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 Existing experimental data often suffered from experimental artifacts, unknown measured errors, and undemonstrated 
repeatability. Many experiments failed to limit variables that could impact the resulting observations.  

 EMSL has the ability to provide both expertise and tools for development of pore- scale experimental data sets not 
available at most universities or other national laboratories. 

 Community-based development of experimental databases, visualization and simulation comparison tools, and 
community networking tools can provide a means for the pore-scale community to focus its resources on knowledge 
and technological gaps in a meaningful way. 

 CThe collaboration within the pore-scale modeling community would create unique opportunities where coordinated 
and focused effort could find deliver impactful results.  
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Acronyms and Abbreviations 

DOE U.S. Department of Energy  
EMSL Environmental Molecular Sciences Laboratory 
LBM lLattice Boltzmann mModeling  
MRI mMagnetic resonance imaging 
NAPL nNonaqueous pPhase lLiquid(s) 
SPH sSmoothed pParticle hHydrodynamics  
PNNL Pacific Northwest National Laboratory 
STOMP Subsurface Transport Over Multiple Phases 
UV uUltraviolet 
XCT X-ray cComputed tTomography 
2D tTwo-dDimensional 
3D tThree-dDimensional 
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1.0 Background 

1.1 Pore-scale Fflow and Ttransport 

In the past decade, the dProgress in the development of field- scale predictive models of contaminant fate and transport 
has made exciting progress in the past decade.  Much of that progress is results from  of greater understanding of the 
complexity of subsurface phenomena (BER ReportDOE 2010) and the insights from new experimental and computational 
tools that provide molecular- level understanding of the subsurface geochemistry and biogeochemistry. Increasingly, the 
expectation for models of contaminant transport in the subsurface is that they will not only will offer give accurate 
description of field observations but also have validated predictive capability. This expectation is held both by the policy 
makers and, remediation engineers, as well as  but also by the research funding agencies. Even without considering spatial 
and temporal scalability, modeling contaminant transport at the field scale is very complex and results in very 
sophisticated models being developed for specific field sites. Unfortunately, these models are not easily generalizable to 
other field sites or and can only be used by the model developers to generate meaningful results. Over the time, this results 
in the existence of numerous specialized models that are not readily comparable to each other and difficult to cross-
validate.  

Phenomena observed at the field scale, such as contaminant or tracer arrival times at fixed locations, are controlled by 
processes at the molecular and pore scales, including  such as contaminant absorption and reaction, porosity, pore 
connectivity, fluid mixing, etc. However, direct observation of pore- scale processes is not possible in the field. Several 
noninvasive imaging techniques have been developed that allow direct or spectroscopic observation of pore-scale 
processes within the laboratory framework. Werth et al. (2010) have prepared a comprehensive review of the merits of 
these approaches as they apply to contaminant hydrogeology. One approach, optical imaging using ultraviolet (UV) or 
visual light in two- dimensional (2D) model pore structures, which are etched into different substrates with transparent 
cover, affords many benefits, such as ease of fabrication, low cost, and fast acquisition times (Werth et al. 2010). SOther 
several other noninvasive imaging techniques include dual gamma scanning of 2D intermediate scale models, computed 
Xx-ray tomography of three-dimensional (3D) columns, and nuclear magnetic resonance (NMR) measurements of fluid 
flow in 3D models. When fluid mixing results in the precipitation or growth of a new phase that can impact porosity and 
permeability, 2D micromodels, i.e., physical models of 2D pore structures etched into natural or analog materials 
representing idealized porous media, have been used to investigate the displacement of pore fluid by nonaqueous phase 
liquids (NAPL), the transport of solutes and fluid mixing, particle or colloid dynamics, and reactive transport (Figure 1), 
when fluid mixing results in the precipitation or growth of a new phase that can impact porosity and permeability. Aubin 
et al. (2010) reviews a wide variety of experimental methods for characterizing fluid mixing phenomena in 2D 
micromodels beyond the contaminant fate and transport context. A benefit of non-invasive imaging of 2D pore-scale 
models is the ability to readily correlate experimental results to numerical simulations.  
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Although much of the user-proposed research conducted in EMSL involves multiple instruments and technical 
capabilities, there are significant additional opportunities to advance science and speed scientific progress by 
appropriately designed experimental and computational research efforts, advanced data integration and sharing, and the 
formation of research teams focused on solving important problems.  Furthermore, the EMSL user program can provide a 
process to assist in assembling teams with the diverse expertise to address important and challenging problems, especially 
those in catalysis research, because of the range and particularly relevant capabilities of EMSL resources.  

