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PREFACE 

The California Energy Commission Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. The PIER Program strives to conduct the most promising public 
interest energy research by partnering with RD&D entities, including individuals, businesses, 
utilities, and public or private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

This report is the final report for the “Online Analysis of Wind and Solar” project (contract 
number: 500-07-537, work authorization number: POTPO1-X11) conducted by the Pacific 
Northwest National Laboratory. The information from this project contributes to PIER’s Energy 
Systems Integration program area. 

For more information about the PIER Program, please visit the Energy Commission’s website at 
http://www.energy.ca.gov/research/, or contact the Energy Commission at 916-654-4878. 
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ABSTRACT 

The power system balancing process, which includes the scheduling, real-time dispatch (load 
following) and regulation processes, is traditionally based on deterministic models. Since the 
conventional generation needs time to be committed and dispatched to a desired megawatt 
level, the scheduling and load following processes use forecasts of load and wind and solar 
power production to achieve future balance between the conventional generation and energy 
storage on the one side, and system load, intermittent resources (such as wind and solar 
generation), and scheduled interchange on the other side. Although in real life the forecasting 
procedures imply some uncertainty around the load and wind/solar forecasts (caused by 
forecast errors), only their mean values are actually used in the generation dispatch and 
commitment procedures. Since the actual load and intermittent generation can deviate from 
their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of 
renewable resources) whether the system would actually be able to meet the conventional 
generation requirements within the look-ahead horizon, what additional balancing efforts 
would be needed as we approach real time, and what additional costs would be incurred by 
those needs.  

To improve the system control performance characteristics, maintain system reliability, and 
minimize expenses related to the system balancing functions, it becomes necessary to 
incorporate the predicted uncertainty ranges into the scheduling, load following, and, to some 
extent, into the regulation processes. It is also important to address the uncertainty problem 
comprehensively by considering all sources of uncertainty (load, intermittent generation, 
generators’ forced outages, etc.) in consideration. All aspects of uncertainty, such as the 
imbalance size (which is the same as the capacity needed to mitigate the imbalance) and 
generation ramping requirement, must be taken into account. The latter unique features make 
this work a significant step forward toward the objective of incorporating wind, solar, load, and 
other uncertainties into power system operations. 

Currently, uncertainties associated with wind and load forecasts, as well as uncertainties 
associated with random generator outages and unexpected disconnection of supply lines, are 
not taken into account in power grid operation. Thus, operators have few resources to weigh 
the likelihood and magnitude of upcoming events of power imbalance. In this project, funded 
by the California Energy Commission, a framework has been developed for incorporating 
uncertainties associated with wind, solar and load forecast errors, unpredicted ramps, and 
forced generation disconnections into the energy management system as well as generation 
dispatch and commitment applications. 

A new approach to evaluating the uncertainty ranges for the required generation performance 
envelope, including balancing capacity, ramping capability, and ramp duration, is proposed 
and implemented. The approach includes three stages: forecast and actual data acquisition, 
statistical analysis of retrospective information, and prediction of future grid balancing 
requirements for specified time horizons and confidence levels. Assessment of the capacity and 
ramping requirements is performed using a specially developed probabilistic algorithm based 
on a histogram analysis, incorporating all sources of uncertainties, both continuous (wind and 
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load forecast errors) and discrete (forced generator outages and start-up failures). A new 
method called the “flying brick” technique has been developed to evaluate the look-ahead 
required generation performance envelope for the worst-case scenario within a user-specified 
confidence level. A self-validation algorithm has been developed to validate the accuracy of the 
confidence intervals.  

To demonstrate the validity of the developed uncertainty assessment methods and its impact on 
grid operation, a framework for integrating the proposed methods with California Independent 
System Operator (CAISO) market design has been developed. The software production tool has 
been developed and was installed at the CAISO control room in May 2011 for testing and 
benchmarking. The tool received very positive feedback from the CAISO specialists. 

Keywords: Regulation reserve requirement, area control error, ancillary services, Control 
Performance Standards, Balancing Authority ACE (Area Control Error) Limit: BAAL, solar 
generation, load forecast, wind generation forecast, probability density function, swinging door 
algorithm. 

Please use the following citation for this report: 

Makarov, Yuri V., Pavel V. Etingov, Krishnappa Subbarao, Jian Ma (Pacific Northwest National 
Laboratory), and Clyde Loutan (CAISO). 2011. Online Analysis of Wind and Solar, Final Project 
Report. California Energy Commission. CEC-500-2011-XXX.  
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EXECUTIVE SUMMARY 

This research was conducted by Pacific Northwest National Laboratory (PNNL) for the 
California Energy Commission and the California Institute for Energy and Environment.  

Because conventional generators need time to be committed and dispatched to a desired 
megawatt level, scheduling and load following processes use load and wind power production 
forecasts to achieve future balance between conventional generation and energy storage on the 
one side and system load, intermittent resources (such as wind and solar generation), and 
scheduled interchange on the other side. The power system balancing process, which includes 
scheduling, real-time dispatch (load following), and regulation processes, is traditionally based 
on deterministic models. 

Uncertainties in forecasting the output of intermittent resources such as wind and solar 
generation, as well as system loads, are not reflected in an existing energy management system 
(EMS) or tools for generation commitment, dispatch, and market operation. With the growing 
penetration of intermittent resources, these uncertainties could result in significant unexpected 
load-following and dispatch problems, and pose serious risks to control and operation 
performance characteristics as well as the reliability of a power grid. Without knowing the risks 
posed by the uncertainties, system operators have limited means to weigh the likelihood of 
occurrence and the magnitude of problems to mitigate adverse impacts caused by them. Some 
important questions need to be addressed in counteracting the impact of uncertainties; for 
instance, whether and when one should start more units to balance against possible fast ramps 
in the future over a given time horizon. 

Furthermore, these uncertainties could require procuring additional costly balancing services. 
Major unexpected variations in wind power, unfavorably combined with load forecast errors 
and forced generator outages could cause significant power mismatches, which could be 
essentially unmanageable without knowing these variations in advance.  

Because the actual load and intermittent generation can deviate from forecasts, it becomes 
increasingly unclear (especially with the increasing penetration of renewable resources) 
whether the system would be actually able to meet the conventional generation requirements 
within the look-ahead horizon, what additional balancing efforts would be needed as we 
approach real time, and what additional costs would be incurred by those needs.  

In order to improve the system control performance characteristics, maintain system reliability, 
and minimize expenses related to the system balancing functions, it becomes necessary to 
incorporate the projected uncertainty ranges into the scheduling, load following, and, to some 
extent, into the regulation processes. This need has been realized already, and some wind 
forecast service providers offer uncertainty information for their forecasts. Various researchers 
are developing methodologies and tools to incorporate these uncertainties into power system 
operations. Unfortunately, in many cases, these efforts are limited to wind generation 
uncertainties only and ignore the fact that there are additional sources of uncertainty such as 
system loads and forced generation outages. Most of these efforts consider only the uncertainty 
ranges for the megawatt imbalances and do not address additional essential characteristics such 
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as ramps and ramp duration uncertainties. This limited consideration could be misleading to 
power system operators responsible for system reliability and control performance 
characteristics. 

It is very important to address the uncertainty problem comprehensively by including all 
sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into 
consideration. All aspects of uncertainty, such as the imbalance size (which is the same as the 
capacity needed to mitigate the imbalance) and generation ramping requirement, must be taken 
into account. The latter unique features make this work a significant step forward toward the 
objective of incorporating wind, solar, load, and other uncertainties into power system 
operations. 

In this project, all uncertainties associated with wind power generation forecasting, load 
demand forecasting, and generation supply interruptions caused by forced outages are taken 
into account in the evaluation of uncertainty ranges for the required generation performance 
envelope including balancing capacity, ramping capability, and ramp duration. A probabilistic 
algorithm, based on a histogram analysis to assess the capacity and ramping requirements, is 
presented. Simulation was performed using California Independent System Operator (ISO)’s 
system model and data. This report also presents these simulation results confirming the 
validity and efficiency of the proposed solutions. 

The work pursues the following objectives:  

• Develop a probabilistic model to evaluate uncertainties of wind and load forecast errors 
and to provide rapid (every 5 minutes) look-ahead (up to 5-8 hours ahead) assessments 
of their uncertainty ranges.  

Figure 1 shows the conceptual picture of the probabilistic capacity requirements display. 
The light and dark orange areas represent the evaluated capacity ranges for different 
confidence levels. The blue curve is the generation schedule. The gray area is the 
available balancing reserve, which is calculated from the margin of online generators. 
The system would have adequate balancing reserve with a specified confidence level if 
the available balancing reserve (the gray area) covers the entire net load uncertainty 
range (the dark or light orange area). Otherwise, deficiency of balancing reserve occurs. 
This means that there is a certain probability that the online generation will not be able 
to follow the net load requirement. In this case it is necessary to commit or de-commit 
additional generators to achieve the desired confidence level for the balancing reserve. 

• Elaborate similar models to evaluate uncertainties caused by generator random forced 
outages, failures to start up, and contingency reserve activation processes. 
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Figure 1: Probabilistic Display Concept 

 

• Create an integrated tool that consolidates the above-mentioned continuous and discrete 
random factors, contributing to the overall uncertainty, to evaluate look-ahead, worst-
case balancing generation requirements (performance envelopes) in terms of the 
required capacity, ramping capability, and ramp duration. 

• Build a methodology and procedures for self-validation of the predicted performance 
envelope for each look-ahead interval. 

• Develop visualization displays to communicate information about the expected ramps 
and their uncertainty ranges. 

• Develop a framework of the tool integration into the California Independent System 
Operator’s (CAISO’s) EMS and market systems 

• Use actual CAISO data to perform simulation.  

The following results have been achieved in this work: 

Innovative methodology and software tools have been developed that are capable of evaluating 
future generation requirements, including the required capacity, ramping capability, and ramp 
duration capability (performance envelope) in view of uncertainties caused by wind and solar 
generation and load forecast errors. The approach includes three stages: 1) forecast and actual 
data acquisition, 2) statistical analysis of retrospective information, and 3) prediction of future 
grid balancing requirements for specified time horizons and confidence intervals  
Assessment of the capacity and ramping requirements is performed using a specially developed 
probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty 
and parameters of a continuous and discrete nature (Figure 2). 

• A “flying brick” method has been developed to assess the look-ahead worst-case 
performance envelope requirement to be able to enable the system to accommodate the 
uncertainties with certain specified degree of confidence (Figure 3). The “flying brick” 
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concept is to simultaneously include the ramp rate, ramp duration, and capacity 
requirements directly in the balancing process. 

 
Figure 2: Probabilistic Assessment Methodology Concept 

 

 

Figure 3: “Flying Brick” Method 

 

 
• A self-validation approach has been proposed. The purpose of the self-validation 

algorithm is to verify that the uncertainty ranges predicted based on retrospective 
information are valid for the future dispatch intervals. 
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• An industrial software tool has been developed and tested. An example of software tool 
graphical user interface (GUI) is presented in Figure 4. 

