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Executive Summary 

A “generic” gantry-crane-mounted spreader bar detector has been simulated with the Monte-Carlo 

radiation transport code MCNP [1].  This model is intended to represent the largest feasible number of 

detector crystals in a single gantry-crane model intended to sit atop an intermodal cargo container 

(IMCC).  We chose detectors from among large and commonly available sodium iodide crystal 

scintillators, and spaced them as evenly as possible within a detector apparatus attached to a gantry crane. 

Several scenarios were simulated with this model, which was based on a single IMCC to be moved 

between a ship’s deck or cargo hold and the dock.  During measurement, a gantry crane carries an IMCC 

through the air and lowers it onto a receiving vehicle (e.g., chassis or bomb cart).  The case of an IMCC 

being moved through the air from an unknown radiological environment to the ground is somewhat 

complex; for this initial study, we chose a single location at which to simulate background.  A highly 

enriched uranium source, based on earlier validated models, was used and placed at varying depths in a 

wood cargo.  Many statistical realizations of these scenarios are constructed from simulations of the 

component spectra, simulated to have high statistics.  To produce these results, we have only considered 

this single HEU source and statistical realizations of the background; we simulated no NORM or other 

nuisance sources.  The resultant data have been analyzed with several different algorithms, and are 

intended to provide a representative set of the analysis techniques which might be chosen for a real 

detector: 

 Gross Counting:  The gross-counting algorithm is one of the simplest methods of source 

detection, and is used in many deployed detector schemes.  In this algorithm, the number of 

counts above the background is computed and compared to a threshold.  The figure of merit is 

generally calculated from 

 BFBC   

where C is the total counts and B is the background counts.  Gross counting is thought to be an 

effective “baseline” solution, because  its performance cannot be significantly changed by 

anything other than attenuation by cargo materials. 

 Energy Distance:  In this approach, the available spectrum is binned into coarse energy bins that 

are treated as a vector and normalized.  Then the “opening angle” between background and 

source spectra is found by taking the dot product between them.  This opening angle is the figure 

of merit returned from this algorithm.  Similar algorithms have been useful in identifying sources 

behind cargo. 

 Peak Finding:  The peaks present in the spectroscopic data are  “picked out” with a variety of 

methods and then compared with a catalog of known source emission lines to produce a list of the 

isotopes present in the measured spectrum.  The spectrum is convolved over energy with a 

matching filter, compared to a threshold to generate peaks, and then the peaks are compared to a 

limited catalog of sources to determine source detection. 

 GADRAS:  In the Gamma Detector Response and Analysis Software (GADRAS) template 

matching code, the spectrum to be interpreted is compared with a library of templates.  When a 

"good" match is found, the spectrum can be identified as that of the isotope used to generate the 

template.  The template library contains the measured or calculated spectra of most isotopes, as 

well as some background spectra.   
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Template matching is well suited to the identification of unshielded radiation sources.  Multiple 

regressions can also be applied to identify combinations of radionuclides.   

 Limited GADRAS:  In this scheme, only the natural isotopes expected in background are 

included in the template library, meaning that the presence of an additional source will tend to 

make the “goodness of fit” progressively worse with intensity.  Thus, the goodness of fit (Chi
2
) is 

used as the figure of merit for this use of GADRAS, rendering it an anomaly detecting algorithm. 

The simulated data were evaluated by each algorithm, with a threshold set to a false alarm probability of 

0.001, and the resultant minimum detectable amounts were generated for each cargo depth possible within 

the IMCC.  In this report, we calculated the false alarm probabilities using only the statistical count 

variation of the background, and no nuisance sources were included in the data sets.  Probabilities of 

Detection were generated for each cargo depth and source strength combination, and these were analyzed 

to produce the Minimum Detectable Amount (MDA) of the HEU source for each cargo depth, as shown 

below.  The MDA is herein defined as the source intensity (in emitted gammas per second from the 

source surface) at which a 95% Probability of Detection is reached.  These data are presented with a line 

representing 25 kg of HEU (actually a 25-fold multiplier on the standard 1-kg source used for 

simulations) for comparison.  In our evaluation of these data, the technique of using GADRAS as an 

anomaly detector provided the greatest detection sensitivity. I  We expect that an algorithm similar to this 

will be greatly useful in  the detection of sources shielded by substantial amounts of cargo.  However, the 

“worst case” scenario—detection of sources shielded by several meters of dense cargo—still presents a 

difficult problem for even the best algorithms considered.  Future work will be necessary to improve on 

the current algorithms and refine these results. 

