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Summary 
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several 
important radiation detection applications. Examples include the detection of nuclear threats concealed in 
cargo containers and prompt gamma neutron activation analysis for nondestructive determination of 
elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these 
applications to measure the spectrum of the emitted photon flux, which consists of both continuum and 
characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used 
simulation tool for this type of problem, but computational times can be prohibitively long. This work 
explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon 
problems.  

The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to 
experimental data.  Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-
VII cross sections.  Preliminary findings show promising results when compared to MCNP and 
experimental data, but also areas where additional inquiry and testing are needed. The potential benefits 
and shortcomings of the multi-group-based approach are discussed in terms of accuracy and 
computational efficiency. 

 

 

Key Words: Coupled Neutron-Photon Transport, Neutron Activation Analysis, Multi-Group Cross 
sections, Neutron Photon Problems 
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1.0 Introduction 
Neutron-induced photon signatures are an important component of many radiation detection and 
nondestructive assay scenarios. One example is the screening of vehicles and cargo at border crossings 
wherein neutron-emitting threat sources (e.g., plutonium) can induce photon emissions in the surrounding 
cargo. Another familiar example is prompt gamma neutron activation analysis (PGNAA), a technique 
used to determine the composition of unknown samples. In PGNAA, the sample is irradiated with a 
neutron source and the subsequent interactions in the material produce photons through a number of 
reactions, including inelastic scatter and radiative capture. The discrete-energy emissions represent unique 
fingerprints of isotopes in the sample. For example, the 2.223 MeV gamma ray produced from radiative 
capture in 1H, where the presence and relative portions of these discrete gamma rays can be used to infer 
the isotopic composition of the material being interrogated. A high-resolution gamma-ray spectrometer 
must be used to obtain the level of detail required to detect and quantify the key characteristic gamma 
rays, and thus determine composition.  

At present, Monte Carlo is the primary tool for simulating neutron activation analysis problems, largely 
because it is able to preserve the important discrete-energy signatures throughout the problem. This 
culminates in a pulse-height tally in the high-resolution gamma-ray spectrometer. However, neutron-
photon problems analyzed with Monte Carlo for Neutrons and Photons (MCNP) often require very long 
run times due to the high degree of scatter and absorption during neutron and photon transport.  

Multi-group deterministic methods offer potential advantages for neutron-photon problems. Once 
convergence has reached a global solution, an “infinite real measurement time” solution is obtained. 
Additionally, deterministic methods offer the ability to reduce computational times, most noticeably in 
problems with highly scattering or highly absorbing materials. The purpose of this research is to explore 
the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems.  

This work uses the Radiation Detection Scenario Analysis Toolbox (RADSAT) [1][3], which couples the 
deterministic method and Monte Carlo transport method to perform analysis in three dimensions.  
RADSAT uses the deterministic transport code to determine the field solution then calculates the detector 
response using a Monte Carlo calculation. RADSAT is a collaboration between Pacific Northwest 
National Laboratory (PNNL) and Transpire, Inc. The deterministic core of RADSAT is Attila®, a code 
originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, 
Inc. [2]. Attila® solves the linearized Boltzmann Transport Equation on unstructured tetrahedral meshes 
and incorporates ray-effect mitigation techniques well suited to radiation detection problems. MCNP5 [6] 
is used for the calculation of detector response. Previous publications have described the use of RADSAT 
for photon-only transport problems [1][3], including the use of an adaptive energy group structure that 
preserves the discrete nature of characteristic gamma-ray emissions.  

A major challenge in using multi-group transport methods for coupled neutron-photon problems is 
calculating the neutron-induced photon signatures throughout the problem. The preparation of suitable 
multi-group cross sections is required in order to complete this task.  Previous publications have 
described the standard method for producing multi-group cross sections [4][5].   

In this report, the benchmark cases for modeling PGNAA problems using RADSAT are examined, along 
with its shortcomings for the simulation of high-resolution neutron activation analysis.  Additional work 
that is needed to realize the potential of coupled deterministic/Monte Carlo approaches for neutron 
activation analysis is outlined in Section 5 of this report.  
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2.0 Methods Discussion 
The RADSAT approach for simulating coupled neutron-photon problems consists of four steps: 

1. A multi-group deterministic neutron transport calculation of the source neutrons to all parts of the 
problem [2]. 

2. Generation of the corresponding spatially dependent neutron-induced gamma-ray spectrum using 
the RADSAT-NG cross section library [4][5]. 

3. A multi-group, deterministic photon transport calculation of the induced gamma-ray spectrum to 
all parts of the problem [1][3]. 

4. Calculation of the detector response (i.e., pulse-height tally) in a spectrometer using MCNP5 
within RADSAT [1][3]. 

The process is outlined in Figure 1, where the yellow boxes show RADSAT-NG cross section preparation 
and neutron-induced photon source generation using RADSAT. 