• Simulations using actual data provided by this project’s CAISO engineering support 
team have been carried out. Simulation results have shown that the proposed 
methodology is quite accurate and efficient.  

Figure 4: Software Tool GUI 

 

 

It has been found that the tool is capable of predicting intra-hour deficiency in generation 
capability. This deficiency of balancing resources can cause price spikes in the real-time market. 
As an example, one can see in   

Figure 5 that a greater than 300 MW deficiency in the system generation capability is predicted 
in the 10- to 25-min look-ahead period (red error bars). Figure 6 shows the CAISO’s real-time 
market price information. Price spikes occurred at CAISO market at the same time at which 
generation capability deficiency was predicted by the tool.  

• The concept of probabilistic tool integration into EMS has been developed. The concept 
includes three levels of integration: a passive level, an active level, and a proactive level. 
The passive integration level implies integration of wind forecast information and its 
visualization without introducing any changes to the EMS algorithms. On the active 
level, the unit commitment (UC) and economic dispatch (ED) procedures are repeated 
several times for every dispatch interval to determine whether the system can meet the 
limits of  generation requirements caused by uncertainties for a certain confidence level 
(Figure 7). The system “breaking points” are communicated to the user. The proactive 
level requires some modifications of the UC and ED algorithms in order to directly  
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incorporate uncertainties into these procedures (Figure 7). In this case, the generation 
units will be committed and dispatched, so that these uncertainties would not create 
“breaking points.” 

 
Figure 5: Real-Time Capacity Requirements Prediction (6/24/11 16:15) 

 
Figure 6: CAISO Real-Time Price (6/24/11)1 

 

                                                      

1 Available at http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-
Time_Jun_24_2011.pdf 

http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-Time_Jun_24_2011.pdf
http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-Time_Jun_24_2011.pdf


 

xix 

Figure 7: “Active” and “Proactive” Integration Approaches 

 

 
The following recommendations for the next phase have been made: 

• Integration of the tool with the wind (solar) forecast service providers’ information to 
improve the accuracy of the balancing requirements prediction. 

• Continue development and implementation of proactive integration methodology to 
incorporate the tool into CAISO market and unit commitment procedures.  

• Development and implementation of a new generation of statistical methods to address 
non-stationary characteristics of forecast errors. Further improve the accuracy and 
robustness of the tool. 

• Probabilistic modeling of uninstructed deviation of generating units 

• Developing a decision support system using the PNNL tool to help dispatchers address 
potential issues of the system balancing process. 

• Incorporating consideration of the new Balancing Authority ACE (Area Control Error) 
Limit (BAAL) standard into balancing requirements assessment methodology. 

• Addressing data interpretation and quality issues to enhance robustness of the tool.  

The planned commercialization activities include a wide dissemination and technology transfer 
effort with the ultimate objective to install the tool in several control centers in California. 
Among these activities, the highest priority tasks will include a proactive integration of the 
software tool in the CAISO control center, its comprehensive testing and final refinements. The 
results of this effort will create a platform for a wider reach in California by serving as an 
example for other control areas and utilities in this state. It is expected that several more 
organizations will become interested in installing the tool in their control centers. In parallel 
with the California activities, the results of this project will be widely distributed via Web 
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seminars organized for the industry and by presenting them at the industry forums, including 
Utility Wind Integration Group, Western Electricity Coordinating Council groups, North 
American Electric Reliability Corporation subcommittees, and conferences. It is expected that 
through these activities (supported by the U.S. Department of Energy), the impact of this project 
will be extended from the statewide level to the nationwide level. 
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CHAPTER 1: 
Introduction 
Background 
The work described in this report was performed by Pacific Northwest National Laboratory 
(PNNL) and funded by the California Energy Commission (CEC).  

Because conventional generators need time to be committed and dispatched to a desired 
megawatt (MW) level, the scheduling and load following processes use load and wind power 
production forecasts to achieve future balance between the conventional generation and energy 
storage on the one side, and system load, intermittent resources (such as wind and solar 
generation) and scheduled interchange on the other side. The power system balancing process, 
which includes the scheduling, real-time dispatch (load following) and regulation processes, is 
traditionally based on deterministic models. 

Uncertainties in forecasting the output of intermittent resources, such as wind and solar 
generation, as well as system loads are not reflected in  existing energy management systems 
(EMS) and tools for generation commitment, dispatch and market operation. With the growing 
penetration of intermittent resources, these uncertainties could result in significant unexpected 
load-following and dispatch problems, and pose serious risks to control and operation 
performance characteristics as well as the reliability of a power grid. Without knowing the risks 
posed by the uncertainties, the system operators have limited means to weigh the likelihood of 
occurrence and the magnitude of problems to mitigate adverse impacts caused by them. Some 
important questions need to be addressed in counteracting the impact of uncertainties; for 
instance, whether and when one should start more units to balance against possible fast ramps 
in the future over a given time horizon. 

Furthermore, these uncertainties could require procuring additional costly balancing services. 
Major unexpected variations in wind power that are unfavorably combined with load forecast 
errors and forced generator outages could cause significant power mismatches, which could be 
essentially unmanageable without knowing these variations in advance.  

Because the actual load and intermittent generation can deviate from the forecasts, it becomes 
increasingly important to assess with increasing penetration of renewable resources whether 
the system would actually be able to meet the conventional generation requirements within the 
look-ahead horizon, what additional balancing efforts would be needed as we approach real 
time, and what additional costs would be incurred by those needs.  

In order to improve the system control performance characteristics, maintain system reliability, 
and minimize expenses related to the system balancing functions, it becomes necessary to 
incorporate the projected uncertainty ranges into the scheduling, load following, and, to some 
extent, into the regulation processes. This need has been realized already, and some wind  
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forecast service providers offer the uncertainty information for their forecasts. Works are in 
place to develop methodologies and tools to incorporate these uncertainties into power system 
operations.  

Some wind forecast service providers offer uncertainty information for their forecasts. For 
instance, AWS Truepower (Zack 2006) and 3TIER (Lerner et al. 2009) companies developed 
wind power generation forecasting tools with built-in capability to assess wind generation 
uncertainty. Similar tools have been developed in Europe. In the context of a European Union 
project, ANEMOS, a tool for on-line wind generation uncertainty estimation based on adaptive 
re-sampling or quantile regression has been developed (Kariniotakis 2008). A German 
company, Energy and Meteo Systems, developed a tool for wind generation forecasting, 
assessing the uncertainty ranges associated with wind forecast, and predicting extreme ramping 
events (Energy & Meteo Systems 2007). Pinson et al. (2006) discusses a wind generation interval 
forecast approach using the quantile method. Luig et al. (2001) used statistical analysis based on 
standard deviation to predict wind generation forecast errors. Work is underway to incorporate 
these uncertainties into power system operations (Kehler et al. 2010; Maggio et al. 2010). In 
Constantinescu et al. (2011), Wang et al. (2008), and Ummels et al. (2007), wind power 
generation is taken into account in the unit commitment problem. 

Unfortunately, in many cases, these efforts are limited to wind generation uncertainties only, 
and ignore the fact that there are additional sources of uncertainty such as system loads and 
forced generation outages. Most of the works are considering only the uncertainty ranges for 
the MW imbalances, and do not address additional essential characteristics such as ramps and 
ramp duration uncertainties. 

It is very important to address the uncertainty problem comprehensively, by including all 
sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into 
consideration. All aspects of uncertainty such as the imbalance size (which is the same as 
capacity needed to mitigate the imbalance) and generation ramping requirement must be taken 
into account. The latter unique features make this work a significant step forward toward the 
objective of incorporating of wind, solar, load, and other uncertainties into power system 
operations. 

In this project, the uncertainties associated with wind power generation forecasting, load 
demand forecasting, and generation supply interruptions caused by forced outages are taken 
into account in the evaluation of uncertainty ranges for the required generation performance 
envelope, including balancing capacity, ramping capability and ramp duration. A probabilistic 
algorithm, based on the proposed histogram analysis to assess the capacity and ramping 
requirements, is presented. Simulation was performed using California Independent System 
Operator’s (ISO’)s system model and data. This report presents these simulation results 
confirming the validity and efficiency of the proposed solutions. 

A probabilistic software tool capable of determining the impact of wind, solar, load and 
generation uncertainties on the power grid is currently under development. In the research, an 
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assessment of generation capacity requirements means evaluation of uncertainty ranges of 
generation requirements in order to meet the power system balance. 

Goals of This Project 
The objective of this project is to develop a tool to estimate California Independent System 
Operator’s (CAISO’s) upward and downward balancing requirements in terms of its capacity, 
ramp rate and ramp duration for a user-specified time horizon (several hours ahead or the next 
day). Based on a scientific approach that uses a specified level of confidence, the estimate will 
indicate balancing requirements without compromising reliability or compliance with 
mandatory control performance standards.  

This report discusses the following developments:  

• a probabilistic model to evaluate uncertainties of the wind and load forecast errors and 
to provide rapid (every 5 minutes) look-ahead (up to 5-8 hours ahead) assessments of 
their uncertainty ranges 

• similar models to evaluate uncertainties caused by random generator forced outages 

• an integrated tool that consolidates the abovementioned continuous and discrete 
random factors contributing to the overall uncertainty to evaluate look-ahead worst-case 
balancing generation requirements (performance envelopes) in terms of the required 
capacity, ramping capability, and ramp duration  

• a methodology and procedures for self-validation of the predicted performance 
envelope for each look-ahead interval 

• visualization displays to communicate information about the expected ramps and their 
uncertainty ranges 

• use of the actual CAISO data to perform simulation  

• review of the actual dispatch scheduling processes in CAISO  

The proposed approach to evaluate the uncertainty ranges for a required generation 
performance envelope, including the balancing capacity, ramping capability and ramp 
duration, consists of the following three stages (Figure 8): 

1. The first stage deals with acquiring statistical data. Retrospective information for a user-
specified moving window (e.g., for one month), such as forecasted system load and its 
actual values, wind and solar generation forecasts and their actual values, as well as 
generation schedules, are needed to perform the proposed statistical analysis and to build a 
projection of the balancing requirements into the future. 

