to reduce anthropogenic 

greenhouse-gas emissions to the atmosphere. Biofuels are promising because they can contribute to 

replacing energy use from fossil fuels and reducing GHG emissions to the atmosphere (Kim and 

Dale, 2004). Satisfying bioenergy production targets in the U.S. will create a demand for land for 

growing biomass crops and some have expressed concern about the ultimate impact of these 

transformations on food prices and the environment (Crutzen et al., 2008; Fargione et al., 2008; 

Searchinger et al., 2008).  

Ensuring the sustainable production of biofuels is a key mission of the Great Lakes Bioenergy 

Research Center (GLBRC) created in 2007 by the U.S. DOE Office of Science and led by the 

University of Wisconsin and Michigan State University (Slater et al., 2010). The GLBRC comprises 

four major discovery areas: (1) improved plant production, (2) improved processing, (3) improved 

catalytical processes, and (4) sustainable biofuels production practices. Six major research activities 

describe the sustainability area: novel production practices, plant-microbial interactions, 

biogeochemical practices, biodiversity impacts, economic analysis, and integrated modeling 

(biophysical, biogeochemical, economic, and life-cycle analysis). 

Most of the integrated modeling research at the GLBRC has been conducted at biorefinery scale, 

a multi-county area where a theoretical cellulosic ethanol biorefinery could draw enough plant 

biomass to produce 100 million gallons of ethanol per year. These areas are known within the 

GLBRC research community as RIMAs (Regionally Intensive Modeling Areas). Zhang et al. (2010) 

reported on SEIMF (Spatially Explicit Integrated Modeling Framework), a spatially explicit approach 

designed to model biomass productivity and environmental impacts of diverse biofuel crops. 

Egbendewe-Mondzozo et al. (2011) expanded on the work by Zhang et al. (2010) by developing a 

spatially explicit bioeconomic model of biomass supply from alternative cellulosic crops and crop 

residues as well as exploring policy scenarios for handling various environmental outcomes. Current 

modeling work has focused on integrating the SEIMF approach with biogeochemical and biodiversity 

experiments together with life-cycle analysis (LCA) modeling. Emerging results from field 
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experiments have been utilized to test as well as improve modeling capabilities of current and novel 

biofuel-production practices.  

In fall 2008, the USDOE EERE Office of Biomass Program (OBP) provided support to the 

GLBRC for enhancing field research and modeling activities of sustainable biofuels production 

practices.  Here we report on efforts to develop a national-scale database and methodology to 

simulate biofuel crops and on regional modeling results of biomass productivity and potential ethanol 

production resulting from the collection and processing of this biomass. 

1.2 Overall Goal and Specific Objectives 

The goal of this work is to develop predictive land-use change modeling capabilities to address 

the sustainable production of biomass.  The results of experimental field research will be combined 

with theoretical modeling capabilities to create the ability to examine land-use changes in a broad 

context with relation to many sustainability criteria such as water use, CO2 emissions, and related 

factors. 

Toward this goal, the specific objectives of this modeling study are to: 

1. Develop a spatially explicit national geodatabase to conduct biofuel simulation studies 

2. Conduct simulation studies to estimate biomass productivity of various biomass feedstocks 

(crop residue, perennial species) and associated environmental impacts 

3. Perform simulation studies of perennial biomass feedstocks grown on marginal lands 

including lands currently under the Conservation Reserve Program (CRP) 

4. Estimate possible locations of cellulosic ethanol biorefineries able to be supplied with 

feedstock of biomass grown on marginal lands 

2.0 Materials and Methods 

2.1 Overall Approach 

The overall approach used in this project was to extend the integrated modeling research 

experience gained with the SEIMF approach (Zhang et al., 2010) at RIMA (multi-county) scale to 

larger (multi-state) regions. As described by Zhang et al. (2010), the SEIMF contains three modules: 

1) a GIS-based geodatabase, 2) a terrestrial ecosystem model, and 3) a multi-objective optimization 

algorithm (Figure 1). The input data is processed into a geodatabase where homogeneous spatial 

modeling units (HSMUs) from moderate to high spatial-resolution data are defined and input data for 

the terrestrial ecosystem model EPIC (Williams et al., 1989; Kiniry et al., 1995) are extracted. The 

last module of SEIMF is a multiobjective optimization algorithm designed for the evaluation of the 

production and environmental tradeoffs of diverse biofuel production practices. 
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Figure 1 Structure of the Spatially Explicit Modeling Framework (Zhang et al., 2010). 

2.2 Preparation of a Spatially Explicit National Geodatabase for 
Biofuel and Environmental Modeling (SENGBEM) 

The main purpose for developing a high-resolution spatial and temporal geodatabase was to be 

able to model, at field scale, the performance of diverse biofuel crops under various management 

scenarios. In particular, there was the need to examine the potential of marginal lands for the 

placement of perennial biofuel crops. The procedure described by Zhang et al. (2010) demonstrated 

the possibility of identifying and modeling the productivity and environmental impacts of biofuel 

crops grown on marginal lands. 

In this project, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel 

and Environmental Modeling), a geodatabase containing five main types of data: 1) climate, 2) soils, 

3) topography, 4) hydrography, and 5) land cover / land use (LCLU). In addition, SENGBEM 

contains other types of ancillary data such as road networks, federal and state lands, national and state 

parks, etc. Following is a description of the data used in constructing SENGBEM.  

Climate Data. The climate database contains historical daily values of weather variables needed 

to drive EPIC and other biophysical models. The weather variables are air temperature (maximum 

and minimum, ºC), precipitation (mm), solar radiation (MJ m
-2

), wind speed (m s
-1

), and relative 

humidity (as a fraction). Climate data can be extracted from multiple sources, including Daily Surface 

Weather and Climatological Summary (DayMet) (http://www.daymet.org/), the North American 

Regional Reanalysis (NARR) (http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html), and the 

http://www.daymet.org/
http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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North American Land Data Assimilation System (NLDAS) 

(http://www.emc.ncep.noaa.gov/mmb/nldas/). The datasets differ in terms of spatial resolution and 

length of period of record. 

The DayMet dataset provides the highest spatial resolution (1 km) and accounts for the influence 

of orography on weather. DayMet was developed at the University of Montana, Numerical 

Terradynamic Simulation Group (NTSG) to provide the biophysical modeling community the daily 

meteorological and climatological data necessary to run simulation models. The NARR and NLDAS 

datasets are both from NOAA and the main difference between them is the spatial resolution: 32 km 

for NARR and 12 km for NLDAS. The main advantage of the NOAA datasets over DayMet is that 

they are available from 1979 to the present, with approximately a 6-month lag. While DayMet data 

are also available from about the same start period (1980), the delay for more recent data is much 

longer. 

Topography and Hydrography Data. Topographic data are essential to delineate watersheds and 

determine slope characteristics (elevation, gradient, length, and aspect) needed for hydrological and 

erosion modeling. Topographic data for SENGBEM were derived from the Shuttle Radar Topography 

Mission (SRTM), which produced the highest resolution digital elevation model (DEM) of the Earth 

at a resolution of 30 m (Farr et al., 2007).  In addition, the National Hydrography Dataset (NHD-plus) 

(Simley and Carswell, 2009) was used to extract hydrologic catalogue unit (HCU) boundary 

information for modeling soil sediment yield, surface runoff, subsurface flow, and nutrient transport 

with runoff. 

Soil Data. There are two major soil databases available in the U.S. for environmental modeling: 

State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) both developed by 

USDA-NRCS. The STATSGO database is designed mainly for regional, multistate, river basin, state 

and multicounty resource planning, management, and monitoring. Instead, the SSURGO database 

primarily enables farm/ranch, landowner/user, township, county, or parish natural resource planning 

and management. The main difference between the two is the level of detail contained in the map 

units: STATSGO map units can have up to 21 different component soils while SSURGO map units 

usually contain one component and can contain up to a maximum of three components. The 

SSURGO database, now available for almost the entire conterminous U.S., was selected for building 

SENGBEM due to its high resolution. Data from SSURGO (http://datagateway.nrcs.usda.gov) were 

extracted to map soils at scales of ~1:24,000 (~30 m). Data retrieval also included a suite of physical 

and chemical soil properties needed for biophysical and biogeochemical modeling: albedo, layer 

depth (m), bulk density (Mg m
-3

); mineral fractions (sand, silt, clay, coarse fragments), organic C (%), 

total N (mg kg
-1

); and pH. 

The SSURGO database provides an interpretive classification variable [i.e. land capability (LC)] 

that represents land classes based on use limitation (e.g., soil depth, erosion risk, slope, etc.) 

(Klingebiel and Montgomery, 1961). There are eight LC classes: I–VIII. Class I is (prime) land 

without any limitations for use. Class VIII is land can only support wildlife, not agriculture. Classes 

I–IV can support cropland agriculture, whereas classes V–VIII contain non-arable land. LC can be 

used for two purposes: (1) identifying marginal land (e.g. low yield cropland) for biofuel production 

and (2) qualitatively validating the results of biophysical and biogeochemical modeling. Land 

capability classes are subdivided into land capability subclasses according to the kind of limitation 

http://www.emc.ncep.noaa.gov/mmb/nldas/
http://datagateway.nrcs.usda.gov/
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(susceptibility to erosion, excess water, shallowness of the rooting zone, climate hazard). All map unit 

components, including miscellaneous areas, are assigned a capability class and subclass.  

Land Cover and Land Use Data. Crop rotation information (e.g. corn (Zea mays L.) – soybean 

(Glycine max (L.) Merr.), continuous corn) is important for driving cropland ecosystem simulations 

via a spatially explicit terrestrial ecosystem model. Land cover / land use data to build SENGBEM 

were derived from the USDA Cropland Data Layer (CDL) remote sensing product available at 

national scale at a resolution of 56m x 56m since 2008 (http://datagateway.nrcs.usda.gov). The CDL 

land cover was developed by the USDA to utilize seasonal satellite imagery to monitor how the 

acreage of major crop types varies from one year to the next. To generate a high-resolution crop 

rotation map of the U.S, multiple years (2008, 2009, and 2010) of CDL images were overlaid to 

derive historical crop rotations. A novel time-series analysis based algorithm was implemented to 

aggregate all observed rotations into representative rotations. In all, nearly 170 unique crop rotations 

covering the entire USA were generated. The product is highly accurate with >95% accuracy for corn 

and soybean growing regions in U.S. when compared to census data from NASS (USDA National 

Agricultural Statistical Services). 

Crop rotations are then combined with data on soil, elevation, and hydrography to provide 

historical input data for the biophysical and biogeochemical modeling. For future biofuel-scenario 

analyses, current CDL land use classes are summarized into several major categories, including field 

crops (FC), herbaceous vegetation (HV), and woody vegetation (WV), to reduce the number of 

modeling units and the computational burden of SEIMF implementation. 