 

 

Figure ES-1.  Minimum Detectable Amounts for Highly Enriched Uranium
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Acronyms and Abbreviations 

cps counts per second 

HEU highly enriched uranium 

IMCC intermodal cargo container 

MCNP Monte-Carlo N-Particle 

NaI sodium iodide 

NORM naturally occurring radioactive material 

SBRD spreader-bar radiation detector 

GADRAS Gamma Detector Response and Analysis Software 
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1 Introduction 

A spreader-bar-mounted detection system was simulated to determine the baseline detection capability for 

shielded sources and the behavior of individual algorithms.  We produced several models for background, 

detectors, cargo, and sources of interest, with the intent of evaluating a generalized case of source 

detection. These models are not meant to represent the result from any actual system currently 

manufactured.  Several caveats should be applied to the result of this work, especially in regard to the use 

of a single source and cargo type.  It is possible that higher-energy sources may be more easily detectable 

by spectroscopic methods or that denser or more high-Z cargo would make detection more difficult.  

However, to compare the performance of algorithms to one another, the cargo amount and source strength 

were significantly varied to provide a look at every potential shielding depth and realistic source strength 

possible within a cargo container.  The spreader-bar model includes (75) 4  4  16 (10.16 x 10.16 x 

40.64 cm) sodium iodide (NaI) detectors distributed on or near the bottom surface of the spreader bar.  

This large number of detectors was incorporated to optimize source detectability by the use of detector 

subsets.  However, in this study only a central source location was used.  In all cases, scenarios were 

modeled to estimate the detectability of a simple, highly enriched uranium (HEU) source inside an 

intermodal cargo container (IMCC) and underneath varying thicknesses of wood cargo. 

1.1 Radiation Transport Model 

Elements of the spreader bar, IMCC, cargo, source, and surrounding environment were modeled in order 

to simulate gamma rays leaving the source, effects of the environment, and the process of detection.  The 

“generic” gantry-crane-mounted spreader-bar-detector array described above was simulated in the Monte 

Carlo radiation transport code MCNP [1], and is referred to hereafter as the spreader-bar radiation 

detector (SBRD) model.  Detectors were chosen from among large, commonly available, NaI crystal 

scintillators and spaced as evenly as possible.  A top view of the relative positions of the detectors on the 

SBRD is shown in Figure 1-1.  There are 20 detector locations in each of the end sections of the spreader 

bar and 35 detector locations in the middle section of the spreader bar (see Figure 1-2).  This spatial 

distribution of detectors was chosen to provide a similar amount of detector coverage on each segment of 

an actual gantry-crane mounted spreader bar device like the ones used at seaports. 

 

Figure 1-1.  Top View of SBRD NaI Detector Crystal Locations 
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Figure 1-2.  SBRD with NaI Detector Crystal Locations and Photomultiplier Tubes 

During measurement, the gantry crane will lower the spreader bar onto a single IMCC within a ship’s 

hold or on deck, carry that IMCC through the air and lower it onto a receiving vehicle (e.g., a chassis or 

bomb cart).  The case of an IMCC being moved through the air from the unknown radiological 

environment of a ship to the ground is complex, so the issue of background variation during this exercise 

is likewise complex.  In practice, we expect that any real source detection algorithm will need to exclude 

data taken within some reasonable distance from the ship to avoid unpredictable variations in the 

background due to emissions from nearby cargo containers.  Additionally, the background variation 

between water and land may be significant.  In this work, the scenario was simplified by placing the 

modeled container in a fixed position on the ground 6 meters from the edge of the water.  Figure 1-3 

shows the water, ground, IMCC, and detector from the background simulation.  All simulations were 

made by using MCNP [1] with sufficiently small statistical uncertainty that later data manipulations could 

be made to generate many statistical realizations of shorter measurements. 