2. The second stage is a statistical analysis of the retrospective information acquired at the first 
stage. It consists of the following parts: 

• capacity requirements analysis based on an empirical statistical analysis of forecast 
errors 
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• ramping requirements analysis based on the “swinging door” algorithm 

• generation forced outage analysis based on the Markov chain reliability model 
 

Figure 8: Methodology Concept 

 

 
3. The third stage is an evaluation of future generation requirements for specified time 

horizons, e.g., 5 or 8 hours ahead. Examples of generation requirements that can be 
evaluated are regulation and load-following capacity requirements, ramping requirements, 
contingency reserve requirements, etc., for different confidence levels such as 80, 85, 90, and 

Forecast error, % 

-20    -10     0     10     20 

P, MW 

Future, h 0       1       2       3      4 

80 

85 

90 

95 

Confidence intervals, % Generators schedule 

Statistical and actual data acquisition 

Statistical analysis  

Evaluation of future generation requirements for specified time horizon 

Cumulative distribution 
 

Generation is not capable to 
follow the demand 

Maximum capacity 

Actual values 

Forecasted values (1hour-
ahed) 

  
 

  
 

P, MW 

Past, day 
7    6   5   4   3   2   1   0 

7-day time frame Sliding 
 

Generators 
schedule  

 

  
 

 

Data Base 

Wind and load data 

   



 

5 

95% (as shown in Figure 8).These requirements can be compared against the actual 
generation capability of generators that are currently or will be online within the look-ahead 
horizon and that are performing relevant services. If the actual generation capability is not 
matching the requirements, a warning will be issued to system operators. This would 
constitute a “passive” integration of wind-related uncertainties into the system operations. 
In a proactive approach, the look-ahead generation requirement information will be fed 
back into the generation commitment and dispatch procedures in order to modify them and 
to make sure that the generators are committed on time and dispatched to be able to meet 
the capacity, ramping and ramp duration requirements with a certain level of confidence for 
the entire look-ahead period. 

Report Organization 
The report is organized as follows. Chapter 2 discusses evaluation of uncertainties associated 
with the system load forecast and wind generation forecast using different statistical methods. 
Chapter 3 reviews the current operating processes and schedules followed by the CAISO. 
Chapter 4 presents software prototype design. Chapter 5 provides testing and simulation 
results. Chapter 6 provides conclusions and future work;. a list of references is provided in 
Chapter 7 and a glossary in Chapter 8. 

Appendices are also included that provide additional information on the ramping capability 
analysis methodology and forced-outage model. 
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CHAPTER 2: 
Load and Wind/Solar Generation Uncertainty 
Evaluation 
This section describes an innovative methodology that is capable of evaluating future 
generation requirements including the required capacity, ramping capability, and ramp 
duration capability (these characteristics form the so-called performance envelope). The 
methodology incorporates uncertainties caused by wind generation and load forecast errors as 
well as (potentially) uninstructed generation deviations of conventional generation. These tools 
meet the industry need in a more robust (that is, more reliable for a range of possible future 
operating conditions) assessment of the balancing reserves required in a control area. 

The previous works discussed in the introduction (Zack 2006; Lerner et al. 2009; Kariniotakis 
2008; Energy & Meteo Systems 2007; Pinson et al. 2006; Luig et al. 2001; Kehler et al. 2010; 
Maggio et al. 2010; Constantinescu et al. 2011; Wang et al. 2008; Ummels et al. 2007) address 
only a single source of uncertainty: the one related to wind generation. Because the influence of 
the other sources of uncertainty is not reflected in the assessment, the resulting confidence 
intervals are of limited value to the system operators. Unlike these existing approaches, the 
methodology developed in this report addresses all sources of uncertainty, including the 
uncertainties surrounding the load forecasts, uncertainties associated with the forced generator 
outages, and uncertainties caused by forced generation outages (see Appendix B). 

A “flying brick” method was developed in this study to assess the look-ahead worst-case 
performance envelope requirements and to be able to make sure the system has the capability to 
balance against the uncertainties with a certain specified degree of confidence. The “flying 
brick” concept is to include the ramp rate, ramp duration, and capacity requirements 
simultaneously and directly in the balancing process, and then look for the worst combinations 
of these parameters located along the vertices’ trajectories of the “flying brick.”  

Generation Reserves 
According to the Western Electricity Coordinating Council (WECC), standard power systems 
are required to maintain the following types of reserves (WECC 2007): 

Operating reserve:  the generation capacity above the amount needed to supply firm system 
demand that is required to provide for regulation, to balance against the load forecasting error 
and equipment forced and scheduled outages, and to maintain local area reliability. It consists 
of spinning reserve and non-spinning reserve.  

Spinning reserve: unloaded generation that is synchronized, automatically responsive to 
frequency deviations, and ready to serve an additional demand. It consists of regulating reserve 
and contingency reserve.  
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Non-spinning reserve: 1. The generating reserve that is not connected to the system but capable 
of serving the demand within a specified time from its activation. 2. Loads or exports that can 
be removed from the system in a specified time. 

Regulating reserve: an amount of reserve responsive to automatic generation control (AGC), 
which is sufficient to provide normal regulating margin.  

Contingency reserve – The capacity available to be deployed by a balancing authority (BA) to 
meet the North American Electric Reliability Corporation (NERC) and WECC contingency 
reserve requirements. Increasing penetration of wind and solar generation leads to growing 
uncertainties in the reserve requirements.  

In the study, the term “assessment of generation capacity requirements” refers to the evaluation 
of uncertainty ranges for generation requirements needed to achieve power system balance. 
These uncertainty ranges define intervals within which the future generation requirement is 
expected to lie with a specified level of confidence. 

Uncertainties associated with wind and solar intermittency, electrical load variability, and 
unexpected generation outages are considered in this report. These uncertainties affect the load 
following needs as well as regulating and contingency reserve requirements. Details regarding 
the load and wind/solar generation uncertainties are given in this section; description of the 
generation forced outage model is presented in Appendix B. In general, the generation capacity 
allocation is performed by the unit commitment (UC) process, as shown in Figure 9 (WSCC 
1998).  

To integrate the probabilistic tool into an EMS, it is necessary to take into account the operating 
practices of the given power system. In Chapter 3, details of the operating practices at CAISO 
are presented. 

Figure 9: Allocation of Generation Unit Capacity 
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Load Forecast Uncertainty 
The uncertainty associated with the load forecast is one of the most influential factors 
influencing the overall uncertainty. In Figure 10, the load forecast uncertainty for one of the 
balancing authorities is shown. The solid blue curve in Figure 10 (a) shows the hourly average 
demand over one month, while the red curve shows the day-ahead load forecast for the same 
time period. The load forecast error is presented in Figure 10 (b). One can see that day-ahead 
load forecast has an error of upto about ±8%. What is also important is the fact that the system 
load is normally more significant than wind or solar generation, so that even if the load forecast 
is more accurate than the forecast for the intermittent resources (in terms of the percentage 
error), the MW values of the errors can be quite comparable. 

 
Figure 10: Load Fluctuation and Uncertainty: a) Day-Ahead Load Forecast vs. Actual Load; 

b) Load Forecast Error 

 

a) 

 

b) 
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Net Load Uncertainty 
Wind and solar generation and power system load demand have a number of similar features: 

• Wind/solar generation and most of the load are non-dispatchable resources. 

• They both have cycling behavior. 

• They both depend on the weather conditions. 

• They deviate from the forecast, etc. 

Actually, wind generation has more in common with electrical load than with traditional 
(dispatchable) generation; therefore, wind generation can be considered as a negative load. At 
the same time, electrical load and wind/solar generation cannot be considered as independent 
statistical variables. The correlation between load and wind generation forecast errors is shown 
in (Constantinescu et al. 2011; Wang et al. 2008). To address this issue, the net load concept is 
commonly used in wind integration studies to assess the impact of load and wind generation 
variability on the power system operation. The net load has the following definition: net load is 
total electrical load minus total wind generation output, minus total solar generation output, 
plus the interchange. 

Statistical Methods to Evaluate the Forecast Uncertainty 
There are different approaches that can be used for the uncertainty analysis of the forecast 
errors. In this work, we analyzed two methods in terms of their applicability for the purpose of 
this project: distribution fitting and empirical probability. 

Distribution Fitting Approach 
Probability distributions are based on assumptions about a specific standard form of random 
variables; for example, normal, uniform or Poisson distributions. Based on the standard 
distributions and selected set of its parameters, they assign probability to the event that the 
random variable takes on a specific, discrete value, or falls within a specified range of 
continuous values (MathWorks® 2010).  

Selecting a distribution model means choosing a standard probability distribution and then 
adjusting its parameters to fit the data (MathWorks® 2010). For example, in (CAISO 2007) it is 
assumed that the load and wind forecast errors are described by the truncated normal 
distribution (TND). 

The probability density function (PDF) of the truncated normal distribution is: 
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where µ = the mean value of the non-truncated normal distribution; 

 σ = the standard deviation of the non-truncated normal 
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 a, b = upper and lower limits of the non-truncated normal 
distribution;  

  ( , ),x a b a b∈ −∞ ≤ < ≤ ∞ ;  
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 ( )NCDF ⋅  = the cumulative distribution function (CDF) of the 
standard normal distribution. 

The cumulative distribution function of the truncated normal distribution is: 
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An example of the load forecast error distribution is presented in Figure 11. The blue bars 
represent the histogram of the real load forecast error. The red curve depicts the TND of the 
load forecast error. 

Figure 11: Load Forecast Error Histogram 
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Empirical Probability Approach 
When data do not follow a standard probability distribution, nonparametric models based on 
empirical probability distributions are more appropriate. These models have the advantage of 



 

11 

making no assumptions about the form of the underlying distribution, so no parameter 
estimates are needed (MathWorks® 2010). The idea behind building the empirical Cumulative 
Distribution Function (CDF) is relatively simple. This is a function that assigns probability 1/n 
to each of n observations in the analyzed dataset. The CDF for a given value x of a parameter is 
calculated by adding all probabilities for the samples that have values smaller than x. Its graph 
has a stair-like appearance. An example of an empirical distribution (net load forecast error 
distribution and empirical CDF) are presented in Figure 12. 

 
Figure 12: Net Load Forecast Error Distribution: a) Histogram; b) Empirical CDF 
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Assessment of the Generation Capacity Uncertainty 
A statistical approach based on the time-varying empirical probability density function (PDF) is 
used in the study to determine the combined uncertainty ranges of the wind/solar and load 
forecast errors, as well as the effect of the forced generation outages. In this section, we only 
consider the wind and load forecast error uncertainties. The solar forecast error can be included 
into the consideration in the same way as the wind forecast error. The methodology to 
incorporate the generator forced-outages uncertainty will be given in the following sections. 

In our approach, wind and load forecast errors are summed together for each dispatch interval 
in the past within a sliding window. The sliding window size is selected to collect sufficient 
statistical information regarding the forecast errors. The information can be accumulated 
separately for each forecast horizon; for instance, for the hour-ahead forecast, two hours ahead 
forecast, and so on. Based on the collected statistics, the approach evaluates the percentile 
intervals (also called confidence intervals or uncertainty ranges) for each forecast horizon and 
different level of confidence. These intervals are assumed to be the same in the future dispatch 
interval; that is, for the next hour, the hour after that, and so on.  

An example, based on data from a real power system, of the statistical characteristics of wind 
generation forecast for different look-ahead dispatch intervals (1, 2, 3, 4, and 5 hours ahead) is 
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presented in Figure 13. Figure 13 (a) shows the empirical PDF and Figure 13 (b) shows the 
empirical CDF. 

The uncertainty range defines an interval within which a random parameter is expected to lie 
with a specified level of confidence. To determine an uncertainty range, it is necessary to find 
two solutions of the inverse CDF function corresponding to the desired percentiles on both ends 
of the distribution. The definition of the inverse CDF is the following: 

For a strictly increasing and continuous CDF, for a given value p of the probability, the inverse 
CDF function 1( ), [0,1]CDF p p− ∈  is the unique real number x such that CDF(x) = p. The inverse 
of the CDF is called the quantile function. An evaluation of the quantile functions often involves 
special numerical methods. 