1.3 EMSL Pore-s Scale Capabilities 

Over the past five years, EMSL has developed extensive pore- scale experimental capabilities in collaboration with Mart 
Oostrom and Changyong Zhang (both of , PNNL), and Professor Charles Werth, University of Illinois at , Champaign-
Urbana. EMSL has fabrication, experimental, and modeling capabilities at the pore scale. Using recommendations from 
the University of Illinois, EMSL has assembled a complete micromodel microfabrication capability that includes 
everything from sSilicon wafer -cutters, direct-write lithography, and photomask aligners to, thermal and UV nanoimprint 
lithography systems, a deep- reactive ion etching system, and to a wafer bonder. Microfabrication facilities are also are 
available for micromodels based on other materials such as PDMS (polydimethylsiloxane). EMSL has two inverted 
epifluorescent microscopes for the observationg of pore- scale phenomena at micron- scale resolutions, as well as an 
inverted Raman confocal microscope for spectroscopic identification of solid phases within the micromodels. 

The pore-scale facilities reside within EMSL’s Subsurface Flow and Transport Laboratory. EMSL users can employ 
subsurface flow and transport capabilities to focus on the application of fundamental physical chemistry concepts to the 
study of chemical reactions in heterogeneous natural material, with an emphasis on soil and subsurface systems. EMSL’'s 
approach to subsurface flow and transport studies is holistic, integrating flow cells, analytical tools, and predictive 
modeling capabilities to study the fate and transport of environmental contaminants, including metals, radionuclides, and 
chemicals.  

A variety of flow cells are available to EMSL users, including column, batch, radial, wedge, and rectangular flow cells, as 
well as microfluidics instrumentation. Flow cells are used in coordination with high-precision, high-sensitivity analytical 
tools to generate data about sample characteristics by detecting the presence of carbon, trace metals, ions, non-volatile 
compounds, thermally labile chemicals, and more. EMSL users have the benefit of designing experiments using the 
predictive subsurface flow and transport simulator STOMP, or  (Subsurface Transport Over Multiple Phases (; White and 
Oostrom, 2006). Data derived from experiments using EMSL’'s subsurface flow and transport capabilities have are used 
to further refined STOMP, which continues to ever increase sing its precision.  

X-ray cComputed tTomography (XCT) of subsurface geological field cores allows visualization of pore structure and pore 
connectivity at the tens of microns in spatial resolution for large- diameter cores. The large size of the sample 
environment and the variety of X-ray targets available allows in situ experiments of fluid displacement studies, such as 
non-aqueous phase organic or super-critical CO2 (scCO2) studies. Experiments are conducted carried out to study pore 
connectivity in natural rocks and sedimentary cores from field sites and provide complementary data to the pore-scale and 
intermediate- scale flow capabilities (Figure 3). 
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2.0 Workshop Objectives 

The high-level objective of this workshop is to accelerate speed the development of field- scale subsurface fate and 
transport models with increased predictive accuracy by designing specific pore- scale experiments that modelers can use 
to test and validate their simulations. The workshop also served to make the community aware of EMSL experimental and 
computational capabilities that they could use to further their research. The workshop participants, an assembly of multi-
institutional teams with diverse expertise, would be able to address important problems or challenges in a way that could 
significantly accelerate progress.  

The participants in the workshop were asked to answer three questions:  