 
Figure 1. Procedure for Calculating Coupled Neutron-Photon Problems using RADSAT 

2.1 Neutron Transport Calculation 

Neutron transport calculations, completed with Attila® [2], the deterministic backbone of RADSAT were 
run (unless otherwise noted) with S8 Triangular Chebychev Legendre angular quadrature set, P2 

scattering, and the Kynea3 cross section set [7]. The Kynea3 cross section set (developed by Sandia 
National Laboratories and Oak Ridge National Laboratory) is a general-purpose library for radiation 
detection scenarios, and includes 36 energy groups below 5 eV, 25 energy groups from 5 eV to 1 MeV, 
and 18 energy groups above 1 MeV [7]. The Kynea3 group boundaries provide a balance between 
thermal and high-energy groups that have been shown effective in neutron activation analysis problems 
by Sandia National Laboratories; that experience is leveraged as the starting point for this work but 
further refinements of the neutron energy groups could prove to be beneficial in the future. Evaluated 
Nuclear Data File B (ENDF/B) was the source of tabulated cross section data for all modeling (both 
MCNP and RADSAT) in this work. Unless otherwise specified, Evaluated Nuclear Data File ENDF/B 
version VII was used.  
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2.2 RADSAT-NG Neutron Gamma Cross Section Library Preparation 

Existing multi-group neutron-gamma cross section libraries, like those provided in the Attila® 
distribution, are more appropriate for photon dose rate and total flux calculations rather than high-
resolution gamma-ray spectroscopy. Consequently, existing cross section libraries generally have 
relatively few (e.g., 10 to 20) broad photon groups spanning energies up to several MeV. They are 
unsuitable for the simulation of high-resolution gamma-ray spectroscopy that requires the preservation of 
discrete-energy photons. In addition, the existing coupled neutron-gamma cross section libraries combine 
the cross sections for discrete and continuum gamma productions into one multi-group gamma production 
matrix. This means that the production rate for the characteristic discrete-energy emissions—the key 
fingerprints in neutron activation analysis—cannot be calculated separately from the continuum. Instead, 
the discrete gamma-ray production rates are homogenized into broad energy groups with the continuum.   

RADSAT-NG cross sections were developed using a hybrid method starting at the raw ENDF cross 
section files, using various NJOY subroutines to process the cross sections, then partitioned into a usable 
format using a PNNL developed code [4][5].   

2.3 Induced Photon Spectrum Generation 

The calculation of the spatially dependent neutron-induced photon spectrum was completed by 
determining the photon production rate as a function of position and gamma-ray energy. The photon 
production rate ( ),R E rγ

 was calculated separately for each discrete gamma ray using Equation 1. 

( ) ( ) ( )'
( , _ ) '

' 1
, ,

G
i g

i n discrete g n
g

R E r N E E rγ γ γσ φ
=

= ∑ 
 (1) 

where Ni is the number density for the ith isotope, ( )'g
n rφ 

is the spatially dependent neutron flux for 

energy group g, and ( )( , _ ) ' ,
i
n discrete gE Eγ γσ is the photon production cross section for a discrete gamma 

ray with energy Eγ produced by the ith isotope. The spatially dependent neutron flux, ( )'g
n rφ 

, was 
obtained from volume-averaged neutron flux edits in Attila®.  

The RADSAT-NG cross sections were then used for the gamma production cross section. This reaction 
rate, and therefore photon production rate, was calculated on a volume-by-volume basis for each of the i 
isotopes included in the Attila® model. Various volume-partitioning schemes have been used to explore 
the effect of the neutron flux spatial variation on the fidelity of the photon production rate and energy 
spectrum.   

The continuum gamma rays were calculated using a similar method as that used to calculate the discrete 
gamma rays. The major difference in the two methods is that the continuum was summed over all of the 
isotopes and/or elements in the model to obtain the total continuum production rate within a specific 
photon energy group and spatial region using Equation 2. 

( ) ( ) ( )'
( , _ ) '

' 1
, ,

G
i g

g i n continuum g g n
i g

R E r N E E rγσ φ
=

=∑∑ 
 (2) 
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where ( )( , _ ) ' ,
i
n continuum g gE Eγσ is the photon production cross section for a continuum gamma ray in 

energy group Eg produced by the ith isotope. 

2.4 Photon Transport Calculation 

The energy- and position-dependent neutron-induced photon source term calculated in Section 2.3 was 
then used as the photon source term in a photon transport calculation in RADSAT. The photon energy 
group structure for the gamma model is defined using an adaptive approach described in detail in [1]. To 
preserve the important gamma-ray lines, narrow “peak” groups (0.3 keV) were centered around the most 
prominent emission energies in the problem. All lower-yield discrete emissions and any continuum 
source terms were then distributed into broader continuum groups that fill the energy range between peak 
groups. 

Once the energy group structure is determined using this adaptive algorithm, the group structure was used 
to generate a problem-specific photon cross section library using Coupled Electron-Photon Cross Section 
(CEPXS) [9]. The spatially dependent neutron-induced gamma spectrum and the photon cross section 
library were then used in Attila® to calculate the photon transport to the detector location. RADSAT 
photon-transport calculations use a combination of analytical ray tracing, integral transport, and discrete 
ordinates SN methods—an approach capable of mitigating ray effects for many radiation-detection 
scenarios. The result of these calculations is a multi-group, discrete ordinates SN angular flux at all points 
in the model. The angular flux can then be used as a boundary condition for subsequent MCNP pulse-
height tally calculations at the detector location 

2.5 Gamma-Ray Spectrometer Response 

The multi-group photon angular flux at the detector location was calculated in the photon transport 
calculations and was used as the source term for a “near-field” Monte Carlo simulation for pulse-height 
tally in the gamma-ray spectrometer. The pulse-height tally was calculated using MCNP5 within 
RADSAT in this work and recorded in uniform, narrow energy bins (1 keV wide). A detailed explanation 
of the mechanics and utility of the RADSAT coupling method was provided in [3].  