Crop Management Data.  Crop management practices have important implications for crop 

production and environmental consequences. For the baseline simulation, we collected tillage 

intensity data at county scale by the Conservation Technology Information Center (CTIC, 2007); 

fertilizer application and crop management survey data at state level (USDA 2011); and typical 

planting and harvesting dates of major crops in the USA (USDA NASS 1997). Due to the lack of 

crop specific irrigation data, we did not consider irrigation operations within crop rotations. Instead, 

we only simulated crop yield and environmental impacts under rainfed conditions. We assumed 

fertilizer application rates as well as planting and harvesting dates to be the same for all units in one 

state. When allocating county level tillage intensity fraction data to each modeling unit, we assume 

conservation tillage (no-till, ridge-till, and mulch-till) to be assigned to the most steep area, followed 

by reduced tillage to less steep units and conventional tillage to flat units. 

2.3 Preparing and Implementing Spatially Explicit Simulations 
with the EPIC Model 

2.3.1 The EPIC Model 

The EPIC model can simulate the growth and development of over 100 plant species including all 

major crops, grasses, legumes, and some trees (Williams, 1995).  Crops can be grown as sole crops or 

as intercrops (up to 10 species), in complex rotations, and under a wide range of management 

operations including tillage, irrigation, fertilization, and liming. EPIC uses the concept of radiation-

use efficiency (Monteith, 1977) by which a fraction of daily photosynthetically active radiation is 

intercepted by the plant canopy and converted into plant biomass. Daily gains in plant biomass are 

http://datagateway.nrcs.usda.gov/
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affected by vapor pressure deficits and atmospheric CO2 concentration (Stockle et al., 1992 a,b). Plant 

phenology is controlled via heat-unit calculations in which each crop / plant species has base and 

optimal air temperatures for growth. Potential daily gains in biomass are affected by environmental 

stresses such as water, temperature, nutrients (primarily N and P), and aeration. All stresses are 

calculated every day during the simulation, but only the value of the most severe stress is used to 

reduce potential plant growth and crop yield. Stress factors for soil strength, temperature, and 

aluminum toxicity are also calculated daily and used to adjust potential root growth (Jones et al., 

1991). EPIC is driven by daily weather consisting of solar radiation, air temperature, precipitation, 

wind speed, and relative humidity. These daily inputs are either predicted from statistical weather 

parameters or read from input files. Simulated processes account for topographical (e.g. slope 

gradient and length) characteristics and field / watershed dimensions, soil layer properties (e.g., layer 

depth, bulk density, C and N contents, pH), and management information (e.g. cropping systems, 

planting, fertilization, irrigation, harvesting), as inputs to EPIC (Gassman et al., 2005; Williams et al., 

1995; Zhang et al., 2010). 

For this work, the parameterization of the EPIC model was revised to ensure adequate 

representation of biofuel cropping systems (Izaurralde et al., 2012). Specific crop parameters / 

variables that underwent evaluation and eventual change included radiation-use efficiency, root-to-

shoot ratio (Zhang et al., 2011), and planting density. Further, the rate of transformation of standing 

live to standing dead vegetation was reduced from 1% to 0.1% per day to better model the reduced 

loss of yield in fall-harvested cellulosic crops. 

2.3.2 Spatially Explicit Modeling Framework 

The high spatial resolution of operational modeling units (from tens to hundreds of meters, 

with finer resolutions preferred) provides more homogeneous land units and improves model 

accuracy. However, agricultural statistics (e.g. crop yields, nutrient applications, tillage types) are 

only available at regional scale (county or state level). Therefore, a hierarchical data organization 

system (HDOS) (Figure 2) facilitates fusing geospatial data from multiple sources at different 

spatial resolutions, including climate, land use, soil, and topography, to derive homogeneous 

spatial modeling units (HSMU) at fine scale, while simultaneously allowing geo-referencing of 

crop management information from different sources to specific HSMUs (Figure 2). The HDOS 

is designed to be flexible to use data at different levels of detail.  Using the conterminous U.S. as 

an example, the HDOS is illustrated in (Figure 3). Given this HDOS, the modeling results can be 

flexibly aggregated into several levels: county, state, and conterminous U.S. modeling units. The 

finest resolution is currently ~60 m, which is determined by the maximum resolution of the CDL 

and SSURGO data. The HSMU is determined by the unique combination of state, county, LCLU, 

soil, and hydrologic catalogue unit. Each HSMU has a unique ID and the associated attribute 

variables that allow preparing climate, land surface, and management parameters for input to the 

EPIC model. 
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Figure 2. Illustration of the hierarchical and flexible downscaling and upscaling schemes in United States 

lands (Zhang et al., 2010). 

 
Figure 3. Diagram showing procedures to define HSMUs (Homogeneous Spatial Modeling 

Units). 
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For each HSMU, EPIC simulates all of the land management scenarios and reports numerous 

variables related to productivity and environmental impacts for various biofuel crop production 

systems. These results are stored in three alternative formats to facilitate multi-platform data 

access: Microsoft Excel worksheets, Microsoft Access databases, and PostgreSQL databases. 

Internet based data transfer is also available by using PostgreSQL. These modeling results are 

linked to the HSMU map by using the unique ID field (Figure 3), which allows users to visualize 

the spatial distribution of the output variables.  

2.3.3 Site Validation 
 
 EPIC has undergone intensive testing under diverse climate, soil, and management 

environments. Examples of validation results reported in the literature include those for water 

erosion and snowmelt runoff (Puurveen et al., 1997; Chung et al., 1999), crop yield (Roloff et al., 

1998), climatic variability (Izaurralde et al., 1999; Legler et al., 1999), climate change (Easterling 

et al., 1996; Brown and Rosenberg, 1999; Izaurralde et al., 2003; Thomson et al., 2002), nutrient 

cycling (Cavero et al., 1998), tile drain flow and nitrate leaching (Chung et al., 2001), soil organic 

carbon (Izaurralde et al. 2006; Izaurralde et al. 2007). In this report, we focus mainly on 

evaluating EPIC for crop yield and carbon balance simulations.  

2.3.3.1 Native Prairie 

Site-scale simulations based on specific data were conducted to calibrate the EPIC model 

before applying it to the regional-scale simulations. Data from two Long-term Ecological 

Research (LTER) sites, at the Kellogg Biological Station (KBS) in Michigan and at Cedar Creek 

(CDR) in Minnesota, were used to parameterize EPIC and model aboveground net primary 

productivity (ANPP) of successional vegetation growing on former agricultural fields. Data 

included in the parameterization and initialization included historical weather, terrain 

characteristics, and soil properties. The treatments selected for the simulations were natural 

herbaceous vegetation or early successional (ES). The treatments were initiated in 1989 when 

agricultural management ceased and natural vegetation was allowed to re-establish. Spring 

burning was implemented in 1997 and whenever necessary thereafter to inhibit colonization of 

woody species. 

The EPIC calibration with KBS LTER results was achieved by simulating the composition of 

the ES plant community with three species from the EPIC crop database (Poa pratensis, Phleum 

pratense, and Trifolium pratense). Spring burning with 80% efficiency was simulated in 1997, 

2003, 2004, 2006, and 2008. Aboveground NPP was simulated under three different scenarios; 

one was left completely unmanaged (no harvest and no N addition), and the other two were 

simulated with fall harvest with N at 0 or 123 kg ha
-1

 yr
-1

. EPIC model runs were based on 

historical records of daily maximum and minimum air temperature and precipitation from the 

KBS LTER dataset (http://lter.kbs.msu.edu/datatables). Daily solar radiation, relative humidity, 

wind speed, and missing temperature and precipitation data were acquired from Gull Lake NWS 

weather station (42º 24’ N 85º 23’ W) also at KBS. 

The EPIC simulations of ANPP for Cedar Creek, MN were conducted with data from the 

CDR LTER site. A 60-yr chronosequence experiment was simulated according to Zak et al. 

http://lter.kbs.msu.edu/datatables
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(1990). The chronosequence consisted of a series of 14 agricultural fields on Alfic and Typic 

Udipsamments (Soil Survey Staff, accessed August 2011) left unmanaged during periods ranging 

from one to 60 years. Both C3 and C4 species were present in the chronosequence fields. The 

chronosequence was simulated with an equal mix of generic C3 and C4 species from the EPIC 

crop database and driven by simulated daily weather generated from data of weather station at 

Rosemount, MN near CDR LTER station. Weather parameters were used to simulate ANPP 

during a 60-yr period intended to approximate environmental conditions for 1928 – 1987. 

2.3.3.2 Corn, Soybean, and Winter Wheat 

As with the calibration of the EPIC model for native prairie, EPIC was parameterized for 

modeling corn, soybean, and winter wheat (Triticum aestivum L.) under both chisel and no-till 

management on existing agricultural land using data from the KBS LTER site near Kalamazoo, 

Michigan.  These treatments were established in 1989 as corn/soybean rotations, with wheat 

added to the rotation in the fall of 1994.  Using similar soil, terrain, and weather data as for the 

native prairie calibration (making sure to match to any differences in the real properties of these 

plots versus the native prairie plots), EPIC was calibrated by simulating the management 

practices indicated in the agricultural log (http://lter.kbs.msu.edu/datatables/150) for replicate 3 

(R3) of treatments 1 and 2 (T1, T2) from 1989 to 2005.  EPIC was calibrated on these sites for 

both yearly yield values and summarized by month and by year. 

2.3.3.3 Testing EPIC with Eddy Covariance Data 

To test the capability of EPIC to simulate ecosystem carbon balance, we obtained Net 

Ecosystem Exchange
1
 data from two eddy covariance experiments located at Mead, Nebraska 

(41° 11’ N, 96° 26’ W) and Rosemount, Minnesota (44° 42’ N, 96° 8’ W) from the AmeriFlux 

network (http://public.ornl.gov/ameriflux/). At Mead, we simulated three treatments: two 

irrigated and one dryland. Here we only show results for a dryland no-till corn-soybean rotation 

(Figure). At Rosemount, we simulated two treatments: dryland no-till rye-soybean-corn rotation 

and dryland chisel-till continuous corn rotation. 

2.4 Regional Simulations 

2.4.1 Simulation of Potential Biomass Supply and Environmental Impacts of 
Collecting Residue from Cultivated Lands in 30 states of US 

In order to simulate potential biomass supply from crop residues, we extracted from the 

SENGBEM national database all the EPIC input data needed to simulate a baseline scenario of 

crop production based primarily on three major crops (corn, soybean, and winter wheat), as 

grown in their current growing areas. Figure 4 shows the current distribution of corn acres from 

NASS in the conterminous U.S.  Also shown are the borders of 12 states of the US Midwest that 

have been the focus of the GLBRC research program. Similarly, Figure 5 shows the soybean 

acres, which largely overlap with the corn acres in Figure 4. The major difference in growing area 

                                                      
1
 Net Ecosystem Exchange = (Plant Respiration + Heterotrophic Respiration) - Gross Photosynthesis. 

http://lter.kbs.msu.edu/datatables/150
http://public.ornl.gov/ameriflux/
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between the two crops occurs in western Nebraska and western Kansas where field crops 

(primarily corn) are grown under irrigation. Winter wheat occupies its own area defined mainly 

by the Great Plains states, Montana and the Pacific Northwest (Figure 6). For illustration 

purposes, Figure 7 shows the irrigated area of the conterminous USA. 