1. What are the numerical simulation and experimental challenges that face the community? 

2. What are the experimental data sets that can be developed to address these challenges? 

3. What are the needed experimental capabilities to meet these challenges? 

The workshop included overview presentations by invited speakers that described the current challenges impeding further 
progress and short presentations by the majority of participants showcasing of their work (both experimental and 
numerical simulation). Workshop participants included researchers from academic institutions,; national laboratories, 
EMSL staff members, and PNNL staff members with experimental and modeling expertise and interests at the pore scale. 
The invited speakers included recognized thought leaders in experimental and computational pore- scale flow and 
transport.  In addition to participating in the discussion, the invited speakers assembled their initial thoughts on important 
topics and critical capabilities prior to the workshop. The workshop agenda and list of participants can be found in 
Appendixces A and Appendix B, respectively. The discussion sessions focused on developing sets of foundational pore-
scale experiments that underlie the more complex phenomenaon that are important at the field scale. At the workshop’s 
conclusion, end of the workshop two working groups, representing fluid displacement phenomena and transverse reactive 
mixing, outlined the challenges and initial thoughts on possible experimental plans in these fundamental research areas. A 
summary of the discussions of important research areas, needed capabilities, and recommendations for the proposed 
experimental plan is provided in Sections 3- 5, below. 
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3.0 Important Research Directions 

The workshop began with succinct overviews, provided by Professor Michael Celia and Drs. Tim Scheibe and Qinjun 
Kang, on the state-of-the art in numerical simulation of pore- scale phenomena. After this introduction, participants in the 
workshop were provided the opportunity to present their initial thoughts on important areas.  The next set of invited talks 
included both numerical modeling and experimental overviews by Professors Markus Hilpbert and Laura Pyrak-Nolte, 
and Dr. Alex Tartakovsky. WAgain workshop participants were invited to discuss their response to the suggested 
challenges and approaches. The third group of invited speakers presented the state-of-the art in pore- scale experiments. 
These speakers included Professors Werth and Dorthe Wildenschild. Many of the attendees also volunteered to present 
their own research efforts and shared their insights on what the dominant challenges to pore- scale research. After lively 
discussions about the most relevant and impactful issues, the workshop concluded by having the participants form two 
working groups: one focused on reactive transport and the other one focused on multiphase flow. Each working group 
presented a summary of the issues and proposed initial concepts for experiments deemed important for advancing pore- 
scale modeling. 

Although there was diversity in opinions during the workshop discussions, there was also was consensus in many areas. 
Some of the reoccurring themes that resonated with the participants include the need for pore-scale experiments is to 
extract information that is actually useful for large-scale numerical simulations of field- scale phenomena, the ability to 
design pore-scale experiments to identify the key processes that impact field-scale phenomena, and the importance of 
authentic parameterization of key pore-scale phenomena in continuum- scale models. 

Beyond the overarching themes, three important research directions were identified that fall into the following categories:  
1) fluid mixing and reactive transport phenomena,; 2) multiphase flow and fluid displacement phenomena,; and 3) 
numerical simulations. Finally, several of the contributed presentations demonstrated how the concepts intrinsic to 
contaminant fate and transport in the subsurface had application beyond this field. These research directions and important 
questions are summarized in the following subsections below.  

3.1 Fluid Mixing/Reactive Transport 

Fluid  mixing phenomena underliess many phenomena at the pore scale, such transverse mixing, flow focusing, mineral 
precipitation and dissolution, formation of microbial growth, and biofilms that impact fluid movement at intermediate and 
field scale. Understanding these phenomena is necessary for predicting contaminant fate and transport and the design of 
contaminant remediation strategies. During the workshop, several important topical areas were identified where new or 
advanced understanding of fluid mixing would have high impact, including:. 

 Desire to uncouple mass transfer limitations from precipitation reaction rate constraints 

 The effects of flow and mixing on the precipitation rates of different minerals are not clear 

 Need for more experiments under the conditions of high advection/diffusion ratio or high Péeclet numbers 

 The unclear effect of mineral precipitation on diffusive mixing is unclear 

 What is the relationship between phenomena observed in 2D and 3D models?  

 How does variability in parameters, such as temperature, pressure, surface roughness, surface wettability, and surface 
chemical composition, impact 2D pore-scale experimental studies? 
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as a function of time. The growth of biomass within porous media creates similar complexity. Dentz et al. (2011) have 
provided a review of some of the formulations for transitioning between pore to Darcy or continuum scale. 