3.0 Results and Discussion  
A PINS geometry was defined, consistent with field practices. That geometry is shown in Figure 2, where 
the mortar is filled with a common chemical weapon or the munition is replaced with a surrogate such as: 
graphite, water, sulfur, mustard gas (HD), FS smoke (FS), nerve agent (GB), and persistent nerve agent 
(VX). The mortar is interrogated using a californium neutron source and a high-resolution gamma-ray 
spectrometer is used to observe the induced photon spectrum within the chemical munition.  

The 252Cf neutron source was placed inside a polyethylene source holder with a bismuth cover. A tungsten 
block was placed between the source and the bismuth-collimated HPGe detector in order to provide some 
shielding for the collimated detector from the neutron source, in addition to the polyethylene source 
holder. The HPGe spectrometer was modeled after a detector used in previous PINS measurements and 
had a relative efficiency of 40.7%. This configuration is shown in Figure 2.  
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Figure 2. PINS Configuration used in RADSAT Modeling 
 

RADSAT calculations were compared to empirical data taken by Idaho National Laboratory (INL) on 
actual unexploded munitions in the field and surrogate materials in PINS configurations.  

3.1 Graphite 

The graphite benchmark case is a useful first test case because of the relatively small number of neutron 
reactions that generate gamma rays, and the fact that all induced photons are discrete (no continuum 
production from carbon). This is similar to the polyethylene test case implemented in the initial testing for 
RADSAT coupled neutron-gamma problems [4], except in a more complex geometry.  The 4-inch by 4-
inch by 4-inch block of graphite was modeled to replace the munition in the PINS configuration in Figure 
2.  It was located 10.75 cm from the right edge of the source and 10 cm from the front edge of the 
bismuth shield.   

The experimental results provided by INL are shown below in Figure 3.  The live time for the spectrum 
was 6000 seconds.  The 4.439 and 4.497 MeV gamma rays for carbon are observed in the data, but the 
1.263 and 3.684 MeV gamma rays are not.  This may be due to the low production rates of these gamma 
rays or it may be due to inconsistencies in the energies tabulated in the cross section libraries versus the 
energies observed in the laboratory measurements. In addition to identifying carbon in the sample, the 
doublet for iron (7.631 and 7.645 MeV) and the hydrogen capture gamma ray (2.223 MeV) were 
observed.   
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Figure 3. Empirical data from the irradiation of graphite blocks (Data provided by INL). 

 

Due to the format of the empirical data, it was not possible to directly compare the empirical data to the 
MCNP and RADSAT data.  A comparison of the spectra generated using MCNP and RADSAT is shown 
in Figure 4.   

Although neither the MCNP or RADSAT spectra closely resemble the empirical data for the graphite 
irradiated sample, the MCNP results appear more reasonable.  This is mainly because the only activation 
simulated in the detector response in the RADSAT model is the carbon activation spectra and the 511 
keV gamma ray manually inserted using the RADSAT GUI.  In order to obtain the full detector response 
obtained using MCNP, each material in the model would need to be specified, not just the material of 
interest.  For these more complex geometries, such as PINS, the additional materials present contribute 
significantly to the observed spectrum thus reducing the accuracy of modeling only the material of 
interest in the model when comparing to empirical data or MCNP.   

The neutron flux in the graphite blocks calculated using MCNP and RADSAT were a 2.85x10-3 and 
2.94x10-3 neutrons/cm2/sec/source particle, respectively.  The gamma flux in the graphite blocks 
calculated using MCNP and RADSAT were a 2.52x10-4 and 1.95x10-6 gammas/cm2/sec/source particle, 
respectively.  It is not possible to directly tally the production of all gamma rays produced in MCNP but it 
is possible to determine the exact number of gamma rays produced in RADSAT.  The large discrepancy 
between the number of gamma rays present in the graphite block in MCNP and the number produced in 
RADSAT is likely due to the lack of production of gamma rays by other isotopes in the problem besides 
carbon. 

4.439 MeV 
Carbon  

4.947 MeV 
Carbon 
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Figure 4. Comparison of MCNP and RADSAT detector response for graphite irradiated in PINS 

configuration. 

3.2 Water 

Two separate water benchmark cases were modeled, one using a 1-Liter water bottle and one using a 4-
Liter water bottle, using both MCNP and RADSAT and compared to empirical data.  Each of the water 
bottles replaced the munition in a typical PINS configuration.  Varying the amount and configuration of 
the water present changes the moderation of the neutrons within the volume of water, thus changing the 
photon spectrum produced.   

Water represents a material of intermediate complexity in terms of coupled neutron-photon problems in 
that H2O has ten gamma-producing reactions in the neutron energy range included in the Kynea3 neutron 
energy group structure (1e-5 eV to 19.64 MeV), but none of those reactions have strong resonances. There 
are a total of 119 discrete gamma rays and one continuum produced by neutron activation in 16O.  