 
Figure 4. Corn acres across the conterminous USA 

 
Figure 5. Soybean acres across the conterminous USA 

 
Figure 6. Wheat acres across the conterminous USA  
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Figure 7. Irrigated acres of cropland across the conterminous USA (AgCensus, 2007). 

Data from the SENGBEM database were used to establish the CDL-based corn- and wheat-

based rotations across the 30 states (see Section 2.2). Fertilization and tillage information was 

derived as per the method outlined in Section 2.2. This was considered the baseline or historical 

scenario. The crop residue (alternative) treatment consisted in running all HSMUs and harvesting 

corn stover and wheat residue after grain harvest with an efficiency of 50%.  

2.4.2 Simulation of Potential Cellulosic Feedstock Supply from Perennial 
Biomass Crops Grown on Marginal Lands 

Here we provide the methodology followed to estimate potential biomass production from 

marginal lands and for siting cellulosic ethanol biorefineries. We examine the hypothesis 

proposed by Tilman et al. (2009) that perennial plants grown on marginal lands can provide 

significant amounts of feedstock for cellulosic ethanol production while minimizing competition 

with food crops. Efficient use of these lands for bioenergy production can also help minimize the 

potential for direct and indirect land clearing associated with biofuel expansion, as well as the 

resultant creation of long-term carbon debt and biodiversity loss. 

The SENGBEM national database described in Section 2.2 was used to simulate yields of 

perennial herbaceous species grown on marginal lands across the US Midwest study region. This 

region extends from North Dakota in the NW corner, south to Nebraska in the SW corner, east to 

Ohio in the SE corner, and up to Michigan in the NE corner. The Canada – USA border defines 

the northern border of the study region. A geospatial database containing soil, terrain, weather, 

land use/land cover and management data was used to obtain relevant parameters for running the 

EPIC model. 

Three scenarios of feedstock supply based on perennial biomass crops grown on marginal 

lands were simulated: 1) switchgrass (Panicum virgatum L.) and 2) perennial herbaceous 

mixtures across the US Midwest, and 3) perennial herbaceous mixtures on Conservation Reserve 

Program (CRP) lands in Iowa. There were differences in their simulations in terms of their spatial 

domain and scope as explained in the next sub-sections (2.4.2.1 – 2.4.2.3). 
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2.4.2.1 Potential Biomass Production from Switchgrass on Marginal 
Agricultural Lands of the US Midwest 

Switchgrass simulations with EPIC were performed across all cultivated acres of the US 

Midwest. However, here we only report potential productivity of switchgrass when grown on 

marginal lands across cultivated acres of the US Midwest. Using CDL land cover data and soil 

property information from SSURGO, we selected marginal lands from the cultivated land base as 

those lands falling into Land Capability Classes IV – VII. For each HSMU of marginal land, we 

simulated switchgrass yields by the calibrated EPIC model (see Section 2.3.3.1 of this report) 

fertilized with N at 68 kg N ha
-1

 yr
-1

. 

2.4.2.2 Simulation of Cellulosic Biomass Supply from Perennial Herbaceous 
Mixtures across Marginal Lands of the US Midwest 

The methodology used to simulate perennial herbaceous mixture was similar, in general, to 

that detailed in sub-section 2.4.2.1. However, special procedures and analyses were performed in 

order to contribute to a recently submitted manuscript on sustainable bioenergy production 

(Gelfand et al., submitted). 

 For these simulations, we followed the procedure described in Section 2.2 with the following 

details: 

a) Land use and land cover. Cropland data layer (CDL) for 2008 and SSURGO map were 

combined to define LCLU and soil type at a spatial resolution of 60 m for the simulation domain. 

Federal lands, golf courses, parks, large-lot single-family housing units, and vegetation planted in 

developed settings for erosion control, recreation, or aesthetic purposes were excluded from the 

simulation domain. 

b) Soils and marginal lands. Soil layer properties to run EPIC originated from the SSURGO 

database. Marginal lands were identified as rural lands falling into Land Capability Classes V-VII 

with slope gradients <20% under non-forested vegetation. Special consideration was given to the 

Sandhills of Nebraska whose unique grass-stabilized sand dune topography distinguishes them 

from the surrounding prairies (Eggemeyer et al., 2006). The sand dunes can be hundreds of 

meters tall and several kilometers long. The inter-dune valleys have been the largest sources of 

hay for the cattle industry in Nebraska (Gosselin et al., 2006). To keep only the inter-dune valleys 

and exclude the fragile dune ridges and slopes from the analysis, the Topographic Position Index 

(TPI) algorithm available in ArcGIS (Tagil and Jenness, 2008) was used. The TPI is a 

classification scheme based on the difference in elevation values between a cell in a DEM raster 

and its neighbors. The extent to which a cell is higher or lower as compared to its neighbors, 

combined with its slope, can be used to assign it a landform classification like valley, ridge etc. 

Removing the dune ridges and slopes from the analysis reduced the area available for 

consideration as marginal lands by more than 200,000 ha. The inter-dune valleys falling under 

LCC V-VII and with slope gradients < 20% were then used for further analysis using EPIC 

model. 
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The available area of marginal lands varied considerably by state (Figure 8). Overall, 

available area of marginal lands varied from <100,000 ha in Ohio (1% of total land) to more than 

6.4 million ha in Nebraska (30% of total land). 
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Figure 8. Marginal lands area (×10

6
 ha) in 10-states of the US Midwest region, as modeled by EPIC (left Y 

axis) and arable land area (right Y axis) from Cropland Data Layer of 2008. 

For each grid of marginal land, we simulated ANPP by the calibrated EPIC model (see 

Section 2.3.3.1 of this report) under three levels of N fertilization: 0, 68, and 123 kg N ha
-1

 yr
-1

. 

The ANPP values obtained from EPIC were used to identify the location of potential biorefineries 

that could process the resulting cellulosic feedstock. Only results from the 68 kg N ha
-1

 yr
-1

 

scenario have been used in this analysis. The siting of a potential biorefinery was limited to areas 

where potential feedstock derived from such fields could provide at least 768 Gg yr
-1

 of cellulosic 

biomass from within an economically feasible transportation distance of 80 km. To accomplish 

this, a moving window algorithm was implemented over the study region. Subsequently, non-

overlapping circles with the highest biomass yields were selected as potential biorefinery 

locations. We used Yield × 0.06 km × 0.06 km × 380.0 L Mg
-1

 × 100 = Yield × 136.8

 Equation 1 to convert biomass yields into liters of ethanol: 

Yield × 0.06 km × 0.06 km × 380.0 L Mg
-1

 × 100 = Yield × 136.8 Equation 1 

Where, Yield (Mg ha
-1

) is biomass production, 0.06 km × 0.06 km is the cell size of the 

model, 380.0 L Mg
-1

 is the conversion factor for converting cellulosic biomass to ethanol, and 

100 is number of hectares in 1 km
2
.  
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2.4.2.3 Simulation of Potential Cellulosic Biomass Supply from CRP lands in 
Iowa  

Recent studies suggest that cellulosic feedstocks may be grown on Conservation Reserve 

Program (CRP) land to help meet targeted biofuel volumes, without direct competition with food 

supply. However, CRP lands provide environmental benefits, particularly reducing sediment and 

nutrient loads to waterways and sequestering carbon in the soil.  Placing CRP land back into 

production can have a much larger per-area impact on these environmental factors than 

agricultural lands currently in production. Here we estimated the biomass production capacity of 

switchgrass and a perennial mixture (Kentucky bluegrass, timothy, and red clover) on CRP land 

in Iowa, and estimate the impacts on erosion, soil C, soil nitrogen (N) and potential fluxes to the 

atmosphere and water bodies.  

Based on a Non-Disclosure Agreement between USDA Farm Service Agency (FSA) and 

PNNL, we obtained from USDA FSA the CRP database to execute site-specific simulations of 

CRP land use conversions to biofuel production using perennial species, as described above. Of 

the different CRP types, we selected 3 types of CRP lands in Iowa that are currently under grass 

cover to simulate with EPIC: a) CP1 new introduced grasses and legumes, 2) CP2 new native 

grasses, and 3) CP10 existing grasses and legumes.  

3.0 Results and Discussion 

The results reported herein address the four specific objectives described in Section 1.2: 

1) To develop a spatially explicit national geodatabase to conduct biofuel simulation studies 

2) To conduct simulation studies to estimate biomass productivity of various biomass 

feedstocks (crop residue, perennial species) and associated environmental impacts 

3) To analyze the siting of biorefineries based on cellulosic feedstock collection from 

marginal lands 

4) To simulate perennial biomass feedstocks grown on marginal lands 

3.1 Features of the National Geodatabase to Simulate Biofuel 
Production 

The National Geodatabase of Contemporary Land Cover and Use in the Conterminous USA 

is shown in Figure 9. The map is presented in highly aggregated form representing only some 

predominant crop rotations (e.g. corn-based rotation, winter wheat – fallow) and land covers (e.g. 

forests, grasslands, urban). This level of aggregation and abstraction is necessary in order to 

visualize some of the predominant land uses and land covers. However, the map / database retains 

all the richness of the high-resolution data from which the map was built. In other words, it is 

possible to zoom in to a particular 60 m x 60 m field and see the details of its topography, soil 

properties, and LCLU. Conversely, simulations conducted at the HSMU scale can be scaled-up to 

watershed, county, state, and even national level without losing any information. 
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Figure 9. National Geodatabase of Contemporary Land Cover and Use in the Conterminous USA. 
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The level of detail included in this database allows a user to exclude a number of features not 

needed in the aggregation such as protected, recreational, urban, suburban, and commercial areas. 

The crop rotation (land use) component is a unique feature of the database. Information on 

the contemporary distribution of field crops on a given field and their change in sequence over 

time (i.e. crop rotation) is crucial for the understanding of land issues such as soil quality, carbon 

management, agricultural emissions of greenhouse gases, etc. As such, we believe the database 

presented represents a major advance for increasing the accuracy of environmental modeling and, 

in particular, for biofuel modeling. 

3.2 Site Simulations 

3.2.1 Native Prairie 

Aboveground NPP simulated by EPIC during 2000 – 2008 averaged 6.0±1.1 Mg ha
-1

 yr
-1

 for the 

scenario without biomass harvest or fertilization, which is similar to the observed average of 

5.98±0.44 Mg ha
-1

. Similarly, simulated ANPP for the scenario with harvest and fertilization was very 

close to field-based estimation, 9.6±0.8 vs. 8.79±0.64 Mg ha
-1

.  

Direct comparisons of biomass productivity results were not possible for the CDR data because 

the simulations were not time specific. Simulated standing aboveground biomass during the July-

August period averaged 5.13±1.13 Mg ha
-1

 during the first three years. In comparison, observed 

yields were 5.09 Mg ha
-1

 in the 1-yr old plot and 2.96 Mg ha
-1

 in the 3-yr old field. Simulated biomass 

during the last three years of the simulation averaged 7.67±1.27 Mg ha
-1

, while the observed value 

was 7.83 Mg ha
-1

 in the 60-yr old field. While EPIC failed to capture the decrease in plant 

productivity observed during the first years of the chronosequence, it did capture the increase in 

productivity toward the end of the simulation period. Similar to observations, simulated annual 

biomass productivity correlated moderately well with N mineralization and soil N. 