Molecular diffusive processes largely control fluid mixing in micromodels since because the flow rates are maintained 
within the laminar flow regime. Numerical simulations of the mixing phenomena at the pore-scale are often conducted 
using lattice Boltzmann models (LBM) because it can readily accommodate movement of phase boundaries and changing 
reactive species. However, additional approaches have been developed. Several computational frameworks were 
presented at the workshop, including the continuum models such as Subsurface Transport Over Multiple Phases (STOMP) 
and PFLOTRAN and pore-scale models such as Smoothed Particle Hydrodynamics (SPH). Other groups take a hybrid 
multiscale simulation approach between micro pore -scale that are computationally intensive and a macro pore-scale 
approach,  which is less computationally intense and covers a larger spatial area. LBM methods were used by other groups 
to perform flow simulations at the pore scales to create the velocity fields. T and then, they  used PFLOTRAN with the 
resulting velocity fields to do the reactive transport simulations. Key challenges for numerical simulations identified 
during the workshop include:  

 What is the appropriate level of complexity to try to bring to transport modeling when going from the pore -scale to 
continuum scale? Are we limited by computational power or , fundamental understanding? 

 Numerical simulations of pore-scale phenomena should include and report the simulation error and sensitivity 
analysis. This is not commonly reported in the literature. 

 Using e of Richardson’s Extrapolation,  which is a sequence acceleration method used to speed the rate convergence 
of an iterative sequence (such as those used in LBM), may only be applicable for linear equations. 

 Are there obviously better, obvious ways to write continuum models? 

 Need Ccomputational models that can update grain geometry and porosity changes due to mineral precipitation and 
dissolution are needed. 

 CNeed computational models that predict mineral dissolution as a result of reduced fluid mixing due to mineral 
precipitation and changes in fluid compositions are needed. 

 What is the best approach for modeling complex experimental systems that include mineral precipitation or the 
biofilm growth of biofilms? 

3.4 Other Opportunities for Advancing Fundamental Understanding 

In addition to addressing important topics and identified challenges in fluid mixing and fluid displacement, significant 
advances in understanding may be achieved in other application areas.  The workshop participants noted several 
opportunities for advancing pore-scale research, which seemed particularly well matched to EMSL’s expertise and 
capabilities. Those opportunities include: 

 Can the coupled mineralization (i.e., carbonization) and structural evolution of the pore structure of soil in the 
terrestrial ecosystem be modeled in an analogous way to other pore-scale subsurface phenomena? 

 Can pore network models be used to understand how increased pressure or , changes in permeability or porosity 
impacts the injection of scCO2 into subsurface?  

 Existing pore-scale models of the injection of scCO2 have not paid sufficient attention to the geochemistry, 
particularly for injection into carbonate rocks. How and important and when are the geochemical reactions important? 
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 Can pore-scale computational models be used to understand the growth of biofilms in porous networks, the movement 
of rising bubbles in fluids, or formation and migration of droplets? 

 There are many challenges in modeling two-phase flow and reactive transport in fractured rocks, including: 

– Nonlinear feedbacks in both space and time 

– Strong spatial fluctuations or heterogeneity 

– Long-term transient effects far from equilibrium. 
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4.0 Necessary Capabilities 

In many of the talks and discussions regarding the a diversity of pore-scale models, experimental and collaboration tools 
that could be used to significantly advance pore-scale science was addressed discussed. Characteristics of required 
capabilities and capability challenges are summarized in the following subsections below. In aAdditionally, there were 
repeated discussions regarding the nature of the relationship between phenomena observed in 2D experimental models 
and analogous experiments in 3D. There was concern that some of the cyclic precipitation and dissolution reactions 
observed in 2D pore-scale models may not occur in 3D pore-scale models.  As a result, there was a desire to design quasi-
3D pore-scale models to test the continuity between t 2D and 3D experimental observations. 

4.1 Pore-scale Mmodels 

 2D models 

– Develop better fabrication techniques to generate true 2D two dimensional flow models with smooth, vertical 
pillars and sharp transitions to base and top   

– Need to develop greater variety of in situ sensors for pO2, pH, and chemical concentration, as well as and other 
chemically relevant phenomena in 4D (spatially and temporally) 

– Need to develop methods for assessing the volume and density of precipitates formed in fluid- mixing 
experiments 

– Need to develop method for fabricating micron- size “fractures” in 2D micromodels 

– Need to identify mineral systems with a range of favorable kinetic precipitation rates.   

 3D models 

– Develop photolithographic methods for generation of highly regular 3D pore structures, such as those produced 
for 2D flow models 

– Development of more realistic 3D models 

– In situ intermediate-scale flow capability at high pressure and temperature for scCO2 experiments. 