Our task is to find the forecast error range x1…x2 to the given level of confidence p 

 

2

1

2 1 1 2( ) ( ) ( ) ( )
x

x

CDF x CDF x p x X x PDF x dx− = ≤ ≤ = ∫
 (3) 

Inverse CDF functions for wind generation forecast errors for different look-ahead periods are 
presented in Figure 14. The uncertainty ranges are evaluated at a 95% confidence level. The 95% 
uncertainty range corresponds to the 2.5 to 97.5 percentile range of the distribution reflecting 
the uncertainty (Figure 14). It is clear that the size of uncertainty ranges depends on the look-
ahead time. It can be seen from Figure 14 that for the longer look-ahead periods, the uncertainty 
range becomes larger. 

 

Figure 13: Statistical Characteristics of Wind Generation Forecast for Different Look-Ahead 
Periods: a) PDF; b) Empirical CDF 
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b) 
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Figure 14: Wind Generation Forecast Inverse CDFs for Different Look-Ahead Intervals and 
95% Uncertainty Ranges 

Assessment of Ramping Uncertainties 
Assessment of ramping requirements is very important in case of integration of large amounts 
of wind generation into a power system. Sudden wind generation ramps can happen frequently 
and cause additional need for fast responsive generation units available on-line. 

The required ramping capability needed to follow the net load curve, which covers all system 
imbalances, can be derived from the shape of the regulation and load following curves – see 
details in Makarov et al. (2009). The “swinging door” algorithm is proposed for this purpose 
(Makarov et al. 2009).  

Figure 15 demonstrates the idea of the “swinging door” approach. A point is classified as a 
“turning point” whenever the next point in the sequence causes any intermediate point to fall 
outside a parallelogram defined by the admissible accuracy range ±ε∆G. For instance, for point 
3, one can see that point 2 stays inside the window abcd. For point 4, both points 2 and 3 stay 
within the window abef. But for point 5, point 4 lies outside the window defined between 
points 1 and 5, and therefore point 4 is marked as a turning point. 

Based on this analysis, we conclude that points 1, 2, and 3 correspond to the different 
magnitudes of the regulation signal, π1, π2 and π3, whereas the ramping requirement at all of 
these points is the same, ρ1-3 (see Figure 16) The swinging door algorithm also determines the 
ramp duration δ. 
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Figure 15: Concept of the "Swinging Door" Algorithm 

 

Figure 16: "Swinging Door" Algorithm – Obtaining Capacity, Ramp, and Ramp Duration 
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The regulation capacity and ramping requirements are inherently related. Insufficient ramping 
capability could cause additional capacity requirements. A multivariable statistical analysis can 
be applied to provide a concurrent consideration of the regulation and load following capacity, 
ramping, and ramp duration requirements. For the regulation/load following requirement 
curve, the “swinging door” algorithm is applied to determine the sequences of its magnitudes 
and ramps, ,..., 21 ππ  , ,..., 21 ρρ , and 1 2, ,...δ δ . The triads ( ), ,i i iπ ρ δ  can be used to populate the 
three-dimensional space of these parameters (Figure 17). Let us define a rectangular box in the 
space that contains a certain percentage of the points. If a point lies outside the box, the 
regulation/load following requirements are not met at this point. We will require that this 
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probability must be below a certain minimum probability, Pmin. Our task is to find a position of 
the walls of the probability box that corresponds to a given Pmin. For given ranges of these three 
parameters, ρπ ∆∆ ,  and δ∆ , a box can be plotted in this space, so that some triads are inside the 
box ( inN ), and some are outside ( outN ). This approach helps determine the probability of being 
outside the box, 

 inout

out
out NN

Np
+

=
 (4) 

For example, assume that the confidence level for the analysis is established at 94%. Then for 
each dimension of the box, we can assign equal probability for finding a point outside the box 
due to any of the three possible reasons: insufficient generation capacity (incremental or 
decremental), insufficient ramping capability (upward and downward), or insufficient ramp 
duration capability. This results in a requirement that only 1% of the points should be left 
outside the two sides of the box along any of the analyzed coordinates while adjusting its walls. 
Of course, we should be careful not to double or triple count points that are found outside of the 
box due to more than one reason. The resulting size of the box determines the ranges of the 
generation requirements for the capacity, ramp, and ramp duration characteristics that are 
sufficient to meet the system needs in 94% of the cases. 

 
Figure 17: Concurrent Consideration of the Capacity, Ramping and Duration Requirements 
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“Flying Brick” Method 
Figure 18 illustrates the idea of the flying brick method (Makarov et al. 2011). Three uncertainty 
ranges, i.e., capacity, ramp rate and ramp duration requirements, are represented as a three-
dimensional probability box, i.e. the flying brick. The blue curve shows the generation 
requirements that meet the expected net load. The red curve refers to actual net load, which can 
deviate from its expected values. Suppose t0 is the current moment. At this point, the 
multivariable statistical analysis is applied to forecast errors for different look-ahead intervals. 
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The worst combinations of the three requirements shown by vertices of the probability box 
provide generation characteristics needed to meet system requirements with a certain level of 
confidence. For each subsequent time interval, the probability box is built based on three-
dimensional CDFs. 

 
Figure 18. Concept of the “Flying Brick” Method 

 

Figure 19 presents the ramping requirement PDFs for different ramp durations. Inverse CDF 
functions of the ramp-rate distribution for different ramp durations, obtained using the “flying 
brick” approach, are presented in Figure 20. Evaluation of uncertainty ranges for ramping 
requirements is similar to evaluating capacity requirement. Ramping requirement uncertainty 
ranges evaluated at the 95% confidence level are shown in Figure 20. It can be observed that the 
ramping ranges depend on ramp durations, and ramping requirements become lower for 
longer ramp durations. 
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Figure 19: Ramping Requirement PDFs for Different Ramp Durations 

 

Figure 20: Ramping Requirement Inverse CDFs for Different Ramp Durations and 
95% Confidence Intervals 
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requirements is shown in Figure 21. The blue line corresponds to the generation schedule. The 
hour-ahead schedule with 1-hour resolution is considered in this example. Uncertainty ranges 
are calculated for each scheduling (dispatch) interval using individual statistical characteristics 
for a specified look-ahead horizon and taking into account the level of predicted wind 
generation, as it is obtained by the statistical analysis of retrospective information. 

The following information is used: 

• Load 

o Actual load  

o 1 (2, 3, 4, 5)-hour-ahead load forecast 

• Wind generation 

o Actual wind generation 

o 1 (2, 3, 4, 5)-hour-ahead wind generation forecast 

• Solar generation 

o Actual wind generation 

o 1(2,3,4,5)-hour-ahead wind generation forecast 

• Interchange schedule 

• Generation schedule. 

Building the resulting uncertainty characteristics is a repetitive process. The generation 
schedule, load and wind generation forecasts, and statistical characteristics of the retrospective 
data are continuously updated. A sliding window with a user-specified refreshment rate is used 
to acquire continuously updated statistical information. The uncertainty ranges are also 
updated, taking into account changing generation schedules, load forecast, and wind generation 
forecast and their statistical characteristics. 
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Figure 21: Evaluation of Capacity Requirements 
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To validate the accuracy of the uncertainty model of generation requirements, a validation 
approach has been developed.. It is based on comparing the predicted uncertainty 
ranges against the actually observed ranges for the same dispatch intervals. The 
algorithm includes the following steps. 

1. Acquire retrospective statistical information using the sliding window technique. The 
sliding window is updated hourly (or according to some other specified refreshment rate).  

2. Perform a statistical analysis of the data acquired in Step 1. The derived statistical 
characteristics are also updated hourly (or according to a user-specified refreshment rate).  

3. Evaluate uncertainty intervals for the future generation requirements using the statistical 
characteristics obtained in Step 2. Uncertainty intervals are also updated according to a 
specified refreshment rate.  

4. When the predicted dispatch interval is reached, overlay the actual generation values over 
the previously forecasted uncertainty intervals, as shown in Figure 22, and determine which 
predicted uncertainty interval the actual generation value belongs to. Put this information 

0 1 2 3 4 5 6 
Time, h 

Ac
tiv

e 
Po

w
er

, M
W

 

  

  

  

  

95 % 
90 % 
85 % 
80 % 

Operating 
Hour 

Operating 
Hour +1 

Operating 
Hour +2 

Operating 
Hour +3 

Operating 
Hour +4 

Generation 
Schedule 

Statistical 
Characteristics 

1 h  ahead 
forecasts 

Statistical 
Characteristics 

2 h  ahead 
 

Statistical 
Characteristics 

3 h  ahead 
f t  

Statistical 
Characteristics 

4 h  ahead 
f  

Statistical 
Characteristics 

5 h– ahead 
f t  



 

21 

into the validation table (Table 1). Note that for different look-ahead forecasted intervals, 
different tables should be used. 

 
Figure 22: Validation Procedure 

 

At the end of simulation, the following calculations are made: 

1. Count how many points belong to a predicted interval with a specified confidence level, and 
calculate the percentage of points found within the interval (Table 1).  

2. Compare the obtained percentages with targeted percentage values. The targeted 
percentages correspond to the confidence level of the interval. For example, for the 0 to 80% 
confidence interval, the targeted value is equal to 80%, and for 80 to 85% uncertainty 
interval, the targeted value is equal to 5%, etc. (see Table 1).  

The uncertainty algorithm is validated if the calculated percentages and the targeted 
percentages are close. 
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Table 1: Example of Validation Table (1-Hour Ahead Forecast) 

Interval 

Day 1 … Day N 
Total 
Points 

Percentage, 
% 

Objective 
Values, 

% 1h 2h 3h 4h …. 24h … … … 1h 2h 3h … 24h 

0-80%               803 80.3 80 

80-85%               46 4.6 5 

85-90%               51 5.1 5 

90-95%               49 4.9 5 

95-100%               51 5.1 5 

Total 1000 100%  

 

Framework of Probabilistic Tool Integration 
Figure 23 shows the concepts of the three levels of integration, namely passive integration, 
active integration, and proactive integration. 

1. Passive Integration (Level I) 

Passive integration is the initial step and the simplest way of integration to bring awareness of 
wind and load forecast uncertainties into a control center through visualization and alarming. 
In passive integration, displays with look-ahead capacity and ramping requirements are 
provided to the real-time operators for better situational awareness. They help operators assess 
balancing needs and take preventive actions to mitigate potential balancing energy deficiencies.  
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Figure 23: Flowchart of EMS Integration for the Uncertainty Model 

 

 
2. Active Integration (Level II) 

The active integration is more comprehensive than passive integration. The active integration 
uses uncertainty information to re-run existing grid operation functions such as UC and 
economic dispatch (ED) processes for the worst-case combination of uncertainties within the 
specified confidence level. The tool displays warning messages about potential threats to the 
power system if the UC or ED procedures cannot find solutions for the worst cases. It also 
provides operators with advisory information regarding the actions that could be taken to avoid 
potential problems. The active integration does not modify the UC and ED procedures. Instead, 
it uses existing processes in the EMS system to check the sufficiency of balancing resources 
within the range of uncertain system requirements.  