Overall, EPIC appeared to capture adequately the observed plant productivity patterns from both 

KBS and CDR LTER sites under different environmental constraints and management scenarios. 

Acceptable agreements between EPIC simulations and observed data were reported also by Izaurralde 

et al. (2006) in simulations of the effects of unmanaged grasses on soil C accrual on marginal lands in 

Nebraska, Kansas, and Texas. These results have provided further justification to use EPIC for large-

scale simulations. 

3.2.2 Corn, Soybean, Winter Wheat  

Corn, soybean, and wheat are major crops in the US Midwest accounting for >80%, >80%, 

and >50% of the total USA production, respectively. Corn stover and wheat residues are two of 

the most readily available sources of crop residue to start supplying a nascent cellulosic biofuel 

industry. Thus, the evaluation of EPIC for crop yield prediction has focused on these three major 

crops. As discussed above, we have obtained detailed management data (planting, tillage, 

fertilization, and harvesting) for the T1R3 and T2R3 plots at the Kellogg Biological Station 
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(KBS, http://lter.kbs.msu.edu/datatables). T1 is a chisel-tilled corn-soybean-wheat rotation, while 

T2 is no-till corn/soybean/wheat. R3 represents replicate 3 under either treatment. 

Overall, the annual variability of crop yields is well captured under these two treatments 

(Figure 10), as indicated by the high R
2
 values in the comparisons of simulated vs. observed data. 

The percentage of bias of the simulated multi-year average crop yields is less than 20% for all 

three crops. In addition, the EPIC model adequately captures the effect of different management 

practices (conventional till vs. no-till) on long-term crop yields (Figure 11), which has significant 

implications for the applicability of using EPIC to simulate long-term biofuel crop productivity 

under different management scenarios. 

 
Figure 10. Annual crop yields of corn, soybean, and winter wheat on two contrasting plots. 

 

 

http://lter.kbs.msu.edu/datatables
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Figure 11. Simulated and observed long-term (1989-2005) impact of crop management practices 

on crop yields.  

3.2.3 Carbon balance 

Simulation results show that EPIC can capture well the observed land-atmosphere CO2 

exchange in the three experiments (Figure 12). During the growing season, Net Ecosystem 

Exchange (NEE) values become negative; i.e., carbon is being drawn from the atmosphere into 

the terrestrial ecosystem. The model captures well the growing season trends as indicated by the 

observed and simulated trends in NEE under different cropping systems.  The R
2 
of simulated and 

observed daily CO2 fluxes is high for the corn-soybean rotation both at Mead (R
2
= 0.75) and 

Rosemount (R
2
= 0.78). However, the most complex rotation at Rosemount that included a rye 

cover crop in winter (corn-rye-soybean) has a lower R-squared (R
2
= 0.51) than the other two 

rotations. 

.  
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Figure 12. Simulated and observed NEE under three contrasting cropping systems. 
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3.3 Regional Simulations 

We executed EPIC on ~ 2 million HSMUs over 30 states from 1979 to 2008. The period from 

1979-1999 was used as spin up runs to initialize soil parameters such as soil organic carbon 

(SOC) and nitrogen. For each county, we calculated area-weighted simulated crop yield averages 

over 2000-2008 and used county-scale crop observed yield data averaged over the same period to 

evaluate the EPIC simulations.  

Overall, EPIC can explain more than 60% percent of the variance of NASS-reported crop 

yield of corn, soybean, and winter wheat across the 30 states (Figure 13). Linear regression 

analysis of observed vs. simulated yield calculates a slope of 0.92 is close to 1.0, indicating a low 

bias of simulated crop yields over the 30 state region. However, it is worth noting that EPIC 

substantially underestimates corn yields in some counties, as exemplified by a group of points 

under the linear trend line and above the segment of 6-12 Mg ha
-1

 yr
-1

 on the x-axis. Further 

examination shows that counties in Kansas, Nebraska, Texas and Alabama contribute to most of 

these points. As illustrated in Figure 7, there are significant amount of irrigated cropland in these 

three states. Therefore, not including crop irrigation operations in the EPIC simulations is one 

major factor leading to the underestimation of corn yields in these states.  

 
Figure 13. Comparison between EPIC-simulated and NASS-reported county level crop yields. 

EPIC-simulated corn yield map (Figure 14) captures the high yields of corn in the Corn Belt, 

including Iowa and Illinois, reported by NASS (Figure 15). However, EPIC significantly 

underestimates corn yields in Nebraska, Southwest Kansas, and Northwest Texas due to the missing 

reliable irrigation management information in these regions. Further comparison between the spatial 
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patterns of EPIC-simulated and NASS-reported corn yields at county level demonstrates that 

simulated and reported values do not match well in Montana and Pennsylvania, either. The 

discrepancy at county scale, to some extent, can be explained by the lack of accurate spatially explicit 

data on species variety and crop management data such as planting and harvesting dates, fertilizer 

levels, and tillage intensity. For example, we use uniform fertilizer application data at state level. 

However, actual application rates may show high spatial variability across areas within one state. 

Therefore, we do not list bias of simulated corn yields at county scale; instead, state-level bias is 

listed in Table 1 to show the uncertainty of EPIC simulations. For most states, EPIC simulations 

exhibit no more than 20% bias, except for Alabama, Montana, Nebraska, North Carolina, South 

Carolina, and Texas. Less corn is planted in Alabama, Montana, North Carolina, South Carolina, and 

Texas than in the Midwest. Thus, the relatively large bias in these states does affect the total 

production bias of corn simulations over the 29 states.  

 

 

Figure 14. EPIC-simulated (dry) corn yields simulated at HSMU scale and aggregated to county scale. 

 
Figure 15. County (dry) corn yields reported by NASS. 



 

22 

 

Table 1. Percentage of Bias of EPIC-simulated corn yield across 29 states. 

State NASS EPIC PBIAS* State NASS EPIC PBIAS 

Alabama 4.92 6.51 32.37% Nebraska 8.23 5.96 -27.62% 

Arkansas 8.08 8.03 -0.58% New York 6.47 6.89 6.55% 

Georgia 6.43 6.66 3.53% North Carolina 5.79 7.59 30.98% 

Illinois 8.70 8.92 2.52% North Dakota 5.06 5.23 3.40% 

Indiana 8.42 9.04 7.32% Ohio 7.58 7.75 2.27% 

Iowa 9.21 9.48 2.87% Oklahoma 5.63 4.86 -13.67% 

Kansas 6.66 5.94 -10.69% Pennsylvania 6.29 6.48 3.03% 

Kentucky 6.84 7.33 7.14% South Carolina 4.61 7.03 52.57% 

Louisiana 7.45 8.57 15.03% South Dakota 5.43 4.48 -17.57% 

Maryland 6.95 7.43 6.92% Tennessee 6.46 6.77 4.80% 

Michigan 6.68 7.02 4.97% Texas 5.94 3.88 -34.66% 

Minnesota 7.90 7.25 -8.23% Virginia 5.98 6.96 16.36% 

Mississippi 6.51 7.49 15.21% West Virginia 7.02 6.56 -6.45% 

Missouri 7.02 7.38 5.17% Wisconsin 7.29 7.03 -3.59% 

Montana 7.23 3.01 -58.36% 
    

*PBIAS is calculated as (EPIC simulated – NASS reported) / NASS reported × 100%. 

In the case of soybean simulations, EPIC also captures well the high yield region in the Corn Belt 

as shown in Figure 16 and Figure 17. Similar to the corn simulations, EPIC significantly 

underestimates yields of soybean in Nebraska, Kansas, and Texas due to our omission of irrigation in 

these states. At state level, EPIC-simulated soybean yields fall within 20% bias, except Alabama, 

Nebraska, North Carolina, and South Carolina (Table 2). Overall, EPIC reproduces well both the 

spatial pattern and yield magnitude of soybean in the US Midwest region, the major production area 

of soybean. Further work is needed to improve the accuracy of simulated soybean yields with EPIC in 

the four aforementioned states. 

 
Figure 16. EPIC simulated (dry) soybean yields simulated at HSMU scale and aggregated at county scale. 
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Figure 17. County (dry) soybean yields reported by NASS. 

Table 2. Percentage of Bias of EPIC simulated soybean yield across 28 states 

State NASS EPIC PBIAS State NASS EPIC PBIAS 

Alabama 1.77 2.71 52.53% Nebraska 2.94 2.21 -24.97% 

Arkansas 2.11 2.07 -2.13% New York 2.51 2.49 -0.93% 

Georgia 1.78 2.03 14.02% North Carolina 1.91 2.54 32.74% 

Illinois 2.83 2.64 -6.56% North Dakota 1.73 1.72 -0.81% 

Indiana 2.93 2.73 -6.80% Ohio 2.65 2.48 -6.46% 

Iowa 2.99 3.09 3.54% Oklahoma 1.51 2.05 35.93% 

Kansas 2.12 2.17 2.35% Pennsylvania 2.47 2.33 -5.75% 

Kentucky 2.52 2.34 -7.00% South Carolina 1.57 2.22 41.36% 

Louisiana 2.04 2.41 18.54% South Dakota 1.84 1.68 -8.70% 

Maryland 2.25 2.54 12.80% Tennessee 2.15 2.08 -3.33% 

Michigan 2.20 2.29 3.73% Texas 1.94 1.75 -9.89% 

Minnesota 2.43 2.20 -9.43% Virginia 2.08 2.29 10.29% 

Mississippi 1.99 2.08 4.85% West Virginia 2.82 2.30 -18.36% 

Missouri 2.32 2.47 6.09% Wisconsin 2.38 2.26 -5.09% 

The accuracy of CDL for identifying winter wheat is much less that for corn and soybean 

(Appendix I).  For most states, accuracy of CDL for corn and soybean areas is higher than 80%, 

while that for winter wheat is less than 80%. In addition to the lack of accurate crop management 

data, the errors associated with CDL will lead to misidentification of soils for winter wheat 

modeling and larger biases in winter wheat simulations. Figure 18 shows that spatial patterns of 

EPIC-simulated and NASS-reported winter wheat yield (Figure 19) do not match well. For 

example, EPIC simulates substantially lower yields than reported in Indiana and Ohio but yields 

much higher than reported in Oklahoma and Kansas. Despite the failure in reproducing accurately 

the observed spatial variations, the biases of the EPIC simulations are less than 20% for 21 of the 

29 states (  
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Table 3). However, the high bias in Kansas, which has a large area of winter wheat, may lead 

to significant uncertainty in the analysis of biofuel feedstocks supply from wheat residue. 

 

 
Figure 18. EPIC-simulated (dry) winter wheat yields simulated at HSMU scale and aggregated to county 

scale. 

 
Figure 19. County (dry) winter wheat yields reported by NASS. 
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Table 3. Percentage of Bias of EPIC simulated winter wheat yields across 29 states. 