The 1-Liter water bottle was modeled as a 3.64-inch diameter bottle in place of a chemical munition.  The 
center of the bottle is 15.75 cm from the source hole and 16 cm from the bismuth shield.  The 4-Liter 
water bottle was modeled as two Nalgene bottles, 242 mm by 84 mm by 152 mm, each.  The Nalgene 
bottles were placed 9.4 cm from the right edge of the source and 8 cm from the front of the bismuth 
shield.  In both of the simulations, the bottles were neglected from the model since the thickness of the 
plastic should have negligible impact on the induced spectra. 
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The experimental results provided by INL for the 1-Liter and 4-Liter water bottle irradiations are shown 
in Figure 5 and Figure 6, respectively.  Both the 1-Liter and 4-Liter water bottle irradiation data have live 
times of 1000 seconds.  The most prominent peak observed is the 2.223 MeV produced by neutron 
capture in hydrogen.  The hydrogen capture gamma ray and the Compton edge are significantly more 
pronounced for the irradiation of the 4-Liter water bottle than the 1-Liter water bottle.  All other aspects 
of the spectra are essentially the same.  

 
Figure 5. Empirical data from the irradiation of a 1-Liter water bottle (Data provided by INL). 

2.223 MeV 
Hydrogen 
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Figure 6. Empirical data from the irradiation of a 4-Liter water bottle (Data provided by INL). 

 

A comparison of the gamma ray spectra generated using MCNP and RADSAT are shown in Figure 7 and 
Figure 8, respectively.  Similar issues due to the RADSAT modeling assumptions are present with the 
irradiated water spectra in the PINS configuration.  The neutron flux in both the 1-Liter and 4-Liter 
benchmark cases were comparable for the MCNP and RADSAT cases but there were significantly more 
gamma rays present in the MCNP in the water and the detector response than were created using 
RADSAT.  From the initial benchmarking cases done with MCNP [4][5], it is believed that this 
discrepancy is due to the addition of the complex geometry and not including the gamma production due 
to these components in the problem, not due to deficiencies in the cross section preparations.   

2.223 MeV 
Hydrogen 
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Figure 7. Comparison of MCNP and RADSAT detector response for 1-Liter water bottle irradiated 

in PINS configuration. 
 

 
Figure 8. Comparison of MCNP and RADSAT detector response for 4-Liter water bottle irradiated 

in PINS configuration. 
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Originally, both the MCNP and RADSAT calculations were completed using ENDF/B-VII cross sections 
to simulate the gamma ray production in the water.  The MCNP energy bins are set to be uniformly 
spaced at 1.1 keV bin widths.  At this energy resolution it was not obvious without close examination that 
the hydrogen peak, historically recorded at 2.2233 MeV [16], was moved slightly to 2.224631 MeV [15].  
When the RADSAT calculation was completed with an energy resolution of 0.25 keV bin width, the 
energy discrepancy became apparent.  Upon further investigation, it was discovered that the ENDF/B-VII 
cross section library has changed the reported neutron capture gamma ray energy for hydrogen from 
2.2233 MeV to 2.224631 MeV.  Since the energy of the hydrogen peak is paramount to the PINS 
application, it was decided that all RADSAT calculations requiring hydrogen shall use ENDF/B-VI cross 
sections for hydrogen.  The MCNP calculations were completed using ENDF/B-VII cross sections for 
hydrogen however for comparison. 

3.3 Sulfur 

Sulfur represents an important material in a PGNAA application since it is a common constituent of 
chemical munitions.  There are four naturally occurring isotopes of sulfur (natural isotopic ratios: 32S – 
94.93%, 33S – 0.76%, 34S – 4.29%, and 36S – 0.02%), all are contained in the ENDF/B-VII cross section 
library. Sulfur produces 28 continua and 57 discrete gamma rays.  

It should be noted that the 2.379 and 5.42 MeV sulfur lines are not present in the original ENDF/B-VII 
cross section data but are present in the ENDF/B-VI cross section data. The RADSAT-NG cross section 
library was derived from the ENDF/B-VII cross section library. Since the 2.379 and 5.42 MeV sulfur 
lines are important Portable Isotopic Neutron Spectroscopy (PINS) [11], the cross section for the 
production of the 2.379 MeV and 5.42 MeV lines were taken from the ENDF/B-VI cross section library 
for 32S and added to the RADSAT-NG 32S cross section library.   

It was determined that the addition of these two cross sections to ENDF/B-VII was more accurate for 
modeling PINS applications than applying the ENDF/B-VI cross sections to this problem.  The ENDF/B-
VI cross sections was missing the 2.230 MeV gamma ray and the continuum produced from this data did 
not correspond with the general shape of the empirical data.  The MCNP calculations apply the un-alter 
ENDF/B-VII cross sections for comparison. 

The sulfur was modeled in the same configuration as the experimental setup, with a 3-inch diameter bottle 
with the sulfur filling the bottle to a height of 2.2 inches.  The bottle was neglected from the model since 
the thickness of the plastic should have negligible impact on the induced spectrum.  The sulfur was place 
15.75 cm from the source hole and 16 cm from the bismuth shield in place of the munition in the standard 
PINS configuration shown in Figure 2.  The experimental results provided by INL for the flaked sulfur 
irradiation is shown in Figure 9 with a live time of 6000 seconds.  The three major characteristic gamma-
rays for sulfur (2.23 MeV, 2.379 MeV and 5.42 MeV) are clearly observable in this spectrum.   
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Figure 9. Empirical data from the irradiation of flaked sulfur (Data provided by INL). 

 

A comparison of the spectra generated using MCNP and RADSAT is shown in Figure 10.  Similar to the 
issues present in the water and graphite irradiation, the spectrum for the irradiation of sulfur is not 
consistent for the RADSAT model, although it begins to improve.  This is due to the complexity of the 
gamma spectrum produced by the isotopes of sulfur.  The complexity of these spectra begins to hide some 
of the insufficiencies in the RADSAT simulation from the missing data from the aspects of the problem 
that are not being adequately modeled.  