3. Proactive Integration (Level III) 

Proactive integration is the most comprehensive level of EMS integration, because it not only 
interacts with UC, ED, and other applications in the EMS system, but also modifies the 
algorithms. New constraints based on uncertainty range evaluations are incorporated into the 
UC and ED processes. For example, the uncertainty ranges of the capacity and ramping 
requirements can be incorporated in the UC process as a part of reserve requirements as shown 
in Figure 24. 
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Figure 24: Flowchart of Proactive Integration 

 
 

Real-Time Forecast Errors 
Wind and Solar Generation Forecast Errors 
Currently, the real-time wind and solar generation forecasts are not provided or included in the 
CAISO real-time dispatch process. Instead, the simple persistence model is implicitly used 
(Figure 25). Practically this means that, for example, for a 5-minute dispatch interval [t + 5,  
t + 10], the implicit real-time wind (or solar) generation forecast is assumed to be equal to the 
average actual wind (or solar) generation in the interval [t – 5, t]. 

 
Figure 25. Simple Persistence Model Illustration 

 

Figure 26 and Figure 27 show CAISO’s real-time wind and solar generation forecast errors 
calculated using the persistence model. 



 

25 

Figure 26: Real-Time Wind Generation Forecast 

 
Figure 27: Real-Time Solar Generation Forecast 

 

Load Forecast Errors 
CAISO uses an adaptive load forecasting system (ALFS) to predict load in real time. The 
forecast is updated every 5 minutes up to 65 min ahead. Figure 28 presents the observed CAISO 
real-time load forecast errors for 12/9/2010 – 12/12/2010. 

 
Figure 28. Real-Time Load Forecast Error  
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CHAPTER 3: 
Review of Current Operating Practices at CAISO 
To incorporate the proposed probabilistic tool into the real EMS systems, we need to know the 
actual procedures for generation scheduling and dispatch used by the balancing authorities 
where this integration will take place. In this section, the operating practices at the CAISO are 
briefly reviewed.  

CAISO runs different generation schedules in the day-ahead market and real-time market to 
make sure that the energy and reserve requirements including regulation up, regulation down, 
and ramping requirements are ultimately met in real-time operation.  

Figure 29 shows the CAISO market timeline. The CAISO scheduling process includes day-
ahead market (DAM), real-time unit commitment (RTUC), short-term unit commitment (STUC), 
and real-time economic dispatch (RTED). Although regulation (REG) capacity is procured in the 
day-ahead market, it is controlled by the EMS AGC system, rather than the market software 
(CAISO 2006).  

 
Figure 29: An illustration of CAISO Operating Timelines (not to scale) 

 

 
The regulation capacity is procured day-ahead for each operating hour of the next operating 
day. The additional ancillary services (AS) also can be procured in the real-time market (RTM) 
to meet additional AS requirements. The AS include: regulation-up reserve, regulation-down  
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reserve, spinning reserve and non-spinning reserve. Time characteristics of the scheduling and 
dispatch processes are given in Table 2. A detailed picture of the CAISO market timeline is 
presented in Figure 30. 

 
Table 2: Time Characteristics of the Scheduling Process at CAISO 

Element Acronym Start time Interval Frequency Time horizon 

Day-Ahead 
Market 

DAM Closes at 10:00 
on the day 

before 

1 h Every day 24 h 

Short-Term 
Unit 

commitment 

STUC ~75 min before 15 min hourly up to 5 hours 

Real-Time Unit 
commitment 

RTUC - 15 min 15 min 4–7 x 15 min 
interval 

Real-Time 
Economic 
Dispatch 

RTED 7.5 min before 5 min Every 5 min 65 min 

Regulation REG - 4 s 4 s - 

      

The CAISO RTM consists of several applications, three of which, including STUC, RTUC, and 
RTED, work together. The STUC and RTUC applications ensure there is enough on-line 
capacity to meet a 5-minute demand (Figure 31). The STUC is performed in the RTM to commit 
units and balance the system resources and demand while enforcing transmission constraints. 
STUC is run once an hour and looks out 5 hours to commit resources that have start-up times 
greater than 90 minutes. 

The RTUC application runs every 15 minutes and looks out between four and seven 15-minute 
intervals to determine whether short-start and fast-start units need to be committed or de-
committed. 

The RTED process runs every 5 minutes to meet the imbalance energy requirements of the 
CAISO (Figure 32). This process looks ahead 65 minutes to ensure that enough capacity is on 
line to meet real-time demand. It is expected that wind variability and the lack of accurate wind 
forecasts could create challenges for the RTED application. RTED is the lowest granularity of 
dispatch in the ISO market except for regulating reserves, which is procured in the RTM, but is 
dispatched through the EMS AGC system every 4 seconds. 
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Figure 30: A detailed illustration of CAISO Operating Timelines  
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Figure 31: RTUC/STUC Timeline 

 



 

30 

Figure 32: RTED Timeline 

 

 
Figure 33 represents the CAISO market design generation schedules. In the day-ahead (DA) 
timeframe, wind and solar resources are not required to bid directly into the CAISO markets. 
This fact can significantly impact the unit commitment process in the DA timeframe because the 
CAISO must forecast the expected hourly production in the DA to ensure that enough resources 
are committed for the next day’s operation. Similarly, the CAISO load forecast is done in the 
DA and real time (RT) timeframes. In the DAM, the forecast of the CAISO’s hourly demand is 
done for three days in advance. The DA schedule is an hourly block energy schedule that 
includes 20-minute ramps between hours. It is provided at 10:00 a.m. the day prior to the 
operating day. The real-time schedule is based on STUC/RTUC timelines. RTED is provided 7.5 
minutes before the dispatch operating target (DOT) and is based on real-time forecasts (Figure 
32). Symmetrical ramping is used, which means that by dispatching for the average, the DOT 
ends in the center of the interval. In the RTM, the CAISO ALFS provides a load forecast for each 
15-minute and 5-minute interval. Load and wind forecasting errors can cause the RTM 
application to dispatch incorrect amounts of imbalance energy needs. RTED results are 5-
minute dispatch instructions and advisory notices for the look-ahead timeframe. 

Thus, the load-following or supplemental energy dispatches are the difference between RTED 
and STUC/RTUC curves. This is an instructed deviation caused by real-time dispatches. 
Regulation is the difference between the actual demand and the RTED curves (see Figure 33). 
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Figure 33: Generation Dispatch Components 
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CHAPTER 4: 
Software Tool 
A software tool for generation requirements uncertainty evaluation has been developed. The 
tool is based on the methodology developed in this project. The initial version was installed at 
the CAISO control room for testing in May 2011.  

In the first phase, the plan is to operate the tool in the testing mode as a stand-alone tool. It 
corresponds to the passive level of integration (see Chapter 2 for details). During the testing 
period, the CAISO specialists will evaluate the efficiency and the usefulness of the tool. Testing 
will be based on analysis of retrospective data collected from different sources of information, 
such as CAISO’s supervisory control and data acquisition/energy management system 
(SCADA/EMS), CAISO’s market system, CAISO’s master file, CAISO’s wind forecast provider, 
etc. The prototype can help CAISO to evaluate the balancing capacity needed to mitigate 
negative impacts caused by unpredicted deviations of wind generation, as well as those due to 
inaccurate load forecast. Assuming the tool is successful in the testing phase, CAISO can decide 
on active or proactive integration of the tool into the CAISO’s EMS system. 

User Interface Conceptual Design 
Information representation is an important aspect in the integration, in order to provide easy-to-
understand, real-time information to dispatchers. The design of several displays is presented in 
this section.  

Capacity Requirements Screen 
A conceptual view of the capacity requirement screen is shown in Figure 34. The capacity 
requirement screen contains the following information: 

• generation requirements forecast (orange line) 

• generation schedule to a specified time horizon (blue line) 

• capacity requirements uncertainty ranges with different confidence levels associated 
with the generation schedule (orange ranges) 

• available balancing capacity reserve in the system (gray areas) 

• alerts and advisories. 

The system would have adequate balancing reserve with a specified confidence level if the 
available balancing reserve (the gray area) covers the entire net load uncertainty range (the dark 
or light orange area). Otherwise, deficiency of balancing reserve occurs. This means that there is 
a certain probability that the online generation will not be able to follow the net load 
requirement. In this case it is necessary to commit or de-commit additional generators to 
achieve the desired confidence level for the balancing reserve. 
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The screen is updated at a specified interval (every five minutes in real-time mode). As the 
screen is updated, the confidence intervals, as well as any alerts or advisories, will also be 
updated.  

Figure 34: Capacity Requirements Display Concept 

 

Ramping Requirements Screen 
A conceptual view of the ramping requirements screen is shown in Figure 35. The ramping 
requirements screen contains the following information: 

• Uncertainty range of ramping requirements at each operating interval for a specific time 
horizon (green bars).  

The length of each green bar indicates the ramp rate requirements (MW/min). The width of a 
bar indicates the ramp duration requirements (minutes); 

• Available generation ramping capability at each operating interval for a specific time 
horizon (blue bars).  

The length of each blue bar indicates the maximum ramp rate capability (MW/min) for a given 
ramp duration (the width of the bar); 

• Alerts and advisories (red vertical error bars). 

The length of each red bar indicates the deficiency of system ramping capability in terms of 
ramp rate (MW/min). 
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Figure 35: Ramping Requirements Display Concept 

 

Conceptual Design of Probabilistic Tool Integration 
Integration of probabilistic tools into an EMS should take into account operating practices of 
specific power systems. Figure 36 shows a conceptual view of the capacity requirements 
uncertainty evaluation based on the CAISO scheduling process. The RTED, STUC, and DAM 
scheduling tools (described in Chapter 3) use various forecasts, such as those that provide 
forecasts with different dispatch intervals for different time horizons, and those with different 
resolutions. Therefore, these forecasts have different accuracies, statistical characteristics, and 
uncertainty ranges associated with them. Figure 36 shows the uncertainty ranges as color bars 
for different time horizons. Different shades of each color indicate different levels of confidence. 
For the first 65-minute time horizon, when the scheduling is done by RTED, the uncertainty 
range is smaller because the forecast is more accurate compared to longer-term forecasts such as 
those for the 5-hour horizon and the 24-hour horizon, when the scheduling is done by STUC 
and DAM, respectively. RTED runs every 5 minutes, so the uncertainty needs to be evaluated at 
a 5-minute interval. For the 5-hour STUC and the 24-hour DAM, uncertainty can be evaluated 
for look-ahead intervals of 15 minutes up to hours.  
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Figure 36: CAISO Capacity Requirements Uncertainty Evaluation Concept 

 

 
Data Acquisition 
In order to model the statistical uncertainty information, large volumes of historical and real-
time data are needed. As shown in Figure 37, a sliding window is used for acquiring continuous 
statistical information on quantities such as system load, wind and solar power generation, and 
generation schedules.  