State NASS EPIC PBIAS State NASS EPIC PBIAS 

Alabama 2.68 2.79 4.38% Nebraska 2.77 3.55 28.27% 

Arkansas 3.10 3.09 -0.41% New York 3.30 3.22 -2.46% 

Georgia 2.85 3.03 6.15% North Carolina 2.91 3.55 21.91% 

Illinois 3.99 3.67 -8.00% North Dakota 2.52 3.19 26.55% 

Indiana 4.07 2.46 -39.50% Ohio 3.89 2.47 -36.55% 

Iowa 3.33 3.71 11.37% Oklahoma 1.98 3.16 59.75% 

Kansas 2.38 3.34 40.17% Pennsylvania 3.19 2.66 -16.65% 

Kentucky 3.53 2.95 -16.54% South Carolina 2.64 3.08 16.67% 

Louisiana 3.02 2.81 -7.23% South Dakota 2.72 3.32 22.10% 

Maryland 3.77 3.47 -7.87% Tennessee 3.03 2.84 -6.24% 

Michigan 3.79 3.29 -13.28% Texas 1.78 2.06 16.05% 

Minnesota 2.87 3.37 17.37% Virginia 3.73 3.31 -11.18% 

Mississippi 3.23 3.17 -1.80% West Virginia 3.35 3.46 3.23% 

Missouri 3.04 3.22 5.85% Wisconsin 3.76 3.52 -6.41% 

Montana 2.11 2.39 13.08% 
    

3.4 Potential Biofuel Production and Environmental Impacts of 
Collecting Residue from Cultivated Lands in 29 US states 

We revised the historical crop management scenario by adding 50% residue removal from 

corn and winter wheat to estimate potential residue production from the 29 states. For the spin-up 

years of 1979 to 1999, we did not modify the management practices. Starting in 2000, we added a 

baling operation to collect 50% of the residue after corn or winter wheat harvesting. This residue 

collection would reduce organic matter returned back to the soil, changing biogeochemical 

cycles, plant growth, and environmental outcomes from these cultivated lands.  

We used EPIC-simulated residue yields (Mg ha
-1

 yr
-1

) and NASS reported multi-year (2000-

2008) average planted areas of corn and winter wheat to estimate the potential production of 

residue biofuel feedstocks in the 29 states. We used data from NASS rather than from CDL 

because crop area from CDL was less accurate than the surveyed NASS data. As expected from 

the reported corn- and wheat-planted areas Figure 4 and Figure 6, respectively, high-corn residue 

production (Figure 20) would occur mainly in the US Midwest, especially in Iowa and Illinois, 

while high winter wheat residue production (Figure 21) would occur in Kansas, western 

Oklahoma, and Montana. By using Yield × 0.06 km × 0.06 km × 380.0 L Mg
-1

 × 100 = Yield × 

136.8 Equation 1 to convert from mass of dry matter to the resulting volume of ethanol, jointly 

corn and winter wheat residue can produce a total of ~13 billion gallons of cellulosic ethanol, of 

which the US Midwest would contribute more than 80% (or about 11 billion gallons). Among the 

12 US Midwest states, Illinois, Iowa, and Kansas have the highest potential to provide ethanol 

from corn and winter wheat residues (Table 4). 
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Figure 20. EPIC-simulated biomass production from corn residues assuming collection of 50% available 

residues. 

 
Figure 21. EPIC-simulated biomass production from winter wheat residues assuming collection of 50% 

available residues. 

After adding residue operations, EPIC-simulated area-averaged non-residue (grain) yields of 

corn, winter wheat, and soybean in the 29 states slightly increased, respectively, from 7.47 to 7.71 

Mg ha
-1

 yr
-1

, from 3.02 to 3.21 Mg ha
-1

 yr
-1

, and from 2.43 to 2.46 Mg ha
-1

 yr
-1

 over years the 

2000-2009. This increase of crop yields might be short term and attributable to a decrease in N 

immobilization because of reduced residue input to soils and an associated increase in N 

availability for plant uptake. However, in the long term (e.g. dozens of years), the continuous 

removal of organic matter might substantially reduce nutrient input into the soils and reduce 

nutrient availability for plant growth. However, due to limited availability of computational 

resources, we did not conduct long-term simulations, so this concern deserves further 

consideration for future research. 
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Table 4. Potential ethanol production from corn and winter wheat residues in the US Midwest 

states. 

State Ethanol production  
 ----- 10

6
 gallons ----- 

Illinois 2,179 

Indiana 878 

Iowa 1,989 

Kansas 1,417 

Michigan 356 

Minnesota 781 

Missouri 512 

Nebraska 994 

North Dakota 170 

Ohio 552 

South Dakota 515 

Wisconsin 360 

Collecting residue from farms would reduce soil cover and increase soil loss through erosion. 

Due to the lack of accurate information on soil conservation practices, in the EPIC simulations we 

did not explicitly consider the P factor (or conservation practice) in calculating soil erosion. The 

EPIC-simulated absolute values of soil erosion might deviate substantially from true soil losses 

from fields. Therefore, instead of analyzing the absolute change of in EPIC-simulated soil 

erosion, we have focused on the relative change of soil erosion denoted as the ratio between 

EPIC-simulated soil erosion under residue removal and historical scenarios. In general, residue 

removal would lead to increased soil erosion in the study region (Figure 22). In most states, the 

increase of soil erosion would be less than 1.3 times the baseline level. However, in Illinois, 

Indiana, Wisconsin, Nebraska, and Kansas, soil erosion in many counties might increase by over 

1.5 times the baseline level. Overall, collecting biofuel feedstocks through residue removal may 

lead to significant increases in soil erosion, especially in the US Midwest. 

 
Figure 22. Ratio of water erosion between residue removal and no-residue removal scenarios. 
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By collecting 50% percent of residue from corn and winter wheat fields, organic carbon returned 

back to soil would decrease causing less soil carbon sequestration. Figure 23 shows the difference in 

SOC change rates between historical and residue removal scenarios. Without residue removal, SOC 

change rate under historical scenario is higher than that under residue removal scenario, ranging from 

21 to 1523 Mg C ha
-1

 yr
-1

. Overall, SOC loss due to residue collection would be more prominent in 

Iowa, Illinois, Indiana, Ohio, and Virginia, as compared with other regions. Given the significant 

amount of SOC loss caused by residue removal, it is critical to careful assess of life cycle carbon 

balance of biofuel production using crop residue to ensure that carbon offset benefit provided by 

biofuel production can compensate the loss of SOC. 

 
Figure 23. Difference in soil organic C (SOC) change between residue and no-residue removal scenarios. 

In addition to soil erosion and SOC, nitrate leaching is another important environmental factor 

that may be significantly influenced by collecting crop residue for biofuel feedstocks. Implications of 

residue removal on the nitrogen cycle are two folds: (1) less organic nitrogen returned back to soil 

would decrease nitrogen input into soil and nitrate leaching; (2) On the other hand, less crop residue 

input to soil would immobilize less mineral nitrogen and lead to less nitrate leaching. Effects of 

collecting residue on nitrogen leaching are varying across the simulation region depending on other 

factors such as crop management, water cycle and soil properties that influence the above two 

processes. In most regions, residue removal would decrease or slightly increase (< 1 kg N ha
-1

 yr
-1

) 

nitrogen leaching (Figure 24). However, in many counties in Nebraska, Minnesota, Iowa, Wisconsin, 

Illinois, and Indiana, nitrogen leaching could increase by over 5 kg N ha
-1

 yr
-1

. As these states 

contribute major proportion of crop residue production, it is important to consider potential negative 

impacts on water quality when using crop residue as biofuel stocks in order to build an 

environmentally sustainable bioenergy economy. 
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Figure 24. Difference in nitrate leaching between residue and no-residue removal scenarios. 

3.5 Potential Biomass Production from Switchgrass on Low 
Productive Agricultural Lands  

As for switchgrass, there is no spatially and temporally long-term observed or survey data 

available at large scale to quantify errors associated with EPIC simulations. Wullschleger et al. 

(2010) compiled a database of 1190 observations of yield from 39 field trials conducted across 

the US. We used this database to evaluate EPIC simulations of switchgrass yield, because it has 

been used in the Billion Ton Update report (Perlack et al., 2011) to estimate switchgrass 

production. As detailed climate, terrain, soil, crop management data were not provided for each 

trial, we cannot robustly evaluate EPIC performance at each field. Therefore, our purpose is to 

assess whether EPIC simulations fall within the range of field observations. To estimate 

maximum and minimum yield of switchgrass at one field, we only selected 18 field trials with 

over three samples.  The locations of the 18 field trials (Wullschleger et al., 2010) were used to 

identify corresponding EPIC simulated county level switchgrass yield to compare with the field 

observations. Overall, EPIC simulated switchgrass yield fall within or is close to either maximum 

or minimum observed yield for most field trials across the 29 states of US.  For two fields, one in 

Morgantown, West Virginia and one in Knoxville, Tennessee (Table 5), EPIC-simulated yield 

was considerable lower than observed minimum values. This underestimation can be explained 

by the lower fertilization (60 kg ha
-1

 yr
-1

) used in the EPIC simulation compared to the higher 

fertilization (100 kg ha
-1

 yr
-1

) used in the field experiments. The comparison results indicate that 

EPIC simulation of lowland switchgrass yield is comparable to that reported by Billion Ton 

Update report. 
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Figure 25. EPIC simulated switchgrass yields across 30 states in the conterminous USA. Sets of three bars 

represent a comparison between simulated and observed yields at 18 locations. 

Table 5. Location, maximum and minimum of lowland switchgrass yields at 18 field trials.   

ID LOCATION STATE MAX MIN 
EPIC 

simulated 
Longitude Latitude 

1* Tifton GA 21.8 12.3 17.2 -83.49 31.47 

2* Athens GA 23.2 6.9 11.4 -83.41 33.87 

3
$
 

College 

Station 
TX 20.0 11.6 11.0 -96.35 30.60 

4
$
 Clinton LA 16.8 13.3 17.6 -90.05 30.85 

5
$
 Stephenville TX 14.8 9.5 8.3 -98.20 32.22 

6
&
 Jackson TN 16.7 7.8 11.1 -88.83 35.62 

7
&
 Raleigh NC 16.7 6.9 14.2 -78.67 35.72 

8
&
 Knoxville TN 24.9 12.5 8.4 -83.95 35.88 

9
&
 Princeton KY 17.0 11.6 10.6 -87.82 37.10 

10
&
 Blacksburg VA 27.4 9.5 11.4 -80.42 37.18 

11
&
 Orange VA 20.4 11.8 10.1 -78.12 38.22 

12
&
 Morgantown WV 20.5 12.7 7.6 -79.95 39.62 

13
%

 Chickasha OK 26.4 6.7 14.7 -97.91 35.03 

14
%

 Haskell OK 26.6 12.8 15.8 -95.64 35.75 

15^ Temple TX 17.7 10.8 9.2 -97.34 31.05 

16
+
 

McNay 

Farm 
IA 17.5 5.5 10.6 -93.43 40.97 

17
@

 Shorter AL 34.6 8.6 12.8 -85.56 32.66 

18
#
 Perkins OK 14.3 5.2 15.2 -97.05 35.99 

Note: *Bouton (2002); $Cassida et al. (2005); &Fike et al. (2006); %Fuente and Taliaferro (2002); ^Kiniry et al. (1996); +Lemus et al. 
(2002); @Sladden et al. (1991); #Thomason et al. (2004). 
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Although Iowa, Illinois, and other Midwest states have large area of agricultural lands, not 

many cultivated lands with low productivity are available in these states. Montana, North Dakota, 

South Dakota, Nebraska, and Kansas have relatively large area of cultivated lands with land 

capability of IV – VII (Figure 26). On these soils relatively poor quality soils, switchgrass yield is 

much lower as compared with that on all cultivated lands that also include productive lands 

(Figure 27). To some extent, the use of less productive cultivated lands to grow switchgrass for 

biofuel would loosen the tension of food and energy competition.  