 

Figure 1-3.  Scenario for Background Simulations 

This model was used to calculate source detection scenarios consisting of a background and HEU source 

contained within an IMCC filled with some amount of uniform density wood cargo.  The wood cargo was 

simulated with a mass density of 0.46 grams per cubic centimeter to approximate dry pine plywood.  To 

construct realistic detection scenarios, several components were modeled independently and then 

reconstructed by later data manipulation.  The terrestrial background (with and without the IMCC 

container and cargo present) and the source emissions from the HEU test source were modeled in separate 

MCNP runs and were used to construct permutations of this detection scenario. 

1.2 Soil Background 

We expect that an actual cargo inspection (using a real SBRD) will be preceded by a baseline 

measurement of the background without the presence of an IMCC.  When an IMCC is being off-loaded, 

the measured background will be attenuated by the container and its cargo, which may not be known, and 

the measurement may include contributions from additional hidden sources. 

Considering this, the terrestrial background was calculated with a series of MCNP models that included 

the SBRD and the 10 combinations of IMCC and cargo listed in Table 1-1.  We have simulated and 

tallied count rates for every detector in the SBRD.  Each spectrum was represented by 1024 3-keV 

channels spanning the range from 0 to 3.076 MeV.  We then normalize the rate to correspond to source 

counts per second (cps) per channel by adding a multiplicative cofactor into the MCNP input files. 
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The spectra are in the 10 MCNP output files listed in Table 1-1.  The maximum wood thickness 

considered (corresponding to 100% of the maximum) was 223 cm.  This corresponds to an areal density 

of 102.6 g/cm
2
 for detectors immediately above the source, but up to 123 g/cm

2
 for detectors near the 

edge of the region used for algorithm evaluation (see Fig. 1-7). 

Table 1-1.  Soil Background Simulation Output Files 

Description File Name 

No container BG-75D-NC-Y6Z0.j.out 

Empty container BG-75D-EC-Y6Z0.j.out 

5% of maximum wood thickness BG-75D-5-Y6Z0.j.out 

10% of maximum wood thickness BG-75D-10-Y6Z0.j.out 

15% of maximum wood thickness BG-75D-15-Y6Z0.j.out 

20% of maximum wood thickness BG-75D-20-Y6Z0.j.out 

25% of maximum wood thickness BG-75D-25-Y6Z0.j.out 

50% of maximum wood thickness BG-75D-50-Y6Z0.j.out 

75% of maximum wood thickness BG-75D-75-Y6Z0.j.out 

100% of maximum wood thickness BG-75D-100-Y6Z0.j.out 

 

The calculated spectrum in the one center detector for each of the 10 soil-background configurations is 

shown in Figure 1-4.  The top (dark blue) curve shows the calculated background spectrum for the case 

where no IMCC is present.  The bottom curve shows the spectrum for the case of a container with a full 

load of wood.  These simulations show the similarity of attenuated backgrounds over the range of cargo 

considered by this report. The normalization factor used in the MCNP output is 1.05310
8
, which is the 

emission rate in cps for the soil source.  Background simulations included 2x10
10

 random particle 

histories to establish high statistics. 

  

Figure 1-4.  Soil Background Detected by SBRD Central Detector 
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1.3 HEU Source 

An HEU source was added to the MCNP model to represent a potential hidden source within the IMCC.  

The signal from the HEU source was calculated in with 10 levels of cargo.  In all cases, the MCNP model 

for HEU used a point-source configuration for simplicity. 

The spectrum emitted by the point source was the same as that emitted from the surface of a bare, 

spherical, HEU source [2]  The total emission rate was chosen to match the rate at the surface of a 1-kg 

cylinder of HEU, with an equal diameter and height of 4.066 cm.  The point source was located where the 

center of the HEU cylinder would be if it were centered in the container and sitting on the container floor.  

The spectra are in the nine MCNP output files listed in the following table.   

