
PNNL-20567

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

NA-42 TI Shared Software
Component Library
FY2011 Final Report

CK Knudson
FC Rutz
KE Dorow

July 2011

 DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

 PACIFIC NORTHWEST NATIONAL LABORATORY
 operated by
 BATTELLE
 for the
 UNITED STATES DEPARTMENT OF ENERGY
 under Contract DE-AC05-76RL01830

 Printed in the United States of America

 Available to DOE and DOE contractors from the
 Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

 Available to the public from the National Technical Information Service,
 U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

 (9/2003)

PNNL-20567

NA-42 TI Shared Software
Component Library FY2011 Final
Report

CK Knudson
FC Rutz
KE Dorow

July 2011

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

1

1.0 Introduction

The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the

long term goal of migrating toward a software management approach that will allow for the sharing and re-

use of code developed within the TI program, improve integration, ensure a level of software documentation,

and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with

two activities that support this mission.

PNNL has been tasked with the identification, selection, and implementation of a Shared Software

Component Library. The intent of the library is to provide a common repository that is accessible by all

authorized NA-42 software development teams. The repository facilitates software reuse through a

searchable and easy to use web based interface. As software is submitted to the repository, the component

registration process captures meta-data and provides version control for compiled libraries, documentation,

and source code. This meta-data is then available for retrieval and review as part of library search results.

In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software

application with the goal of replacing the aging Aerial Measuring System (AMS). The application under

development includes an Advanced Visualization and Integration of Data (AVID) framework and associated

AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for

collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project

development team, is accessed via two different geographic locations and continues to be used. The

knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software

development and systems engineering capabilities were used in the selection of a package to be used in the

implementation of the software component library on behalf of NA-42 TI.

The second task managed by PNNL is the development and continued maintenance of the NA-42 TI Software

Development Questionnaire. This questionnaire is intended to help software development teams working under

NA-42 TI in documenting their development activities. When sufficiently completed, the questionnaire

illustrates that the software development activities recorded incorporate significant aspects of the software

engineering lifecycle. The questionnaire template is updated as comments are received from NA-42 and/or its

development teams and revised versions distributed to those using the questionnaire. PNNL also maintains a

list of questionnaire recipients.

2

The blank questionnaire template, the AVID and AMS software being developed, and the completed AVID

AMS specific questionnaire are being used as the initial content to be established in the TI Component

Library.

This report summarizes the approach taken to identify requirements, search for and evaluate technologies,

and the approach taken for installation of the software needed to host the component library. Additionally, it

defines the process by which users request access for the contribution and retrieval of library content.

2.0 Assumptions

It is expected that software development teams will maintain their own code repositories for use during

development and management of their individual applications. The software component library is not

intended to become the development environment for all projects but rather a repository where released

versions of NA-42 TI program software packages and their associated documentation are stored for reference

and available for re-use.

PNNL is responsible for hosting the software component library but does not have the responsibility of

ensuring that all NA-42 software development teams comply with NA-42 guidance on the use of or access to

the library.

3.0 Requirements

In order to perform an appropriate research and review of existing software packages, it was first necessary to

define the functionality and capabilities that were required of the software to meet the needs of the program

and the intended end users. Developing a well-defined set of software requirements prior to the initiation of

the procurement process benefited the project in a number of ways. First, the requirements provided a

consistent set of selection metrics for all staff members involved in the research phase of the procurement

eliminating any misdirection and keeping staff members focused. Second, having a pre-defined set of

requirements allowed staff members to quickly target prospective applications as well as quickly eliminating

inappropriate applications both of which reduced the research and review time. Finally, the requirements

provide a template for the testing of the software.

The requirements defined for the TI Shared Software Component Library were developed in three stages.

During the first stage, potential categories of users who would be using the software were defined.