Data needed for the uncertainty evaluation process is stored in a database. The time-frame size 
and refreshment rates of sliding windows are tuned for different systems depending on their 
individual characteristics. This study uses a one- to two-month time frame and a 15 min 
refreshment rate for hour-ahead data and 5 min refreshment rate for real-time data. 

Figure 37 represents a typical structure of the load or wind generation forecasts. The forecast 
resolution is the time interval between two consecutive data records. The time horizon is the 
length of the look-ahead interval, and the forecast update interval is the time interval between 
updates of the forecast. Besides the statistical information, actual measurements are also 
acquired. 
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Figure 37: Example of Wind/Load/Solar Forecast Structure 

 

Data Processing 
A visual inspection of the provided data revealed that the data sets contain instances of bad 
data, such as outliers, spikes and missing points. Two approaches are used to detect and 
eliminate bad data. The first approach identifies the bad data by detecting sudden changes. The 
second approach is based on a standard outlier-detection algorithm, such as the k-sigma 
criterion (sigma is the standard deviation of the examined data set). 

Sudden-Change Detection 
Point xt does not belong to time series X if 

 Error! Objects cannot be created from editing field codes., (5) 

where ∆max is a threshold ramp value (Figure 38). 

 
Figure 38: Sudden-Change Detection 
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Outlier Detection 
Point xt does not belong to time series X if 

 

t

t

x k
x k

µ σ
µ σ

> +
 < − , (6) 

where  σ = standard deviation; 
 µ = mean value; 
 k = the deviation factor (Figure 39). 

 
Figure 39: Outlier Detection 

 

Straight-Line Detection Algorithm 
To replace the missing points, the OSISoft PI database uses an interpolation (connecting the 
beginning and the end of the region with missing data by a line). These points should be 
excluded from the statistical analysis (Figure 40). 

Point xt does not belong to time series X, if 

 1 1 2 2 3t t t t t tx x x x x x− − − − −− = − = −   

 
Figure 40. Straight-Line Detection 
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Software Tool Design and User Interface 
Microsoft Visual Studio 2008 was used to develop the regulation prediction tool, which is 
deployed on the Microsoft Windows platform and Microsoft .NET Framework. The 
prototype consists of three main modules: the database, the uncertainty evaluation module and 
the display for results and alerts. The database is implemented in Oracle 10g. Examples of the 
software user interface are presented in Figure 41 – Figure 44. 

Main User Interface Screen 
The user can select any required date and time to display information on the forecasted and 
actual parameters in tabular or graphical form. This information includes: 

• load forecast  

• wind Generation forecast  

• solar generation forecast 

• interchange schedule  

• generation requirements forecast (Load forecast minus wind & solar generation forecasts 
and minus interchange schedule) 

• generation schedule 

• actual load 

• actual wind generation 

• actual solar generation 

• actual interchange 

• actual generation requirements 

• available generation ramping capability. 

The user can select the desired uncertainty ranges with any required level of confidence. The 
ranges reflect the uncertainty in generation requirements caused by different sources: wind, 
load, etc.  

Screenshots shown in Figure 41–Figure 42 are examples of the capacity requirements displays. 
Figure 43 shows an example of ramping requirements display.  

The software tool can display capacity and ramping requirements for three look-ahead horizons 
(modes): 

1. Day-ahead mode (next day, 24-h, 1-h resolution). Figure 41 shows a screen shot of the day-
ahead display. 

2. Real-time mode (65 min ahead, 5-min resolution). Figure 42 shows a screen shot of the real-
time display. 

3. Hour-ahead mode (up to 5 h ahead, 15-min resolution). 
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Figure 41: Screenshot of Day-Ahead Capacity Requirements Display 

 
Figure 42: Screenshot of Real-Time Requirements Display 
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Figure 43: Screenshot of Day-Ahead Ramping Requirements Display 

 

The statistical analysis display is shown in Figure 44. Using this tool, one can analyze statistical 
characteristics of forecast errors and plot different histograms and CDF functions.  

Figure 44: Screenshot of Statistical Analysis Display 
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Test Plan for the Ramp Tool Prototype 
A comprehensive plan to test the tool prior to release has been developed. It includes 
functional, requirements and performance testing of the database, database loading, analytical, 
and graphical user interface (GUI). 

A server will be initialized by installing the test database with no data. It will then be updated 
using the data loading software and examined for correct loading. One or more standard 
personal computer workstations, configured with needed supporting software, in accordance 
with the Prototype Hardware and Software Requirements and Prototype Data Specification, 
will then be loaded and tested using procedures in the test tool. 

Testing is performed using the database running on a separate workstation as a server and with 
the database running on the local workstation.  

Items and features to be tested: 

• Tool analytics test 

• Tool GUI. 

o Display graphical information  

Verify that the GUI provides an analysis screen for selected data sets for a specified 
duration, and that this analysis screen includes a line graph of selected data. The 
user must be able to select any required date and time for which to display 
information in the graphical form on the forecasted and actual parameters. 

o Uncertainty prediction (confidence bands) display test  

Verify that the user is able to select the desired uncertainty ranges with any required 
level of confidence. The uncertainty ranges reflect the uncertainty in generation 
requirements caused by different sources such as wind, load, etc. The uncertainty 
prediction screen includes: 

- capacity requirements 

- ramping requirements. 

o Advisory display test 

The tool should display available generation capability in the system and notify of 
potential deficiency of balancing resources in the system. The following advisories 
must be provided: 

- deficiency of capacity  

- deficiency of ramping capability. 
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• Oracle database performance testing. 

o Connection to the Oracle server  

Confirm that the software tool connects to the database server through the local 
network. The user should be able to specify the database internet protocol (IP) 
address, user name and password. 

o Reading data from the Oracle server  

Confirm that the software tool can read information from, and save information to, 
the database. 

• Computational test 

The purpose of these computation tests is to 1) verify that all calculations performed by 
the Wind Uncertainty Prediction Tool are consistent with published algorithms and 
2) validate that the tool predicts system balancing requirements for the following look-
ahead horizons: 

o 65 min ahead (Real-Time mode) 

o 4–7 h ahead (Real-Time + Hour-Ahead mode) 

o next day (Day-Ahead mode) 

• All user controls 

Validate functionality of miscellaneous user controls: 

o graph settings screen 

o “Copy to clipboard” feature 

o “What-If” screen 

o on/off control for display of legend on graph 

• Statistical analysis module test 

To validate the statistical analysis module developed by PNNL using Visual Studio 
2008 Integrated Development Environment (IDE), results produced by this module 
should be compared with standard (etalon) results obtained from a professional 
statistical package. The MATLAB statistical toolbox is used as the standard statistical 
package. 

• On-line mode test 

In on-line mode, the tool should use the current date and time. The tool updates the 
predicted capacity and ramping requirements every minute automatically. The tool also 
updates displayed actual and forecasted information every minute. Thus, the user will 
always see the latest available information in the system. 

• Acceptance test (based on self-validation procedure) 

To validate the accuracy of the uncertainty prediction model, a self-validation algorithm 
is used. The self-validation algorithm is based on comparing the predicted uncertainty 
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ranges against the actual observed values for the same dispatch intervals. The algorithm 
counts how many points belong to the predicted intervals with a specified confidence 
level, and calculates the percentage of points found within the intervals. The uncertainty 
algorithm is validated if the calculated percentages are close to the targeted percentages. 

Self-validation tests must be performed for: 

o Real-time mode 

o Hour-ahead mode 

o Day-ahead mode. 
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CHAPTER 5 
Simulation Results 
Using the prototype tool, case studies have been run to test the uncertainty assessment 
approach and to demonstrate the capabilities of the tool. CAISO’s actual data were used in the 
simulation and the tool development. The actual data used include total load, total wind 
generation, load forecast (day-ahead, hour-ahead and real-time forecast), and wind generation 
forecast.  

Figure 45 shows the day-ahead uncertainty ranges for the system net load. The light and dark 
orange areas represent the evaluated capacity ranges for the 90% and 95% confidence levels. 
The blue curve is the day-ahead generation schedule. The gray area is the available balancing 
reserve, which is calculated from the margin of online generators. The system would have 
adequate balancing reserve with a specified confidence level if the available balancing reserve 
(the gray area) covers the entire net load uncertainty range (the dark or light orange area). 
Otherwise, deficiency of balancing reserve occurs; in this case, there is a certain probability that 
the online generation will not be able to follow the net load requirement. The deficiency of the 
balancing reserve is shown using the red (generation up) and blue (generation down) bars in 
Figure 45. It gives an indication that it is necessary to commit or de-commit additional 
generators to achieve the desired confidence level for the balancing reserve. 

 
Figure 45: Day-Ahead Capacity Prediction 
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Figure 46 shows the results of the evaluation of hourly day-ahead ramping requirements. The 
length of each green bar indicates the ramp rate requirements (MW/min). The width of each bar 
indicates the ramp duration requirements (minutes). From this figure, operators can compare 
the ramping requirements against available system ramping capacity to see whether the system 
has sufficient resources to meet the ramp rate requirements. Details of the methodology for 
estimating system ramping capability are given in Appendix A. 

 
Figure 46: Day-Ahead Ramping Requirements Prediction 

 

 
Figure 47 presents an example snapshot of the hour-ahead capacity requirements for a 7-hour 
time horizon. Similar to Figure 45, the light and dark orange areas represent the evaluated 
capacity ranges for the 90% and 95% confidence levels. The blue curve is the hour-ahead 
generation schedule. Also similar to Figure 45, the deficiency of the balancing reserve, shown as 
red (generation up) and blue (generation down) bars, provides guidance to operators for 
committing or de-committing additional generators to achieve the desired confidence level for 
the balancing reserve. 

Figure 48 presents the hour-ahead ramping requirements for a 7-hour time horizon. This 
evaluation is based on statistical analysis of hour-ahead forecast uncertainty. The length of each 
green bar indicates the ramp rate requirements (MW/min). The width of a bar indicates the 
ramp duration requirements (minutes). This information can be used to determine whether the 
system would be able to meet the ramp rate requirements.  
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Figure 47: Hour-Ahead Capacity Requirements Prediction 

 

 
Figure 48: Hour-Ahead Ramping Requirements Prediction 

 

Self-Validation Results 
To validate the accuracy of the uncertainty evaluation model, a self-validation test was 
performed. CAISO’s actual statistical information for years 2010–2011 was used in this test.  
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Real-Time Mode 
Results of real-time mode self-validation for May–June 2011 are presented in Figure 49. One can 
see that the observed percentage values are very close to the targeted percentage values. For 
example, the percentage of the actual generation requirements points found within the 
98% confidence interval is about 96.23%, and the percentage within the 95% confidence interval 
is about 93.1%. Thus the uncertainty evaluation model tests have confirmed the adequacy of the 
proposed uncertainty evaluation algorithm as well as the proper operation of the developed 
prototype tool. 