– Development of sensors – “displacement capacitors” to measure in 3D networks. 

4.2 Specific Ttypes of Iinstruments  
Although some instruments are commercially available, they are not routinely found in academic institutions. As such, 
sSpecific instruments or needed advances in instrumental capabilities that would complement EMSL’s existing pore-
scale fabrication and experimental capabilities, intermediate- scale, and XCT capabilities were recommended because 
although some are commercially available they are not routinely found in academic institutions. 

 Index of refraction matched column experiments for in situ visualization of fluid flow in three dimensions. 
Optical or laser imaging of fluid flow in columns is generally limited to outer surface Iif non-transparent media are 
used to pack the column, optical or laser imaging of fluid flow in columns generally is limited to the outer surface. 
However, if transparent media are used and the choice of fluid matches the index of refraction of the media, then 
optical methods can be used to construct 3D images of fluid flow in the column. 
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 Micro X-ray computed tomography (µXCT). Standard XCT of subsurface geological field cores allows 
visualization of pore structure and pore connectivity at the tens of microns in spatial resolution for large- diameter 
cores. However, some pore-scale experiments,  such as measurements of interfacial area, require at least micron 
resolution. These types of experiments are possible using µXCT instruments that have micron- sized beam spot size. 
A disadvantage is that the core or column diameter must also must be smaller than the standard geologic core. 

 Magnetic resonance imaging (MRI). MRI instrumentation has been used to characterize porous media columns and 
subsurface geologic cores to determine grain size, porosity, determine fluid distribution and saturation, fluid flow 
paths and velocity, and interfacial area in multiphase experiments. Because MRI can generate 2D or 3D images, it is  
in many instances compleimentary to XCT imaging. The main advantage of MRI is its ability to measure flow paths 
and velocity. The MRI’s main disadvantage of MRI is its sensitivity to ferrous- bearing sediments. T and thus, it  is 
typically is used with limited natural geologic materials or with artificial porous media (Werth et al. 2010). Secondary 
considerations are the initial expense and expertise needed to operate and analyze the data. These two latter 
considerations would result in MRI capabilities uncommon in academic institutions. 

4.3 Collaboration Ttools 

 Some considerations to enhance collaborations included: 

 Mechanism to access experimental data sets that can be used to validate computational models 

 Repository for well- characterized experimental results 

 Visualization tools to compare simulations against experiment 

 Forum to share and discuss simulation results with community 

 Access to computational resources. 
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5.0 Overall Recommendations 

Three general recommendations were voiced repeatedly during the workshop regarding how the EMSL’s pore-scale 
modeling should be focused. These recommendations include the importance of keeping the experiments simple and 
fundamental  to, to avoid highly complex behavior, and to focus initially on fluid mixing and fluid displacement 
experiments. Many of the workshop participants agreed that it was difficult to conduct such fundamental research under 
their current research programs. As such,  and this effort would be advantageous of great help in providing insights to 
basic pore-scale behavior. 

Focus on fluid mixing and fluid displacement experiments 

There was good agreement at the workshop to focus initial efforts on fluid mixing and fluid displacement experiments. 
Two break-out groups led by Professors Werth and Celia discussed the challenges in these two areas. The following is a 
brief summary of their discussions. 

5.1 Reactive Transport—t – Fluid Mixing 

In several different discussions, workshop participants indicated it is necessary to understand flow, mixing, chemical 
gradients, and reactions on surfaces. A good approach is to start simple and gradually build more complex problems. One 
An example would is to start with a system consisting of only fluid mixing without reactions, and then increase the 
complexity by adding reaction chemistry. The participants indicated the need to: 1) 

  study chemical reactions that are instantaneous and rate-limited aqueous reactions as opposed to precipitation 
reactions that are complicated due to the change in pore geometry and impact of precipitates on flow and mixing and 2) . 

 ccompare 2D and 3D systems. 

Another suggested research topic was to investigate if whether it is possible for mineral precipitation systems to uncouple 
the reaction kinetics and the phase reactions.? One initial starting point A system to start with might be CaCO3, which has 
been worked with extensively. An example of a more detailed study area might be to verify experimentally verify where 
calcite forms relative to other CaCO3 minerals, depending on the chemical gradient.  