3

3.1. User Stories

The user categories included developers, project managers, system administrators, and testers. The categories

of developers and managers were further broken down to include users internal to PNNL and those outside

of PNNL. Once the user roles were defined, stage two was to develop a set of user stories to illustrate the

desired high level functionality of the software from the perspective of each user category. Table 1 lists the

user stories developed for the shared software component library as well as the user categories associated

with each story.

Table 1 Component library users and associated functions/stories.

Story

Function / User
Story

TI

Mgmt
Internal

Developer
External

Developer
Internal

PM
External

PM
System
Admin

Tester

1

I want to be able to
configure the library
so that it is accessible
by both internal and
external users
approved by NA-42

 X

2 I want to control
access to the library
based on roles and
responsibilities so I
know which users can
perform which tasks
and provide the
necessary
accountability

 X

3 I need the library
capable of operating
on publicly available
servers so that it is
accessible by both
internally and
externally approved
NA-42 users

 X

4 I need the library
capable of operating
on classified
networks as well as
non-classified
networks

X X X X

5 I need the library to
be developed by an
organization based
within the United

X X X X

4

Story

Function / User
Story

TI

Mgmt
Internal

Developer
External

Developer
Internal

PM
External

PM
System
Admin

Tester

States

6 I need sufficient
configuration
management so I can
build any version of
the application
available within the
code library

 X X X X X X

7 I need sufficient
configuration
management so I can
build new
applications using any
version of the
available software
modules within the
code library

 X X X

8 I want a code
repository where
software applications
and modules can be
checked in so that
approved software
developers have them
available for review
use

X X X X X X X

9 I want to develop and
store the functions,
requirements, and
software applications
or modules in the
code repository so I
have traceability
between
customer/user inputs
and the code stored
in the library

X X X X X X X

10 I want a user
interface that
provides registration
so I can register new
components into the
library

X X X X X X X

5

Story

Function / User
Story

TI

Mgmt
Internal

Developer
External

Developer
Internal

PM
External

PM
System
Admin

Tester

11 I want a user
interface to check in
my contributions to
the library so I can
check in different
versions of code
modules, source code
and documentation

X X X X X X X

12 I want a library that
can store data sets so
I can store data from
common data
repositories

X X X X X X X

13 I want to know the
pedigree of the
software in the
repository so I can
choose the best
version of the
software to meet my
needs

X X X X X X X

14 I want pedigree
information to
differentiate between
versions of software
so my team can best
determine which
software to use

X X X X X X X

15 I want to know the
capabilities of the
code available for
reuse so we can write
project proposals that
include taking
advantage of existing
code

X X X X X X X

16 I want to search
through the library
documentation so
that I have a single
source to search for
reusable modules

X X X X X X X

17 I want to search
through the library
metadata so that I
have a single source
to search for reusable
modules

X X X X X X X

6

Story

Function / User
Story

TI

Mgmt
Internal

Developer
External

Developer
Internal

PM
External

PM
System
Admin

Tester

18 I want refined search
capabilities so I can
create detailed
technical descriptions
of code modules

X X X X X X X

19 I want to check
software into the
code library that has
been developed using
a development
environment of my
choice so that I have
a secure location for
my software.

Acceptance Criteria:
Developer checks in
code from a
framework that is
different than the
framework of the
code library

 X X

20 I want to be notified
of new bugs against
the code my team is
responsible for when
they are created so I
can triage the bug and
determine a course of
action

 X X X X X X

21 I want to have access
to the software bugs
that have been
submitted against the
code library so I have
additional
information to
determine the quality
of the software

 X X X X X X

22 I want to have access
to the software bugs
that have been
submitted against the
code library so I can
determine which
software will be
further developed (or
improved upon)