Figure 49: Real-Time Mode Self-Validation Results 

 

 

Hour-Ahead Mode 
Results of hour-ahead mode self-validation for May–June 2011 are presented in Figure 50. 
Similar to real-time mode testing results, we can see that the percentages of observed actual 
values are very close to the targeted percentage values. 
 

Figure 50: Hour-Ahead Mode Self-Validation Results 
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Day-Ahead Mode 
Results of day-ahead mode self-validation for May–June 2011 are presented in Figure 51. One 
can see that the observed percentage values are very close to the targeted percentage values. 
Thus, the tests performed have validated the accuracy of the predictions produced by the tool. 
 

Figure 51: Day-Ahead Mode Self-Validation Results 

 

 

Prediction of Real-Time Market Price Spikes 
Figure 52 presents an example snapshot of the real-time capacity requirements for the next 
operating hour. The light and dark orange areas represent the evaluated capacity ranges for the 
90% and 95% confidence levels. The blue curve is the real-time generation schedule (economic 
dispatch). The gray area is the available balancing reserve, which is calculated from the margin 
of online generators. The system would have adequate balancing reserve with a specified 
confidence level if the available balancing reserve (the gray area) covers the entire net load 
uncertainty range (the dark or light orange area). Otherwise, deficiency of balancing reserve 
occurs. This means that there is a certain probability that the online generation will not be able 
to follow the net load requirement.  

The deficiency of the balancing reserve, shown as red bars, provides guidance to operators for 
committing or de-committing additional generators to achieve the desired confidence level for 
the balancing reserve. 

It has been found that the tool is capable of predicting intra-hour deficiency in generation 
capability. This deficiency of balancing resources can cause price spikes in the real-time market. 
One can see in Figure 52 that a more than 300 MW deficiency in the system generation 
capability is predicted in the 10- to 25-min look-ahead period (red error bars). Figure 53 shows 
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the CAISO’s real-time market price information. Price spikes occurred in the CAISO market at 
the same time at which generation capability deficiency was predicted by the tool.  

 
Figure 52: Real-Time Capacity Requirements Prediction 

 
 

Figure 53: CAISO Real-Time Price* 

 
*Available at http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-
Time_Jun_24_2011.pdf 

Real-Time Ramping Requirements 
Figure 54 presents the real-time ramping requirements prediction display. This evaluation is 
based on statistical analysis of real-time forecast uncertainty. The length of each green bar 

http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-Time_Jun_24_2011.pdf
http://www.caiso.com/Documents/June%202011/DailyMarketWatch_Real-Time_Jun_24_2011.pdf
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indicates the ramp rate requirements (MW/min). The width of each green bar indicates the 
ramp duration requirements (minutes). This information can be used to determine whether the 
system would be able to meet the ramp rate requirements. From this display, operators can 
compare the ramping requirements against available system ramping capacity (blue bars) to see 
whether the system has sufficient resources to meet the ramp rate requirements. Methodology 
to estimate system ramping capability is given in Appendix A. Insufficient ramping capability is 
indicated using red error bars (Figure 54). 

 
Figure 54: Real-Time Ramping Requirements 
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CHAPTER 6: 
Conclusions 
A methodology capable of evaluating the impact of wind generation and load uncertainties, as 
well as unexpected generation outages, on balancing resource requirements has been 
developed, implemented in a software tool and deployed in the operating environment. The 
tool enables evaluation of the uncertainty ranges for the required generation performance 
envelope for a look-ahead period. The generation performance envelope includes the required 
balancing capacity, ramping capability and ramp duration capability.  

The development, implementation and deployment includes the following elements: 

• Evaluation of the capacity and ramping requirements using a specially developed 
probabilistic algorithm based on histogram analysis, and incorporating various sources 
of uncertainties, both continuous (wind and load forecast errors) and discrete (forced 
generator outages and start-up failures). 

• Evaluation of the look-ahead generation performance requirements envelope using a 
“flying brick” technique for the worst-case scenario within a user-specified confidence 
level.  

• A self-validation algorithm to assess the accuracy of the predicted uncertainty ranges 

• A software tool based on the methodology has been developed. The operating practices 
at CAISO have also been incorporated. The concept of integrating the probabilistic tool 
into CAISO EMS environments has been developed taking into account current 
operating practices.  

• Simulation studies using actual CAISO data have been performed. The developed 
software tool passed all tests performed in accordance with the tool testing specification. 
Study results have shown that the methodology of the generation-requirements 
evaluation for uncertainty management is quite accurate and efficient.  

The tool is installed at a CAISO control center and has been tested by CAISO specialists. 
The tool received very positive feedback from CAISO. Testing of the tool performed by 
CAISO specialists has shown that the tool is also capable of predicting price spikes in the 
real-time market caused by deficiency of available on-line balancing resources in the 
system. CAISO expressed its interest in incorporating the tool into CAISO market and 
scheduling procedures. 

Next Steps (Technical Area) 
The proposed steps in the technical area will increase the robustness and performance of the 
tool while handling the information typically available in control centers, improving the 
probabilistic models to further reduce predicting range requirements, and adding additional 
model components reflecting new sources of uncertainty. 
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The following specific steps are suggested: 

• Integrate the tool with the wind/solar forecast service providers’ information to improve 
the accuracy of the balancing requirements prediction. 

• Develop proactive integration methodology to incorporate the tool into CAISO market 
and unit commitment procedures.  

• Develop and implement a new generation of statistical methods to address non-
stationary characteristics of forecast errors. Further improve the accuracy and robustness 
of the tool. 

• Perform probabilistic modeling of uninstructed deviation of generating units. 

• Develop a decision support system using the tool to help dispatchers addressing 
potential issues of the system balancing process. 

• Incorporate consideration of the new BAAL standard into balancing requirements 
assessment methodology. 

• Address data interpretation and quality issues to enhance robustness of the tool.  

Next Steps (Commercialization) 
The purposes of the planned commercialization activities include a wide dissemination and 
technology transfer effort with the ultimate objective to install the tool in several control centers 
in California. Among these activities the highest priority tasks will include a proactive 
integration of the software tool in a CAISO control center, its comprehensive testing and final 
adjustments. The results of this effort will create a platform for a wider reach in California by 
serving as an example for other control areas and utilities in the state. In parallel with the 
California activities, the results of this project will be widely distributed via Web seminars 
organized for the industry and by presenting them at the industry forums, including Utility 
Wind Integration Group , WECC groups, NERC subcommittees, and conferences. It is expected 
that through these activities (supported by DOE), the impact of this project will be extended 
from the statewide level to the nationwide level. 
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CHAPTER 8: 
Glossary 
AGC automatic generation control 

ALFS adaptive load forecasting system 

AS ancillary services 

BA balancing authority 

BAAL Balancing Authority Area Control Error Limit 

CAISO California Independent System Operator 

CDF cumulative distribution function 

CEC California Energy Commission 

COPT capacity outage probability table 

DA day ahead 

DAM day-ahead market 

DOT dispatch operating target 

ED economic dispatch 

EFDH equivalent forced derating hours 

EFORd equivalent forced outage rate demand 

EMS energy management system 

FOH forced outage duration within a year, (hours) 

FOP full outage probability 

FOR forced outage rate 

FORd forced outage rate demand 

GADS Generating Availability Data System 

GUI graphical user interface 

HASP hour-ahead scheduling process 

ISO Independent System Operator 

MTTF mean time to failure 

MTTR mean time to repair 

MW megawatt 

NERC North American Electric Reliability Corporation 

PDF probability density function 

PIER Public Interest Energy Research 
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PNNL Pacific Northwest National Laboratory 

RD&D research, development, and demonstration 

REG regulation 

RT real time 

RTED real-time economic dispatch 

RTM real-time market 

RTUC real-time unit commitment 

SCADA supervisory control and data acquisition 

SCUC security-constrained unit commitment 

SH service hours 

STUC short-term unit commitment 

TND truncated normal distribution 

UC unit commitment 

UWIG Utility Wind Integration Group 

WECC Western Electricity Coordinating Council 
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APPENDIX A: 
Generation Fleet Ramping Capability 
Each generating unit has specific physical characteristics: 

• Minimum generation – Pmin (MW) 

• Maximum generation – Pmax (MW) 

• Maximum ramp rate – R (MW/min) 

Those characteristics can be segmented depending on incremental blocks of power output 
provided by them.  

Other characteristics are: 

• Scheduled operating point - Psched (MW) 

• Regulation reserve (upward and downward) – PREG_UP, PREG_DN (MW) 

• Contingency reserve – Pcont (MW) 

A simplified ramping characteristic of a generation unit is shown in Figure A.1. Some units can 
have segments with different maximum ramp rates, but for simplicity the linearized ramping 
characteristic is used in Figure A.1. 

 
Figure A.1: Generation Unit Ramping Characteristic 

 

The ramping capability characteristic of unit i at time t starting from an operating point Psched, i is 
as follows: 
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where 
,UP t

iP  is the maximum available upward capacity of the unit i at time t; 
,DN t

iP is the 

maximum available downward capacity of the unit i at time t, and T is the duration of the 
ramping characteristic. 

The upward and downward capacity is also limited by the following constraints: 
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Figure A.2 shows an illustration of the simplified unit ramping capability characteristic. 
Assume that initially the unit is operated at the scheduled generation point Psched. The unit 
cannot change the generation with the ramp rate faster than its maximum ramp rate, R. The 
maximum upward and downward capability of the generation unit is shown using green lines 
in Figure A.2. The maximum and minimum generation of the unit is also limited by the Pmin and 
Pmax constraints (dotted lines in Figure A.2). 

 
Figure A.2: Generation Unit Ramping Capability 

 

 

Ramping Capability of the Generation Fleet 
The individual ramping capabilities of generation units should be combined to calculate the 
total system ramping capability of the online units: 
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where N is the number of online units available in the system. 
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Figure A.3 shows an illustration of generation fleet ramping capability in terms of its changing 
capacity. To calculate the maximum available system capability in terms of time and ramp rate, 
the following equation can be used: 
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Figure A.3: Illustration of Generation Fleet Ramping Capability (capacity vs. duration) 

 

 
An illustration of the relationship between generation fleet ramp rate capability and maximum 
ramp duration capability is presented in Figure A.4. Five-minute intervals for the ramp 
duration are used in this example. During first 5-minute interval, the maximum generation fleet 
ramp rate capability cannot be higher than R5 (Figure A.4). After 5 minutes, the fastest units 
achieve their maximum capacity limit and maximum system ramp rate capability starts 
decreasing. Thus, for 10- and 15-minute ramp duration intervals, the generation fleet ramping 
capability is limited by R10 and R15, correspondently (Figure A.4). 

 
Figure A.4: Illustration of Generation Fleet Ramping Capability (ramp rate vs. duration) 
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Adequacy of Ramping Capability 
Generation fleet ramping capability is compared against the ramping requirements.  

Figure A.5 illustrates a comparison of system ramping capability (blue curve) against ramping 
requirements (red curve) for some operating hours. System ramping capability is calculated 
using (3). Ramping requirements are calculated using the swinging door algorithm.  

An area with insufficient system ramping capability is highlighted in red (Figure A.5); in other 
words, there is certain probability that the generation fleet does not have sufficient ramping up 
capability to meet the demand. 