2.230 MeV 
Sulfur 

5.420 MeV 
Sulfur 

2.379 MeV 
Sulfur 
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Figure 10. Comparison of MCNP and RADSAT detector response for sulfur irradiated in PINS 

configuration. 

3.4 Mustard Gas (HD) 

In this benchmark case, a 4.2-inch mortar was simulated. The modeled HD assumes a nominal 
composition of 30.2% carbon, 44.7% chlorine, 5.0% hydrogen, and 20.1% sulfur [11] and has a density of 
1.27 grams/cm3 [12], but it should be noted that in reality there are ranges for both, particularly the 
composition. The mortar casing was modeled as carbon steel, which is composed of 0.06% carbon, 0.35% 
manganese, and 99.59% iron and has a density of 7.872 grams/cm3 in both the MCNP and RADSAT 
models.   

The experimental results provided by INL for the HD irradiation is shown in Figure 11 with a live time of 
6000 seconds.  The major characteristic gamma-rays for sulfur (2.23 MeV), hydrogen (2.223 MeV), 
chlorine (1.950 and 1.959 MeV), and iron (7.631 and 7.645 MeV) are clearly observable in this spectrum.   
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Figure 11. Empirical data from the irradiation of HD (Data provided by INL). 

 

The comparison of the MCNP and RADSAT results for the HD irradiation is shown in Figure 12.  The 
MCNP models employs unmodified ENDF/B-VII cross section libraries while the RADSAT results 
incorporate the modified RADSAT-NG ENDF/B-VII cross section library.  As described in previous 
sections, the modified ENDF/B-VII cross section library was augmented to include the 2.379 MeV and 
5.42 MeV sulfur gamma rays.  It also uses the ENDF/B-VI hydrogen cross section in place of the 
ENDF/B-VII cross section to maintain the proper energy for the hydrogen capture gamma ray.   

A comparison of the peak count rates for the regions of interest peak ratios are provided in Table 1.  The 
simulated count peak rates were on average an order of magnitude lower than the empirical data, but this 
may have been caused by a processing error.  To complete the comparison of simulated and measured 
PINS assays, we compare the Cl/S peak ratio, which is a key indicator for chemical weapon composition. 
PINS experience indicates that for HD, this ratio should be between 10 and 20 [9]. A comparison of 
RADSAT and empirical peak ratios are shown in Table 2.  Both the MCNP and RADSAT calculation fall 
outside of the range of acceptable Cl/S peak ratio for HD. This may be due to the bin structure used in the 
detector model or in the cross section library implemented.  

Table 1. Peak count rates for regions of interest from the irradiation of HD. 
 1.95 MeV 1.959 MeV 2.223 MeV 2.23 MeV 7.631 MeV 7.645 MeV 

Empirical 4688 3287 1589 301 300 284 
MCNP 513 352 207 69.6 49.5 43.8 

RADSAT 901 614 171 74.9 42.4 38.5 
 

1.950 MeV and 
1.959 MeV 
Chlorine 
doublet 

2.223 MeV 
Hydrogen 
and 2.230 
MeV Sulfur 

7.631 MeV 
and 7.645 
MeV Iron 
doublet 
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Table 2. Comparison of peak ratio for irradiation of HD. 
 Ratio Cl (1959) / S (2230) 

Empirical 10.9 
MCNP 5.06 

RADSAT 8.19 
 

 
Figure 12. Comparison of MCNP and RADSAT detector response for HD irradiated in PINS 

configuration. 
 

Unlike with the simple surrogate models, the RADSAT method of only simulating the gamma ray 
production in the article of interest appears to be adequate for complex interrogation articles and 
geometries since they are the main contributor to the gamma ray spectrum.  Since the MCNP calculation 
was completed using the ENDF/B-VII cross section library, while the RADSAT calculation was 
completed using a modified ENDF/B-VII cross section library.  The peak height and placement were 
comparable for the peaks of interest for PINS as shown in Figures 13 thru 16 (1.95 and 1.959 MeV 
chlorine doublet, 2.223 MeV hydrogen, 2.23 and 5.421 MeV sulfur, and 7.631 and 7.645 MeV iron 
doublet).  As previously indicated the ENDF/B-VI hydrogen cross section was used for the RADSAT 
modeling which accounts for the slight misalignment of the two hydrogen peaks as shown in Figure 14.  
Additionally, the 5.42 MeV peak is present in the RADSAT spectrum but not in the MCNP spectrum as 
shown in Figure 15.  The transition from the gamma ray energy bins used in the deterministic transport 
calculation to the Monte Carlo calculation in RADSAT caused slight shifts in the peak locations and bin 
broadening.  This phenomenon can be corrected by applying a finer energy group structure to the detector 
response calculation in MCNP, but this was not rectified in these calculations. 
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Figure 13. Comparison of 1.95 and 1.959 MeV chlorine doublet in MCNP and RADSAT detector 

response for HD irradiated in PINS configuration. 
 

 
Figure 14. Comparison of 2.223 MeV hydrogen and 2.23 MeV sulfur peaks in MCNP and RADSAT 

detector response for HD irradiated in PINS configuration. 
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Figure 15. Comparison of 5.421 MeV sulfur peak in MCNP and RADSAT detector response for HD 

irradiated in PINS configuration. 
 