X X X X X

7

Story

Function / User
Story

TI

Mgmt
Internal

Developer
External

Developer
Internal

PM
External

PM
System
Admin

Tester

23 I want to be able to
see what software
packages I have
stored in the
repository.

X X X X X X X

24 I want to be able to
access software
information/meta
data associated with
projects currently in
the webPMIS system.

X X X X

25 I want to be able to
have the system
admin restrict access
to certain codes
unless the user is
authorized by me

X X X X

26 I want to know the
system is secure and
cannot be penetrated
by outside threat

X X X X

27 Xn Roles… I want to
ensure that only
authorized individuals
have access to
content within the
code library and that
authorization will
follow a predefined
process agreed to by
NA-42 and PNNL
project management

X X X X

28 I want to be able to
place restrictions or
caveats on code my
team may include in
the library

X X X X

3.2. Technical Requirements

The last stage in the development of the software requirements was to break down each of the user stories

into technical requirements for the software. These lower level requirements are intended to define the base

functionality that the library software would need to meet. Table2 lists the requirements along with the

number of the user story they are associated with.

8

Table 2 Technical requirements and associated user stories.
Story # Constraints / Requirements

1.1 The system shall provide a way to configure and control two factor authentication for
users external to PNNL who have been approved for access by NA-42

1.2 The system shall provide a way to configure and control authentication for users
internal to PNNL who have been approved for access by NA-42

2.1 The system must control user access based upon role based authentication
2.2 The system must provide a graphical user's interface that allows an administrator to

quickly and easily set and update user accounts
3.1 The system must be capable of running on servers outside of the PNNL firewall
3.2 The system must run on commercially available server equipment

4.1 The software selected for use as the repository must be able to operate on classified and
non-classified networks

5.1 The software selected for use as the repository must not be developed or managed by a
company outside of the United States

6.1 The software selected for use as the repository must be able to store and maintain
different versions of each of the files and projects in the repository

6.2 The software must be able to correlate all stored documentation, release notes, and bug
reports associated with each version of software or file stored within the repository

6.3 The software must provide the user the ability to review, check in, and check out any
version of a file or project that is stored within the repository

6.4 The system must provide the means to rollback files or projects to earlier versions.
7.1 The software must provide the user the ability to check out individual files, complete

projects, and installable executables
8.1 The software must provide the ability to check in new or modified versions of files or

projects
8.2 The software must limit the ability to check in new versions of stored files to only the

point of contact on record for the stored software
9.1 The software must be able to correlate all stored documentation, release notes, and bug

reports associated with each version of software or file stored within the repository
9.2 The system must provide the means for the user to enter and associate tags or keywords

with each file or project within the repository
9.3 The system must provide the ability to search files based upon file dependencies
9.4 The system must provide the means for a user to search for files based upon tags,

keywords, file type, classification level, language type, and version notes
9.5 The system must provide the ability for a user to access and review all version

information for a file or project
10.1 The system must provide a graphical user’s interface that allows a user to add files to the

repository by browsing to the file or dragging the file icon on top of the interface
window

9

Story # Constraints / Requirements
10.2

During the file and project add process, the system will provide the user with the means
to enter all pedigree information related to the files or projects being added. For each
file or project in the repository, this information will include title, type, language
developed in, purpose or function of the file, projects or program applications that the
files are associated with

10.3 The system must provide a graphical user’s interface that allows a user to enter notes
and comments for each file or project in the repository

10.4 The system must provide the means for a user to store all files associated with a version
of software including code, executable, and documentation files

10.5 The system will record and maintain contact information of the person responsible for
each file or project in the repository

11.1 The system must provide a graphical user’s interface that allows users the ability to
easily check in and checkout files or projects

11.2 During the check in and checkout processes, the system must provide an interface that
allows the user to enter notes concerning the check out or check in of the files

11.3 The system must be capable of managing multiple versions of each project or file within
the repository

11.4 The system must provide the ability for users to checkout versions of software or files
for review and use

11.5 The system must record and maintain checkout and check in information for each
version of the files and projects in the repository. This information shall include at a
minimum user id, date checked out, date checked in, version checked out, version
checked in, and files that were modified during the checkout period