Table 1-2.  HEU Source Simulation Output Files 

Description File Name 

Empty container HEU-PS-75D-EC-Y6Z0.j.out 

5% of maximum wood thickness HEU-PS-75D-5-Y6Z0.j.out 

10% of maximum wood thickness HEU-PS-75D-10-Y6Z0.j.out 

15% of maximum wood thickness HEU-PS-75D-15-Y6Z0.j.out 

20% of maximum wood thickness HEU-PS-75D-20-Y6Z0.j.out 

25% of maximum wood thickness HEU-PS-75D-25-Y6Z0.j.out 

50% of maximum wood thickness HEU-PS-75D-50-Y6Z0.j.out 

75% of maximum wood thickness HEU-PS-75D-75-Y6Z0.j.out 

100% of maximum wood thickness HEU-PS-75D-100-Y6Z0.j.out 

 

The normalization factor used in the MCNP output is 1.3210
6
, the emission rate in cps for the HEU 

source.  As with the soil background simulations, all MCNP calculations were continued for 2x10
10

 

particle histories.  The spectrum detected in the center detector for each of the nine cargo thicknesses is 

shown in Figure 1-5.  The top curve is for an empty container and the bottom curve is for a container with 

a full load of wood.  While the highest integrated count rate (with no cargo) is 722 cps for the one central 

crystal, the corresponding count rate at 100% cargo fill is only 2.6 cps.  This lowest rate is small enough 

that no detection is expected for a single HEU source. 

  

Figure 1-5.  HEU Source Detected by SBRD Central Detector 
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Each of the MCNP output files contains 75 output tallies, corresponding to the spectra at each of 20 

detector crystal locations at one end, followed by the 35 central locations and the 20 locations at the other 

end (see Figure 1-1).  A subset of these tallies was summed to generate optimal sensitivity to a single 

source, as described in section 1.5. 

1.4 Data Preparation 

With data sets corresponding to the scenarios described above (and with high statistics simulating very 

long counting times), a set of data was constructed to simulate the count rates that a real detector would 

see during field operations.  In a real measurement of a cargo container, available data will include a 

background (taken beforehand, without any cargo container or additional source present) and the cargo 

container measurement.  The latter will include the background attenuated by the cargo and container as 

well as possible contributions from hidden sources.  For all simulations of real measurements prepared 

from this data,we choose a measurement time of 60 seconds to represent the approximate time taken in 

cargo loading.   

We construct detector observations in the ASC file format by first declaring a scenario with a source 

emission rate (defined as a simple multiplication of the emissions from the HEU test source) and a 

volume of cargo (up to 100%).  The background (with no cargo container) was scaled to a 60-second 

observation and retained for comparison.  The background attenuated by the IMCC and cargo, and the 

HEU source tallies were scaled and added together to represent the measurement taken during crane 

loading.  Many statistical “realizations” of those results were made by adding noise corresponding to the 

appropriate Poisson variation of the counts in each energy bin.  In this way, many realizations were 

simulated of each combination of cargo depth and source strength, between 0 and around 160,000 percent 

of a single test source’s emissions.  We choose this range to allow for source detection by at least some 

algorithms, even with deep cargo shielding.  

1.5 Analysis Methodology 

In order to apply algorithms to the data from the ASC files, thresholds will be necessary (the point at 

which the result of an algorithm can be used to signal detection of a source).  For this work, the effects of 

naturally occurring radioactive material (NORM) were not considered and the statistical limit was used to 

evaluate the performance of each algorithm.  The statistical limit is gained by applying each algorithm to 

the set of scenarios (with any cargo depth including no cargo or container) containing no additional 

source, and setting the threshold high enough that only an allowable number of false alarms would be 

seen (a false alarm probability of 0.001 was considered acceptable).  The lowest threshold allowing this 

false alarm probability was used as the detection threshold for that algorithm. 

To simulate optimal use of the detector array, the optimal number of detectors to be used (i.e., summed 

together in a single measurement) has been investigated.  In general, using only one detector element (and 

applying the algorithm in question only to the single crystal with the highest count rate) will lose 

resolving power of the instrument, while always summing every detector together will include too much 

background and reduce sensitivity.  Therefore, we seek some “optimal number” between these two 

extremes. 