 
Figure 16. Comparison of 7.631 MeV and 7.645 MeV iron doublet in MCNP and RADSAT detector 

response for HD irradiated in PINS configuration. 
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3.5 FS Smoke (FS) 
Another important chemical weapon material for PINS applications is FS. FS was simulated in a Livens 
projector shell in the typical PINS configuration. The nominal FS composition was taken to be 13.7% 
chlorine, 0.4% hydrogen, 51.5% oxygen, and 34.4% sulfur [11] and has a density of 1.9 grams/cm3 [13]. 
The experimental results provided by INL for the FS irradiation is shown in Figure 17.  The major 
characteristic gamma-rays for sulfur (2.23 MeV), chlorine (1.950 and 1.959 MeV), and iron (7.631 and 
7.645 MeV) are clearly observable in this spectrum.   

 
Figure 17. Empirical data from the irradiation of FS (Data provided by INL). 

 The comparison of the MCNP and RADSAT calculations is shown in Figure 18. Similar to the HD case, 
the MCNP calculation was completed using the ENDF/B-VII cross section library, while the RADSAT 
calculation was completed using a modified ENDF/B-VII cross section library.  The energy ranges of 
interest for FS are shown in more detail in Figures 19 thru 21 (1.95 and 1.959 chlorine doublet, 2.23 
sulfur, and 7.631 and 7.645 MeV iron doublet).  In Figure 20, a small hydrogen peak is observed in the 
MCNP spectra and not in the RADSAT spectra.  There is no hydrogen present in the munition, but there 
is hydrogen in the air and the polyethylene which does not have gamma production in RADSAT.  In order 
to obtain this gamma peak in the RADSAT spectra, it would be necessary to generate the gammas 
produced in the remainder of the geometries present in the problem, not just the item of interest. 

A comparison of the peak count rates for the regions of interest peak ratios for FS are provided in Table 3.  
The PINS documentation indicates the Cl/S ratio for FS is typically less than or equal to 2. A comparison 
between RADSAT and empirical Cl/S ratios is shown in Table 4.  Both the MCNP and RADSAT 
calculation fall outside of the range of acceptable Cl/S peak ratio for HD. This may be due to the bin 
structure used in the detector model or in the cross section library implemented.  MCNP produces a Cl/S 

7.631 MeV and 
7.645 MeV 
Iron doublet 

1.950 MeV and 
1.959 MeV 
Chlorine doublet 2.23 MeV 

Sulfur 
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ratio that was outside the acceptable range for FS.  This is due to the lower chlorine peaks than calculated 
for RADSAT although both codes use ENDF/B-VII cross sections for chlorine. 

Table 3. Peak count rates for regions of interest from the irradiation of FS. 
 1.95 MeV 1.959 MeV 2.23 MeV 7.631 MeV 7.645 MeV 

Empirical 1800 1026 1090 415 316 
MCNP 258 194 537 30.1 26.4 

RADSAT 535 365 597 35.3 30.5 
 

Table 4. Comparison of peak ratio for irradiation of FS. 
 Ratio Cl (1959) / S (2230) 

Empirical 1.06 
MCNP 2.78 

RADSAT 1.63 
 

 
Figure 18. Comparison of MCNP and RADSAT detector response for FS irradiated in PINS 

configuration. 
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Figure 19. Comparison of 1.95 and 1.959 MeV chlorine doublet in MCNP and RADSAT detector 

response for FS irradiated in PINS configuration. 
 

 
Figure 20. Comparison of 2.223 MeV hydrogen and 2.23 MeV sulfur peaks in MCNP and RADSAT 

detector response for FS irradiated in PINS configuration. 
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Figure 21. Comparison of 7.631 MeV and 7.645 MeV iron doublet in MCNP and RADSAT detector 

response for FS irradiated in PINS configuration. 
 

3.6 Nerve Agent (GB) 
GB is another important chemical weapon material for PINS applications. GB was simulated in a 155-
mm artillery shell in the typical PINS configuration. The nominal composition of GB was taken to be 
7.1% hydrogen, 22.9% oxygen, 22.1% phosphorus, 34.3% carbon, and 13.6% fluorine [11] and has a 
density of 1.102 grams/cm3 [12]. The experimental results provided by INL for the GB irradiation is 
shown in Figure 22, and the comparison of the MCNP and RADSAT calculations is shown in Figure 23. 
Similar to the HD case, the MCNP calculation was completed using the ENDF/B-VII cross section 
library, while the RADSAT calculation was completed using a modified ENDF/B-VII cross section 
library.   
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Figure 22. Empirical data from the irradiation of GB (Data provided by INL). 

 

A comparison of the peak count rates for regions of interest is provided in Table 5.  Comparisons of the 
2.223 MeV hydrogen peak, 1.266 MeV and 2.233 MeV phosphorus peak, 7.631 MeV and 7.645 MeV 
iron doublet are shown in the following figures (Figures 24 thru 26).  Unlike the other munition 
calculations, the peak heights were not as comparable to the peak heights calculated using MCNP.  Also, 
the continuum in the 4.0 to 8.0 MeV range deviates from that calculated by MCNP.  It is believed that the 
neutron flux used for creating the gamma spectrum may not have been fully converged, which could have 
produced this deviation in the induced gamma ray spectrum.  Additionally, the 2.233 MeV phosphorus 
peak is absent from the RADSAT graph.  RADSAT uses a code, CEPXS, to process the gamma ray cross 
sections [14].  CEPXS is currently only capable of processing 300 gamma ray groups with 149 discrete 
gamma rays.  Due to the magnitude of the 2.233 MeV phosphorus peak, it was less prominent than 149 
other gamma rays in the induced spectrum, causing it not to be carried though as a discrete gamma ray in 
the RADSAT calculation.  In the future, RADSAT should consider expanding the capabilities of CEPXS 
to be capable of processing more the of 300 gamma ray groups.  
 