12.1 The system must be able to store any type of file i.e. text, binary, .bas, .com, .dll, .doc,
.jpg

13.1 The system must provide the means for the user to enter and associate tags or keywords
with each file or project within the repository

13.2 The system must provide the means for a user to enter development or version notes
for each file or project stored within the repository

13.3 The system must provide the means for a user to search for files based upon tags,
keywords, file type, classification level, language type, and version notes

13.4 The system must provide the ability to search files based upon file dependencies
13.5 The system will provide the means for a user to request and receive contact information

for each file or project in the repository
13.6 The system must provide the ability for a user to access and review all version

information for a file or project
13.7 The system will provide the means to create and maintain relationships between files or

complete projects stored in the repository
13.8 The system will provide the means to search for files or projects by relationships
14 Covered by user story 13
15 Covered by user story 13

10

Story # Constraints / Requirements
16 Covered by user story 13
17 Covered by user story 13
18 Covered by user story 13

19.1 The system must be configurable to enable the use of different language compilers
19.2 The system must be able to build any version of a file or project stored in the repository
20.1 The system will automatically notify by email the system administrator and the

responsible contact when a bug is submitted to the system for any file or project
20.2 The system will provide the means for a user to enter a new bug message into the

system
21.1 The system will provide the means for a developer or tester to enter the current

disposition of a bug
22.1 The system will provide the ability for a user to retrieve all bug information associated

with a file or project that is stored within the repository
22.2 The system will provide the user with the ability to search for files or projects based

upon bug information
23.1 The system must provide the ability for an administrator to automatically generate usage

reports including number of files checked out, users who currently have files checked
out, number of files or projects in the repository, bug reports, and listing of the names
of files and projects currently in the repository

24.1 The system must be accessible for integration with external systems such as webPMIS
26.1 Hardware on which the system will be operating must be capable of being physically

locked up to prevent un-authorized access
26.2 The system must not be dependent upon an Internet connection
26.3 The system must provide an approved method of access authentication
28.1 The system must allow for an administrator or the person responsible for the files or

projects to limit the access to those files and projects
28.2 The system must allow for the limiting of access based upon role category, user id,

client id, and project id

4.0 Technology Evaluation

With the requirements and constraints defined for the TI Shared Software Component Library, a technical

evaluation of existing commercial off the shelf (COTS) library software packages was performed. The first

step in this evaluation process was the completion of an open source search using the Internet. Through the

use of multiple search criteria, a list of thirty-one potential software candidates was developed. This list

consisted of both commercial products such as Microsoft’s Team Foundation Server software and open

source products like TracSVN. Table 3 provides the full list of applications that were reviewed during the

selection process.

11

Table 3 Applications reviewed in library software selection.

TeamForge Team Foundation
Server

PCMDI Mercurial Tortoisehg

Git TortoiseGit TortoiseSVN Bazaar Darcs
Monotone Perforce TortoiseCVS Vesta JEDI
GNU Arch BriefCase 3 Toolkit SourceJammer SubVersion PRCS
Aegis CVS GNU SCCS CS-RCS Pro Atlassian
Dimensions CM Kiln StarTeam Vault Team Coherence
TracSVN

The list of candidate applications was further reduced by performing high level reviews against the

requirements for each product on the list. This high level review resulted in the list being reduced to three top

candidate applications: TeamForge, Team Foundation Server, and TracSVN.

4.1. Down Selection

With the identification of the top three candidate applications complete, Trial versions of TeamForge and

Team Foundation Server were installed on test machines for the purpose of testing the basic functionality of

each application. This installation of the two software applications also provided the team with the

opportunity to evaluate the ease in which the applications were installed and configured. TracSVN is an

application that is currently in use on a number of projects and as such the project team was already aware of

its use and capabilities so it was not included in the trial version of the review.