 
Figure 26. Area of cultivated land with land capability classes IV – VII. 

 

 
Figure 27. EPIC simulated yields of switchgrass on cultivated land with land capability classes IV – VI. 
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Consistent with the pattern of cultivated lands with low productivity, Montana, North Dakota, 

South Dakota, Nebraska, and Kansas can potentially contribute significant amount of cellulosic 

ethanol, although the switchgrass yield is these regions is relatively low (Figure 28). Furthermore, 

some counties in Wisconsin, Michigan, Missouri, Pennsylvania, and Texas can potentially supply 

switchgrass biomass to produce large amounts of cellulosic ethanol (> 15,000,000 gallons). 

 
Figure 28. Potential cellulosic ethanol production from switchgrass on cultivated lands with land capability 

classes IV – VII. 

3.6 Potential Cellulosic Biomass Production from Marginal 
Lands 

The following analysis is from a submitted manuscript on sustainable bioenergy production 

(Gelfand et al., submitted). For each grid of marginal land, we simulated ANPP by the calibrated 

EPIC model under three levels of N fertilization: 0, 68, and 123 kg N ha
-1

 yr
-1

. Modeled field size 

for the estimation of potential productivity varied substantially, with a minimum size of 3,600 m
2
 

and a maximum of >650×10
6
 m

2
. Overall, we simulated 78,184 fields having unique 

combinations of soil type, land-use, and LCC. The connectivity between each field and nearby 

fields was not assessed. Average biomass yields (Mg ha
-1

 yr
-1

) for 78,184 parcels of marginal land 

as modeled by EPIC for three levels of N fertilizer application and two harvest efficiencies are 

presented in Table 6. Values in parentheses are standard deviations. Ethanol yields are based on a 

conversion factor of 380.0 L Mg
-1

 of cellulosic biomass. 

3.6.1 Comparison with Estimates from Billion Ton Study Update 

We also compared our results of biomass production rates with recent Billion-Ton Study 

Update (Perlack et al. (2011) (Table 7). Our estimation differs significantly and exhibited no 

relation to the Billion-Ton Study (R
2
 = 0.004). The Spearman rank-order correlation coefficient 

(rs) is -0.0061 with a p-value of 0.98. An rs value below 0 implies negative agreement between the 

two rankings. 

Table 6. Average biomass yields (Mg ha
-1

 yr
-1

) for 78,184 parcels of marginal land as modeled by 

EPIC for two harvest efficiencies and three N levels (Gelfand et al., submitted). 

  Average Yields 

  Biomass Ethanol 
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  Mg ha-1 yr-1 L×103 ha-1 yr-1 

Harvest efficiency (%) 55 4.3 (1.7) 1.6  (0.6) 

 90 6.0 (2.6) 2.3  (1.0) 

N Fertilization (kg ha
-1

 yr
-1

) † 0 6.0 (2.6) 2.3 (1.0) 

 68 8.2 (2.7) 3.1 (1.0) 

 123 8.9 (2.8) 3.3 (1.0) 
†
 Simulations under different N fertilization regimes assuming 90% harvest efficiency. 

Table 7. EPIC simulated and Billion-Ton Study Update (BTS-U) estimated biomass yields on 

marginal lands across the 10-state US Midwest Region (Gelfand et al., submitted). 

 Average biomass yield 

 EPIC* BTS-U 

 ----------- Mg ha
-1

 ----------- 

Illinois 8.16 12.52 

Indiana 8.35 13.07 

Iowa 7.81 11.73 

Michigan 9.98 7.44 

Minnesota 10.63 6.04 

Nebraska 6.01 8.87 

North Dakota 5.55 4.59 

Ohio 7.16 14.03 

South Dakota 4.75 7.59 

Wisconsin 8.96 10.29 

* EPIC simulated for unfertilized marginal land. 

3.6.2 Locating Biorefineries in 10 States of the US Midwest Region 

We implemented a moving window algorithm to assess availability of cellulosic biofuel from 

marginal lands in the 10-State US Midwest region. The placement of biorefineries for cellulosic 

biomass production from marginal lands in 10 states of the US Midwest is shown in Figure 29. Each 

circle represents an 80 km radius area with sufficient biomass resources to produce at least 89.3 ML 

ethanol yr
-1

 based on quantitative simulation of yields from non-forested marginal lands at a 60×60 m 

resolution.  Corn acreages (in ha) by county have been derived from the CDL of 2008. The inset map 

shows a close up of a potential biorefinery location where the yield is not clearly visible on the main 

map. Figure 30 shows the placement of biorefineries for cellulosic biomass production from marginal 

lands in ten states of the US Midwest with identification numbers corresponding to Table 8. Overall, 

our results show that ~21 GL (5.6 billion gallons yr
-1

) of cellulosic ethanol could be produced (Table 

8), meeting ~30% of the 2022 target for cellulosic biofuel mandated by the 2007 US Energy 

Independence and Security Act. 
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Figure 29. Biomass yields and potential cellulosic ethanol biorefinery locations in the 10-state US Midwest. 

Region (Gelfand et al., submitted). 

3.6.3 Cellulosic Biomass Production in the Sandhills of Nebraska 

The Sandhills region of Nebraska is dominated by grass-stabilized sand dunes underlain by the 

Ogallala aquifer. It is a fragile ecosystem with the predominant land-use being livestock grazing. 

Here, the marginal lands that are suitable for cultivation of perennial biofuel crops (native prairie 

mixes, switchgrass and miscanthus) are examined for their respective environmental impacts. 
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Table 8. EPIC modeled biomass and cellulosic ethanol production by state assuming 90% harvest 

efficiency and two N-fertilization levels (0 and 68 kg ha
-1

). 

   

Total biomass production 

Total cellulosic ethanol 

production 

ID
§
 State 

†
 F*=0 F=68 F=0 F=68 

  -------- Mg × 10
6
 -------- -------- GL yr

-1
 -------- 

1 Illinois‡ 1.35 1.88 0.18 0.26 

2 Illinois 1 0.67 0.8 0.09 0.11 

3 Indiana‡ 1.18 1.43 0.16 0.19 

4 Indiana 1‡ 0.77 0.96 0.11 0.13 

5 Iowa 1.67 2.27 0.23 0.31 

6 Iowa 1‡ 0.87 1.17 0.12 0.16 

7 Michigan 1.78 2.29 0.24 0.31 

8 Minnesota 2.38 2.55 0.32 0.35 

9 Minnesota 1 0.86 1.10 0.12 0.15 

10 Minnesota 2 0.90 1.11 0.12 0.15 

11 Nebraska 13.72 19.13 1.88 2.62 

12 Nebraska 1‡ 10.44 14.66 1.43 2.01 

13 Nebraska 2‡ 9.75 13.83 1.33 1.89 

14 Nebraska 3 8.89 11.54 1.22 1.58 

15 Nebraska 4 6.43 9.01 0.88 1.23 

16 Nebraska 5‡ 4.05 5.33 0.55 0.73 

17 Nebraska 6 2.55 3.40 0.35 0.46 

18 Nebraska 7‡ 1.68 2.30 0.23 0.31 

19 Nebraska 8 0.61 0.80 0.08 0.11 

20 North Dakota 5.48 7.50 0.75 1.03 

21 North Dakota 1 4.01 5.19 0.55 0.71 

22 North Dakota 2 3.75 5.12 0.51 0.70 

23 North Dakota 3 3.59 4.62 0.49 0.63 

24 North Dakota 4‡ 1.52 1.89 0.21 0.26 

25 North Dakota 5 1.28 1.80 0.17 0.25 

26 North Dakota 6‡ 0.74 0.95 0.10 0.13 

27 South Dakota 7.22 10.97 0.99 1.50 

28 South Dakota 1‡ 4.25 6.07 0.58 0.83 

29 South Dakota 2 1.97 2.77 0.27 0.38 

30 South Dakota 3‡ 1.86 2.42 0.26 0.33 

31 South Dakota 4‡ 0.93 1.22 0.13 0.17 

32 Wisconsin 1.64 2.03 0.22 0.28 

33 Wisconsin 1‡ 1.20 1.58 0.16 0.22 

34 Wisconsin 2‡ 0.53 0.65 0.07 0.09 
*
 N fertilizer application in kg N ha

-1
 yr

-1
. 

†
 If more than one potential biorefinery could be placed in a state, we name potential placements with serial 

numbers.  
‡
 Biomass collection for the biorefinery location involves collection across state boundaries. 

§
 Biorefinery placements associated with biorefinery ID are presented in Figure 30. 
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Marginal lands were defined from the point of view of biophysical productivity as well as 

topographical characteristics. SSURGO data was used to define marginal land as land falling into 

Land Capability Classes of V-VII with current land cover being field crops (e.g. corn, soybean, 

etc.) or herbaceous vegetation (e.g., pastureland, rangeland, CRP, etc.) and with slope gradients 

<20%. Special consideration was given to the Sandhills of Nebraska whose unique grass-

stabilized sand dune topography distinguishes them from the surrounding prairies (Eggemeyer et 

al., 2006). The sand dunes can be hundreds of meters tall and several kilometers long. The inter-

dune valleys are the largest sources of hay for the cattle industry in Nebraska (Gosselin et al., 

2006). To keep only the inter-dune valleys and exclude the fragile dune ridges and slopes from 

the analysis the Topographic Position Index (TPI) algorithm available in ArcGIS (Tagil and 

Jenness, 2008) was used. 

The TPI is a classification scheme based on the difference in elevation values between a cell 

in a DEM raster and its neighbors. The extent to which a cell is higher or lower as compared to its 

neighbors, combined with its slope, can be used to assign it a landform classification like valley, 

ridge etc. Removing the dune ridges and slopes from the analysis reduced the area available for 

consideration as marginal lands by more than 200,000 ha. The inter-dune valleys falling under 

LCC V-VII and with slope gradients < 20% were then used for further analysis using EPIC 

model. 

 
Figure 30. The placement of biorefineries for cellulosic biomass production from marginal lands in 10 

states of the US Midwest with identification numbers corresponding to Table 8 (Gelfand et al., 

submitted). 