The group also discussed increasing the heterogeneity of the system and looking at it in a flow-through system. Example 
analyses included: 

 How it seeds and grows is different in flow-through versus batch system. Can they be matched better? 

 Can rates from a batched system to be modeled in a flow cell?  

 People are looking at complicated reactions. Instead, they might look at very simple systems heterogeneous 
reactions—: can they be matched using known kinetics? 

In comparing 2-D versus 3-D, the group also had distinct observations: 

 Can we match the chemistry and surfaces that you have in both 2D and 3-D?  

 If we look atreview aqueous space reactions, we should be able to look at the models and parameters and model them 
with only changes to the boundary conditions.  
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 Can we use the model formulation for the boundary conditions?  

5.2 Displacement— – Multiphase Flow 

T 

Critical to understanding multiphase flow and displacement are the effects of anisotropy on capillary pressure-fluid 
saturation and relative permeability-fluid saturation relationships are critical to understanding multiphase flow and 
displacement. The group indicated that an experimental campaign should include: 

 Layered heterogeneity 

 Broken layers 

 Anisotropic particle shapes and pore sizes. 

Professor Celia noted the group saw some benefit in of having experiments that focused on snap-off and dynamic effects. 
Other analysis areas included: 

 Keeping track of what fraction of each phase is percolating or non-percolating (connected/not connected) 

 Try to have similar experiments in 2D and 3D to so you can see the impact of dimensionality 

 Dynamic capillary pressure and contact angle, i.e., : can you measure dynamic contact angle?  

 Experiments focused on supersaturation and precipitation/dissolution. 

5.3 Role for EMSL in pPore-scale Mmodeling and Tteam Rresearch Ssuccess 

In several different discussions, workshop participants indicated there were multiple ways that provided important 
expertise and capabilities that could be used utilized to enable significant advances in pore-scale research.  These 
characteristics include: 

 Access to microfabrication capability expertise for custom pore-scale models 

 Ability to generate high- quality data sets for simulation community 

 Ability to store, share, and maintain experimental data sets with access to the pore-scale community. For example, 
several researchers had access to data sets that they would be willing to make available to the broader community. 
EMSL could be the repository for these contributed data sets.  

 Ability to host or coordinate virtual meetings 

 The capability to maintain unique instruments operating under extreme or in situ conditions that would difficult to 
replicate at universities 

 The ability to provide long-term continuity to the research direction 

 Mentoring young researchers by world-quality experts operating state-of-the-art instrumentation. 

Other specific focus items include:  
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EMSL can help collaborative team formation and demonstrate the impacts of doing science in a collaborative way.  
The workshop advisors thought it was an appropriate role that EMSL, as a user facility, can lead the formation of a pore-
scale research team composed of both experimental and computational researchers who that define common research 
challenges that need to be addressed.  

EMSL needs to develop a long-term collaborative proposal process. —The normal mode of relatively short-term user 
proposals is not a model that affords will allow for significant advances in areas of high complexity.  EMSL needs to 
develop a mechanism that allows longer-term collaboration in specific target areas.  

Data sharing is vital. —The ability to share data and information at all levels and various stages of research is essential to 
accelerating the rate of research progress.  A The new website and the MyEMSL platform can provide some basis for this. 
However, , but it likely will require expansion and development of standard data formats and new visualization tools.   
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August 9-10, 2011 

 
 

August 9, 2011 Participant Presentations  
9:30-9:45 Ryan Kelly, Pacific Northwest 

National Laboratory 
Overview of EMSL Microfabrication Capabilities. 

9:45-10:00 Florian Doster, Princeton Hydrodynamic Properties of Percolating and Non-percolating 
Fluids: Are they Crucial for our Understanding of Macroscopic 
Hysteresis? 

10:00-10:15 Thomas Elliot, Princeton Inundation and Pedogenesis of Petrocalcic Soil. 
10:15-10:30 Juan Nogues, Princeton Investigations in Dissolution and Precipitation of Carbonate Rocks 

using Pore Network Models. 
10:30-10:45 Guoping Tang, Oak Ridge 

National Laboratory 
Challenges in Pore-scale Modeling of Structured Soils. 