Following the trial testing, team members tested each of the applications against each functional requirement

and reported on which requirements were not being met. Results of this last review showed that TracSVN

only met seventy percent of the requirements and Team Foundation Server only met eighty-five percent of

the requirements. The TeamForge from Collabnet was the only application that met 100% of the task

requirements. There were two areas in which TeamForge stood out above the other applications, 1) its ease

of use, 2) the administration tools that it provides to control access to the system and the objects stored in the

repository.

4.2. Final Selection

TeamForge provides a web based GUI that allows a user to select and upload a file. There are free to

download desktop applications available through CollabNet which will allow drag and drop capabilities for

adding files. These applications include versions for Windows desktop, Visual Studio, and Eclipse. The

desktop applications provide more functionality than the web base GUI such as being able to drag and drop

12

files in order to add them to the repository. All of the desktop applications and the web based interfaces

provide the ability for a user to see what tasks, trackers, files, and documents have been submitted by the user

as well as the ones assigned to the user. The desktop applications also give the user more methods of viewing

and sorting the data and files. In addition, the desktop applications provide graphical user interfaces that

allow users to check in and checkout files and code. Using the desktop applications, a user is able to add

notes to their check in or check out. The software tracks documents by ID, created by, created date, version,

name, size, last edited by, date last edited, and status.

Aside from the usual roles associated with a repository such as administrator, developer, and tester,

TeamForge allows the system administrator to define new roles and assign custom access permissions. The

software defines user access at two levels, the site administrator level and the project administrator level. At

the site administrator level, users are categorized as one of two types, administrator and restricted. Users

defined as administrators have unlimited access to all data. Restricted users are limited to accessing only the

projects on which they are designated as members. Project managers can add or remove users from accessing

the project data as well as defining the user roles associated with the project.

CollabNet, the parent company which develops TeamForge is an established software developer with over

ten years of experience and is considered a leader in the development of configuration management and

collaboration software. Headquartered in Brisbane, California, CollabNet currently has more than five million

users and is in use at more than twenty-five thousand companies world-wide.

Total procurement cost for the TeamForge software was $5,978.87. This price included the annual

subscription cost of the software for twenty-five user licenses and CollabNet’s Platinum support package.

The Platinum support package provides the project with 24 hour access to the CollabNet support staff seven

days a week as well as providing initial installation assistance.

5.0 Authentication / Access Control for TICL

5.1. Overview
The intent of this section is to provide a high level overview of the authentication / access control

mechanisms that are planned for NA-42 Technical Integration Component Library (TICL). Due to the

deficiency in requested vs. actual funding as well as the effects of the continuing resolution (CR) these

mechanisms are targeted for implementation in FY12.

13

5.2. Authentication

A low cost but effective two-factor authentication mechanism is the desired means to handle authentication

within TICL. Two-factor authentication implies two independent means of evidence to assert an entity and,

in electronic systems, generally takes the form of a user-defined password or Personal Identification Number

(PIN) + a value from some sort of physical token. It is our intent to leverage the existing two-factor

authentication mechanism already built into WebPMIS as much as possible (given that most of the users of

WebPMIS will also be TICL users).

5.3. Access Control

TICL will employ a Role-Based Access Control (RBAC) system to control access to specific content (e.g.

access to specific projects). As part of the scope we will determine the required level of granularity needed

for content control as well as the level of support within the selected COTS solution for TICL (TeamForge).

Based on those requirements, a solution will be designed and implemented. Here again, it is our intent to

leverage the RBAC mechanisms already built into WebPMIS as much as possible.

5.4. User Account Management

The authentication and access control mechanisms within TICL will be designed and implemented such that

NA-42 management will have full control over who has access into the system and what content they can

create / view / edit.

5.5. Audit Capabilities

The TICL authentication and access control mechanisms will provide detailed logging of user activities such

that auditing functions can be performed. Examples of logged information would include log-in date / time,

content accessed, content created, and functions performed.