Table 5. Peak count rates for regions of interest from the irradiation of GB. 
 1.266 MeV 2.223 MeV 2.233 MeV 7.631 MeV 7.645 MeV 

Empirical 432 10139 86 1014 872 
MCNP 158 2740 64.2 354 292 

RADSAT 840 1040 10.5 781 673 
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Figure 23. Comparison of MCNP and RADSAT detector response for GB irradiated in PINS 

configuration. 

 
Figure 24. Comparison of 1.266 MeV phosphorus peak in MCNP and RADSAT detector response 

for GB irradiated in PINS configuration. 



PNNL-18793 

Page 24 of 31 

 
Figure 25. Comparison of 2.223 MeV hydrogen and 2.233 MeV phosphorus peaks in MCNP and 

RADSAT detector response for GB irradiated in PINS configuration. 

 
Figure 26. Comparison of 7.631 MeV and 7.645 MeV iron doublet in MCNP and RADSAT detector 

response for GB irradiated in PINS configuration. 
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3.7 Persistent Nerve Agent (VX) 
Another important chemical weapon material for PINS applications is VX. In RADSAT, VX was 
simulated in a 155-mm artillery shell in the typical PINS configuration. The nominal VX smoke 
composition was taken to be 9.7% hydrogen, 5.2% hydrogen, 11.6% phosphorus, 49.4% carbon, 12.0% 
oxygen, and 12.0% sulfur [11] and has a density of 1.0083 grams/cm3 [12]. The experimental results 
provided by INL for the VX irradiation is shown in Figure 27, and the comparison of the MCNP and 
RADSAT calculations is shown in Figure 28. Similar to the other munition cases, the MCNP calculation 
was completed using the ENDF/B-VII cross section library, while the RADSAT calculation was 
completed using a modified ENDF/B-VII cross section library.   

A comparison of the count rates in the regions of interest is provided in Table y and, comparisons of the 
regions of interest for PINS are shown in Figures 29 thru 32 (1.266 MeV sulfur, 2.223 hydrogen, 2.23 
sulfur, and 7.631 and 7.645 MeV iron doublet). In both the MCNP and RADSAT spectra, the 2.23 MeV 
sulfur and 2.233 MeV phosphorus peaks are graphed in the same bin due to limitations in the resolution 
of the bin widths.  The nitrogen peaks were outside of the energy region simulated in the detector 
response for both MCNP and RADSAT.  The remainder of the peak height and energy positioning is 
comparable to that reported to the spectra in other munition modeling. 

Table 6. Peak count rates for regions of interest from the irradiation of VX. 
 1.266 MeV 2.223 MeV 2.23 MeV 7.631 MeV 7.645 MeV 

Empirical 217 11920 100 865 795 
MCNP 152 3910 248 350 325 

RADSAT 278 6100 93.0 409 354 

 
Figure 27. Empirical data from the irradiation of VX (Data provided by INL). 

 

2.223 MeV 
Hydrogen 

7.631 MeV and 
7.645 MeV 
Iron doublet 

2.233 MeV 
Phosphorus 
and 2.23 MeV 
Sulfur 

1.266 MeV 
Phosphorus 

5.420 MeV 
Sulfur 



PNNL-18793 

Page 26 of 31 

 
Figure 28. Comparison of MCNP and RADSAT detector response for VX irradiated in PINS 

configuration. 
 

 
Figure 29. Comparison of 1.266 MeV phosphorus peak in MCNP and RADSAT detector response 

for VX irradiated in PINS configuration. 
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Figure 30. Comparison of 2.223 MeV hydrogen, 2.23 MeV sulfur, and 2.233 MeV phosphorus peaks 

in MCNP and RADSAT detector response for VX irradiated in PINS configuration. 

 
Figure 31. Comparison of 5.421 MeV sulfur peak in MCNP and RADSAT detector response for VX 

irradiated in PINS configuration. 
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Figure 32. Comparison of 7.631 MeV and 7.645 MeV iron doublet in MCNP and RADSAT detector 

response for VX irradiated in PINS configuration. 

4.0 Conclusions 
Based on the series of benchmarking problems and comparisons to MCNP5 results, the deterministic 
transport methods being developed and implemented in RADSAT are capable of accurately and 
efficiently modeling neutron-activation analysis problems using high-resolution gamma-ray spectrometers 
for prompt gamma neutron activation analysis. The key enabler for this functionality is the RADSAT-NG 
multi-group cross section preparation method, which, unlike currently available neutron-gamma cross 
section libraries and preparation methods, tabulates the discrete-energy and continuum neutron-induced 
photon source terms separately. These tabulated neutron-gamma cross section libraries allowed for the 
inclusion of some missing discrete gamma rays in the ENDF/B-VII cross section library which other 
cross section processing methods are not capable of including.  The possibility of contributing more 
gamma production to a single isotope than naturally occurs by including extra discrete gamma rays that 
may also be included in the continuum should be understood.   