For this study, we assume that the detector most closely approximating the source’s location in the cargo 

is known from inspection of the relative count rates in each crystal.  Then, we define the optimal number 
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of detectors to sum together as the number which yields the greatest signal-to-noise ratio for the sum.  

The signal used for this optimization is the rate from the HEU source at the bottom of the cargo container 

with a full load of wood cargo.  The noise is the square root of the total background rate with the same 

full load of wood cargo.  The signal-to-noise ratio is plotted in  Figure 1-6 as a function of the number 

of summed detectors starting from the center detector.  The inset shows a detail of the curve near its 

maximum, the section corresponding to the 15 to 25 nearest detectors.  The best signal-to-noise ratio 

comes from using 21 central detectors.  These are shown in red in Figure 1-7.  These 21 central detectors 

are the middle 55 array of detectors minus the four corner detectors.   

 

 Figure 1-6.  Signal to Noise Ratio 

 

Figure 1-7.  Optimal Detectors to Include in Sum 

Each MCNP output file contains 75 output sections (tallies), corresponding to the 20 detector locations at 

one end of the spreader bar, the 35 detector locations in the middle part of the spreader bar, followed by 

20 detector locations at the other end of the spreader bar (all the locations depicted in Figure 1-7).  The 

center detector corresponds to output sections number 38 out of 75 MCNP output tallies.  The optimal 

group of 21 detectors corresponds to output tally sections 27-29, 31-45, and 47-49.  These 21 sections are 

summed together to produce results.  An important caveat to this work is that only a central location was 

chosen for the source, and other locations have not been considered.  Further work will be necessary to 

explore the interplay of source location, source detection and detector subsets, and develop an algorithm 

which automatically chooses the optimal subset of detectors to sum. 
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1.6 Data for Analysis by Algorithms 

Several data sets were produced from these source/background simulations.  Statistical realizations were 

made of each cargo and source permutation, including no source at all.  Two hundred realizations of each 

permutation were made by adding noise to an original with high statistics.  Additionally, realizations of 

the scenario containing no IMCC or cargo were constructed for comparison.  These data were used to 

make a set of ASC files, with every depth and source emission rate for 60 seconds, which were spot-

checked for correctness. 
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2 Algorithms 

Several algorithms were considered for comparison and are briefly described below, along with a short 

explanation of the figures of merit they return.  In all cases, the figure of merit is compared with a 

detection threshold to produce alarms. 

2.1 Gross Counting 

The gross-counting algorithm is one of the simplest methods of source detection and is used in many 

deployed detector schemes.  In this algorithm, the number of counts above the background is computed 

and compared with a threshold.  The figure of merit F is generally calculated: 

 BFBC      or  

 
BBCF /)(   

where C is the total counts and B is the background counts.  Gross counting is thought to be an effective 

“baseline” solution as its performance will not be significantly changed by anything other than attenuation 

by cargo materials. 

2.2 Energy Distance 

Previous work has shown improved results in some cases of source detection with the use of “energy 

distance” anomaly detection algorithms [3].  In this approach, the available spectrum is first binned into 

coarse energy bins (eight bins are used for this investigation).  These bins are treated as an eight-

dimensional vector and normalized.  Then the “opening angle” between background and source spectra is 

found by taking the dot product between them.  This opening angle is the figure of merit returned from 

this algorithm. 

2.3 Peak Finding 

The peaks present in the spectroscopic data can be “picked out” with a variety of methods and then 

compared with a catalog of known source emission lines to produce a list of the isotopes present in the 

measured spectrum.  The peak-finding algorithm used for this work first subtracts background and then 

takes the convolution integral of the data with a Gaussian peak of width matching the detector resolution.  

The resulting function over energy is compared with a threshold to generate peaks and these peaks are 

compared with a limited catalog of sources to determine source detection.  In this case, a detection of 

HEU (that is, a detection of the relevant emission lines from U-235) is considered to constitute a positive 

detection, while any other isotopes are ignored. 