14

6.0 References

2011. CollabNet Overview. www.open.collab.net/about/, Brisbane, California

2011. CollabNet Corporate Overview. www.open.collab.net/media/pdfs/corporate_factsheet.pdf,
Brisbane, California

2011. CollabNet Support Options. www.open.collab.net/support/support-programs/, Brisbane, California

2011. CollabNet TeamForge 5.4 Project Administrator Guide. www.Carahsoft.com, Reston, Virginia.

2011. CollabNet TeamForge 5.4 System Administrator Guide. www.Carahsoft.com, Reston, Virginia.

2011. CollabNet TeamForge 5.4 Site Administrator Guide. www.Carahsoft.com, Reston, Virginia.

2011. CollabNet TeamForge 5.4 User Guide. www.Carahsoft.com, Reston, Virginia.

2011. NA-42 Technical Integration Software Development Questionnaire. Pacific Northwest National
Laboratory. Richland, Washington.

http://www.open.collab.net/about/
http://www.open.collab.net/media/pdfs/corporate_factsheet.pdf
http://www.open.collab.net/support/support-programs/
http://www.carahsoft.com/
http://www.carahsoft.com/
http://www.carahsoft.com/
http://www.carahsoft.com/

15

7.0 Appendix 1 Technologies Evaluated

Product Company URL

TeamForge COLLABNET http://www.collab.net/products/ctf/capabilities.html
Team Foundation
Server Microsoft http://msdn.microsoft.com/en-us/vstudio/ff637362

PCMDI CDAT http://www2-pcmdi.llnl.gov/cdat/support/svn

mercurial http://mercurial.selenic.com/

tortoisehg Atlassian https://bitbucket.org/tortoisehg/stable/wiki/Home

Git http://git-scm.com/
TortoiseGit http://code.google.com/p/tortoisegit/
TortoiseSVN http://tortoisesvn.net/
Bazaar http://bazaar.canonical.com/en/
darcs http://darcs.net/
Monotone http://www.monotone.ca/
Perforce http://www.perforce.com/perforce/downloads/index.html
TortoiseCVS http://www.tortoisecvs.org/
Vesta http://www.vestasys.org/
JEDI http://jedivcs.sourceforge.net/
GNU arch http://www.gnu.org/software/gnu-arch/
BriefCase 3 Toolkit http://www.applied-cs-inc.com/bcintro.html
SourceJammer http://www.sourcejammer.org/

SubVersion http://subversion.tigris.org/
PRCS http://prcs.sourceforge.net/
Aegis http://aegis.sourceforge.net/
CVS http://www.nongnu.org/cvs/
GNU SCCS http://cssc.sourceforge.net/

CS-RCS Pro
ComponentSoftware
Inc. http://www.componentsoftware.com/Products/RCS/index.htm

Atlassian http://www.atlassian.com/about/
Dimensions CM SERENA http://www.serena.com/products/dimensions-cm/index.html
Kiln Fog Creek http://www.fogcreek.com/kiln/

StarTeam Borland http://www.borland.com/us/products/starteam/index.aspx
Vault SourceGear http://www.sourcegear.com/vault/

Team Coherence QSC http://www.teamcoherence.com/
Perforce Perforce http://www.perforce.com/

http://mercurial.selenic.com/
https://bitbucket.org/tortoisehg/stable/wiki/Home
http://www.sourcejammer.org/
http://www.componentsoftware.com/Products/RCS/index.htm
http://www.sourcegear.com/vault/

16

8.0 Appendix 2 TeamForge Price Quote

	1.0 Introduction
	2.0 Assumptions
	3.0 Requirements
	3.1. User Stories
	3.2. Technical Requirements
	4.0 Technology Evaluation
	4.1. Down Selection
	4.2. Final Selection
	5.0 Authentication / Access Control for TICL
	5.1. Overview
	5.2. Authentication
	5.3. Access Control
	5.4. User Account Management
	5.5. Audit Capabilities
	6.0 References
	7.0 Appendix 1 Technologies Evaluated
	8.0 Appendix 2 TeamForge Price Quote