3.7 Potential Biomass Supply from CRP lands in Iowa 
 

On nearly 270,000 hectares of CRP, we estimated that 3.2 Tg of switchgrass and 2.1 Tg of 

perennial mixture biomass could be harvested per year. Switchgrass yields varied from 4.5 to 



 

37 

20.5 Mg ha
-1

, with an average of 11.9 Mg ha
-1

. Correspondingly, perennial mixture yields varied 

from 4.8 to 16.7 Mg ha
-1

, and averaged 7.8 Mg ha
-1

.  Compared with the non-harvesting perennial 

mixture baseline scenario, switchgrass and the perennial mixtures, with harvesting, reduced soil C 

stocks by 2.9 and 1.4 Mg C ha
-1

 yr
-1

, respectively, over the 12-year simulation period (Figure 31). 

Due to harvesting that remove nitrogen from fields, switchgrass and perennial mixture produce 

less N export (Figure 32). Overall, perennial mixtures perform better than switchgrass for 

nitrogen and soil C conservation. 

 

Geo-spatial analysis was used to identify potential ethanol biorefinery locations. Here we 

assumed biorefineries only draw biomass within a radius of 80 km. Our results show that, from 

CRP lands in Iowa, planting perennial mixture can produce biomass that can be used to produce a 

total of 202 million gallon of cellulosic ethanol. Moving window analysis identified three 

biorefineries with annual production capacity > 25 million gallons (Figure 33).  

 

Overall, the analysis shows that CRP lands can be used to produce cellulosic biofuels 

feedstocks for future cellulosic ethanol biorefineries. However, harvesting cellulosic biomass 

from CRP lands may lead to degradation of ecosystem services provided by CRP lands with 

respect to nitrogen and carbon cycling. 

 

 
Figure 31. Soil-C change ratio in harvested vs. unharvested perennial mixtures. 
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Figure 32. Nitrogen export by treatment relative to no-harvest perennial mixture.  

 

 
Figure 33. Location of potential ethanol biorefineries (circles with 80 km radius) drawing 

cellulosic feedstock from perennial mixtures grown on CRP lands. 
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4.0 Summary and Conclusions 

We have developed a spatially explicit geodatabase containing data for 30 of the primary 

agricultural states for the primary purpose of conducting simulation studies of potential biofuel 

scenarios.  In addition, we have used this geodatabase to perform three simulation studies in these 

states using the EPIC biogeochemical model: a historical baseline scenario of corn, soybean, and 

wheat rotations; an augmented historical scenario with removal of biomass residues from corn 

and wheat; and a simulation of switchgrass yields. The results of this study will be submitted to 

the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the 

development of a sustainable bioenergy industry. 

In order to perform these high-resolution analyses, it was vital to have a computing 

infrastructure in place that would allow us to simulate approximately 2 million individual land 

units for each of the three scenarios and would allow us to aggregate and visualize the resulting 

data.  The first part of this infrastructure was the server ―deltac‖: an eight-core Linux server, 

acquired with ARRA support, used to conduct the initial county-level and state-level simulations 

and host the PostgreSQL database where data from the national-scale simulations were stored.  

The second part of the infrastructure was the ―Evergreen‖ cluster, A DOE-JGCRI resource co-

located at UMD, which allowed for the processing of the 2 million simulations in a relatively 

short period.  Though it took some time to modify our processes to take advantage of the size of 

the Evergreen cluster, it allowed us to perform these large-scale simulations. Had we not received 

funding for these vital resources, this report would not have been possible in the time allotted. 

Looking at the baseline scenario, we see that EPIC is able to capture well the trends in corn, 

soybean and winter wheat yields in the US Midwest except for a) states where irrigation is 

prominent and the lack of simulation results on irrigated corn and 2) accuracy of CDL for 

identifying wheat lands.  Building off these baseline results, we then estimated that 13 billion 

gallons of cellulosic ethanol per year could be generated by collecting half of available corn and 

wheat residues.  In other words, slightly more than one third of the total cumulative 2022 ethanol-

blending requirement in the 2007 Energy Independence and Security Act could be produced from 

these residues annually. 

However, this level of cellulosic biofuel production largely comes with associated additional 

environmental costs.  In particular, soil organic carbon (SOC) would be lost at a greater rate than 

in the baseline scenario. Soil erosion would increase as well.  Given the significant increase in 

SOC losses in some areas, it is critical to evaluate carefully the life cycle carbon balance of 

residue-based biofuel production to ensure that there is still at net decrease in GHG emissions 

once these losses are taken into account.  One potential positive environmental outcome of this 

biofuel production would be a decrease in nitrogen leaching relative to the baseline scenario in 

many areas.  In the vast majority of the 30 states, this leaching would either decrease or increase 

by less than 1 kg N ha
-1

 yr
-1

 versus the baseline.  Nevertheless, in many counties in Nebraska, 

Minnesota, Iowa, Wisconsin, Illinois, and Indiana, nitrogen leaching could increase by over 5 kg 

N ha
-1

 yr
-1

. As well, it is unclear if these trends would continue long-term. 

Perennial grasses such as switchgrass have also been considered as possible sources of 

cellulosic ethanol, particularly on lands that are generally unprofitable for growing other crops, so 
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we have also simulated potential switchgrass yields and environmental outcomes across these 30 

states in order to evaluate these claims.  Unfortunately, there is not any current large-scale 

switchgrass productivity data, as with common field crops, so we could not perform the same sort 

of baseline evaluation.  Instead, we compared our baseline scenario to the recent Billion-Ton 

Update report.  The comparison results indicated that the EPIC–simulated yields of lowland 

switchgrass compared favorably to those reported in the Billion-Ton Update report. 

When looking at land that would be considered marginal for growing typical field crops, 

Montana, North Dakota, South Dakota, Nebraska, and Kansas stand out with relatively large 

areas of cultivated lands that fall under land capability classes IV – VII (Figure 26). On these 

soils with relatively poor quality for crop growth, switchgrass yield would be lower than the 

yields on all currently cultivated lands (Figure 27).   However, we determined that 34 potential 

biorefineries could be situated among ten of the Midwestern states, each of which could produce 

at least 89.3 ML ethanol yr
-1

 (23.6 million gallons yr
-1

) (Figure 28).  Spatially explicit biophysical 

modeling of cellulosic feedstock production on marginal lands within 80 km of a potential 

biorefinery suggested an annual potential ethanol production of ~21 GL yr
-1

 (5.6 billion gallons 

yr
-1

), or ~30% of the 2022 target for cellulosic biofuel mandated by US legislation.  Adding lands 

from the conservation reserve program (CRP) could also result in significant amounts of ethanol 

from switchgrass.  For example, from Iowa alone, an additional eight biorefineries could be 

situated using biomass from CRP lands.  However, harvesting cellulosic biomass from CRP lands 

might lead to degradation of ecosystem services provided by these lands, particularly with respect 

to nitrogen and carbon cycling, so further study of their would be needed. 

In summary, we have reported on the development of a spatially explicit national geodatabase to 

conduct biofuel simulation studies and provided initial simulation results on the potential of annual 

and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To 

accomplish this, we have employed sophisticated spatial analysis methods in combination with the 

process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE 

Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a 

sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that 

marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential 

conflicts between bioenergy and food production systems. This work, we believe, opens the door for 

further analysis on the characteristics of cellulosic feedstocks as major contributors to the 

development of a sustainable bioenergy economy. Examples of research questions that could be 

pursued with the modeling framework presented here include: 

 How can the modeling framework be improved? (e.g., adding irrigation, improving 

winter wheat simulations) 

 What is the performance of emerging biofuel feedstocks such as miscanthus, energy cane, 

and energy sorghum? Where are the best regions to grow them?   

 What is the potential of marginal lands across the conterminous USA to provide 

sustainable levels of biomass feedstocks to the cellulosic ethanol industry? 

 What are the full GHG impacts of diverse biofuel production systems? 



 

41 

5.0 References 

Bouton, J. H. 2002. Bioenergy crop breeding and production research in the southeast. Final 

report for 1996 to 2001. ORNL/SUB-02-19XSV810C/01. Available at 

http://www.osti.gov/bridge/ (verified 27 Apr. 2010). U.S. Department of Energy, 

Washington, DC. 

Brown, R.A., and N.J. Rosenberg. 1999. Climate change impacts on the potential productivity of 

corn and winter wheat in their primary United States growing regions. Climatic Change 

41:73– 107. 

Cassida, K.A., J.P. Muir, M.A. Hussey, J.C. Read, B.C. Venuto, and W.R. Ocumpaugh. 2005. 

Biomass yield and stand characteristics of switchgrass in south central U.S. environments. 

Crop Sci. 45:673–681. 

Crutzen P. J.; Mosier A. R.; Smith K. A., and W. Winiwarter. 2008. N2O release from agro-

biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. 

Phys. 8:389-395. 

CTIC: Crop residue management survey, Conservation Technology Information Center, West 

Lafayette, Indiana, USA, 2007. 

Cavero J., R.E. Plant, C. Shennan, D.B. Friedman, J.R. Williams, J.R. Kiniry, and V.W. Benson. 

1999. Modeling nitrogen cycling in tomato–safflower and tomato–wheat rotations. Agric Syst 

60:123–135. 

Chung, S.W., P.W. Gassman, L.A. Kramer, J.R. Williams, and R. Gu. 1999. Validation of EPIC 

for two watersheds in southwest Iowa. J. Environ. Qual. 28:971–979. 

Dale, B.E., and S. Kim. 2004. Global potential bioethanol production from wasted crops and crop 

residues. Biomass Bioenergy 26:361-375. 

Easterling, W.E., N.J. Rosenberg, M.S. McKenney, C.A. Jones, P.T. Dyke, and J.R. Williams. 

1992. Preparing the erosion productivity impact calculator (EPIC) model to simulate crop 

responses to climate change and the direct effects of CO2. Agric. For. Meteorol. 59:17–34. 

Egbendewe-Mondzozo A., S.M. Swinton, R.C. Izaurralde, D.H. Manowitz, and X. Zhang. 

Biomass supply from alternative cellulosic crops and crop residues: A spatially-explicit 

bioeconomic modeling approach. Biomass Bioenergy doi:10.1016/j.biombioe.2011.09.010. 

Eggemeyer, K.D., T. Awada, D.A. Wedin, F.E. Harvey, and X. Zhou. 2006. Ecophysiology of 

two native invasive woody species and two dominant warm-season grasses in the semiarid 

grasslands of the Nebraska Sandhills. http://digitalcommons.unl.edu/natrespapers/38/. 

EISA [Energy Independence and Security Act]. 2007. H.R. 6 110
th
 Congress of the United States 

of America, Government Printing Office, Washington, DC. 309 pp. 

Fargione J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne. 2008. Land clearing and the biofuel 

carbon debt. Science 319:1235–1238. 

Farr, T.G., P.A. Rosen, E. Caro, et al. 2007. The shuttle radar topography mission. Review of 

Geophysics 45, RG2004 doi:10.1029/2005RG000183. 

Fike, J.H., D.J. Parrish, D.D. Wolf, J.A. Balasko, J.T. Green, Jr., M. Rasnake, and J.H. Reynolds. 