Demonstrating solution accuracy was paramount for these benchmark problems.  In the benchmarking 
process, some deficiencies in the current RADSAT method were discovered for certain problems.  
Although the RADSAT method proved sufficient for modeling munitions, it was insufficient for 
modeling simple surrogates (i.e. water or graphite) in the PINS configuration.  The gamma ray spectrum 
that is generated in the remainder of the PINS configuration for these simple surrogates is more complex 
than the spectrum generated from the surrogate.  This discrepancy generates a RADSAT spectrum that 
cannot be compared to the measured spectrum or MCNP generated spectrum.  In order to rectify this 
discrepancy, it would be necessary to generate the cross sections for compositions in the remainder of the 
PINS configuration so the total gamma ray spectrum produced in all of the components can be modeled.   
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While demonstrating solution accuracy is the necessary first step in the use of RADSAT for neutron 
activation analysis problems, the primary motivator for using deterministic over Monte Carlo methods is 
the potential for significantly shorter computational times that might enable new approaches to field 
analysis of PGNAA spectra recorded from unexploded chemical munitions. Run times were 
approximately 10 times shorter than benchmark cases described in this report.  It is important to note, 
however, that these run-time comparisons can vary widely depending on the composition of materials in 
the problem, size of the problem, and skill of the analyst in extracting the best performance from 
RADSAT and MCNP. In this preliminary work, little effort was made to optimize the RADSAT 
calculation parameters in order to reduce run time, nor was any substantive variance reduction methods 
(beyond geometry biasing on the neutron source) applied in the MCNP simulations. Therefore, this work 
represents only a preliminary assessment of RADSAT methods using a narrow subset of neutron-
activation problems. The results should not be interpreted to mean that the RADSAT-NG cross section 
preparation methods are mature and well vetted or that RADSAT will always offer improved 
computational efficiency over Monte Carlo methods for neutron-activation problems. Ongoing work, 
including additional evaluation of spatial discretization in the calculation of neutron flux and neutron-
induced photon source terms, will shed more light on both aspects—accuracy and computational 
efficiency—and allow a more thorough evaluation of the strengths and limitations of RADSAT methods 
over a wide range of radiation detection problems.  

5.0 Future Work 
Although the initial RADSAT method produces promising results for PGNAA problems, additional work 
is needed to show that RADSAT is truly useful for real-world applications like the INL PINS project. The 
highest-priority task is to add the cross sections for the other isotopes present in the problem in order to 
properly complete all of the provided benchmark problems.  Although the graphite, water and sulfur 
surrogates were modeled, the lack of cross sections for the remaining compositions caused major 
discrepancies in the calculated detector response.  Small differences can be noted in the MCNP and 
RADSAT results for the munition simulation also which can be attributed to the assumption that only the 
munition produces gamma rays.  

The chemical composition and munition-type library should be expanded for PGNAA problems using 
RADSAT. Currently, HD, FS, GB and VX have been simulated for three configurations, the 4.2-inch 
mortar, 155 mm mortar and the Livens munition. Adding chemical compositions that rely on other peak 
ratios for identifications may also identify other areas in need of improvement and expand the required 
RADSAT-NG cross section library. For example, INL has previously indicated interest in the modeling 
WP smoke. 

Identifying ways to reduce RADSAT computational time for PGNAA problems is another important 
improvement. To date, calculations were completed in parallel with preliminary methods development, 
and little effort was made to optimize the transport parameters (i.e., mesh size, PN order, SN order) to 
reduce computational times. Since a standard geometric configuration is used for PINS problems (i.e. 
source to target to detector orientation and position) with a limited type of munitions, the transport 
parameters can be optimized for that specific geometry, thereby reducing computational time.  

Using the alpha version of RADSAT, the neutron transport calculation in PINS-like problems accounts 
for over 90% of the computation time. Since the PINS measurements are primarily conducted on a given 
range of material compositions and munition configurations, it may be possible to pre-calculate a base set 
of neutron spectra that will cover the range of neutron spectra seen within chemical munitions in PGNAA 
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problems. These spectra would be stored in a database for use as an input for calculating the neutron-
induced photon spectrum. If this is possible, only the photon transport calculation need be completed 
during the iterative process, significantly reducing the total computational time for a problem (e.g., by a 
factor of 10). A set of trials to determine the relative sensitivity of the neutron-induced photon spectrum 
on the initial neutron flux will help determine the viability of this method.  

In addition to the possibility of eliminating the neutron-transport calculation from the iterative process, it 
may be possible to reduce the time required to complete the photon-transport calculation. PGNAA 
problems are typically interested in net peak count rates or peak ratios, not the entire photon spectrum. 
Yet at present, much of the photon-transport computational time is spent calculating the scattered 
component of the flux. Since the uncollided component is the primary data of interest for PGNAA 
problems, it is likely that a ray-tracing calculation only would be adequate. This eliminates the time-
consuming calculation of the scattered component from the photon-transport calculation. This would also 
provide the all-important net peak counts for full-energy peaks and will simultaneously reduce the amount 
of time required to complete the calculation.  

Once it has been determined that the RADSAT method is accurately capturing  PGNAA problems, those 
methods can be implemented in the RADSAT graphical user interface or some alternative version of that 
user interface tailored for the specific applications (e.g., PINS analysis in the field).  
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