2.4 GADRAS 

In the template-matching technique used by the Gamma Detector Response and Analysis Software 

(GADRAS), the spectrum to be analyzed is compared with a library of templates.  When a "good" match 
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is found, the spectrum can be identified as that of the isotope used to generate the template.  The template 

library contains the measured or calculated spectra of most isotopes as well as some background spectra.   

Template matching is well suited to the identification of unshielded radiation sources; multiple 

regressions can also be applied to identify combinations of radionuclides.  Template matching can be 

performed quickly with limited computational resources, a desirable feature for use in handheld 

radioactive isotope identifiers.  The GADRAS template-matching code was used in this work for 

identification of the HEU source [4].  In this case, the presence of uranium in the list of detected sources 

is used as a positive indicator of detection, meaning that the figure of merit for this use of GADRAS is 

effectively binary.  While false alarms may be present in the form of declarations of other sources not 

present in the data, there is no trivial way to set a threshold on detection using the GADRAS algorithm, 

and the probability of detection is therefore reported irrespective of false detections. 

2.5 Limited GADRAS 

GADRAS is employed in one other fashion in this work.  In this technique, only the natural isotopes 

expected in background were included in the GADRAS template library.  The presence of an additional 

source will tend to make the “goodness of fit” progressively worse with intensity.  Thus, the goodness of 

fit (Chi
2
) is used as the figure of merit for this use of GADRAS, rendering it an anomaly detecting 

algorithm. 

2.6 Production of Results 

We apply each algorithm to all the background files and produce data digests containing values of cargo 

depth, iteration number, and figure of merit.  We also apply the algorithms to our source data set to 

produce another file with the values of cargo depth, source rate, iteration number, and figure of merit.  We 

declare the acceptable false alarm probability to be about 1/1000 and determine an appropriate alarm 

threshold that gives this for each algorithm, for any part of the data set not containing any source term 

(i.e., taking the statistical limit of algorithm performance).   

These results are post-processed by comparing the alarm algorithms for each algorithm to the figures of 

merit for all the source runs.  The number of source runs exceeding the thresholds are combined to 

produce plots of source emissions versus probability of detection for each algorithm and depth.  After 

this, for each cargo depth, the source emission rate necessary to produce a probability of detection of 95% 

is found by interpolation of the data (or by extrapolation where necessary) and a plot of minimum 

detectable source amount versus cargo depth was produced for each algorithm. 
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3 Results 

We find and report the results of the preceding analyses by first evaluating the Figures of Merit (FoM) for 

each algorithm and then using these to calculate the Minimum Detectable Amount (MDA) of the HEU 

source for each possible depth of cargo within the IMCC.  The figures of merit are plotted for each 

algorithm (see Figs. 3-1, 3-2).  In these figures, the FoM is scaled by the detection threshold of each 

algorithm (such that values above 1 would indicate detection), to show clearly the region in which a 

detection would be made.   .   

 

Figure 3-1.  Results from the Gross-Count Algorithm 
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Figure 3-2.  Results from the Energy Distance Algorithm 

These data are processed again, to find the MDA for each cargo depth by determining the amount at 

which the detection probability exceeds 95%.  The data are reanalyzed to produce the PD for each source 

strength and cargo depth, given the thresholds used above. The source strength at which PD=0.95 for each 

cargo depth is approximated by interpolating these data (or extrapolating in the case that even the 

strongest sources investigated were not detected).  The resultant minimum detectable amounts are shown 

in Figure 3-3, for increasing cargo depth.  
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Figure 3-3.  Minimum Detectable Amounts for HEU Source   

Error bars are determined by calculating the variance of the Probability of Detection as a function of 

source strength, and then inverting this to estimate the variance of source strength at PD = 0.95. In Figure 

3-3, error bars for the gross-counting, peak-finding, and energy distance metrics are smaller than their 

respective symbols in these plots, due to the relatively low variation in the FOM returned from these 

algorithms when only statistical variations of scenarios are used as input.  Results from these findings 

show a range of performance within the choices of algorithm.  The performance of GADRAS is similar 

to, or slightly better than gross counting at the limit of light shielding.  This is as expected for cases in 

which additional NORM sources, which tend to confound non-energy-based algorithms, are not 

considered.  Also, algorithms which tend to depend on the measured spectral shape or photopeaks in the 