10:45-11:00 Hongkyu Yoon, Sandia 
National Laboratory 

Pre-scale Simulation of Mixing-induced Calcium Carbonate 
Precipitation and Dissolution in a Microfluidic Pore Network. 

2:00-2:15 Wen Deng, University of 
Texas 

Snap-off of Supercritical CO2 within Circular and Noncircular 
Pores. 

2:15-2:30 Rinaldo Gonzalez Galdamez, 
Florida International 
University 

Lattice Boltzmann Modeling for Multiphase Flows: Rising Bubble 
Simulations and Beyond. 

2:30-2:45 Hai Huang, Idaho National 
Laboratory 

Complex Dynamics of Multiphase Flow and Reactive Transport 
Processes in Pores and Fractures. 

2:45-3:00 Hun Bok Jung, Pacific 
Northwest National 
Laboratory 

Carbonation of Wellbore Cement under Carbon Sequestration 
Condition. 

3:00-3:15 Haluk Resat, Pacific 
Northwest National 
Laboratory 

Challenges in Multiscale Modeling of Bacterial Dynamics. 

3:15-3:30 Tianyu Zhang, Montana State 
University 

Mathematical Model of Biofilm Induced Calcite Precipitation at 
the Pore-scale. 

   
August 10, 2011 Participant Presentations  
9:00-9:15 Robin Gerlach, Montana State 

University 
Investigating and Modeling the Influence of Biofilm Formation 
and Biofilm-mediated Mineral Formation on Reactive Transport in 
Porous Media. 

9:15-9:30 Teamrat Ghezzehei, 
University of California, 
Merced 

Linking Evolution of Sub-pore Scale Chemical/Morphological 
Heterogeneity with Changes in Macroscopic Hydraulic Properties. 

9:30-9:45 George Redden, Idaho 
National Laboratory 

Mixing/Reaction Fronts in Porous Media: Poor Mixing = Bad 
Behavior. 

9:45-10:00 Marshal Richmond, Pacific 
Northwest National 
Laboratory 

Simulation of Pore-scale Flow and Tracer Transport in a Column-
scale Core Sample. 

10:00-10:15 Kenton Rod, Pacific 
Northwest National 
Laboratory 

Challenges with Measuring Diffusion into Micro-channels using 
Micro-fluidic Devices. 

10:15-10:30 Guohui Wang, Pacific 
Northwest National 
Laboratory 

Radionuclide Immobilization and Flow Path Modifications by 
Dissolution and Secondary Precipitates. 
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Appendix B: Meeting Participants 

Advisory Panel 
 
Michael Celia 
Princeton University 
 
Markus Hilpert 
Johns Hopkins University  
 
Qinjunn Kang 
Los Alamos National Laboratory 
 
Laura Pyrak-Nolte 
Purdue University 
  
Tim Scheibe 
PNNL 
 
Alex TaratakovskyTartakovsky 
PNNL 
 
Charlie Werth 
University University of Illinois at Urbana-Champaign 
of Illinois-Urbana 
 
Dorthe Wildenschild 
Oregon State University 
 
Chaongyong Zhang 
PNNL 
 
Registered Attendees 
 
Stephen Bialkowski 
Utah State University 
 
Teamrat Ghezzehei 
University of California, -Merced 
 
Guoping Tang 
ORNLOak Ridge National Laboratory 
 
Florian Doster 
Princeton University 
 
Jitendra Kumar 
Oak Ridge National Laboratory 
 

 
Rishi Parashar 
Desert Research Institute 
 
Robin Gerlach 
Montana State University 
 
Hongkyu Yoon 
Sandia National Laboratories 
 
George Redden 
Idaho National Laboratory 
 
Tianyu Zhang 
Montana State University 
 
Hai Huang 
Idaho National Laboratory 
 
Juan Nogues 
Princeton University 
 
Wen Deng 
The University of Texas 
 
Haluk Resat 
Washington State University 
 
 
PNNL 
 
 
Nancy Hess, PNNL–-workshop organizer 
Mart Oostrom, PNNL–-workshop organizer  
Kenton Rod 
Don Baer 
Ryan Kelly  
Wooyong Um  
Guohui Wang 
Marshall Richmond  
Dave Rector  
Mark Stewart  
Hun Bok Jung 
 
Meeting Support and Administration 
 
Charity Plata
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