 
Figure A.5: Ramping Requirements vs. System Capability 
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APPENDIX B: 
Generator Forced Outage Model 
The term “generator forced outage” usually refers to the shutdown of a generating unit for 
emergency reasons or a condition in which the generator unit is unavailable for supplying the 
load because of an unanticipated breakdown. Generator outage is a discrete event and may or 
may not happen in any given dispatch interval. This characteristic contrasts with the continuous 
nature of wind and load variations. Also, the size of the power mismatch caused by a forced 
outage depends on the generator that is disconnected and the generators’ load at the moment of 
the event. Any of the generators that are online within a dispatch interval could be forced out. 
The main challenge that has been overcome in this development was to combine the uncertainty 
information on continuous parameters (such as the generation capacity requirement) with 
discrete information (such as forced generation outages). This challenge has been successfully 
met in this project. 

Forced outages of system generators cause temporary imbalances that must be eliminated 
within 10 minutes by activating the contingency reserve. Within this 10-minute interval, the 
system is exposed to an imbalance that can be as much as 1000 MW (the size of the largest 
generation unit in the system). The system inertia, governor response, and automatic generation 
control act to minimize the system power mismatch during the first seconds and minutes after 
the disturbance. Therefore, the generation controls and generation characteristics needed to 
balance the system must be sufficient to mitigate these possible mismatches. Again, there is an 
uncertainty associated with this process because the timing and the size of the forced outages 
are not known ahead of time and the contingency reserve activation process is not a 
deterministic process (for example, it depends on the characteristics of activated generators and 
type of activated reserve – spinning or non-spinning).  

A methodology has been developed that evaluates additional uncertainty caused by forced 
generator outages and incorporates this information into the overall framework. This advanced 
feature constitutes a significant step forward in handling the uncertainty information in the 
modern energy management systems (EMSs). As a result, the system reliability and control 
performance can be additionally improved. 

Generator forced outages are stochastic events. Modeling statistical characteristics of generator 
forced outages is important for a correct evaluation of the future generation requirement. In the 
following sections, two types of generator forced outage models, i.e., the two-state Markov 
model and four-state Markov model, are described. The capacity outage probability table 
(COPT) and an example of COPT calculation are provided. Simulation results on forced outage 
model are also provided.  

Forced Outage Rate Calculation 
A generator outage is a discrete event and may or may not happen in any given hour. This 
feature contrasts with the continuous nature of the wind and load variations (Doherty and 
O’Malley 2005). 
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The simplest type of the generation unit model is a two-state Markov model as shown in 
Figure B.1. Here the unit is assumed to always be in one of the two states: “up” – fully available, 
running, and subject to a possible failure; or “down” – totally unavailable, not running, and 
undergoing repair (Billinton and Allan 1996; Billinton and Ge 2004). 

 
Figure B.1: Two-State Markov Model 

 

 
Here, μ (repairs/year) is the repair rate, r=1/ μ (years) is the mean downtime due to a forced 
outage (mean time to repair - MTTR), λ is the failure rate, (failures/year), and m=1/ λ is the mean 
up time between failure events (mean time to failure - MTTF). The unit’s forced outage rate (FOR) 
is the probability that the unit is down: 
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where FOH is the forced outage duration within a year, (hours), and SH is the service hours 
within a year. 

The two-state model is a valid representation for base load units but does not adequately 
represent intermittent operating units used to meet peak load conditions. The two-state model 
for a base load unit has been extended to the four-state peaking unit model shown in Figure B.2, 
which is widely used in practice (Billinton and Ge 2004; Patton 1993). The model assumes that 
the generating unit is either fully available or totally unavailable, but also considers that the unit 
may be either needed or not needed (Billinton and Ge 2004). 
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Figure B.2: IEEE Four-State Markov Model 

 

The frequency balance equations for the four-state model shown in Figure B.2 are as follows  
(Billinton and Allan 1996; Billinton and Ge 2004): 
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where Pi is the probability of the state i, i = 0…3. 

According to Billinton and Allan (1996), P1 and P3 can be calculated using the following 
equations:  
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Demand factor f can be expressed as the function of the parameters given in Figure B.2 as 
follows (Billinton and Ge 2004): 
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The factor f serves to weight the FOH to reflect the time the unit was actually on forced outage 
when in demand by the system (Billinton and Allan 1996). 
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D is the average in-service time per 
occasion of demand; 

T is the average reserve shutdown 
time between periods of need; 

r is the average repair time per forced 
outage occurrence; 

m is the average in-service time 
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when needed; 

Ps is the probability of a starting 
failure resulting in inability to serve 
load during all or part of a demand 
period. 
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Forced outage rate demand (FORd) can be evaluated as follows:  

 SHFOHf
FOHfFORd

+×
×

=
 (B.6) 

FORd is the probability that a generating unit will not be available when required. 

Equivalent forced outage rate demand (EFORd) (Billinton and Allan 1996): 
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where fp is the partial outage factor and EFDH is the equivalent forced derating hours. 

EFORd can be found in the NERC Generating Availability Data System (GADS) (NERC 2007; 
Curley 2006). The difference between EFORd and FORd is that EFORd also includes derated 
states of the generator. 

The full outage probability (FOP) of a unit is the probability that the unit will stop providing all 
of its current output in an hour period. Here, it is assumed that the trip causes the unit’s output 
to be instantaneously unavailable. The hourly FOP of a unit can be related to the FOR and 
MTTR as follows (Doherty and O’Malley 2005): 

 i

i
i MTTR

FORFOP =
 (B.8) 

In the case of peaking units, EFORd can be used instead of FOR in (B.8). 

Capacity Outage Probability Table 
The capacity adequacy evaluation of generation systems requires the creation of a generation 
capacity model, known as the capacity outage probability table (COPT). COPT gives the 
probability of occurrence for each possible outage capacity level (Billinton and Allan 1996). 

Let us assume that the system has n independent generating units and that unit i has mi discrete 
states with outage capacity Cij and individual probability pij = p(Xi = Cij), where j = 1…mi 
(Morrow and Gan 1993). Outage states of unit i are arranged in ascending order. The COPT 
contains N + 1 discrete states, where N = Cmax/Δ, Cmax is the installed capacity of the system and Δ 
is the resolution of the COPT. The new individual state probabilities, after unit i is added to the 
system, can be calculated using the following recursive algorithm (Morrow and Gan 1993): 
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where p(∙) is individual state probabilities after unit i is added;  p’(∙) is individual state 
probabilities before unit i is added; and k is an index of discrete state. 
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The recursive convolution process starts with the initial values: p(0) = 1 and p(k) = 0, k = 1,2 ,... N. 
Note that p(k) = 0 if k < 0. 

In summary, the recursive convolution procedure for building a COPT has the following basic 
steps (Morrow and Gan 1993): 

• Read unit data, determine Δ and N = Cmax/Δ; 

• Set initial values: p(0) = 1 and p(k) = 0, k = 1,2 ,... N; 

• Add unit i to the system, calculate p(k), k = 0,1,2 ,... ,N using (B.8); 

• Repeat Step 3 for all the units. 

Usually, the table obtained by (B.8) is simplified by rounding the COPT to selected discrete 
capacity levels. The size of the round-off increment depends on the desired accuracy.  

The cumulative probability of having kΔ MW to be forced out can be calculated using the 
following equation: 
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Example of COPT Calculation 
Let the system consist of two generators. The first generator has a capacity of 100 MW and 
outage probability 10%, and the second generator has a capacity of 50 MW and outage 
probability 20%. Assume that generating units has only two states: operating state and forced 
out state. 

Then, the capacity matrix is: 
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where c11 = 0 and c21 = 0 – correspond to operating states of generators one and two (no forced 
outage) and c12 = 100 and c22 = 50 – correspond to forced out states (nominal generator capacity). 

Individual probability matrix is defined as: 
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where p11 = 0.9 and p21 = 0.8 are probabilities of operating state of generators one and two; and 
p12 = 0.1 and p22 = 0.2 are probabilities of the forced out state. 

The installed system capacity is Cmax = 150 MW, and the COPT resolution is Δ = 50 MW. 
Therefore, COPT contains four discrete states. 

Let us set initial probability values p(k)in the COPT (Table B.1). 
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Table B.1. COPT (Initial Values) 

State, k Capacity, c(k) (MW) Probability, p(k) 

0 0 1 

1 50 0 

2 100 0 

3 150 0 

Now we will add unit one to the system and calculate new capacity outage probabilities using 
(B.8) - see Table B.2 
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Table B.2: COPT (Unit One Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 

0 0 0.9 

1 50 0 

2 100 0.1 

3 150 0 
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The next step is adding the unit two and update values of COPT (Table B.3): 
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Table B.3: COPT (Unit Two Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 

0 0 0.72 

1 50 0.18 

2 100 0.08 

3 150 0.02 

 

Figures B.3–B.4 show the capacity discrete outage probability density function (PDF) and 
cumulative distribution function (CDF) based on the calculated COPT. 
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Figure B.3: Discrete Probability Density Function 

 

Figure B.4: Cumulative Distribution Function 

 

Simulation Results (Forced Outage Model) 
An example of a California Independent System Operator (CAISO) generation schedule is 
presented in Table B.4, and generation unit performance statistical characteristics taken from 
GADS (NERC 2007) are presented in Table B.5. 

COPTs are calculated to each hour, taking into account the generators’ schedule. Figures B.5-B.6 
show the capacity outage PDF and CDF functions for a 1-hour look-ahead period. 
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Table B.4: Generation Schedule 

Number UNIT_ID Unit Type 1h 2h 3h 4h 5h 

1 Unit1 STUR 16 16 16 16 16 

2 Unit2 STUR 20 20 20 20 20 

3 Unit3 HYDR 16 16 16 16 16 

4 Unit4 GTUR 0 0 0 0 0 

….. … …… … … … … … 

516 Unit516 STUR 3 3 3 3 3 

517 Unit517 WIND 10 10 10 10 10 

 Total Generation  17792.9 16512.06 16113.22 15813.15 15811.15 

 Wind  1344 1310.28 1313.55 1299.14 1256.3 

GTUR = Gas turbine  
HYDR = Hydro   
STUR = Stem turbine  
WIND = Wind  

 

Table B.5: Annual Unit Performance Statistic 

GEN_TYPE GEN_TECH FUEL_TYPE FOR Service Hours Number of Occurrences 

T STUR GEOT 0.5 8500 3.6 

T GTUR GAS 46.33 270 3 

T STUR GAS 8.29 2750 4 

H HYDR WATR 4.92 4981 3 

T WIND WIND - - - 

T CCYC GAS 7.33 3673 9 

H PTUR WATR 3.71 2634 3.86 

CCYC = Combined cycle  
GAS = Gas  
GEOT = Geothermal  
GTUR = Gas turbine  
HYDR = Hydro  
STUR = Steam turbine  
WATR = Water  
WIND = wind  
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Figure B.5: Capacity Outage Discrete PDF 
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Figure B.6: Capacity Outage CDF 
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