HEU spectrum (GADRAS, energy distance, and peak finding) have a higher slope, showing the 

degradation of performance with increased shielding.  In general, energy-ratio or energy-binned anomaly 

detecting schemes may provide the “best case” for detection, superior to the gross-counting result for 

cargo up to about 50% of maximum (around 111 cm) and the best overall out to around 30% (around 67 

cm).  Additionally, the limited GADRAS implementation (using the algorithm as an anomaly detector) 

significantly outperformed the others in the limit of very deep cargo. 
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4 Discussion and Conclusions 

Several results are of special note here.  Firstly, the relatively poor performance of the peak finding 

algorithm may not be an indictment of its performance in all cases.  Due to volatility of the algorithm, a 

few “high confidence” detections were made in scenarios with no actual additional source.  This 

necessitated a high threshold to maintain the low false alarm probability required in this study.  It is 

possible that further algorithm tuning might alleviate some of this issue. 

As would be expected, algorithms that rely on specifics of peak structure of the spectra tend to degrade 

more quickly as shielding becomes large.  However, these sorts of algorithms perform well with light 

shielding and showed reasonable capability to identify sources at these levels.  Again, NORM sources 

were not included here, which tend to increase the threshold necessary on gross-counting algorithms. 

Perhaps the most surprising and encouraging result of this study was the performance of the limited 

GADRAS implementation.  This use of GADRAS far outperformed the other algorithms in deeply 

shielded situations, suggesting that the use of natural isotopes as templates to represent background and 

shielded background is very successful.  Also, the addition of NORM is not expected to greatly affect the 

performance of this algorithm, as the likely NORM sources are contained within the set of templates 

already in use. However, none of the algorithms provided positive detection with full cargo unless the 

source intensity was above 25 times the test source. Additionally, the similar performance of the Energy 

Distance algorithm below a 5 kg equivalent source highly indicate its use in many scenarios. 

An important caveat to this work is that the choice of algorithms made herein is not exhaustive and is 

meant instead to provide benchmarks and relative comparison of known algorithms.  Further work will 

refine these concepts and determine implementation specifics to maximize the performance across a range 

of sources and scenarios. 

4.1 Outlook for Using Real Data 

Several simplifications were made over the course of this work.  Notably, because the background and 

source measurements were simulated, they provide only statistical variances.  This leads to a artificially 

low uncertainty to the minimum detectable quantities of a source for a given scenario, as opposed to the 

systematic uncertainties expected from real source placement, deviation in individual detector efficiencies 

and calibration, and so on.  For this and other reasons, it is necessary to obtain and use some real repeated 

measurements of background taken from a similar detector. 

Also, only one scenario (an HEU cylinder near the bottom of an IMCC full of wood cargo) was 

represented by this work, and additional sources and cargos would be of interest.  The real time-variation 

of background was not simulated and was instead averaged over.  All of the results from this work would 

be enhanced by the investigation of real data including fielded radiation sources. 

4.2 Future Avenues for Investigation 

The current results are encouraging regarding the performance of anomaly detection algorithms 

specifically, as they show substantial improvement over the standard gross counting and template 

matching approaches.  Several outstanding issues are obvious future choices for investigation and are 

expected to be of great use to the deployment of a real detector.  
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The assumption about the subset of detectors for best source detection will be challenged and explored.  

We have currently established the "best subset" for a source near the bottom of a container, but have not 

established the variation in this subset as the source location changes or the performance of a real 

selection criterion as the source strength goes toward zero.  These should be explored, since any real 

detector will need such an applicable criterion that maximizes real detection capability without any prior 

knowledge about source presence or location. 

Most importantly, in our current analyses, the limited GADRAS and energy anomaly algorithms seem to 

perform well.  It is expected that some combination of these concepts will yield the very best result.  To 

that end, it makes sense to merge these concepts and establish one, optimal recommended algorithm.  In 

this effort, the concept of the best background components to use will be considered, as well as binning 

issues and the best detection metric. 
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