2006. Long-term yield potential of switchgrass-for-biofuel systems. Biomass Bioenergy 

30:198–206. 

Fuentes, R.C., and C.M. Taliaferro. 2002. Biomass yield stability of switchgrass cultivars. Trends 

in New Crops and New Uses. p. 276–282. In J. Janick and A. Whipkey (ed.) ASHS Press, 

Alexandria, VA. 

Gassman, P.W., J. R. Williams, V.W. Benson, R.C. Izaurralde, L.M. Hauck, C.A. Jones, J.D. 

Atwood, J.R. Kiniry, and J.D. Flowers. 2005. Historical development and applications of the 

EPIC and APEX models. CARD Working Paper 05-WP. Center for Agricultural and Rural 



 

42 

Development, Iowa State University, Ames, Iowa, USA. Available at: 

http://www.card.iastate.edu/publications/synopsis.aspx?id=763. 

Gelfand, I., R. Sahajpal, X. Zhang, R.C. Izaurralde, K.L. Gross, and G.P. Robertson. Cellulosic 

biofuel production and CO2 mitigation potential from marginal lands in the US Midwest. 

(Submitted). 

Gosselin, D. C., V. Sridhar, F. E. Harvey, and J. W. Goeke. 2006. Hydrological effects and 

groundwater fluctuations in interdunal environments in the Nebraska Sandhills. Great Plains 

Research 16: 17-28. 

Izaurralde, R.C., N.J. Rosenberg, R.A. Brown, D.M. Legler, M. Tiscareño-López, and R. 

Srinivasan. 1999. Modeled effects of moderate and strong Los Niños on crop productivity in 

North America. Agric. For. Meteor. 94:259-268. 

Izaurralde, R.C., N.J. Rosenberg, R.A. Brown, and A.M. Thomson. 2003. Integrated assessment 

of Hadley Centre climate change projections on water resources and agricultural productivity 

in the conterminous United States. II. Regional agricultural productivity in 2030 and 2095. 

Agric. For. Meteor. 117:97-122. 

Izaurralde, R.C., J.R. Williams, W.B. McGill, N.J. Rosenberg, and M.C. Quiroga Jakas. 2006. 

Simulating soil C dynamics with EPIC: Model description and testing against long-term data. 

Ecol. Modelling 192:362-384. 

Izaurralde, R.C., J.R. Williams, W.M. Post, A.M. Thomson, W.B. McGill, L.B. Owens, and R. 

Lal. 2007. Long-term modeling of soil C erosion and sequestration at the small watershed 

scale. Climatic Change 80:73–90. 

Izaurralde, R.C., W.B. McGill, and J.R. Williams. 2012. Development and application of the 

EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies. p. 409-429 In 

A. Franzluebbers, R. Follett, and M. Liebig (eds.) Managing Agricultural Greenhouse Gases: 

Coordinated agricultural research through GRACEnet to address our changing climate, 

Elsevier, Amsterdam. 

Jones, C.A., P.T. Dyke, J.R. Williams, J.R. Kiniry, V.W. Benson, and R.H. Griggs. 1991. EPIC: 

an operational model for evaluation of agricultural sustainability. Agric. Syst. 37:341-350. 

Kiniry, J.R., D.J. Major, R.C. Izaurralde, J.R. Williams, P.W. Gassman, M. Morrison, R. 

Bergentine, and R.P. Zentner. 1995. EPIC model parameters for cereal, oilseed, and forage 

crops in the northern Great Plains region. Can. J. Plant Sci. 75:679-688. 

Kiniry, J.R., M.A. Sanderson, J.R. Williams, C.R. Tischler, M.A. Hussey, W.R. Ocumpaugh, J.C. 

Read, G. van Esbroeck, and R.L. Reed. 1996. Simulating Alamo switchgrass with the 

ALMANAC model. Agron. J. 88:602–606. 

Klingebiel, A.A., and P.H. Montgomery. 1961. Land Capability Classification. Agriculture 

Handbook No. 210, Soil Conservation Service, U.S, pp. 1–3. Department of Agriculture, 

Washington, DC.  

Legler, D.M., K.J. Bryant, and J.J. O’Brien. 1999. Impact of ENSO-related climate anomalies on 

crop yields in the US. Climatic Change 42:351–375. 

Lemus, R., E.C. Brummer, K.J. Moore, N.E. Molstad, C.L. Burras, and M.F. Barker. 2002. 

Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass 

Bioenergy 23:433–442. 

Monteith, J.L., 1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. 

Soc. London B 281:277-294. 

NRC. 2011. Renewable fuel standard: Potential Economic and Environmental effects of U.S. 

Biofuel Policy. Committee on Economic and Environmental Impacts of Increasing Biofuels 

Production, National Research Council, National Academy Press, Washington, DC. 423 pp. 

Perlack, R.D., B.J. Stokes (Leads). 2011. U.S. Billion-Ton Update: Biomass Supply for a 

Bioenergy and Bioproducts Industry. Report No. ORNL/TM-2011/224, Oak Ridge National 

Laboratory, Oak Ridge, TN. 227 pp. 

http://www.card.iastate.edu/publications/synopsis.aspx?id=763


 

43 

Puurveen, H., R.C. Izaurralde, D.S. Chanasyk, J.R. Williams, and R.F. Grant. 1997. Evaluation of 

EPIC’s snowmelt and water erosion submodels using data form the Peace River Region of 

Alberta. Can. J. Soil Sci. 77:41-49. 

Robertson, G.P., V.H. Dale, O.C. Doering, S.P. Hamburg, J.M. Melillo, M.M. Wander, W.J. 

Parton, P.R. Adler, J.N. Barney, and R.M. Cruse, C.S. Duke, P.M. Fearnside, R.F. Follett, 

H.K. Gibbs, J. Goldemberg, D.J. Mladenoff, D. Ojima, M.W. Palmer, A. Sharpley, L. 

Wallace, K.C. Weathers, J.A. Wiens, and W.W. Wilhelm. 2008. Sustainable biofuels redux. 

Science 322:49-50. 

Roloff, G., R. de Jong, and M.C. Nolin. 1998. Crop yield, soil temperature and sensitivity of 

EPIC under central-eastern Canadian conditions. Can. J. Soil Sci. 78:431–439. 

Searchinger, T., R. Heimlich, R.A. Houghton,F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. 

Hayes, and T.H. Yu. Use of U.S.2008.  Croplands for biofuels increases greenhouse gases 

through emissions from land-use change. Science 319:1238-1240. 

Simley, J.D., and J.W.J. Carswell. 2009. The National Map – Hydrography. U.S. Geological 

Survey Fact Sheet 2009-3054, pp 4. Available at: http://pubs.usgs.gov/fs/2009/3054/ 

(accessed February 2011). 

Sladden, S.E., D.I. Bransby, and G.E. Aiken. 1991. Biomass yield, composition, and production 

costs for eight switchgrass varieties in Alabama. Biomass Bioenergy 1:119–122. 

Slater, S., K. Keegstra, and T.J. Donohue. 2010. The US Department of Energy Great Lakes 

Bioenergy Research Center: Midwestern biomass as a resource for renewable fuels. 

Bioenergy Res. 3:3-5. 

Stockle, C.O., J.R. Williams, C.A. Jones, and N.J. Rosenberg. 1992a. A method for estimating 

the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of 

crops. I. Modification of the EPIC model for climate change analysis. Agric. Syst. 38:225-

238. 

Stockle, C.O., P.T. Dyke, J.R. Williams, C.A. Jones, and N.J. Rosenberg. 1992b. A method for 

estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and 

yield of crops. II. Sensitivity analysis at three sites in the midwestern USA. Agric. Syst. 

38:239-256. 

Thomason, W.E., W.R. Raun, G.V. Johnson, C.M. Taliaferro, K.W. Freeman, K.J. Wynn, and 

R.W. Mullen. 2004. Switchgrass response to harvest frequency and time and rate of applied 

nitrogen. J. Plant Nutr. 27:1199–1226. 

Thomson, A.M., R.A. Brown, S.J. Ghan, R.C. Izaurralde, N.J. Rosenberg, and L.R. Leung. 2002. 

Elevation dependence of winter wheat production in Eastern Washington State with climate 

change: A methodological study. Climatic Change 54:141-164. 

Tagil, S., and J. Jenness. 2008. GIS-based automated landform classification and topographic, 

landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J. Applied 

Sci. 8: 910–921. 

Tilman, D., R. Socolow, J.A. Foley, J. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. 

Searchinger, C. Somerville, and R. Williams. 2009. Beneficial biofuels—the food, energy, 

and environment trilemma. Science 325:270-271. 

USDA (United States Department of Agriculture). 2011. Fertilizer use and price. Available at 

http://www.ers.usda.gov/Data/FertilizerUse/, accessed on Oct. 18, 2011. 

USDA NASS (United States Department of Agriculture National Agricultural Statistics Service). 

1997. Usual Planting and Harvesting Dates for U.S. Field Crops. Available at 

http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf, 

accessed on Oct. 18, 2011. 

Williams, J.R., C.A. Jones, J.R. Kiniry, and D.A. Spanel. 1989. The EPIC crop growth model. 

Trans. ASAE 32:497-511. 

Williams, J.R. 1995. The EPIC model.  In Computer Models of Watershed Hydrology (Ed.: V.P. 

Singh). Water Resources Publications, Highlands Ranch, CO. pp 909-1000. 

http://www.ers.usda.gov/Data/FertilizerUse/
http://www.nass.usda.gov/Publications/Usual_Planting_and_Harvesting_Dates/uph97.pdf


 

44 

Wullschleger, S.D., E.B. Davis, M.E. Borsuk, C.A. Gunderson, and L.R. Lynd. 2010. Biomass 

production in switchgrass across the United States: Database description and determinants of 

yield. Agron. J. 102:1158-1168. 

Zak, D.R., D.F. Grigal, S. Gleeson, and D. Tilman. 1990. Carbon and nitrogen cycling during old 

field succession: Constraints on plant and microbial biomass. Biogeochemistry 11:111-129. 

Zhang, X., R.C. Izaurralde, D. Manowitz, T.O. West, W.M. Post, A.M. Thomson, V.P. Bandaru, 

J. Nichols, and J.R. Williams. 2010. An integrative modeling framework to evaluate the 

productivity and sustainability of biofuel crop production systems. Global Change Biol. – 

Bioenergy 2:258–277. 

 



 

45 

 

6.0 Appendix I 

Appendix I: Production accuracy of CDL 2010 for identifying three major crops. 

 

State 

 

Corn 

 

Soybean 

Winter 

Wheat 

 

State 

 

Corn 

 

Soybean 

Winter 

Wheat 

AL 87.9% 76.9% 18.7% MS 91.8% 93.3% 61.8% 

AR 87.9% 91.2% 0.0% MT 71.4% 17.3% 85.9% 

DE_MD 94.1% 91.1% 23.5% NC 94.2% 85.0% 23.8% 

GA 88.3% 52.1% 19.2% ND 91.0% 95.4% 84.3% 
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